
ar
X

iv
:2

40
4.

10
98

5v
1

 [
cs

.C
V

]
 1

7
A

pr
 2

02
4

1

Pixel-Wise Symbol Spotting via Progressive Points

Location for Parsing CAD Images
Junbiao Pang, Zailin Dong, Jiaxin Deng, Mengyuan Zhu and Yunwei Zhang

Abstract—Parsing Computer-Aided Design (CAD) drawings
is a fundamental step for CAD revision, semantic-based man-
agement, and the generation of 3D prototypes in both the
architecture and engineering industries. Labeling symbols from a
CAD drawing is a challenging yet notorious task from a practical
point of view. In this work, we propose to label and spot symbols
from CAD images that are converted from CAD drawings. The
advantage of spotting symbols from CAD images lies in the low
requirement of labelers and the low-cost annotation. However,
pixel-wise spotting symbols from CAD images is challenging
work. We propose a pixel-wise point location via Progressive
Gaussian Kernels (PGK) to balance between training efficiency
and location accuracy. Besides, we introduce a local offset to the
heatmap-based point location method. Based on the keypoints
detection, we propose a symbol grouping method to redraw the
rectangle symbols in CAD images. We have released a dataset
containing CAD images of equipment rooms from telecommuni-
cation industrial CAD drawings. Extensive experiments on this
real-world dataset show that the proposed method has good
generalization ability.

Index Terms—CAD images parsing,symbol spotting, pixel-wise
localization, Progressive Gaussian Kernels

I. INTRODUCTION

C
OMPUTER-AIDED DESIGN(CAD) drawings are

widely employed for efficient yet precise illustration

of products, aiding in the creation, modification, analysis,

management, and optimization processes throughout their

entire life cycle [1] [2] [3]. Therefore, CAD drawings are

extensively utilized in the modern architecture, engineering,

and construction (AEC) industries. Currently, many CAD

drawings are still stored in the paper format. Semantic

understanding of these technical documents in digital

libraries becomes necessary due to the following practical

requirements:

• Standardization: It is necessary to ensure that symbols

representing the same objects across different design

units or individual engineers adhere to the same drawing

standards for the effective communication and reusability.

• Management: For an asset owner, indexing, summarizing,

and quantifying these assets via CAD drawings would

efficiently manage their properties. It is challenging to

automatically extract information, such as the number of

J. Pang, Z. Dong and J. Deng are with the Faculty of Information
Technology, Beijing University of Technology, Beijing 100124, China (e-mail:
junbiao pang@bjut.edu.cn).

M. Zhu and Y. Zhang are with the Software Development Center, China
Information Technology Designing and Consulting Institute Co., Ltd, Beijing
100190, China.

Fig. 1: 12 kinds of semantic objects are defined within CAD

images. A red box represents the region symbol, while the

green wireframes represent the rectangle symbols.

spare frameworks. In fact, a substantial number of draw-

ings in paper or image form result in several drawbacks

during actual data storage, retrieval, and editing [4].

• Re-usability: Designers or engineers usually reuse CAD

drawings from the previous projects for their new designs.

In this scenario, an efficient solution is to query semantic

symbols from CAD drawings [1] [5].

Symbol spotting and parsing [6] refer to a particular ap-

plication of computer vision, in which symbols with the

domain-specific semantics are localized and recognized to the

predefined types [7] [8]. Currently, symbol spotting includes

both the domain-specific locations of object instances (i.e.,

windows, doors, walls and body frames) and the identification

of their attributes (i.e., the open direction of a door, the

width of a wall and the size of a window). Spotting symbols

from the CAD drawings is crucial to the above real-world

industrial applications. Traditional symbol spotting [9] [10]for

CAD drawings detects instance by classifying the elements

(e.g., points, lines, arcs) into different symbols. However, the

annotation of CAD drawings requires that annotators should

skillfully use a CAD software to group graphical primitives

(e.g., arrows, lines, circles) into semantic symbols, as shown

in Fig.2(a). The efficient yet low-cost annotation of CAD

drawings is a pressing and practical problem that hinders

symbol spotting for CAD drawings.

In this paper, we propose to spot symbols from CAD images

that are converted from CAD drawings. The motivations for

http://arxiv.org/abs/2404.10985v1

2

spotting symbols from CAD images are threefold: 1) the

requirements for labelers are lower compared to those for CAD

images; 2) CAD drawings in papers or images are handled

in a uniform approach; 3) CAD images only require labelers

to annotate the keypoints or lines of symbols, as shown in

Fig.2(b).

Technically, the symbol spotting for CAD images can be

further classified into two sub-tasks as follows:

• Object-Based Spotting (OBS): OBS utilizes off-the-shelf

methods to coarsely locate symbols, severing as layout

analysis [11] [12] . OBS usually unifies symbols that have

the same semantics but different visual representations

into uniform symbols. Empirically, the object detection

method (e.g., YOLOX [13])achieves excellent perfor-

mance for the object-level sub-task.

• Pixel-Based Spotting (PBS): PBS precisely decomposes

a symbol into a set of keypoints (e.g., the start point and

the end one of a line), aiming to locate and redraw this

symbol in a pixel-wise approach. PBS paves the way for

reusing, changing, or adding symbols for management

requirements.A significant challenge of PBS is the pixel-

wise keypoint location since most of the images converted

from CAD drawings are high resolution, such as, 4000×
4000. Therefore, PBS is a non-trivial task for parsing

CAD images.

The state-of-the-art(SOTA) keypoint detection

approaches use the Gaussian heatmap to represent a

point [14] [15] [16] [17] for Human Pose Estimation (HPE).

However, HPE is totally different to the keypoint location in

CAD images due to the following aspects: 1) keypoints in

HPE themselves contain labeling uncertainty, while keypoints

in parsing CAD images barely have uncertainty; 2) HPE

considers the scale of different objects, while parsing CAD

images do not have the scale problem;3) Additionally, the

appearances of keypoints in CAD images differ significantly

from those in HPE [18] [19] or object counting [20].

Therefore, pixel-wise keypoint location is a novel yet

challenging task for parsing CAD images.

Naturally, for the PBS for CAD images, we seek an accurate

and stable pixel-wise keypoint location method, based on two

motivations. First, although an enormous volume of literature

has been devoted to the accuracy of the point detection for

HPE [21] [22] [23], there is little attention to the pixel-

wise point location method, and practitioners lack guidelines

on how to achieve it. Second, we want to combine the

advantages of the popular heatmap based method [24] [25]and

the regression-based method [26] [27] [28]: the heatmap-

based method anchors the accuracy, while the regression-based

method enhances the prediction performance. In summary, we

desire a pixel-wise keypoint prediction ability for the PBS for

CAD images.

In this paper, we handle the pixel-wise keypoint location

from the viewpoint of role of Gaussian Kernel Size (GKS)

and the compensation of the quantization error. Concretely,

a small GKS facilitates more accurate point location than

a large GKS by finding the maximum response [29]. How-

ever, a small GKS provides insufficient gradient information

to train a neural network (as will be discussed in Fig.4).

Conversely, a large GKS expedite the training of a neural

network but is susceptible to be miss-guided by the Max-

Value Drift (MVD) problem (as will be discussed in Fig.3)

during the decoding process [16], rendering the use of large

GKS unnecessary. However, a naive approach, switching the

GKS during training, has been empirically shown to result

in an unstable training process and may even lead to non-

convergence.

Motivated by the above analysis, we propose Progressive

Gaussian Kernels (PGK) to harmonically use both a large

GKS and a small one in an annealing approach without

suffering from the complex position decoding process [29]

for symbol spotting in CAD images. There are many po-

tential benefits of the combination of the large GKS and

small one: accelerating neural network training, and improved

keypoint location accuracy. Besides, we introduce an offset in

the position encoding stage to reduce the quantization error.

Based on keypoint localization, we propose a symbol grouping

method for the rectangle-like symbols. We have released an

image dataset depicting the layout of equipment rooms from

telecommunication industrial CAD drawings. We verify the

effectiveness of our method on the proposed dataset.

To the best of our knowledge, this paper is the first to com-

bine the large GKS and the small one for keypoint detection,

presenting a comprehensive series of experiments to illustrate

the benefits of this novel technique. The proposed method is

computationally simple yet exceptionally powerful. Simply by

annealing the heatmap size, with no further parameter tuning,

we find an accurate keypoint location method that meets or

exceeds the current state of the art!

II. RELATED WORK

A. Background of Symbol Spotting

In practice, there are two research lines for symbol spotting:

1) the CAD drawings-based approach uses CAD format(e.g.,

.dwg)[1][2] [30] [31] and 2) the image-based approach uses

images (e.g., .png,. jpeg) converted from the CAD format

files [5] [32]. The differences between the two lines are

summarized as follows:

• Pixel-wise location: As illustrated in Fig2, the CAD draw-

ings supply precisely location of symbols in a structured

form, while the image-based approach needs pixel-wisely

to locate symbols from images which have the same size

as CAD drawings, such as 4200× 3000.

• Efficient annotation: The CAD drawings require annota-

tors to skillfully use a CAD software to group graphical

primitives (i.e., arrows, lines, circles and their segmen-

tations) into semantic symbols (see Fig. 2a). In contrast,

the image-based approach only requires labelers annotate

the keypoints or the lines of a symbol.

• Feature representation: The CAD drawing-based ap-

proach utilizes vector graphics extracted from CAD draw-

ings as input, such as, clockwise angles, lengths and

types. In contrast, the image-based approach relies solely

on unstructured images themselves.

• Data deficiency: Nowadays many documents are still

stored in paper format without the corresponding CAD

3

<g id="arrows" inkscape:groupmode="layer"
inkscape:label="Arrows1>

<path d=M 65.000,14.496 L 65.000,19.500"
fill="none"
stroke="rgb(63,63,63)"
stroke-width="0.1"/>
<!-- Path used to describe arrows -->

......

<path d="..."
fill="none"
stroke="..."
stroke-width="..."/>
</g>

<g id="lines1" inkscape:groupmode="layer"
inkscape:label="Line1>
<path d="M 76.500,25.000 L 81.500,25.000"
fill="none"
stroke="rgb(134,134,134)"
stroke-width="0.1"/>
<!-- Path used to describe lines -->

......

<path d="..." fill="none" stroke="..." stroke-
width="..."/>
<!-- Path used to describe lines -->
</g>

<circle cx="35.987" cy="88.907"
fill="none"
instance-id="21"
r="0.123444"
semantic-id="29"
stroke="rgb(92,92,92)"
stroke-width="0.1"/>
<!-- Path used to describe circles -->

......

(a) A CAD drawing and its annotation

(b) A CAD image and its annotation

Fig. 2: Comparison between a CAD drawing and a CAD

image.

drawing files. Consequently, the image-based approach

naturally handles the deficiency of the CAD drawings.

B. Symbol Spotting

Conventional symbol spotting methods are categorized as

the vector-based methods [9] and the image-based meth-

ods [33][34][35]. Concretely, the vector-based methods utilize

the structural relation among symbol primitives, while the

image-based methods leverage the statistical properties of pix-

els. The challenge is that the handcrafted symbol descriptors

barely cope with the graphical notation variability of all kinds

[8].

Deep learning has been adapted to the symbol spotting

in the vector-based methods for CAD drawings, where the

popular detection models Faster-RCNN [36], YOLO [37],

Graph Neural Network (GNN) [38], and Transformer [39]

have been exploited. However, these methods require the ex-

pensive primitives-level annotations, making it difficult to gen-

eralize to any vector-based documents. In practice, a symbol

maybe drawn from different layers in CAD drawings, requiring

professionals with CAD software to label primitives in a time-

consuming approach. On the contrary, the image-based method

only requires the pixel-wise keypoint annotation, reducing the

requirements of labelers.

The image-based methods often locate the bounding boxes

of symbols in CAD images via the off-the-shelf object detec-

tors [36] [40] [41]. However, previous image-based methods

focus on the types of symbols rather than pixel-based symbol

spotting from CAD images.

Recently, a real-world floor plan CAD drawing dataset [5]

has been released, contains 35 object classes of interest,

including 30 countable symbols and 5 uncountable classes

labeled with line-grained annotations in a vector-based doc-

ument. As a comparison, our dataset contains 15 types of

keypoints which are further organized into 12 semantic sym-

bols for CAD images, where the image resolutions range from

1700× 1200 to 4200× 3000. To our best knowledge, we are

the first to release the largest CAD images for symbol spotting

via keypoint location.

C. Keypoint Location

Keypoint location methods are generally classified into two

categories: the heatmap-based approach and the regression-

based one. The heatmap-based approach [42] [43] fully uti-

lized the spatial information around keypoints, thus achieving

the higher accuracy than that of the regression-based one.

Some studies [18] [23] [17] have proposed deep neural net-

works for feature extraction. In contrast, the regression-based

method directly outputs the coordinates of keypoints for HPE.

For example, CenterNet [44] and DirectPose [45] estimate

multi-person HPE in a one-stage object detection framework.

Recently, Residual Log-likelihood Estimation (RLE) [26] in-

troduced a normalized flow model [46] to capture the under-

lying distribution of keypoints. Compared with the heatmap-

based method, the regression-based approach has made great

efforts to model the implicit relationships among keypoints,

yet still lacks spatial generalization ability [24]. Experiments

empirically show that the heatmap-based methods still obtain

a better results than the regression-based ones [25].

It is important to note that the above keypoint location

methods were primarily proposed for HPE, in which datasets

include MPII [43] and COCO [47]. HPE considers the possible

occlusion, object scale and complex backgrounds where the

evaluation metric, Object Keypoint Similarity (OKS), is used

to handle the uncertainty of keypoints. In contrast, symbol

spotting for the CAD images requires the pixel-wise keypoint

location. To obtain a pixel-base location for the CAD im-

ages, we propose to combine the heatmap-based method and

regression-based one, utilizing local offsets to compensate for

the quantization errors of keypoints.

III. PROGRESSIVE KEYPOINTS DETECTION

A. Heatmap based Coordinate Encoding-Decoding Revisited

The encoding of a keypoint is the process of converting the

a coordinate into a Gaussian distribution. Specifically, given

a heatmap H ∈ R
h×w with the height h and the width w,

we assume the Ground Truth (GT) of a keypoint to be µ =
[µx, µy]. The heatmap of a GT keypoint is converted into a

Gaussian distribution as follows:

H (x, y) =
1√
2πσ

exp

(
− (x− µx)

2 + (y − µy)
2

2σ2

)
(1)

4

 ! " # $ % &

'

!

"

#

$

%

&

(

)#*)$+)%*)&!)%*)$+)#*

)$+)&$)*&),)*&)&$)$+

)%*)*&),+)+%),+)*&)%*

)&!),)+% !))+%),)&!

)%*)*&),+)+%),+)*&)%*

)$+)&$)*&),)*&)&$)$+

)#*)$+)%*)&!)%*)$+)#*

(a) GT heatmap (σ = 3)

 ! " # $ % &

'

!

"

#

$

%

&

(

))) !) !) !))

)) ") *)!$) *) ")

) !) *)#+)&!)#+) *) !

) !)!$)&! !))&!)!$) !

) !) *)#+)&!)#+) *) !

)) ") *)!$) *) ")

))) !) !) !))

(b) GT heatmap (σ = 1)

 ! " # $ % &

'

!

"

#

$

%

&

(

)#*)$+)%*)&!)%*)$+)#*

)$+)&$)*&),)*&)&$)$+

)%*)*&),+)+)+)*&)%*

)&!),),+)+$)+,)+)&!

)%*)*&),+)+),+)*&)%*

)$+)&$)*&),$)*&)&$)$+

)#*)$+)%*)&!)%*)$+)#*

(c) Predicted heatmap (σ = 3)

 ! " # $ % &

'

!

"

#

$

%

&

(

))) !) !) !))

)) ") *)!$) *) ")

) !) *)#+)&!)+%) *) !

) !)+&)+%),%)&!)!$) !

) !) *)#+)&!)#+) *) !

)) ") *)!$) *) ")

))) !) !) !))

(d) Predicted heatmap (σ = 1)

Fig. 3: Illustration of MVD problem by comprising between

the GT heatmaps and the predicted heatmaps. (a) and (b)

represent the GT heatmaps with the GKS σ = 3 and

σ = 1,respectively. (c) and (d) show the predicted heatmaps

with the corresponding GKS respectively. Color represents

the magnitude of the heatmaps response. Circle indicates the

position with the maximum value.

where (x,y) is the discrete pixel coordinate in the heatmap, and

the parameter σ represents GKS, which models the uncertainly

of an annotation for a keypoint.

Due to the inconsistency between the size of the heatmap

H ∈ R
W

R
×

H

R
×C and the input image I ∈ R

H×W×3, where H
and W are the height and width of an image respectively, R
(R > 1) is the down-sampling rate, and C is the number of

keypoint classes, quantization errors inevitably occur during

the process of the coordinate encoding in Eq(1). For a GT

keypoint µ = [µx, µy] from the image, its corresponding

coordinate in the heatmap is as follows:

µ̃ = ⌊µ
R
⌋ (2)

where the operation ⌊·⌋ causes a quantization error:

O =
µ

R
− µ̃ (3)

in which the range of the quantization error O is bounded by

R · [−1/2, 1/2)× [−1/2, 1/2). As a result, the quantization

error O deeply influences the accuracy of the pixel-wise point

location.

In this paper, we introduce a local offset in the position en-

coding process to reduce the quantization errors. Specifically,

Fig. 4: The relationship between the gradients (6) and the

distance |x− µx|.

we use a deep model to predict the Gaussian heatmap Ĥ and

the quantization error Ô as follows:

L =
1

N

N∑

k=1

‖Hi − Ĥi‖2 +
λ

N

N∑

k=1

‖Oi − Ôi‖2 (4)

where λ is a hyperparameter, i (1 ≤ i ≤ N) is the index

of a sample. The loss function (4) consists of two parts: one

computes the mean square error between the GT heatmap H
and the predicted heatmap Ĥ ; the other computes the mean

square error between the real quantization error O and the

predicted quantization error Ô.

Once the Eq(4) is optimized, the predicted coordinate (x̂, ŷ)
is decoded as follows:

(x̂, ŷ) = R ·
(
Argmax(x,y)(Ĥ) + Ô

)
(5)

where the function Argmax(·) locates the spatial coordinate

by finding the maximum value.

B. Progressive Change of the GKS

Heatmaps in Eq.(1) have a significant impact on the accu-

racy of coordinate decoding for each point. As illustrated in

Fig.3, the larger GKS is, the smoother the heatmap distribution

is. Consequently, during the training stage, a small disturbance

would have a higher chance to change the decoded position

for the larger GKS than the smaller one [24], although the

larger GKS has a lower training loss in Eq(4) than for the

smaller one. As illustrated in Fig. 3(c) and (d), for the pixel-

wise location tasks, it is suitable to utilize a smaller GKS than

a larger one due to the MVD problem.

On the other hand, a larger GKS would bring more super-

vised signal to train a deep model. Specially, the gradient of

H in Eq(1) with respect to each pixel coordinate is as follows:

∂H

∂x
=

(x− µx)√
2πσ3

exp

(
− (x− µx)

2 + (y − µy)
2

2σ2

)
(6)

Fig.4 illustrates the relationship between the a spatial point x
and a GT one µx. We have drawn two key observations from

Fig.4 as follows: 1) For a fixed GKS, the farther a spatial point

is away from the GT, the smaller the supervised signal is; 2)

For a fixed spatial point, the larger a GKS is, the larger the

supervised signal is.

5

Fig. 5: The loss curve of the validation set for PGK and naive

approach. At 100 epochs, the naive method changes the GKS

from 3 to 1.

Therefore, a naive idea to utilize the above observations is

to switch the GKS in the training of a model. That is, in the

early stage of training, in order to obtain a large supervision

signal for these points away from the GT ones, a larger GKS

is used to help the model converge quickly; while, in the later

stage of training, a smaller GKS makes the model focus on the

local area around the GT points for the detailed information.

However, the naive approach faces the “switch problem”: the

weights from the larger GKS is not a good initialization for

the smaller GKS. As illustrated in Fig.5, the naive approach

did not accelerate the convergence of training process.

To handle the switch problem, we propose a progressive

keypoint location method referred to as point location via

Progressive Gaussian Kernels in an annealing approach as

follows:

σt = (σmax − σmin)α
t/M + σmin

(
1− (σmax − σmin)α

)t/M
(7)

where the parameters σmax and σmin (σmax > σmin) rep-

resent the initial GKS and the target one, respectively. σt is

the annealing GKS at the t-th epoch, α (0 < α < 1) is the

annealing rate, and M (1 ≤ t ≤ M) is the total number of

epochs during training.

The progressive Gaussian kernel is shown in Fig.6. Fol-

lowing the idea of the annealing approach [48], the function

αt/M progressively increases with respect to the number of

the epochs. Specifically, the change rate of σt is controlled by

(σmax − σmin)α
t/M , which reduces the GKS at each epoch.

C. Grouping Keypoints into Rectangle Symbols

The located keypoints have two types of errors: 1) the type

of a keypoint is misclassified; 2) the location of a keypoint still

has an error. We propose a strategy with the error-correction

mechanism to group the keypoints into rectangle symbols for

the classification error.

Concretely, we utilize the rectangle shape as a prior to

design multiple grouping routes to remove classification errors

according the consistence between the grouping point and the

candidate one. We formally represent the consistence between

points as: 1 == consistence(pi, pj) . For example, point 7

and point 8, 12, 14 and 15 in Fig. 7 have the consistent group

direction to group two points into one third rectangle symbol

Fig. 6: The curves of GKS in Eq (7) with different values of

α, the other hyper-parameters are σmax = 3, σmin = 1, and

M = 200.

if we group a rectangle from the right of point 7. An example

of grouping keypoints into rectangle symbols is illustrated in

Alg. 1.

Algorithm 1 Grouping keypoints into the predefined symbols

Input: A start point set K and the bounding box set of

symbols Bi ∈ B
Output: The rectangle symbol set Vi ∈ V where |V| = |B|

1: for Bj ∈ B do

2: Select a start point pi ∈ K as the grouping point from

Bj

3: Follow the grouping direction of the point pi and

calculate Euclidean distance dij between the point pi
and the candidate ones pj

4: if l = minj dij and 1==consistence(pi, pl) then

5: Add the point pl into the matched list Vi

6: Use the point pl as the new start point, ki ← pl
7: else

8: Retrieve anther keypoint from Vi as new start point

9: end if

10: Goto Step 3

11: end for

12: return Vi.

IV. EXPERIMENTS

A. Dataset for CAD images

The dataset1 consists of 300 images for the training and

60 images for the testing, respectively. The image resolutions

range from 1700 × 1200 to 4200 × 3000. Some examples

are illustrated in Fig.10. We use Labelme as the annotation

software. Because it supports various annotation methods,

including point annotation, rectangle annotation, and polygon

annotation. These CAD images about the layout of the equip-

ment rooms are from the telecommunication industrial CAD

drawings.

Fig.1 shows 12 types of semantic symbols, including 3 types

of rectangle symbols (i.e., Scales, Blocks, and Walls) and 9

types of region symbols (The types of symbols are illustrated

in Table I). The size of these symbols in CAD images are

1https://github.com/pangjunbiao/CAD-dataset/

6

significantly different from each other. The region symbols

are efficiently located by object detection methods for the

OBS task. Specifically, the sizes of the rectangle symbols are

smaller than those of the region symbols, requiring the pixel-

wise location.

To locate the rectangle symbols, the first step involves

coarsely localizing region symbols, followed by the point-

wise keypoint location. Fig. 7 shows the 15 types of keypoints

that compose the rectangle symbols. Concretely, for scales, 6

types of keypoints are defined based on the direction of the

scale’s endpoints. For blocks and walls, 9 types of keypoints

are defined based on the shape of the corners.

In summary, parsing rectangle symbols poses a significant

challenge to the pixel-wise point location for the symbol

spotting task. Because the symbol grouping algorithm in Alg. 1

requires both the type and the location of keypoints should be

correctly classified and located.

B. Evaluation Metrics

In our experiment, we used two kinds of evaluation metrics

to evaluate the accuracy of the keypoint location and the

symbols spotting as follows:

F1 score: The F1 score offers a balanced evaluation between

Precision and Recall as follows:

F1 =
2× Precision× Recall

Precision + Recall
(8)

where Precision and Recall are respectively defined as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

in which TP is the number of the successfully detected

keypoints or region symbols, FP is the number of incorrectly

detected keypoints or region symbols, and FN is the number

of keypoints or region symbols that were not detected when

they should have been. Specifically, whether a keypoint or

region symbol has been correctly detected is further defined

as follows:

• For region symbols, Intersection over Union (IoU) eval-

uates the ratio of the intersection and union between the

predicted region symbols B and true symbols G:

IOU =
Intersection(B,G)

Union(B,G)
(11)

When IOU is larger than a predefined threshold τo(i.e.,

IOU > τo), we consider that a region symbol is correctly

detected. In this paper, τo is set as 0.5.

• For keypoints, Euclidean distance ℓi between the i-th
predicted keypoint and the corresponding GT point is

used:

ℓi =
√
(x̂i − xi)2 + (ŷi − yi)2 (12)

When ℓi is smaller than a predefined threshold τp (i.e.,

ℓi < τp), we consider that a keypoint is correctly detected.

In this paper, τp is set as 2.

� �

 !"#

Symbol Category Keypoint Type

$

%&� ' (�

�

Label
 !"#$% ��� !"#$%&'()*+,-./0123456)

Scales

Label

Blocks and wall

Fig. 7: 15 kinds of keypoints are defined to group the rectangle

symbols.

TABLE I: The results of the object-based symbol spotting by

object detection method

Region Symbol Precision Recall F1

Main 1.00 1.00 1.00

Main title 1.00 0.92 0.96

Title bar 1.00 1.00 1.00

Material list 1.00 1.00 1.00

Legend 1.00 1.0 1.00

Description text 1.00 1.00 1.00

Direction angle 1.00 0.90 0.95

Text with directional lines 1.00 0.98 0.99

Scale text 0.97 0.97 0.97

Averaged Pixel Error for Keypoints (APEK): APEK

evaluates the accuracy of the pixel-wise keypoint location as

follows:

APEK =
1

N

N∑

i=1

ℓi (13)

where ℓi is the Euclidean distance in Eq(12), N is the number

of all the detected keypoints (including the wrongly detected

ones).

C. Implement Details

We use the Stacked Hourglass network [18] as the backbone

network. The initial learning rate for the ADAM optimizer

was set to 10−4, and the hyper-parameter λ was set to 0.1.

The model was optimized for 200 epochs. In the training

stage, we first locate the region symbols, the detected region

symbols are cropped into a set of the 256× 256 pixel patches

by a sliding window approach with the step size is equal

to 0. In the inference stage, we divide a complete CAD

image into pixel patches of size 256 × 256, and then feed

each patch into the model for keypoint localization, where

Non-Maximum Suppression (NMS) is applied to obtain the

keypoints. We detected a keypoint by judging whether the max

value of the heatmap Ĥ in Eq(5) is larger than the threshold

ς = 0.6. Finally, we stitch the results from each patches into

the coordinates of the CAD images.

D. Experimental Results

The rectangle symbols usually are contained within these re-

gion symbols. Rather than detecting rectangle symbols across

the whole CAD images, it is reasonable to locate the rectangle

symbols within the region symbols.

7

1) Performances of OBS: We located the region symbol by

YOLOX [13]. Table I demonstrates that YOLOX achieves an

excellent performance for the object-based symbol spotting.

Serving as the layout analysis for CAD images, the accuracy

of the OBS task is critical to improve the inference speed for

the PBS task. Because rather than locating the small rectangle

symbols in a high-resolution image (see Fig.10), we need

to further finely locate the rectangle symbols within these

detected region symbols.

In this work, the comparisons with these advanced methods

(such as [49] [50]) are not conducted. Because the OBS task

is not our main contribution in this work; besides, we believe

that any advanced object detection methods could be used to

the OBS task.

2) Performances of PBS: Baselines There are many

heatmap-based methods and the regression-based methods for

point location for HPE. To show the superiority of the pixel-

wise location ability of the proposed method for parsing

CAD drawings, we choose two State-Of-The-Art (SOTA)

methods (i.e., soft-argmax [28]) from the former and one (i.e.,

RLE [26]) from the latter as our baselines as follows:

• Soft-argmax [51] assumes that a model learns a discrete

probability map πyi
which indicates the probability of

the predicted target point at yi. The quantization er-

ror is avoided by an elegant approximation, i.e., ŷ =
soft-argmax(π) =

∑
i πyi

yi, where π is a normalized

distribution. Soft-argmax avoids the quantization errors

by the expectation of the probability map π.

• RLE [26]: RLE utilizes the normalizing flows [52] to

capture the underlying output distribution and makes

the regression-based methods match the accuracy of

SOTA heatmap-based methods. RLE, as a regression-

based method, naturally avoids the quantization errors.

To achieve the pixel-based symbol spotting, we firstly

locate keypoints in Fig.7 via PGK in subsection III-B, and

then apply Alg. 1 to group these detected keypoints into

rectangle symbols. In the following experiments, we report

the performances of keypoint location and then the accuracy

of the Alg. 1.

Performances of Keypoint Location. Table II shows the

consistent performance superiority over the heatmap-based

counterpart, i.e., soft-argmax [28] and the regression-based

method, i.e., RLE [26]. Note that the evaluation and network

training are conducted under the same input size. Table II

also shows the offset component in Eq(4) uniformly increase

the performances keypoint location in terms of both F1 and

AEPK measurements. For example, our method outperforms

heatmap-based counterpart by +0.03 F1 and +0.41 AEPK,

respectively.

Performances of Symbol Grouping Algorithm.

Table II also shows consistent performance gains over the

heatmap-based counterparts, i.e., soft-argmax [28] and the

regression-based method, i.e., RLE [26]. Results presented in

Table II demonstrate that:1) the accuracy of point location has

a great influence on the final grouped symbols; 2) the symbol

grouping alg. 1 is able to partially rectify some misclassified

points.

TABLE II: The results of point location and the symbol

grouping algorithm

Methods
Point Scale Block and Wall

F1 ↑ AEPK ↓ F1 ↑

soft-argmax 0.76 4.92 0.77 0.76

RLE 0.78 4.85 0.79 0.78

Our method 0.79 4.51 0.79 0.79

In summary, according to the results presented in Table II,

we can further draw the following conclusions: 1) Soft-argmax

still produces an unconstrained probability map for CAD

images, which also suffers the bias problem [53]. 2) Our

proposed method combines the characteristics of the heatmap-

based method and the regression-based one, leading to a

simpler and more efficient scheme.

3) Ablation Studies for KeyPoint Location: In order to

demonstrate the effectiveness of the local offset in Eq(4) and

the PGK in Eq(7), we conducted ablation studies respectively.

Effectiveness of Local Offset: Table III shows that the

local offset boosts performances of different types of keypoints

in terms of both F1 and AEPK metrics. Specifically, the

performances of point 3 and point 4 in Fig. 7 from the scale

symbol are significantly improved from 0.72 to 0.74 and 0.83

to 0.85 respectively in terms of F1 score. Interestingly, The

AEPK scores of the point 3 and point 4 are also reduced

from 4.99 to 4.56 and 4.76 to 4.19, respectively. The results

mean that the offset term not only improves the classification

accuracy of points but also reduces the spatial location errors.

Fig. 8: Validation set loss curve with different Gaussian kernel.

Effectiveness of PGK: We discuss the impact of the

proposed PGK by comparing the following baselines:

1. GKS with σ = 3: σ = 3 is a common setting to handle

the uncertainty in the label errors for HPE. However, GKS

with σ = 3 would incur location errors due to the MVD

problem in Fig.3.

2. GKS with σ = 1: σ = 1 is barely used for HPE. We

verify that a smaller GKS would obtain a lower location

error than that of GKS with a larger kernel for symbol

spotting from CAD images.

Fig.8 shows that the proposed PGK enables a model to

not only have a “smooth” training process but also a faster

convergence speed than the counterparts, i.e., GKS with σ = 3
and GKS with σ = 1. The comparison shows that the PGK

8

TABLE III: The effectiveness of the local offset for keypoint location

local offset
Scale Block and Wall

Average
point1 point2 point3 point4 point5 point6 point7 point8 point9 point10 point11 point12 point13 point14 point15

F1↑
✗ 0.70 0.70 0.72 0.83 0.78 0.84 0.79 0.81 0.75 0.80 0.83 0.78 0.90 0.77 0.70 0.77
X 0.72 0.71 0.74 0.85 0.79 0.85 0.80 0.81 0.76 0.82 0.86 0.81 0.92 0.80 0.72 0.79

AEPK↓
✗ 5.00 4.88 4.99 4.76 4.9 4.51 4.59 4.94 4.74 4.89 4.73 5 4.84 4.91 4.92 4.88
X 4.78 4.58 4.56 4.19 4.34 4.23 4.5 4.47 4.34 4.72 4.44 4.73 4.51 4.69 4.77 4.51

TABLE IV: The effectiveness of PGK for keypoint location

PGK
Scale Block and Wall

Average
point1 point2 point3 point4 point5 point6 point7 point8 point9 point10 point11 point12 point13 poin14 point15

F1 ↑
✗ 0.72 0.71 0.74 0.85 0.79 0.85 0.80 0.81 0.76 0.82 0.86 0.81 0.92 0.80 0.72 0.79
X 0.75 0.79 0.81 0.9 0.87 0.89 0.83 0.87 0.77 0.83 0.90 0.86 0.95 0.83 0.78 0.84

AEPK↓
✗ 4.78 4.58 4.56 4.19 4.34 4.23 4.5 4.47 4.34 4.72 4.44 4.73 4.51 4.69 4.77 4.51
X 4.62 4.56 4.41 3.95 4.33 4.18 4.33 4.29 4.08 4.51 4.43 4.43 4.26 4.48 4.52 4.36

(a) σ = 3 (b) σ = 1 (c) PGK

Fig. 9: Visualization results of the detected keypoint for the different σ.

Fig. 10: sample results of the symbol spotting for CAD images.

enjoys the advantages of both the large GKS and the small

one. Moreover, the smallest validation loss indicates that the

proposed PGK has a best generalization ability compared

to these counterpart methods. Fig.9 vividly compares the

detection results among different kernel sizes. Fig.9(a) shows

that the GKS with σ = 3 tends to predict duplicated keypoints

due to the MVD problem and the NMS operation. Comparing

between Fig.9(b) and Fig.9(c), the proposed PGK yields more

accurate results than that of GKS with σ = 1.

Results presented in Table IV further demonstrate that the

proposed PGK shows consistent performance superiority over

GKS with σ = 1. For example, F1 score is increased from

0.79 to 0.84, and the averaged value of AEPK is decreased

from 4.51 to 4.36.

E. Visualization results

Fig.10 illustrates that the visual result of the pixel-wise sym-

bol spotting via both PGK and the symbol grouping algorithm.

By comparing the spotting position with the original points,

our system successfully parses the complex symbols for the

telecommunication industrial drawings.

CONCLUSION

In this paper, we propose the PGK approach to achieve both

fast training speed and the good results in keypoint location. It

adjusts the GKS in a progressively annealing approach to avoid

the inefficiency of the small GKS yet enjoys the fast training

speed of a large GKS. To enhance the location precision,

we introduce a local offset into the heatmap based method.

9

This approach enhances the accuracy of point location, set-

ting a new benchmark in pixel-wise keypoint detection for

CAD image parsing. We further propose a symbol grouping

method with the error-correction ability, which is a significant

advancement in the field of symbol spotting in CAD images.

Our method is computationally simple, coupled with its

outstanding performance, underscoring its potential as a trans-

formative tool for professionals engaged in CAD image anal-

ysis.By setting a precedent in the use of PGK and localized

position encoding, this work paves the way for future inves-

tigations into efficient and accurate symbol spotting method-

ologies for parsing CAD images.

In the future work, we aim to enhance our work as follows:

1) how to group the non-rectangle symbols, such as, the

symbols grouped by arcs as illustrated in Fig. 2; 2) verify

advantageous backbones, such as, HRNet [17] and Token-

Pose [54], in terms of the training speed, inference speed and

accuracy.

REFERENCES

[1] Z. Zheng, J. Li, L. Zhu, H. Li, F. Petzold, and P. Tan, “Gat-cadnet:
Graph attention network for panoptic symbol spotting in cad drawings,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2022, pp. 11 747–11 756.
[2] Z. Fan, T. Chen, P. Wang, and Z. Wang, “Cadtransformer: Panoptic

symbol spotting transformer for cad drawings,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 10 986–10 996.

[3] W. Liu, T. Yang, Y. Wang, Q. Yu, and L. Zhang, “Symbol as points:
Panoptic symbol spotting via point-based representation,” arXiv preprint

arXiv:2401.10556, 2024.
[4] C. Li, H. Pan, A. Bousseau, and N. J. Mitra, “Free2cad: Parsing freehand

drawings into cad commands,” ACM Transactions on Graphics (TOG),
vol. 41, no. 4, pp. 1–16, 2022.

[5] Z. Fan, L. Zhu, H. Li, X. Chen, S. Zhu, and P. Tan, “Floorplancad:
A large-scale cad drawing dataset for panoptic symbol spotting,” in
Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2021, pp. 10 128–10 137.
[6] A. Rezvanifar, “Analyzing symbols in architectural floor plans via

traditional computer vision and deep learning approaches,” Ph.D. dis-
sertation, 2021.

[7] H. Bhanbhro, Y. Kwang Hooi, W. Kusakunniran, and Z. H. Amur, “A
symbol recognition system for single-line diagrams developed using a
deep-learning approach,” Applied Sciences, vol. 13, no. 15, p. 8816,
2023.

[8] A. Rezvanifar, M. Cote, and A. B. Albu, “Symbol spotting on digital
architectural floor plans using a deep learning-based framework,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, 2020, pp. 568–569.
[9] A. Rezvanifar, M. Cote, and A. Branzan Albu, “Symbol spotting for

architectural drawings: state-of-the-art and new industry-driven develop-
ments,” IPSJ Transactions on Computer Vision and Applications, vol. 11,
pp. 1–22, 2019.

[10] S. Sarkar, P. Pandey, and S. Kar, “Automatic detection and classification
of symbols in engineering drawings,” arXiv preprint arXiv:2204.13277,
2022.

[11] X. Wu, Y. Zheng, T. Ma, H. Ye, and L. He, “Document image layout
analysis via explicit edge embedding network,” Information Sciences,
vol. 577, pp. 436–448, 2021.

[12] G. M. Binmakhashen and S. A. Mahmoud, “Document layout analysis:
a comprehensive survey,” ACM Computing Surveys (CSUR), vol. 52,
no. 6, pp. 1–36, 2019.

[13] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series
in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[14] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep
neural networks,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2014, pp. 1653–1660.
[15] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose

estimation and tracking,” in Proceedings of the European conference

on computer vision (ECCV), 2018, pp. 466–481.

[16] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution repre-
sentation learning for human pose estimation,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 5693–5703.

[17] C. Yu, B. Xiao, C. Gao, L. Yuan, L. Zhang, N. Sang, and J. Wang,
“Lite-hrnet: A lightweight high-resolution network,” in Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 10 440–10 450.

[18] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in Computer Vision–ECCV 2016: 14th Euro-

pean Conference, Amsterdam, The Netherlands, October 11-14, 2016,

Proceedings, Part VIII 14. Springer, 2016, pp. 483–499.

[19] H. Qu, L. Xu, Y. Cai, L. G. Foo, and J. Liu, “Heatmap distribution
matching for human pose estimation,” Advances in Neural Information

Processing Systems, vol. 35, pp. 24 327–24 339, 2022.

[20] W. Liu, M. Salzmann, and P. Fua, “Counting people by estimating people
flows,” IEEE transactions on pattern analysis and machine intelligence,
vol. 44, no. 11, pp. 8151–8166, 2021.

[21] Y. Wang, M. Li, H. Cai, W.-M. Chen, and S. Han, “Lite pose: Efficient
architecture design for 2d human pose estimation,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 13 126–13 136.

[22] X. Dong, J. Bao, D. Chen, W. Zhang, N. Yu, L. Yuan, D. Chen, and
B. Guo, “Cswin transformer: A general vision transformer backbone
with cross-shaped windows,” in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, 2022, pp. 12 124–
12 134.

[23] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,
Y. Mu, M. Tan, X. Wang et al., “Deep high-resolution representation
learning for visual recognition,” IEEE transactions on pattern analysis

and machine intelligence, vol. 43, no. 10, pp. 3349–3364, 2020.

[24] A. Nibali, Z. He, S. Morgan, and L. Prendergast, “Numerical coor-
dinate regression with convolutional neural networks,” arXiv preprint

arXiv:1801.07372, 2018.

[25] Y. Li, S. Yang, P. Liu, S. Zhang, Y. Wang, Z. Wang, W. Yang, and
S.-T. Xia, “Simcc: A simple coordinate classification perspective for
human pose estimation,” in European Conference on Computer Vision.
Springer, 2022, pp. 89–106.

[26] J. Li, S. Bian, A. Zeng, C. Wang, B. Pang, W. Liu, and C. Lu, “Human
pose regression with residual log-likelihood estimation,” in Proceedings

of the IEEE/CVF international conference on computer vision, 2021,
pp. 11 025–11 034.

[27] K. Gu, L. Yang, and A. Yao, “Removing the bias of integral pose
regression,” in Proceedings of the IEEE/CVF International Conference

on Computer Vision, 2021, pp. 11 067–11 076.

[28] X. Sun, B. Xiao, F. Wei, S. Liang, and Y. Wei, “Integral human pose
regression,” in Proceedings of the European conference on computer

vision (ECCV), 2018, pp. 529–545.

[29] K. Gu, L. Yang, and A. Yao, “Dive deeper into integral pose regression,”
in International Conference on Learning Representations, 2021.

[30] L. W. Jianwu, L. S. Yew, L. K. On, T. C. Keong, R. T. Yuan Sheng,
S. B. Sani, and T. H. Juan Agnes, “Artificial intelligence-enabled
evaluating for computer-aided drawings (amcad),” International Journal

of Mechanical Engineering Education, vol. 52, no. 1, pp. 3–31, 2024.

[31] Y. You, G. Liu, and L. Liu, “Art design method of interior space layout
based on cad drawing,” 2022.

[32] Q. Lu, L. Chen, S. Li, and M. Pitt, “Semi-automatic geometric digital
twinning for existing buildings based on images and cad drawings,”
Automation in Construction, vol. 115, p. 103183, 2020.

[33] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-
supervised interest point detection and description,” in Proceedings

of the IEEE conference on computer vision and pattern recognition

workshops, 2018, pp. 224–236.

[34] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series
change point detection,” Knowledge and information systems, vol. 51,
no. 2, pp. 339–367, 2017.

[35] Y. Ko, Y. Lee, S. Azam, F. Munir, M. Jeon, and W. Pedrycz, “Key points
estimation and point instance segmentation approach for lane detection,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7,
pp. 8949–8958, 2021.

[36] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural

information processing systems, vol. 28, 2015.

[37] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm
developments,” Procedia computer science, vol. 199, pp. 1066–1073,
2022.

10

[38] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI open, vol. 1, pp. 57–81, 2020.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in

neural information processing systems, vol. 30, 2017.
[40] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in

Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[41] R. G. Schneider and T. Tuytelaars, “Example-based sketch segmentation
and labeling using crfs,” ACM Transactions on Graphics (TOG), vol. 35,
no. 5, pp. 1–9, 2016.

[42] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient
object localization using convolutional networks,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2015, pp.
648–656.

[43] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose
estimation: New benchmark and state of the art analysis,” in Proceedings

of the IEEE Conference on computer Vision and Pattern Recognition,
2014, pp. 3686–3693.

[44] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet:
Keypoint triplets for object detection,” in Proceedings of the IEEE/CVF

international conference on computer vision, 2019, pp. 6569–6578.
[45] Z. Tian, H. Chen, and C. Shen, “Directpose: Direct end-to-end multi-

person pose estimation,” arXiv preprint arXiv:1911.07451, 2019.
[46] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using

real nvp,” arXiv preprint arXiv:1605.08803, 2016.
[47] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[48] M. S. Barkhordari and M. Tehranizadeh, “Response estimation of rein-
forced concrete shear walls using artificial neural network and simulated
annealing algorithm,” in Structures, vol. 34. Elsevier, 2021, pp. 1155–
1168.

[49] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, 2023, pp. 7464–7475.
[50] D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-time flying object

detection with yolov8,” arXiv preprint arXiv:2305.09972, 2023.
[51] J. Li, T. Chen, R. Shi, Y. Lou, Y.-L. Li, and C. Lu, “Localization with

sampling-argmax,” Advances in Neural Information Processing Systems,
vol. 34, pp. 27 236–27 248, 2021.

[52] D. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in International conference on machine learning. PMLR, 2015,
pp. 1530–1538.

[53] K. Gu, L. Yang, M. B. Mi, and A. Yao, “Bias-compensated integral
regression for human pose estimation,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2023.
[54] Y. Li, S. Zhang, Z. Wang, S. Yang, W. Yang, S.-T. Xia, and E. Zhou,

“Tokenpose: Learning keypoint tokens for human pose estimation,” in
Proceedings of the IEEE/CVF International conference on computer

vision, 2021, pp. 11 313–11 322.

	Introduction
	Related Work
	Background of Symbol Spotting
	Symbol Spotting
	Keypoint Location

	Progressive KeyPoints Detection
	Heatmap based Coordinate Encoding-Decoding Revisited
	Progressive Change of the GKS
	Grouping Keypoints into Rectangle Symbols

	Experiments
	Dataset for CAD images
	Evaluation Metrics
	Implement Details
	Experimental Results
	Performances of OBS
	Performances of PBS
	Ablation Studies for KeyPoint Location

	Visualization results

	References

