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Abstract 
The industrial multi-generator Wave Energy Con- 
verters (WEC) must handle multiple simultane- 
ous waves coming from different directions called 
spread waves. These complex devices in challeng- 
ing circumstances need controllers with multiple 
objectives of energy capture efficiency, reduction 
of structural stress to limit maintenance, and proac- 
tive protection against high waves. The Multi- 
Agent Reinforcement Learning (MARL) controller 
trained with Proximal Policy Optimization (PPO) 
algorithm can handle these complexities. In this 
paper, we explore different function approxima- 
tions for the policy and critic networks in modeling 
the sequential nature of the system dynamics and 
find that they are key to better performance. We 
investigated the performance of a fully connected 
neural network (FCN), LSTM, and Transformer 
model variants with varying depths and gated resid- 
ual connections. Our results show that the trans- 
former model of moderate depth with gated resid- 
ual connections around the multi-head attention, 
multi-layer perceptron, and the transformer block 
(STrXL) proposed in this paper is optimal and 
boosts energy efficiency by an average of 22.1% 
for these complex spread waves over the existing 
spring damper (SD) controller. Furthermore, unlike 
the default SD controller, the transformer controller 
almost eliminated the mechanical stress from the 
rotational yaw motion for angled waves. 
Demo: https://tinyurl.com/yueda3jh 

 
1 Introduction 
Coastal ocean waves offer a consistent and clean energy 
source that can help in reducing carbon emissions from power 
generation. To enhance energy capture and competitiveness, 
a new design with three generators on three interdependent 
legs has 2) been developed, utilizing translational and rota- 
tional motions. However, this complex design poses chal- 
lenges for traditional control methods, and the variability of 
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waves in terms of direction, frequency, and height further 
complicates the process. Additionally, the spinning yaw mo- 
tion causes high mechanical stress, necessitating measures to 
prevent costly maintenance in offshore environments. 

This work focuses on the CETO 6 Wave Energy Converter 
(WEC) system, which is currently deployed in Australia and 
planned for deployment in Europe. Traditional engineering 
approaches, such as the spring damper, were ineffective in 
optimizing energy capture efficiency and stress reduction due 
to the complexities involved. To address these challenges, 
the paper explores the use of Reinforcement Learning (RL) 
with a Multi-Agent Reinforcement Learning (MARL) con- 
troller and a Proximal Policy Optimization (PPO) training 
approach. The study evaluates different neural network ar- 
chitectures for the actor and critic and introduces a high- 
performing STrXL transformer architecture. The goal is to 
enable optimal control of the generators on the power take- 
offs (PTOs) to maximize power generation while minimizing 
mechanical stress and reducing yaw motion, thereby reducing 
maintenance costs in offshore environments. 

The main contribution of this paper can be summarized as 
follows: 

• First ever implementation of RL controller for 3- 
legged wave energy converter for the Spread Waves. 
No published work has ever addressed this complex real- 
world problem for an industrial WEC. 

• Looks beyond the common RL hyper-parameter tunings 
and PPO optimizations, into the different function ap- 

 

Figure 1: Average Power Gain of RL Controller for different Func- 
tion Approximations over default Spring Damper Controller 
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Figure 2: Increase in the structural complexity from 1-tether to the 
3-tether WEC to capture more power with 6 degrees of translational 
and rotational motions. [18] 

 
 
 

proximations for the policy and critic networks like 
Fully Connected Neural Network (FCN), LSTM, and 
Transformer variants which can effectively model the 
sequential nature of system dynamics better. 

• Explore and investigate various gated bypass options 
in and around the transformer block for easier trainabil- 
ity and faster convergence with RL which are key bot- 
tlenecks in using transformers with RL. 

• Propose a transformer block architecture STrXL which 
performs better and trains faster than state-of-the-art 
GTrXL for this problem- as represented in Figure 1(b) 
and Figure 10. 

• Investigate the effects of various depths of the network 
for the function approximators. 

2 Background and Related Work 
2.1 Wave Energy Converter (WEC) 
The CETO 6 WEC is a wave energy converter that uses a 
cylindrical Buoyant Actuator (BA) to convert the chaotic mo- 
tions of the ocean into linear motions. The BA is secured 

 
Multiple Simultaneous Wave Fronts 

from Different Directions with Different 

to the seabed through three mooring legs, each of which ter- 
minates on one of the three power take-offs (PTOs) located 
within the BA. The PTOs resist the extension of the mooring 
legs, thereby generating electrical power. The optimal timing 
of the PTO forces resisting the wave excitation force is key 
to maximizing WEC performance. Various control strategies 
like damping control, spring damper control, latching control, 
and model predictive control exist, attempting to get as close 
as possible to the optimal force function. 

2.2 Ocean Waves and Spread Waves 
Regular waves also called ”monochromatic waves”, are sim- 
plified waves that comprise of only one period. In other 
words, each wave is the same as the previous one and the next 
one and looks like a perfect sinusoidal. Though the ocean 
at times does exhibit conditions close to regular waves, they 
mostly have a theoretical interest, as they allow to target the 
response of a system to a particular frequency excitation 

Irregular waves are a superimposition of regular waves of 
different periods. Which periods are superimposed and how 
much energy is contained within each period is described by 
the energy spectrum. Wind waves have a spectrum that peaks 
at periods below 7 seconds, whereas ground swell is repre- 
sented by a spectrum that peaks above 7 seconds. 

Spread Waves: The above descriptions do not mention 
wave directionality. In the open ocean, waves rarely come 
from one single direction, but rather from a range of direc- 
tions as shown in figure 3. In practice, this means that the 
waves don’t look like straight lines propagating toward the 
observer, but are rather short-crested. The spread factor is 
representative of how wide a directional range of waves is 
propagating within. These are called spread waves. 

2.3 Spring Damper Benchmark Controller (WEC) 
The PTO is composed of a mechanical spring and an electri- 
cal generator. The damping component is akin to a reactive 
braking torque against the input shaft, driven by the wave en- 
ergy source. The captured energy equals the braking mechan- 
ical work done by the generator minus losses. The average 
mechanical power (P¯m) generated by each PTO is the aver- 
age of the product of the generator force (Fgen) and the leg 
extension/retraction velocity (vpto). 

3 
Amplitudes and Principal Wave Periods 
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Figure 3: Spread waves significantly increase complexity for WEC 
with simultaneous waves from different angles based on atmo- 
spheric events at different parts of the ocean 

2.4 Related Work 
RL has been applied to continuous control tasks for different 
applications [6] [27], [25], [26], and model-free RL outper- 
forms many model-based non-RL controls. Other unrelated 
applications of RL include [29], [19], [23], [20], [28], [29], 
[34], [22], [21], [15], [30], [24], [31]. For wave energy, the 
bulk of the research on machine learning has focused on wave 
energy converters (WECs) in academic settings with simpli- 
fied mechanical designs. A pioneer in this area, [3] used RL 
in simple one-legged WEC in an academic setting to control 
the PTO damping and stiffness coefficients for discrete sea 
states. [1] also applied least-squares policy iteration for resis- 
tive control of a nonlinear model of a WEC. [2] also used RL 

 
 

 
 

 

  

 



to obtain optimal reactive force for a two-body heaving point 
absorber with one degree of freedom. [38][37] implemented a 
real-time non-ML control for a simple point-absorbing WEC 
by designing a wave condition preview-based nonlinear con- 
troller, in which the identification of the wave condition was 
done using an LSTM identifier. [11] also uses LSTM to pre- 
dict the short-term wave force and a 4th order state-space 
model to represent the hydrodynamic behavior of the WEC 
under irregular waves in time-domain with verification using 
an Autoregressive ANN network. A non-RL technique that 
utilizes artificial neural networks has also been proposed ([4]) 
to generate power through WECs. [5] makes use of Deep RL 
for real-time control of a WEC in continuous action space. 
However, most of these techniques have been applied to one 
degree of freedom point absorbers.[7] gives an overview of 
one-body and two-bodies point absorbers with different con- 
trols, and concludes that RL techniques are both effective 
and viable for controlling the parameters of PTO from an 
academic perspective. [39] is another example of applying 
simpler RL DQN algorithm to a point absorber WEC on a 
small scale. [35] applies Delayed Deterministic Policy Gra- 
dient(TD3) RL to Mutriku plant WEC which is of Oscillating 
Water Column (OWC). In this paper, we apply multi-agent 
RL to the industrial WEC CETO 6 platform, which has a 
complex mechanical design of three legs with three gener- 
ators to capture energy from braking against the motion for 
all 6 degrees of freedom. Never before have RL controllers 
been used for spread waves under these situations. With 
waves simultaneously coming from different directions, the 
asymmetry makes it even more challenging. With the PPO 
RL controller with fully connected neural network (FCN) RL 
function approximation, we had limited success. However, in 
this work, we investigate a variety of ML model architectures 
for the actor and the critic in the PPO, which can better learn 
the sequential characteristics of the WEC. Our studies show 
that these sequential models outperform the FCN by a signif- 
icant margin. Also, we investigate the different architectural 
modifications that the transformer model needs to effectively 
train and converge in a MARL design which has been a major 
challenge. The skip STrXL trains a lot faster and has a per- 
formance that exceeded the state-of-the-art GTrXL. CETO 6 
WEC platform is one of the top WEC solutions for the Eu- 
rope Wave project and can operate at depths where the wave 
energy is more persistent and takes wave energy closer to fi- 
nancial viability. 

3 Reinforcement Learning for Wave Energy 
Converters 

3.1 RL Algorithm Exploration 
After exploring different RL algorithms like Deep Q- 
Learning (DQN) [14], Soft Actor-Critic (SAC) [8], and Asyn- 
chronous Advantage Actor-Critic (A3C) [13], we limited our 
focus to Proximal Policy Optimization (PPO) ([32]) for this 
study. We found through evaluation that PPO outperformed 
other models for this WEC controller. DQN has problems 
with continuous action space for WEC, and both SAC and 
A3C had training stability issues and performed poorly. We 
fine-tuned the PPO implementation to achieve stable conver- 

gence of MARL. But these refinements were not enough for 
the best performance without refining the underlying function 
approximation of the actor and critic. 

3.2 Multi-Agent RL Choice 
In WECs, the generators mounted on the individual legs tend 
to generate different amounts of energy based on the orien- 
tation of the mechanical structure and variation of wave di- 
rectionality. Simpler, single-agent RL with multiple actions 
failed to control the WEC effectively and resulted in poor per- 
formance. To accommodate the heterogeneity, we needed to 
use separate agents (MARL) to control the individual genera- 
tors on each of the legs. This enabled convergence to a better 
policy. The architecture is shown in Figure 4. 

3.3 RL State and Action Design 
We validated the inclusion of states with ablation studies of 
total rewards. Figure 5 shows the attributes included in the 
state. The continuous action space (ai) for the individual 
RL agent indexed “i” is defined by the reactive force (Fgeni ) 
for the controlled generator. 

 
ai = Fgeni (2) 

3.4 Reward: Cooperation vs. Competition for 
Agents 

Even though each RL agent controls the generator on an indi- 
vidual leg, it needs to consider power contributions from all 
the generators in its reward for overall WEC optimization. An 
individual RL agent can be cooperative or competitive based 
on the effectiveness of the trade-off. The reward function for 
power is represented in Equation 3. 

Preward = Pown + η · Pothers (3) 

Here, Pown is the generator’s power being controlled, and 
Pother is power from other generators, and η = team coef- 
ficient. A negative “η” implies adversarial contributions of 
power from the other legs in the reward for the competitive, 
while a positive value implies cooperation. With a com- 
bined Bayesian hyperparameter search for the multi-agent, 
we achieved the best performance with η of 0.8 for the agents 
for the back legs and -0.6 for the agent for the front leg. 

3.5 Design for Trust 
The spinning yaw motion of the voluminous buoy of WEC 
causes the tether connections to wear out and has potential 
maintenance implications. The yaw is high for angled wave- 
fronts w.r.t. the axis of symmetry of WEC. The incentive to 
reduce yaw is added to the total reward of the RL agents as 
a weighted addition of the power: 

 
Reward = α.Preward + (1 − α).yaw (4) 

where α is a tunable yaw penalty hyper-parameter (lower 
the stronger), and Preward is defined in Equation 4. This led 
to significant improvements in yaw reduction compared to the 
currently deployed spring damper controller. 



 
Reactive Force controlling the Generators on the PTO of the 3 legs 

Generated Power 
on 3 Legs (Maximize) 

Wave Sensors 

Multi-Objective 
 Mechanical Stress 

Reward from Yaw (Minimize) 

Multi-Agent Reinforcement 
Learning Controller with PPO 

Translational and Rotational  Wave Excitation 
Position, Velocity, and Acceleration up to 15s in advance 

of Buoy and Tether 

 
 

Wave Energy Converter 

 

 

 
 
 
 
 
 
 
 

Figure 4: Architecture of Multi-Agent RL controlling the WEC 
 
 

3.6 Exploration 
Exploration is key to ensuring that the policy does not con- 
verge to a local optimum. PPO explores by sampling from 
the action distribution. However, this is dependent on the 
standard deviation predicted by the policy. We tried two ex- 
ploration techniques - parameter space noise [17] and state 
entropy maximization with random encoders [33]. According 
to our studies, parameter space resulted in better performance 
than just sampling from the action distribution. 

 
4 Function Approximation for RL 
The periodic nature of ocean waves and the inertia and spring- 
type response of the WEC require a system model which can 
represent and process sequential information. So the RL pol- 
icy and critic function approximators need to have an archi- 
tecture to support this, unlike the default feed-forward net- 
work. LSTMs can represent long-term information using a 
recurrent architecture. The Transformers have tremendous 
success in the ability to process a sequence by explicitly en- 
suring interaction between the elements of the sequence with 
the attention mechanism. However, unlike LSTMs, they are 
limited by the limited sequence length. The Tr-XL archi- 
tecture solves this problem by keeping a memory of hidden 
states corresponding to previous sequences. But unlike su- 
pervised learning tasks like Natural Language Processing and 
Computer Vision, the difficulty in training remains a key chal- 
lenge of using transformers in RL. 
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Figure 5: RL States 

4.1 Function Approximation for Policy and Critic 
Network 

Refinements beyond the RL agent algorithm and hyper- 
parameters depend on function approximators (FA), such 
as the most suitable deep neural networks, to leverage the 
exploration-exploitation trade-off and hence efficiency at the 
core of RL. Function approximation blends statistical esti- 
mation issues with dynamic optimization issues, resulting in 
the need to balance the bias-variance tradeoffs that arise in 
statistical estimation with the exploration-exploitation trade- 
offs that are inherent in RL. These changes are inspired by 
the objective to combine long-term behavior from past ob- 
servations and future observations of wave states from sen- 
sors placed further into the ocean, into the representation of 
the current state with the predictive power of the short-term 
memory transformer architectures. 

4.2 Function Approximators Explored for WEC 
We investigated the WEC controller performance and speed 
of convergence of fully connected neural networks (FCN), 
LSTMs, and Transformers of varying depths ([10; 36; 16; 
12]). Transformers with the attributes like multi-head at- 
tention, temporal convolution network, and large contextual 
horizon with relative position encoding, are ideally suited for 
PPO function approximation for WEC. 

4.3 Exploring Transformer Architectures for 
Function Approximation 

We also explored the effect of variation of gated bypass for 
Transformer FA on the stability and speed of training in the 
RL setting, as the standard transformer models are too un- 
stable to train and learn outside supervised learning. With 
identity map reordering in TrXL-I the layer normalization is 
placed on only the input stream of the submodules ([16]). 
This enables an identity map from the transformer’s input at 
the first layer to the transformer’s output after the last layer, 
unlike canonical transformers, where there are a series of 
layer normalization operations that non-linearly transform the 
state encoding. The state encoding is passed un-transformed 
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Figure 6: Variations of Transformer blocks to facilitate convergence. The overall architecture has L such blocks. TrXL: A traditional 
transformer with multi-head attention and layer normalization, TrXL-I: The layer norm is included with the input stream, GTrXL: Includes 
a gating layer to include the residual connection around the attention and MLP blocks ([16]), STrXL: Residual connections with gating layer 
aroud the transformer block. 

 
 

to the policy and value heads, enabling the agent to learn a 
Markovian policy at the start of training. In our case, the reac- 
tive behaviors need to be learned before memory-based ones 
can be effectively utilized. We also found that GRU style 
multiplicative interactions with powerful gating mechanisms 
in place of the residual connections within the transformer 
block helped stabilize learning and improved performance. 

4.4 Skip Transformer-XL (STrXL) Architecture 
Unlike supervised learning tasks ([36]), using traditional 
transformers as function approximators for a RL task is ex- 
tremely difficult to optimize, as established by [16]. Inspired 
by residual network architecture ([9]) and expanding earlier 
work of [16], we propose a variant of the transformer ”Skip 
Transformer-XL” or STrXL, that enables faster convergence 
during training specifically in an RL setting represented in 
Figure 6. An additional bypass connection with a gating 
layer around the transformer block helps accelerate training 
convergence when compared to the previous methods like 
GTrXL, as presented in Figure 10 showing the training pro- 
gression of these models. The GRU gating adds to the non- 
linearity. The equations below represent the Gated Recurrent 
Unit type gating. 

The STrXL block can be represented with the following 
equations: 
The Gated Recurrent Unit (GRU) type gating: 

 
r = σ(W (l)y + U (l)x) 

multi-head attention (MHA) block gated output: 
Y¯(l) = MHA(LayerNorm(M (l−1), E(l−1))), 

Y (l) = g(l)(E(l−1), ReLU (Y¯ (l))) 
The MLP block gated output: 

Ē ( l )  = f (l)(LayerNorm(Y (l))), 

E(l) = g(l)(Y (l), ReLU (Ē(l))) 
The STrXL gated output: 

Ē ( l ) = g(l)(E(l−1), ReLU (Ē(l))) 

5 Experiments 
The CETO 6 wave energy converter (WEC) platform simu- 
lator was used to accurately model the mechanical structure, 
the mechanical response, the electro-mechanical conversion 
efficiency with losses for generator and motor modes, and the 
fluid dynamical elements of the wave excitation. 

Wave data such as the distribution of principal time peri- 
ods, height, and spectrum were collected from Albany, and 
Garden Island in Western Australia, Armintza in Spain Bis- 
cay Marine Energy Platform, and Wave Hub on the north 
coast of Cornwall in the United Kingdom. The wave gener- 
ator model used in simulation uses a well-established ocean 
wave spectrum like Jonswap, which accurately models the 
heterogeneous components in ocean waves, letting the simu- 
lator sample the waves for training and evaluation. For evalu- 
ation, we used 1000 episodes for each principal wave period r r 

z = σ(W (l)y + U (l)x − bl ) and height, where each episode covers 2000 sec of continu- 
z z g ous wave data in steps of 0.2 sec for RL loop and 0.05 sec 

ĥ = tanh(W (l)y + U (l)(r 
K 

x)) (4x) for simulation response. Each training run has roughly g g 50 million steps for convergence, with 2000 training runs re- 

g(l)(x, y) = (1 − z) 
K 

x + z 
K 

ĥ 

The input to the transformer block is E(l−1) The output of 
the transformer block is E(l), where l is the layer index. The 

quired for hyper-parameter optimization and model search 
with early stops. For regular operation, we show results of 
a median wave height of 2m for the entire wave frequency 
spectrum spanning time periods of 6s to 16s. 



 

Spread Waves: RL % Gain of Energy Capture over default (SD controller) 
% Gain for Wave Height = 2m 

 

Wave Time Period(s) 6 7 8 9 10 11 12 13 14 15 16 Avg 
FCN 15.2 15.4 12.0 11.7 12.2 10.2 13.5 8.4 9.2 10.1 9.4 11.6 
LSTM 18.2 19.2 15.2 14.2 15.2 13.2 11 11 12.5 15.1 12.1 14.3 
GTrXL 22.2 24.1 25.4 23.9 19.3 14.9 23.2 15.1 17.4 19.9 21 20.6 
STrXL (ours) 23.1 25.2 24.2 25.2 21.4 22.3 25.4 17.2 20.2 20.5 18.2 22.1 

Table 1: Spread waves: Energy Capture Gain by the RL controller over Spring Damper controller for different PPO function approximators 
 

RL % Gain of Energy Capture over default Spring Damper (SD controller) 
% Gain for Wave Height = 2m, and Wave Angle = 0 degrees 

 

Wave Time Period(s) 6 7 8 9 10 11 12 13 14 15 16 Avg 
FCN 38.4 35.4 23.0 19.7 15.1 14.1 13.5 11.9 12.9 11.7 11.4 18.8 
LSTM 41.3 35.5 27.8 24.1 18.6 15.4 15.9 17 17.7 15.9 15.3 22.2 
GTrXL 40.2 36.1 28.2 23.9 19.3 14.9 23.2 17.9 18.9 18.3.2 15.8 23.8 
STrXL (ours) 40.1 38.9 32.2 25.2 21.4 22.3 24.1 18.5 19.0 18.1 17.1 25.2 

% Gain for Wave Height = 2m, and Wave Angle = 30 degrees 
Wave Time Period(s) 6 7 8 9 10 11 12 13 14 15 16 Avg 
FCN 33.4 32.9 20.1 9.6 5.3 7.6 10 14.6 15.8 16.1 12.3 16.2 
LSTM 34.6 33.3 26.7 20.3 14.5 14.3 16.3 20.8 17.9 20.1 18.7 21.6 
GTrXL 39.2 35.2 27.6 21.8 17.1 17.8 21.3 29.4 36.9 30.6 31.9 28.1 
STrXL (ours) 39.7 34.7 28.7 22.7 17.4 18.1 22.6 31.5 38.7 31.2 31.3 28.8 

Table 2: Unidirectional waves: Energy Capture Gain by the RL controller over spring damper for different PPO function approximators 
 

6 Results 
 

The power generated by the baseline spring damper controller 
with resonant spring constant and damping constant is used as 
a reference for evaluation to estimate RL controllers’ gain of 
energy capture as a percentage improvement. We use both the 
complex spread waves and unidirectional waves of different 
time periods and heights as shown in Figure 3. We used the 
same seed for sampling waves for episodes between RL and 
SD for evaluation. 

 
 

 
Figure 7: % Increase of Energy Capture over SD controller for 30° 
waves for Height=2m with different Function Approximations. 

6.1 Energy Capture Gains and Variations with 
PPO Function Approximation 

Table 1 shows that for spread waves, the MARL with STrXL 
performs on an average 22.1% better than the baseline spring 
damper (SD) controller. In contrast, the LSTM performs 
14.3% better and FCN performs 11.6% better on average for 

the entire range of principal wave periods 6s to 16s. Even 
though the STrXL is 1.5% better than GTrXL overall, it trains 
much faster with high stability. Table 3 shows the variance 

of the energy capture for the spread waves with the RL con- 
troller. 

 

 
Figure 8: % Yaw Reduction over SD controller for 30° waves for 
Height=2m with different Function Approximations. 



 
 

 WTPs 11 12 13 14 15 16 Avg  
Std. Dev. 2.3 2.8 3.0 2.9 2.5 2.4 2.65 

 
 

Table 3: Variance of WEC Energy capture for Spread Waves with 
RL controller 

 
 WTPs 11 12 13 14 15 16 Avg  
% yaw ↓ 98.8 98.8 98.9 99.1 98.9 98.6 98.6 

 
 

Table 4: % reduction of Yaw by RL over SD for ht=7m, angle = 30◦ 

 
Table 2 show that for 0° uni-directional frontal waves, the 

MARL with STrXL performs on an average 25.2% better than 
the baseline spring damper (SD) controller, while the LSTM 
performs 22.2% better and FCN performs 18.8% better on an 
average for the entire range of wave time periods 6s to 16s. 
For angled waves of 30°, the MARL with STrXL (28.8%) 
performs much better than LSTM (21.6%) on average. 

 
6.2 Mechanical Stress and Yaw Minimization 

under Normal and Survival Conditions 

Figure 3 shows the results of yaw reduction with the reward 
shaping for aggressive Yaw minimization for α=0.2, where 
80% weightage is given to penalty for rms yaw, and 20% 
weightage is given to energy capture maximization. For the 
entire range of wave time periods of 11s to 16s, where yaw is 
a significant problem of default SD controller, the yaw is re- 
duced by more than 99%, significantly reducing mechanical 
stress with huge maintenance savings. The power generation 
increased with aggressive yaw control as an indirect effect. 
Even under dangerous conditions with an extreme wave 
height of 7m. Table 4 shows that the PPO with STrXL func- 
tion approximation reduces the yaw by over 98.6% for the 
critical range of wave time periods from 11s to 16s, where 
the baseline SD controller faces high yaw. 

 

Figure 9: % Increase of Energy Capture over SD controller for 30° 
waves for Height=2m with STrXL with a variation of a number of 
layers or depth. 

6.3 Variation With a Depth of Models for Function 
Approximators 

Figure 9 shows that in the best-performing STrXL trans- 
former model, the performance peaks at a depth of 3. For 
LSTM, both the depths of 2 and 3 yielded similar results. 
However, for FCN a depth of 2 has an overall better perfor- 
mance, even though the FCN performs worse than STrXL, 
GTrXL, and LSTM. 

 
6.4 Training Convergence for Different FA Models 
Figure 10 compares the average RL environment steps re- 
quired for convergence for different Transformer function ap- 
proximators across several time periods. STrXL converged 
the fastest compared to GTrXL and TrXL-I. 

 

 
Figure 10: RL Training progression for ht=2m angle=30◦ for 
STrXL, GTrXL, and TrXL-I function approximators. 

 
 
 
 

7 Conclusions 
The proposed MARL controller with STrXL transformer 
function approximation yields22.1% gain over the baseline 
Spring Damper controller (SD) on an average for the en- 
tire spectrum of spread waves, boosting energy production 
with revenue implications. The MARL also helped reduce 
mechanical stress, which impacts maintenance and operat- 
ing costs, and actively mitigated the adverse effects of high 
waves. This is the first published paper where an RL con- 
troller can successfully control a 3-legged WEC for spread 
waves while beating the baseline spring damper controller. 

We found that robust RL function approximation sequence 
models of suitable architectures and depths are key to achiev- 
ing higher performance for complex real-life use cases like 
WEC, and RL refinements alone cannot do that. Also, the 
biggest challenge with the highest-performing transformers 
is training convergence, and GRU-gated bypass inside and 
around the transformer block help solve this problem. The 
proposed novel STxRL architecture trains faster and performs 
better than the state-of-the-art GTrXL. The STrXL model 
and PPO function approximation exploration and analysis for 
MARL will help others to stabilize training convergence for 
complex RL control systems. 
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