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Abstract

Motivated by a number of applications in signal processing, we study the following question. Given samples
of a multidimensional signal of the form

K
F0) = arexp(—i(€,wx)),  wi,--,wi €ERLLELI, €] <,

k=1

determine the values of the number K of components, and the parameters ax and wy’s. We develop an algorithm
to recuperate these quantities accurately using only a subsample of size O(gn) of this data. For this purpose, we
use a novel localized kernel method to identify the parameters, including the number K of signals. Our method is
easy to implement, and is shown to be stable under a very low SNR range. We demonstrate the effectiveness of our
resulting algorithm using 2 and 3 dimensional examples from the literature, and show substantial improvements
over state-of-the-art techniques including Prony based, MUSIC and ESPRIT approaches.

Keywords: Exponential sums, localized kernels, digital signal separation.

1 Introduction

Multidimensional exponential analysis is a core problem in signal processing that appears in various applications
such as tomographic imaging (including Computerized Tomography (CT), magnetic resonance imaging (MRI),
radar and sonar imaging), wireless communication, antenna array processing, sensor networks, and automotive
radar, among others. Mathematically, the problem can be formulated as follows. Given a multidimensional signal
of the form

K
F) = apexp(=ilx,wi)), X, wi,--- Wi €RY, (1.1)
k=1

find the number K of components, and the parameters a; and wy’s. Of course, this is a problem of inverse Fourier
transform if we could observe the function f at all values of x. In practice, however, one can observe (after some
sampling and renaming of the variables) the values of f at only finitely many multi-integer values of x. In this
case, it is not possible to distinguish values of wj which are equal modulo 27 in all variables. So, this is a special
case of the ancient trigonometric moment problem [I8], except that we do not have all the trigonometric moments
(i.e., the samples f(£)) for all values of £ € Z4. Thus, the problem is the ill-posed problem known often as the
super-resolution problem: knowing the information in a finite domain of the frequency space, we need to extend it
to the entire frequency space. The important problem in this connection is to determine the relationship between
the number of samples f(€) needed to recuperate the desired quantities up to a given accuracy.

Over the past several decades, several approaches to exponential analysis have been investigated. These can be
categorized in three main groups—Fourier based, Prony based, and subspace based methods.
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e Fourier-based methods: In order to utilize Fourier-based methods, it is necessary to obtain a substantial
and densely sampled dataset in either a two-dimensional (2D) or three-dimensional (3D) format. However, the
collection of such a dataset can be time-consuming. Additionally, these techniques face a trade-off between
time and frequency resolution, making it challenging to distinguish closely located scatterers, as pointed out
in reference [5].

e Prony’s methods: Prony’s spectral estimation or exponential analysis algorithms have attracted the interest
of numerous researchers. In reference [14], the authors assert that these methods exhibit significantly higher
accuracy compared to Fourier-based approaches. However, it is important to note that the effectiveness of
exponential analysis techniques can be substantially compromised when dealing with a low signal-to-noise
ratio (SNR), resulting in the misclassification of noise as actual signals. There are many recent efforts to
stabilize the Prony method by taking more than the minimal number of samples. The number of samples
required to recuperate the wy’s up to an accuracy of O(1/n) is typically on the order of O(n?) [, [8 11l [13],
O(2n) [16], O(nlog? ' n) [5], or at most (¢ + 1)n?log®?*n [I7].

e Subspace methods: Under the rubric of target estimation or localization, which is one of the fundamental
problems in radar signal processing with many civilian and military applications including landmine detection
and geolocations (cf. [20]), a broad set of techniques has emerged for solving exponential analysis problems.
Most of these methods are categorized broadly as subspace methods [7], and are based on statistical consid-
erations, rather than the nature of the signal itself. In fact, quite a few papers, e.g., [I9, [15], are interested in
testing a statistical hypothesis on whether or not there exists a signal at all. There is a theoretical limit on
how much SNR can be tolerated, depending upon the number of antenna elements and number of observations
[19], in spite of a huge computational cost. On the other hand, beamforming methods [7] take into account
the nature of the signal but focus again on noise, and try to maximize the SNR.

In [3L 2], the authors proposed a method to solve the problem using a combination of Prony and subspece based
methods, so that number of sample required is O(n). Our paper develops these ideas further to develop an algorithm
that also utilizes O(gn) samples, but is far more robust under noise. Our method is based on localized trigonometric
polynomial kernels developed in [9]. In contrast to the subspace based methods, our method takes into account the
nature of the signal, resulting in a significant noise reduction with only a small number of observations per signal,
and yields accurate results with theoretical guarantees. This is a completely different viewpoint from what we have
seen in the literature, and therefore, not entirely comparable with other approaches.

The rest of this paper is organized as follows. Section [2] introduces the system model for tomographic imaging
which illustrates how the problem of multidimensional exponential analysis arises in signal processing. In Section
we introduce the concept of localized trigonometric kernels, and provide the neccessary probabilistic background to
formulate the main results of our paper which we state and prove our main results in Section[d The algorithms to
implement these theorems are given in Section [5] and demonstrated in the case of the three examples explored in
3.

2 System model

In this section, we explain how the problem of multidimensional exponential analysis arises in tomographic imaging.

In tomographic imaging, an object of interest being imaged is probed by a sequence of monochromatic tones
is swept through a frequency range [Qnit,Qfin]. The sensor transmits a signal onto a scene with respect to
various angles {0, = (0, dm) }m, Where 0., € [Oinit, O fin] and ¢y, € [Pinit, P fin]. The scene itself is modeled as a
distribution, p, which is a linear combination of weighted and spatially shifted Dirac delta functons of dimensionality
q. For the case of 3D imaging, ¢ = 3; i.e., u is supported on a cube-consisting of points r = [ry,r, 73], for
1<r; <Dq,1<ry <Dy and 1 <r3 < Ds—whose side-lengths (D1, D2, and D3) are referred to as the dimensions
of the scene reflectivity function.

We define the center reference point (CRP) to be the center of mass of the scene to be reconstructed, and the
line of sight (los) as the unit vector that points from the transmitter to the CRP of the scene. The distance along
the los from the transmitter to the range-bin, rg, of interest is called the ‘downrange’ ro = ||ro||. Given this, it can
be shown that the backscattered signal at downrange ry from the sensor, when viewed at angle 0, is given by

2’1"0
T0las, = [Ro lu (o)l (1= 22 ) (), 21)
P
where 27 /v, denotes the two-way time delay, v, represents the speed of wave propagation, X(¢) is the measurement

noise, and Ry is the Radon transform of the scene, p, with respect to angle 8, and evaluated at the downrange



location . This corresponds to the integral across sensor returns from all points along a hyperplane perpendicular
to the downrange location g, commonly referred to as an ‘iso-range contour’.
Therefore the complete response at time ¢ from all ranges, along the line formed by intersecting the scene at 6,

is rewritten as
2r

Yo = [0 () O (1= 2 ) ar 000, (2.2

P

This can be reformulated in convolution form (after a choice of units, without loss of generality, so that v, = 2) as:

To(t) = (Ro(p) * x) () + R(), (2.3)

where * denotes the convolution operation. Equation can be interpreted as the response to an Linear Time
Invariant (LTI) system with an input signal x(¢) and an impulse response pg(t) which characterizes the interaction
between the transmit waveform and the scene with respect to sensing angle 8. The received signal Yg(t), is the
output of this LTI system and is subsequently sampled at the receiver. Given Tg(t) for a finite grid 6 € {0,,} as
described earlier, our problem is to estimate the underlying scene reflectivity function p i.e. to form the image. In
this paper we consider the basic case where x(t) = (t), where §(¢) is the Dirac delta function. In this case, the
received signal at angle 6 is given by

To(t) = Ro(1)(t) +X(1). (2.4)
Taking the Fourier transform, we obtain
To(x) = Ro(u)(x) + R(z). (2.5)

When 0 = (0, ¢), the Fourier projection slice theorem implies that the one dimensional Fourier transform R/g(?)(ﬁ)
is given by F(u)(z cos() cos(¢), x sin(f)cos(¢),xsin(¢)), where § denotes three dimensional Fourier transform.
Writing x = (2 cos(8) cos(¢), z sin(0)cos(¢), x sin(¢)), equation (2.5) becomes

To(z) = (1) (x) + R(@). (2.6)

Of course, as mentioned earlier, one deals with only a finite sample of z’s and 6’s which are observed by the
system. In tomographic imaging, this finite sample is typically chosen from a spherical grid. Since the goal is
to find p from 7 it is natural to use the inverse Fourier transform. For this reason, one has to approximate
from these samples, samples at a Cartesian grid. This leads to the multidimensional exponential analysis problem
described in Section [I} In this paper we present a novel approach for solving the multidimensional analysis problem
by resampling the Fourier space § in a computationally efficient manner that allows for accurate reconstruction in
O(\ﬂDl D5 Ds)) samples, while showing substantial improvements over state-of-the-art techniques including Prony
based, MUSIC and ESPRIT approaches.

It is important to note that this paper offers a general efficient tool for solving multidimensional exponential
problems with applications beyond tomographic imaging such as signal source separation and direction-of-arrival
estimation in multichannel radar systems.

3 Theoretical background

In this section, we consider the following univariate set up. Let T = R/(27Z), || = |z mod 27| for z € T. Let
K > 1 be an integer, A\, € T, k=1,--- | K, A, € Cfor k=1,---, K. We define

K

K
p=> Apbr., Al) =) Apexp(—il);), (€L, (3.1)
k=1 k=1

where i = v/—1, J) denotes the Dirac delta supported at A. In this section, we propose a solution to the following
problem:

Point source separation problem.

Given finitely many noisy samples

i(l) = p(€) + e, [ <N, (3.2)



where N > 1 is an integer, and €; are realizations of a sub-Gaussian random variable, determine K, Ay, and Ay,
k=1,--- K.

The harder part of the problem is to determine K and the A\;’s. The coefficients Ay can then be determined by
solving a linear system of equations. Many algorithms to do this are known, e.g., [I2]. Therefore, we will focus in
this paper on the task for finding K and the Ag’s.

Our main idea is to use a low pass filter and the corresponding localized kernel ®,, to be defined in Section

to observe that
=l Z ( ) ) exp(ilx) ZA"“ (x — M) = p(x). (3.3)

[e|<n

Thus, the “prominent” peaks of |0, (ft)(z)| will occur at (or close to) the points A; and the value of o, at these
points lead to the corresponding complex amplitudes Ay. It turns out that the values of Ay are actually determined
fairly accurately simply by evaluating o, (1)(z) at the estimated value of Ay

The main difficulty is to make this more precise, and quantify the approximation error in terms of n and the
properties of the noise.

In Section we review certain properties of sub-Gaussian random varaibles. In Section we introduce
certain localized kernels and their properties which form the main ingredient in our construction. The main results
are stated and proved in Section [4]

3.1 Probabilistic background

The material in this section is based on [II, Section 2.3]), with a slight change of notation. A mean zero real valued
random variable X is called sub-Gaussian with parameter V (X € G(V)) if log E(exp(tX)) < (¢tV)?/2. Examples
include Gaussian variables and all bounded random variables. For a sub-Gaussian variable, it is proved in [I}
Section 2.3] that

Prob(| X| > t) < 2exp(—t*/(2V?)).

We will say that a complex valued random variable X is in G(V) if both the real and imaginary parts of X are in
G(V). We observe that if z € C and |z| > ¢ then max(|Rez|, |Smz|) > t/v/2. So, for such variables, we have

Prob(|X| > t) < dexp(—t*/(4V?)). (3.4)
Tt is not difficult to see that if X;,---, X, are i.i.d., complex valued variables all in G(V), a = (a1, - ,a,) € R",
la|2 =>")_, a7, then >, a; X, € G(|a|,V). Therefore, (3.4) implies

Zang

=1

Prob (

3.2 Localized kernels

A low pass filter is an infinitely differentiable function H : R — [0, 1] such that H(t) = H(—t) for allt € R, H(¢) =
if |t| < 1/2, and H(¢t) = 0 if [¢| > 1. In this paper, we fix a low pass filter. All constants may depend upon this
filter, and the filter will be omitted from the notation.

We define

t2

-1

hn=4 > H ('ﬁ) . Du(z)=h,Y H (i) e zeT, n>0. (3.6)

[ <n kEZ

An important property of ®,, is the following localization estimate: For every S > 2, there exists L = L(H,S) > 0

such that I
o, < —, eT, n>0. 3.7
e N I N 30
Explicit expressions for L in terms of H and S are given in [6]. The estimate (3.7)) implies that ®,,(z) is an approx-
imation to the Dirac delta Jy.

Constant convention



The letters c,c1,--- will denote generic positive constants depending on H and S alone. Their values might be
different at different occurrences within single formula. The notation A < B means A < c¢B, A2 B means B < A,
and A ~ B means A < B < A. Constants denoted by capital letters, such as L, C, etc. will retain their values.

4 Main result

We assume the notation in (3.2)), and make further notation as follows. Let

K
M = A = min |A = mi - 4.
;| kl, m 1%%?1(' kl, m lg;lilp\k Ael, (4.8)

We further assume that each ¢, is a realization of a sub-Gaussian random variable in G(V).
We will write

on(x) = o (i) (x) =hn Y H ('f;') A(0) exp(ite),  xeT. (4.9)

[|<n
Writing
_ _ el .
En(z) =on({e})(z) =hn > H — Jevexp(ite),  w€T, (4.10)
[|<n

we observe that X
on(it)(z) = on(f)(z) + En(x) = Z Ap®p(z — M) + En(2). (4.11)

k=1

With this set up, our main theorem concerning the recuperation of point sources can be stated as follows.

Theorem 4.1 Let
G={ze€[-mn]:|on(z)| >m/2}. (4.12)

C = max (17 (161]1\1“) 1/S> . (4.13)

For sufficiently large n (cf. (4.26)) ), each of the following statements holds with probability exceeding 1 — 6.

and (cf. B7), E3))

(Disjoint union condition) the set G is a disjoint union of exactly K subsets Gy,

(Diameter condition) for each £ =1,--- | K, diam(Gy) < 2C/n,

(Separtion) dist(Gy, Gy) > n/2 for £ # k,
(Interval inclusion) For each £ =1,--- K, [ ={x € T: |z — X <1/(4n)} C Gy.

Moreover, if .
A = arg max |on ()], (4.14)
rEby

then

|Ae — Ae| < 2C/n. (4.15)

The following inequality, known as the Bernstein inequality, plays an important role in our proofs. We recall
that a trigonometric polynomial of order < n is a function of the form x — Z|E|<n b exp(ilx).

Proposition 4.1 Let n > 1 be an integer, T be any trigonometric polynomial of order < n. Then

T < T . 4.1
max |T"(z)| < nmax|T(z)| (4.16)
In particular, if N > 4wn, then

1 27k

— < —_— < . .

a7 < o |7 (% )| < ma 7o) (417)




For the proof of Theorem we first estimate E, ().

Lemma 4.1 Let § € (0,1). There exist positive constants C1,Cs, Cs, depending only on H such that for n > Cy(>
1), we have

1
Prob (max|En(J:)| > O,V M) <. (4.18)
zeT n
PROOF.

Let z € T. We will use (3.5) with a, = h, H(|€]/n) exp(ilz), |¢] < n. In view of the Euler-Mclaurin summation
formula [I0, Formula (2.01), p. 285], it is not difficult to show that for n > C4,

' 270 1al2 — <|€>2 -1 on: .
n/_1 H(t)%dt ~ |a|? EﬂH o (4.19)
ie.,
la]? ~ 1/n. (4.20)
Hence, shows that ,
Prob (|, (x)] > t) < 4exp (_C?/tz> . (4.21)
Applying this inequality for each z = k/2n, k =0,--- , [4mn] — 1, we see that
nt?
Prob <O<I£r§}1)7(11 |En (27 /(47n))| > t) < cinexp <CV2) . (4.22)

We observe that E, is a trigonometric polynomial of order < n. Hence, (4.17)) shows that

nt?
Prob (I;lg% |En(x)] > 2t> < cinexp <—cv2> . (4.23)

We set the right hand side of the estimate (4.23)) equal to §, and solve for ¢ to obtain

2% = CyV 7@(6;:’"/ 9.

This leads to (4.18). W

We are now in a position to prove Theorem [£.1]

PROOF OF THEOREM 1]

In this proof, we will denote
gn = max | Ey, (x)].
xzeT

We choose n so that Lemma [£.1] is applicable and yields with probability exceeding 1 — d:

log(Csn/d) _ m
n < — < 4.24
en < G2V n — 16 ( )
All the statements in the rest of the proof assume a realization of the €;’s so that (4.24) holds; i.e., they all hold
with probability exceeding 1 — 9.

We observe next that if J C {1,--- K}, d>cin, 2 € T, and |z — A\¢| > d for all £ ¢ J, then

ML ML m
w(@) =Y A@p(z—N)| < —<+en < —<+ —. 4.2
on(z) ZEZJ ¢®n(z ¢) (nd)s te (nd)S + 16 (4.25)
We now choose C' as in (4.13]) and assume that
n > max(4C/n,Cy), and CoV log(Csn/9) < (4.26)

n ~ 16



Then (4.25)) implies that for x € T, |z — A¢| > C/n for all £ & J, we have

ML m
on(@) =Y A®p(r—N)| < —< +en < —. (4.27)
ZGZJ (nd)S 8
Hence, if |z — A¢| > C/n for all g, £ =1,--- , K, ([£.25) applied with J = {) implies that
o ()| < % (4.28)

Consequently, if © € G, then there is some Ay such that |z — A\¢| < C/n < n/4. Necessarily, there is only one Ay
with this property. We now define for { =1,--- , K,

Gr={xeG:|z—N| <C/n}. (4.29)

Obviously, G = U,{il Gy, and Gy’s are all mutually disjoint. This proves the disjoint union condition. The diameter
condition as well as the separation condition are obviously satisfied.

We prove next the interval inclusion property, which implies in particular, that none of the sets G, is empty.
In order to prove this, we observe that 1 = maxgcr |®,(z)|. Hence, for z € Iy, the estimate applied with
J = {¢} implies that

|Un(x) - qu)n(x - )‘Z)| <

%. (4.30)

Since ®,, is a trigonometric polynomial of order < n, the Bernstein inequality implies that for z € I, (i.e., |t — \¢| <
1(4n)),
[P (z — Ae) — 1] < |z — | < (1/4).

So, (4.30) leads to
m
lon(@)l = (3/4)|Ael = 5 = (5/8)m,  z €.

This proves that Iy C Gy for all £ = 1,--- , K. The estimate (4.15]) is clear from the diameter condition and the
interval inclusion property. B

5 Algorithms and illustrations

We describe our main algorithms in Section [5.1} In Section we illustrate the various steps in the case of a two
dimensional dataset, and discuss the results. Section discusses the adaptation of our algorithm in the three
dimensional case. The corresponding results are discussed in Section

5.1 Algorithms

We organize our algorithm in three parts. The first part is to implement Theorem [£.1] in the univariate case. This
is given in Algorithm 1.

The next algorithm, Algorithm 2 uses this algorithm to a two dimensional problem, resulting in an accurate
estimation of one component of the wy’s and an approximate estimation of the other component.

The final step, Algorithm 3 uses Algorithm 2 successively with pairs of components to obtain the final accurate
estimation of all the components of wy’s.

Performance assessment:

After finding the estimate wj, for wy for each k, the next challenge is to determine how many of these estimates
represent the actual points. For this reason, we fix a radius r and declare wj to be an accurate estimator of wy, if
|[wi — Wg| < 7. We then count how many points were estimated accurately within this error margin.

5.2 Illustration in a two dimensional case

We will illustrate our algorithm by using an example of 2-d image which we obtain from [2], as shown in Figure
Following this paper, we take Ay = (1.38,4.14), Ay = (—7.56,5.67).



Algorithm 1 Given a univariate signal (f) = Zszl Ap exp(—ilAg), find K, Ag’s and Ag’s.

a)

Input: m, n and signal ji(£).

Output: Estimation of A, and A for k = 1,...,K.

= { St (§)}

(@) = B Y jgyen H (%) a(0)eit
G+ {z €[-mn]:|on(z)] > m/2}
for k=1to K do
G < Partition(G) with minimal separation 1/4
S\Ak — aTgH}aXxegkﬂUn(x)D
Ap = [on(Ar)]
end for

Note: step 3 - 8 can be computed by using findpeaks in MATLAB with parameters MinPeakDistance 7)/4

and MinPeakHeight m/2.
Return: A, A\

Algorithm 2 Extension of univariate algorithm to for a two dimensional signal. Given

ﬂ(AQ"’éAl) = Zle Ak eXp(—i<A2, Wk>) eXp(—Z'€<A1, Wk>) and [L(AQ +€A1) = [L(Ag +€A1)+6[. Find K, <A1, W;€>7
<A2, Wk>

a)

b) Output: Estimation of Ay, (A1, W), and (Ag,Wy) for k=1,..., K.

1:

© P NP F R

10:

Input: Ay, Ay, m, 7 and signal i(Ag + £Ay).

= (St (4) )

: Un('r) — hy Z‘g|<nH (M) [L(Ag +€A1)€Mr

n

: G {x € -mm]:|on(z)| > m/2}

for k=1to K do
Gi + Partition(G) with minimal separation 7/4
(A1, W) < argmaxyeg, (o ((A1, Wi))|)
<AA2,VAV]€> — Phase(on(<A1,\ka>))
Ay, = |on((A1, W)

: end for

Note: step 3 - 9 can be computed by using findpeaks in MATLAB with parameters MinPeakDistance 7)/4

and MinPeakHeight m/2.
Return: Ay, (A1, W), (Ag, W)

Let wq,...,wiz € R? and {A1, Ay} be a basis for R2. Here, we have
12
Do+ A1) = Y Apexp(—i(Ag, wi)) exp(—il(Ay, wi))
k=1

12
A(AL+Dg) = Y Apexp(—i(Ay, wy)) exp(—il(Ag, i)
k=1

(5.1)

(5.2)

The number of samples required is O(gn), where ¢ is the dimension of the exponential sample, and n is the degree

of the localized kernel. We then apply our low pass filter and obtain

12
ona(x) = hn > Apexp(—i(Dg, wi)) Pz — (Ar, wy))
k=1

ona(x) = T Apexp(—i(Ar, wi)) P (2 — (Ag, wy))
k=1

(5.3)

(5.4)

From the Theorem (A1, wyg) will be  where the peaks occurs in |y, (2)|, (A2, wy) = Phase (o, (z)), and
Ay = |on(z)]. Now, we can obtain the accurate estimation of (A;, wy) corresponding to less accurate estimation



Algorithm 3 Parameter estimation in a multidimensional signal.
a) Input: Ay ford=1,...,q, m, n, and signal i(Ag, +0Ag,), 1 <dy <dy <q.
b) Output: Estimation of Ay and wy for k=1,.... K.
1: for dy =1tog—1do
2: for do =d;+1toqgdo
3: Run Algorithm 2 with parameters Ay, , Ag,, m, n and signal (A4, + ¢Aq,)
Note: From the above step, we will obtain Ay and highly accurate result of (Ag4,, W) together with
corresponding less accurate result of (Ag4,, Wy).
4: Run Algorithm 2 with parameters Ag,, Ag, m, 1 and signal ji(Ag, + £Ag,)
Note: From the above step, we will obtain Ay and highly accurate result of (A4,, Wi) together with
corresponding less accurate result of (Ag4,, Wg).

5: Use nearest neighbor algorithm to obtain the highly accurate pair for both (A4, , W) and (Ag,, Wg)
6: end for

7: end for

8: We can write the result as Aw, where A = [Aq,..., AT and W = [Wq,..., W]

9: Return: We then obtain wy by computing w = ATTAW.
10: Return: Aj and wy for k=1,... K.

k Wk ag

1 | (—1.2566,0.6283) | 50

2 | (—0.7540,0.3142) | 50 ‘ " .

3 | (—0.2513,1.2566) | 50

4 | (—0.2513,0.6283) | 50 - ’
5 (—0.2513,0) | 50 : -
6 (0,—0.6283) | 50 ‘ S

7 (0,—1.2566) | 50

8 | (0.2513,1.2566) | 50 .

9 | (0.2513,0.6283) | 50 :

10 (0.2513,0) 50 .

11 | (0.7540,0.3142) | 50 R IR T

12 | (1.2566,0.6283) | 50

Figure 1: The two dimensional data comprising 12 points [2]. Left: The acutal points and amplitudes, Right: A
graphic representation.

of (Aq, wy) (Figure . Then, we apply the same method in A, direction to obtain the accurate estimation of
(Ag,wy) corresponding to less accurate estimation of (A, wy) (Figure [3|left and middle).

Finally, we can use nearest neighbor to obtain accurate estimation for both (A1, wy) corresponding to (Ay, wy)
and compute Aj. The final result is showed as the rightmost part of Figure [3]

In comparison, we show the results obtained by MUSIC and ESPRIT algorithms in a graphic manner in Figure[4]
and as a table in Table[1] It is obvious that both of these algorithms fail drastically even at high SNR levels.

5.3 Algorithm adaption in the three dimensional case

To extend our algorithm to 3-d problem, we can simply add another 3-d projection to our algorithm to find the
points in the third coordinate that corresponding to the first and the second coordinates.
Let wy,...,wx € R3 and {A1, Ay, Az} be a basis for R®. Here, we have

LAy +LA,) = ZAkeXp i1(Ag, wi)) exp(—il{Ay, wg)) (5.5)

(A +1A;) = ZAkexp i(Ay, W) exp(—il({Ag, wi)) (5.6)
K

(A +0As) = Y Apexp(—i(Ay,wi)) exp(—il(Asz, W) (5.7)
k=1
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Figure 3: Left: Accurate estimation of (As,wy)., Middle: approximate estimation of (As,wy)., Right: Final

reconstruction

By applying the low pass filter to the signals, we will get

K

ona(x) = T Apexp(—i(Dg, wi)) P2 — (A1, wy)) (5.8)
k’}:{l

on2(t) = Pn Y Apexp(—i{An, wi))Pn(z — (A2, wy)) (5.9)
k=1
K

ons(z) = hnZAkexp(—i<A1,Wk>)<I>n(x—(Ag,wk>) (5.10)

From the Theorem (A1, wyg) will be 2 where the peaks occurs in |0y, ()|, (A2, wy) = Phase (0,(z)), and
Ap = |op(z)|. Now, we can obtain the accurate estimation of (Aq, wy) corresponding to less accurate estimation of

<A2,Wk>.

Then, we apply the same method in Ay and Ag directions to obtain the accurate estimation of (Ag, wy) and

(A3, wy) corresponding to less accurate estimation of (Aq, wy) respectively.

SNR | Method | Total | number of points | Run-time | Memory | Accuracy | RMSE | Standard
(dB) Points reconstructed (seconds) (MB) (meters) | (meters) | Deviation
90 | Localized 12 12 0.0045 0.42 0.3 0.0038 0
90 MUSIC 12 1 11.99 0.42 0.3 0.0376 0.0007
90 ESPRIT 12 12 0.0443 0.42 0.3 0.0279 0.0137
60 | Localized 12 12 0.0045 0.42 0.3 0.0038 0
60 MUSIC 12 1 12.09 0.42 0.3 0.0378 0.0005
60 ESPRIT 12 8 0.04 0.42 0.3 0.0981 0.0250
30 Localized 12 12 0.0045 0.42 0.3 0.0038 0
30 MUSIC 12 1 10.96 0.42 0.3 0.0367 0.0058
30 ESPRIT 12 5 0.04 0.42 0.3 0.1355 0.0540

Table 1: The tables above compare results between our algorithm, MUSIC, and ESPRIT on 1024 number of samples.
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Figure 4: The performance of (Left:) MUSIC and (Right:) ESPRIT algorithms on the 12 point 2 dimensional data
set at SNR level of 60dB with 1024 samples.

Figure 5: ESPRIT approximation at 60dB.

Finally, we can use nearest neighbor to obtain accurate estimation for all (A, wy), (Ag, wg), (A3, wy) and
compute Ay = |0, (z)].
5.4 Results in three dimensional experiments

We tested our method described in Section [5.3Jon two three dimensional data sets as described in [2], one comprising
29 points and the other comprising 1000 points. Figure [f]shows the results in a special case in a graphical manner.
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Figure 6: Left: Recuperation of 29 points with 65536 samples at -10dB noise level, Right: Recuperation of 1000
points with 65536 samples at 5dB noise level.

Our algorithm is able to reconstruct all 29 points of 3-d tomographic image accurately as shown in figure[6] The
samples required by our method are 65,536 samples with -10 dB noise added to the data. As comparison to the
original paper [2], the author required 42,875 samples to reconstruct all 29 points with noise levels varying from 40
dB SNR to 5 dB SNR.

In the 1000 points of 3-d fighter jet image, our algorithm cannot separate the signals that are really close together
due to high density data points on a cluster. We can only reconstruct 903 data points of out 1000 points with 65536
samples. This method requires approximately 35MB of memory and the run-time is less than 1 second. Comparing
to our baseline result from [2], the author has experimented with 72000, 90000, and 180000 samples with the result
of 71% of the scatterers is reconstructed within an error of at most 10 em and 93% within 30 cm, 81% within 10
cm and 95% within 30 em, 94% within 10 cm and 98% within 30 cm respectively. One may see that the advantage
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of our algorithm in terms of speed and accuracy.
Figure [7] shows the dependence on the SNR of the accuracy and the number of points recuperated out of the
1000 points.

Number of points recuperated

Figure 7: For the 1000 point data set, dependence on SNR for (Left:) accuracy and (Right:) number of points
recuperated.

Finally, the details of all the results are summarized in Table

6 Conclusions

The problem of multidimensional exponential analysis arises in many areas of applications including tomographic
imaging, ISAR imaging, antenna array processing, etc. The problem is essentially to develop an efficient algorithm
to obtain the inverse Fourier transform of a multidimensional signal, based on finitely many equidistant samples
of the signal. We have given a very simple algorithm based on localized trigonometric kernel, which reduces the
problem to a series of one dimensional problems. Our algorithm works with a tractable number of samples, gives high
accuracy, and is very robust even in the presence of noise as high as -10dB. We have proved theoretical guarantees
under the assumption that the noise is sub-Gaussian, a significantly weaker assumption that the assumption of
white noise common in the literature.
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