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Itō and Itō -Wentzell chain rule for flows of conditional laws

of continuous semimartingales: an easy approach
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Abstract

We provide a general Itō -Wentzell formula for a random field of maps on the
Wasserstein space of probability measures, defined by continuous semimartingales,
and evaluated along the flow of conditional distributions of another continuous semi-
martingale. Our method follows standard arguments of Itō calculus, and thus bypasses
the approximation by empirical measures commonly used in the existing literature.
As an application, we derive the dynamic programming equation for a mean field
stochastic control problem with common noise.

MSC2020. 60G40, 49N80, 35Q89, 60H30

Keywords. Itō’s formula on the Wasserstein space, and its Itō -Wentzell extension, mean
field optimal control.

1 Introduction

Let X = (Xt)t≥0 be a square integrable continuous semimartingale on a filtered probability
space

(

Ω,F , {Ft}t≥0,P
)

. For simplicity, we consider the scalar case as the multidimen-
sional extension does not raise any special difficulties. Denote by mt := P ◦ X−1

t the
marginal law of Xt, which lies in the set P2(R) of all probability measures with finite
second moment. For a function u : P2(R) −→ R, with appropriate regularity, an Itō’s
chain rule for the map t 7−→ u(mt) was established by various methods in the litera-
ture after the Lectures of P.L. Lions at the Collège de France, see Buckdahn, Li, Peng &
Rainer [BLPR17] and Chassagneux, Crisan & Delarue [CCD15] for continuous diffusions,
Cavallazzi [Cav22] for a Krylov-type extension of the Itō formula to maps in appropri-
ate Sobolev spaces, Li [Li12] and Burzoni, Ignazio, Reppen & Soner [BIRS20] for special
classes of jump-diffusions with continuous marginals. The case of general càdlàg semi-
martingales was solved simultaneously by Guo, Pham & Wei [GPW22] and Talbi, Touzi
& Zhang [TTZ23].

∗Ecole Polytechnique, assil.fadle@polytechnique.edu.
†New York University, Tandon School of Engineering and Courant Institute, nizar.touzi@nyu.edu.
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The Itō chain rule states that, for a map u with appropriate smoothness on the Wasser-
stein space of probability measures, we have

u(mt) = u(m0) + E

[

∫ t

0
∂µu(ms,Xs) dXs +

1

2

∫ t

0
∂x∂µu(ms,Xs) d〈X〉s

]

, for all t ≥ 0,

(1.1)
where ∂µu : P2(R)×R −→ R denotes the so-called Lions derivative, and ∂x is the partial
gradient operator with respect to the x−variable. See e.g. Carmona & Delarue [CD18a].

Our objective in this paper is to revisit extensions of the last Itō’s rule in two directions:

- the measure variable is random and defined as the conditional law µt := P ◦ (Xt|F0)−1

of Xt given some sub-sigma algebra F0 of F ,

- the function u is extended to the context of a dynamic stochastic flow of continuous
semimartingales {ut(x), t ≥ 0} for all fixed x ∈ R.

The first extension is motivated by the vibrant research activity on mean field stochas-
tic control with common noise, and the Master equation in the context of mean field games
with common noise. The second extension is also motivated by similar stochastic control
problems under partial information. The huge interest of the community in this area
is enhanced by the wide applications in various questions pertaining to multiple agents
decision problems.

Our main emphasis is on the simplicity of our derivations which follow standard argu-
ments in Itō calculus, and which allows to obtain new extensions which were not considered
in the existing literature. In order to better explain our approach, let us show how (1.1)
can be obtained by means of the following early graduate class level arguments (where the
two first steps are simple reminders):

• We first recall from Cardaliaguet, Delarue, Lasry & Lions [CDLL15] that the Lions
derivative ∂µ is related to the functional linear derivative δm by ∂µ = ∂xδm, where
δmu : P2(R) × R −→ R is defined for all m,m′ ∈ P2(R) by the following limit, if
exists:

lim
εց0

1

ε

[

u
(

m+ ε(m′−m)
)

− u(m)
]

=: 〈δmu(m),m′−m〉 =
∫

δmu(m,x)(m
′−m)(dx).

Notice that this definition is a mix of directional and Gâteaux derivative, and that
the map δmu(m) := δmu(m, .) : R

d −→ R needs to have quadratic growth, at most,
in order for the last integral to be well-defined.

• By standard calculus, and under slight regularity, this definition is equivalent to the
requirement of existence of such a function δmu satisfying the requirement

u(m)− u(m′) =

∫ 1

0

〈

δmu
(

(1− λ)m+ λm′
)

,m′−m
〉

dλ, for all m,m′ ∈ P2(R),

which is all we need for our subsequent derivation of Itō’s formula.
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• Given a dense partition (tni )i≥0 of the [0,∞), denote sni := s ∧ tni , for all s ≥ 0, and
use the telescopic decomposition together with the last definition to see that:

u(ms)− u(m0) =
∑

i≥1

u(msni
)− u(msni−1

) =
∑

i≥1

∫ 1

0
〈Uλ

n,i,msni
−msni−1

〉dλ, (1.2)

with Uλ
n,i := δmu

(

(1− λ)msni−1
+ λmsni

)

a scalar map on R. We next observe that

〈Uλ
n,i,msni

−msni−1
〉 =

∫

Uλ
n,i d(msni

−msni−1
)

= E
[

Uλ
n,i(Xsni

)−Uλ
n,i(Xsni−1

)
]

= E

[

∫ sni

sni−1

(Uλ
n,i)

′(Xr) dXr+
1

2
(Uλ

n,i)
′′(Xr) d〈X〉r

]

,

where the last equality follows from the standard Itō’s formula, under the appropri-
ate regularity assumptions on the map Uλ

n,i. Plugging this expression in (1.2), we
obtain the required formula (1.1) by standard limiting argument using the dominated
convergence theorem.

The last argument is most appealing as it uses the standard intuitive notion of func-
tional linear derivative δm. Moreover, it completely bypasses the crucial step of projection
on empirical measures used in most of the previous literature following the Lectures of P.L.
Lions at the Collège de France, see Chassagneux, Crisan & Delarue [CCD15], Buckdahn,
Li, Peng & Rainer [BLPR17], Carmona & Delarue [CD18a]. Here, the idea is to approxi-
mate the marginal law mt by the corresponding empirical measure mN

t := 1
N

∑

i≤N δXi
t
of

a finite sample of N independent copies (X1, . . . ,XN ), apply the standard Itō’s formula
to the finite dimensional map uN (X1

t , . . . ,X
N
t ) := u(mN

t ), and finally take limits by using
fine results on the convergence of empirical measures.

The simple method outlined above is applied in Talbi, Touzi & Zhang [TTZ23] in
the context of càd-làg semimartingales, see also the parallel paper by Guo, Pham & Wei
[GPW22] which uses a functional analytic extension of an appropriate class of cylindrical
maps in order to account for the jumps of the semimartingale.

The main contribution of this paper is to show that the previous simple method also
applies to derive an Itō -Wentzell chain rule for conditional laws. This answers in particular
a question raised in dos Reis & Platonov [dRP22], who derive the Itō -Wentzell formula by
adapting the technique of projection on empirical measures used by Carmona & Delarue
[CD18b] to derive the Itō formula for conditional laws, see also Cardaliaguet, Delarue,
Lasry & Lions [CDLL15] in the context of the Master equation. We notice that, while the
state process in [dRP22] is defined by SDEs driven by Brownian motions and is conditioned
by a Brownian motion, we consider in this paper general continuous semimartingales with
general conditioning. Moreover, our Itō -Wentzell formula is derived for a random flow
continuous semimartingale, extending the case of deterministic function of a process and
a conditional law of another process of [dRP22].

3



The paper is organized as follows. Section 3 provides an Itō’s formula for conditional
marginal laws of continuous semimartingales. Although this result is a particular case of
the subsequent one, we believe that it deserves to be isolated for the sake of clarity. Section
4 contains our general Itō -Wentzell formula in the context where the random field of maps
is also defined by continuous semimartingales. Finally, Section 5 provides an application
in mean field stochastic control with common noise.

2 Notations

We denote x · y :=
∑

i xiyi the Euclidean scalar product of two vectors in any finite
dimensional space, A :B := Tr[AB] and A⊗2 = AA⊺ for all matrices of appropriate size.

Throughout this paper, we fix a constant maturity T > 0, and a completed probability
space (Ω,F ,P) equipped with a filtration F = {Ft, 0 ≤ t ≤ T}.

Let π : 0 = t0 < . . . < tnπ = T be a subdivision of [0, T ] with mesh size |π| :=
maxi≤nπ(ti − ti−1). A sequence of subdivisions (πn)n≥0 is dense if the sequence of meshes
|πn| converges to 0 as n→ ∞.

A stochastic process is said to be piecewise constant along the subdivision π if it is
constant on each interval (ti−1, ti]. For a process Y valued in R

d, we denote the increment
to the subdivision by:

∆πYs :=

nπ
∑

i=1

(Ys∧ti − Ys∧ti−1
), for all s ≥ 0.

In other words, for s ∈ (tis−1, tis ], we have ∆πYs = Ys − Ytis−1
, and if the process Y is in

addition piecewise constant along π, we have ∆πYs = Ytis − Ytis−1
.

The total variation of Y is denoted by

|Y |TV = sup
π

nπ−1
∑

i=1

|Yti+1
− Yti | = sup

π

nπ−1
∑

i=1

|∆πYti+1
|,

where |.| is the Euclidean norm in R
d.

The quadratic variation of Y is defined as

〈Y 〉s = lim
|π|→0

nπ−1
∑

i=1

(Yti+1
− Yti)(Yti+1

− Yti)
⊺, for all s ≥ 0,

where the limit is in probability and does not depend on the choice of the subdivisions
sequence.

X is said to be a (continuous) semimartingale if it can be written as Xs = X0 +As +
Ms, s ∈ [0, T ] where A is a (continuous) finite-variation process and M is a (continuous)
martingale.
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H
2(Y ) is the collection of all progressively measurable processes H, with same dimen-

sion as Y , such that E
[ ∫ T

0 HsH
⊺

s :d〈Y 〉s
]

<∞.

A sequence (Hn)n≥0 of predictable bounded processes is called a simple approximation
of a process H ∈ H

2(Y ) if there exists a dense sequence of subdivisions (πn)n≥0 such that
Hn is piecewise constant along πn, for all n ≥ 0, and Hn −→ H in H

2(Y ), as n→ ∞.

The following (probably well-known) result will be used frequently. As we failed to
find a reference for it, we report its proof as a complement in the Appendix section 6.

Lemma 1. Let X be a semimartingale with decomposition X = A + M into a finite
variation process A and a martingale M satisfying E

[

|A|2TV + 〈M〉2T
]

< ∞. Let (Hn)n≥0

be a simple approximation of a matrix-valued bounded progressively measurable H with
rows in H

2(X), along some sequence of subdivisions (πn : 0 = tn0 < . . . < tnpn = T ). Then:

pn
∑

i=1

Hn
tni−1

: (∆πn

Xtni
)(∆πn

Xtni
)⊺ −→

∫ T

0
Hs :d〈X〉s, in L

1 as n→ ∞.

We notice that, if H is continuous, then the last convergence result holds true with
Hn

tni
= Htni

, for i = 0, . . . , npn .

The marginal laws considered in this paper lie in the set P2(R
d) of all probability

measures on R
d with finite second moment. Similarly, our conditional marginal laws are

random maps taking values in P2(R
d). This set is naturally equipped with the Wasserstein

distance

d(m,m′) := inf
π∈Π(m,m′)

∫

|x− x|2π(dx,dx′), for all m,m′ ∈ P(Rd),

where Π(m,m′) is the set of all couplings of (m,m′), i.e. probability measures on R
d×R

d

with marginals m and m′.

We say that a function u : P2(R
d) → R admits a (first order) functional linear deriva-

tive if there exists a map δmu : P2(R
d)× R

d → R such that for all m,m′ ∈ P2(R
d),

u(m′)− u(m) =

∫ 1

0

∫

Rd

δmu(m̄
λ, x)(m′ −m)(dx) dλ with m̄λ := λm′ + (1− λ)m,

and δmu has quadratic growth in x, locally uniformly in m, so that the last integral is well-
defined. Similarly, the second order functional linear derivative δ2m : P2(R

d)×R
d×R

d → R

is such that for all m,m′ ∈ P2(R
d), and x ∈ R

d:

δmu(m
′, x)− δmu(m,x) =

∫ 1

0

∫

Rd

δ2mu(m̄
λ, x, x̂)(m′ −m)(dx̂) dλ,

and δ2mu has quadratic growth in x̂, locally uniformly in m, for all fixed x ∈ R
d. Notice

that under these conditions, δm∂xδmu = ∂xδ
2
mu.
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3 Itō’s formula

Throughout this paper, we consider an R
d−valued continuous semimartingale with canon-

ical decomposition
X = X0 +M +A,

where M is a martingale and A is a finite-variation process, both started from 0, and
X0 ∈ L

2(F0).

For an arbitrary filtration F
0 = (F0

t )t≥0, we denote by µt = L(Xt|F0
T ), the law of Xt

conditional on F0
T , for t ∈ [0, T ].

Our first result is the following Itō’s formula for flows of conditional law of the contin-
uous semimartingale X.

Assumption 3.1. The map u : P2(R
d) −→ R, and the continuous semimartingale X

satisfy:

(I1) δmu, ∂
2
xδmu, δ

2
mu, ∂x∂x̂δ

2
mu exist and are continuous in each variable;

(I2) ∂2xδmu, ∂x∂x̂δ
2
mu are bounded;

(I3) X0, |A|TV and 〈M〉T are square integrable.

Theorem 1. Let Assumption 3.1 hold true, and let X̂ be a copy of X on a copy probability
space, with L(X̂|F0

T ) = L(X|F0
T ). Then:

u(µT )− u(µ0) = E
0

[
∫ T

0
∂xδmu(µs,Xs)·dXs +

1

2
∂2xδmu(µs,Xs) :d〈X〉s

]

+ E
0
Ê
0

[
∫ T

0

1

2
∂2xx̂δ

2
mu(µs,Xs, X̂s) :d〈X, X̂〉s

]

, a.s.

where E
0 := E[·|F0

T ] and Ê
0 := E[·|X,F0

T ] denote the conditional expectations in the
enlarged space.

Proof. Let us first prove the result when ∂2xδmu and ∂x∂x̂δ
2
mu are bounded. We organize

our arguments in three steps.

Step 1. Let πn : 0 = tn0 < tn1 < . . . < tnpn = T be a dense sequence of partitions of [0, T ],

and denote µλtni
= λµtni +(1−λ)µtni−1

. By the definition of the linear functional derivative,
we have:

δni u := u(µtni )− u(µtni−1
) =

∫ 1

0

∫

Rd

δmu(µ
λ
tni
, x)(µtni − µtni−1

)(dx) dλ

=

∫ 1

0
E
0
[

δmu(µ
λ
tni
,Xtni

)− δmu(µ
λ
tni
,Xtni−1

)
]

dλ. (3.1)

By the second order Taylor theorem, we may rewrite this as

δni u =

∫ 1

0
E
0

[

∂xδmu(µ
λ
tni−1

,Xtni−1
)·∆πnXtni

+
1

2
∂2xδmu(µ

λ
tni−1

, ξtni−1
) :(∆πnXtni

)(∆πnXtni
)⊺
]

dλ,
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for some r.v. ξtni−1
lying between Xtni−1

and Xtni
. Let us introduce an independent copy

X̂ of X conditionally to F
0. Using the notation {F (θ, ·)}θ

′

2

θ′
1

:= F (θ, θ′2) − F (θ, θ′1), for all

map F (θ, θ′), and denoting γ := ∂xδmu, we compute that

{

γ(.,Xtni−1
)
}

µtn
i−1

µλ
tn
i−1

=

∫ 1

0

∫

δmγ(µ
λλ′

tn
i−1
,Xtni−1

, x̂)(µλtn
i−1

−µtni−1
)(dx̂) dλ′

= λ

∫ 1

0
Ê
0

[

{

δmγ(µ
λλ′

tn
i−1
,Xtni−1

, ·)
}X̂tn

i

X̂tn
i−1

]

dλ′

= λ

∫ 1

0
Ê
0
[

∂x̂δmγ(µ
λλ′

tni−1
,Xtni−1

, ξ̂tni−1
)∆πnX̂tni

]

dλ′,

for some ξ̂tni−1
between X̂tni−1

and X̂tni
. This provides:

δni u = E
0
[

∂xδmu(µtni−1
,Xtni−1

)·∆πnXtni

]

+ E
0
Ê
0

[
∫ 1

0

∫ 1

0
λ∂x̂δm∂xδmu(µ

λλ′

tni−1
,Xtni−1

, ξ̂tni−1
) :(∆πnXtni

)(∆πnX̂tni
)⊺ dλ′ dλ

]

+

∫ 1

0
E
0

[

1

2
∂2xδmu(µ

λ
tni−1

, ξtni−1
) :(∆πnXtni

)(∆πnXtni
)⊺
]

dλ.

Summing (3.1), and denoting by tn(s) the closest subdivision point strictly to the left of
s, this provides:

UT (µT )− U0(µ0) =

∫ T

0
E
0
[

∂xδmu(µtn(s),Xtn(s))·dXs

]

+

pn
∑

i=1

∫ 1

0
E
0

[

1

2
∂2xδmu(µ

λ
tni−1

, ξtni−1
) :(∆πnXtni

)(∆πnXtni
)⊺
]

dλ

+

pn
∑

i=1

E
0
Ê
0

[
∫ 1

0

∫ 1

0
λ∂x̂δm∂xδmu(µ

λλ′

tni−1
,Xtni−1

, ξ̂tni−1
) :(∆πnXtni

)(∆πnX̂tni
)⊺ dλ′ dλ

]

.

Our goal in the subsequent steps is to analyse the convergence of each term in the last
decomposition, along a suitable sequence of subdivisions, towards the formula announced
in Theorem 1. Proving that one such subsequence exists is enough.

Step 2. In this step, we start with the first term that we denote Un
1 . Namely,

Un
1 :=

pn
∑

i=1

E
0

[

∫ tni

tni−1

∂xδmu(µtni−1
,Xs)·dXs

]

=E
0

[
∫ T

0
fn(s)·dXs

]

with fn(s) :=∂xδmu(µtn(s),Xs),

where tn(s) is the last point of the subdivision πn which is strictly to the left of s. Since µs is
continuous in s, fn(s) −→ f(s) = ∂xδmu(µs,Xs) almost surely when n→ +∞. Moreover,
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|∂xδmu(µs,Xs)| ≤ C(1+|Xs|), by our assumption on ∂2xδmu, and as E[〈M〉T +|A|2TV] <∞,
we also have E

[

sup0≤t≤T |Xt|2
]

<∞. Then, it follows from the BDG inequality that

E

[
∣

∣

∣

∣

∫ T

0
(fn(s)− f(s))·dXs

∣

∣

∣

∣

]

≤ CBDGE

[

∣

∣

∣

∫ T

0
(fn(s)− f(s))⊗2 :d〈X〉s

∣

∣

∣

1

2

]

−→ 0 in L
2,

by dominated convergence, as

∣

∣

∣

∫ T

0
(fn(s)−f(s))⊗2 :d〈X〉s

∣

∣

∣

1

2 ≤ C
(

sup
s
(1+|Xs|)2|〈X〉T |

)
1

2 ≤ C

2

(

sup
s
(1+|Xs|)2+|〈X〉T |

)

∈ L
1.

This shows that
∫ T

0 ∂xδmu(µtn(s),Xs) ·dXs −→
∫ T

0 ∂xδmu(Ms,Xs) ·dXs in L
1, thus

implying by the Jensen inequality that

Un
1 −→ E

0

[
∫ T

0
∂xδmu(µs,Xs)·dXs

]

in L
1, as n→ ∞,

and therefore almost surely along some subsequence.

Step 3. We next analyse the convergence of the third term

Un
3 :=

pn
∑

i=1

∫ 1

0
λ

∫ 1

0
E
0
Ê
0
[

∂x∂x̂δ
2
mu(µ

λλ′

tni
,Xtni−1

, ξ̂tni−1
) :(∆πnXtni

)(∆πnX̂tni
)⊺
]

dλ′ dλ,

by arguing in two steps:

• First, substituting µtni−1
to µλλ

′

tni
, and X̂tni−1

to ξ̂tni−1
, we compute that

U
n
3 :=

pn
∑

i=1

∫ 1

0
λ

∫ 1

0
E
0
Ê
0
[

∂x∂x̂δ
2
mu(µtni ,Xtni−1

, X̂tni−1
) :(∆πnXtni

)(∆πnX̂tni
)⊺
]

dλ′ dλ

=
1

2
E
0
Ê
0

[

pn
∑

i=1

Htni−1
: (∆πnXtni

)(∆πnX̂tni
)⊺

]

, with Hs := ∂x∂x̂δ
2
mu(µs,Xs, X̂s),

which leads by the polarized version of Lemma 1 to:

U
n
3 −→ 1

2
E
0
Ê
0

[
∫ T

0
∂x∂x̂δ

2
mu(µs,Xs, X̂s) :d〈X, X̂〉s

]

, in L
1, as n→ ∞.

• we next control the error Un
3 − U

n
3 = E

0
Ê
0
[
∑pn

i=1 εtni−1
: (∆πn

Xtni
)(∆πn

X̂tni
)⊺
]

, with

εtni−1
:=

∫ 1

0

∫ 1

0
λ
(

∂x∂x̂δ
2
mu(µ

λλ′

tni
,Xtni−1

, X̂tni−1
)− ∂x∂x̂δ

2
mu(µtni−1

,Xtni−1
, ξ̂tni−1

)
)

dλ′ dλ.
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We write the proof for d = 1, as the d-dimensional case does not raise any difficulty.
∣

∣

∣

∣

∣

pn
∑

i=1

εtni−1
(∆πnXtni

)(∆πnX̂tni
)

∣

∣

∣

∣

∣

≤
pn
∑

i=1

|∆πnXtni
||∆πnX̂tni

||εtni−1
|

≤ 1

2

pn
∑

i=1

∣

∣

∣
εtni−1

∣

∣

∣
|∆πnXtni

|2 + 1

2

pn
∑

i=1

∣

∣

∣
εtni−1

∣

∣

∣
|∆πnX̂tni

|2

≤ επnQn, with Qn :=

pn
∑

i=1

|∆πnXtni
|2 +

pn
∑

i=1

|∆πnX̂tni
|2, (3.2)

and for i = 1, . . . , n,
∣

∣

∣
εtni−1

∣

∣

∣
≤ επn := sup

0≤j≤n−1
sup

tnj ≤s1,s2≤tnj+1

∣

∣

∣
∂x∂x̂δ

2
mu(µs1 ,Xs2 , X̂tnj

)− ∂x∂x̂δ
2
mu(µtnj ,Xtnj

, X̂tnj
)
∣

∣

∣
.

Notice that the map g : (s1, s2, r) 7−→ ∂x∂x̂δ
2
mu(Ms1 ,Xs2 , X̂r) is a.s. continuous on

the compact [0, T ]3, therefore it is uniformly continuous, and thus

επn = sup
0≤i≤n−1

sup
tni−1

≤s1,s2≤tni

|g(s1, s2, tni−1)− g(tni−1, t
n
i−1, t

n
i−1)| −→ 0, a.s.

Since Qn −→ 〈X〉T + 〈X̂〉T < +∞ in L
1, we deduce from (3.2) together with

the dominated convergence theorem (using the fact that επ is uniformly bounded,
because ∂x∂x̂δ

2
mu is bounded) that the error term converges towards 0 in L

1, and
therefore that it is still the case after taking conditional expectations. This last
convergence in L

1 yields the a.s. convergence along a subsequence.

Step 4. By following the same line of argument as in Step 3, we also obtain the
following convergence for the second term

Un
2 :=

1

2

pn
∑

i=1

∫ 1

0
E
0
[

∂2xδmu(µ
λ
tni−1

, ξtni−1
) :(∆πnXtni

)(∆πnXtni
)⊺
]

dλ.

Indeed, we find that

Un
2 −→ 1

2
E
0

[
∫ T

0
∂2xδm(µs,Xs) :d〈X〉s

]

in L
1.

⊔⊓

4 Itō -Wentzell’s formula

In addition to the continuous semimartingale with canonical decomposition

X = X0 +M +A,

9



we now consider the extension from a deterministic function u to a process U : [0, T ] ×
P2(R

d)× Ω −→ R, with the following dynamics for the random field Ut(m):

Ut(m) = U0(m) +

∫ t

0
φr(m)·dBr + ψr(m)·dNr, (4.1)

whereB is a finite-variation process andN is a martingale. Our main result is the following
Itō -Wentzell formula which will be established under the following conditions.

Assumption 4.1. The maps f ∈ {U0, φt, ψt, t ∈ [0, T ]} defined on P2(R
d) satisfy

(IW1) δmf, ∂
2
xδmf, δ

2
mf, ∂x∂x̂δ

2
mf exist and are continuous;

(IW2) f, ∂2xδmf, ∂x∂x̂δ
2
mf are bounded;

and the processes X together with the driving processes B,N of the random field U satisfy

(IW3) X0, |A|TV and 〈M〉T are square integrable, and both |B|TV, 〈N〉T are bounded.

We observe that the boundedness condition on |B|TV and 〈N〉T can be weakened at the
price of stronger boundedness conditions on ∂xδmφ and ∂xδmψ. We deliberately choose
this setup in order to compare to the conditions of dos Reis & Platonov [dRP22].

Theorem 2. Let Assumption 4.1 hold.

(i) All derivatives δmU, ∂
2
xδmU, δ

2
mU, ∂x∂x̂δ

2
mU exist, are continuous a.s., and are semi-

martingales defined by the decomposition for i, j = 1, . . . , d:

∂xi
δmUt(m,x)=∂xi

δmU0(m,x) +

∫ t

0
∂xi

δmφs(m,x)·dBs + ∂xi
δmψs(m,x)·dNs,

∂2xi,xj
δmUt(m,x)=∂

2
xi,xj

δmU0(m,x) +

∫ t

0
∂2xi,xj

δmφs(m,x)·dBs + ∂2xi,xj
δmψs(m,x)·dNs

∂2xi,x̂j
δ2mUt(m,x, x̂)=∂

i
x∂

j
x̂δ

2
mU0(m,x, x̂) +

∫ t

0
∂ix∂

i
x̂δ

2
mφs(m,x, x̂)·dBs+∂

i
x∂

i
x̂δ

2
mψs(m,x, x̂)·dNs.

(ii) Moreover, we have

UT (µT )−U0(µ0) = E
0

[
∫ T

0
∂xδmUs(µs,Xs)·dXs +

1

2
∂2xδmUs(µs,Xs) :d〈X〉s

]

+ E
0
Ê
0

[
∫ T

0

1

2
∂x∂x̂δ

2
mUs(µs,Xs, X̂s) :d〈X, X̂〉s

]

+

∫ T

0
φs(µs)·dBs+ψs(µs)·dNs + E

0

[
∫ T

0
∂xδmψs(µs,Xs) :d〈N,M〉s

]

, a.s.

Proof. We organize the proof in several steps.

1. We start by the existence and continuity of δmU, ∂
2
xδmU, δ

2
mU, ∂x∂x̂δ

2
mU . We first show

that the functional linear derivative δmUt exists for all t ∈ [0, T ], and is given by the first

10



expression in (i), i.e.

δmUt(m,x) = δmU0(m,x) +

∫ t

0
δmφs(m,x)·dBs + δmψs(m,x)·dNs. (4.2)

For arbitrary m,m′ ∈ P2(R
d), it follows from the decomposition of U and the definition

of the linear functional derivative for the maps U0, φs, ψs, as guaranteed by Assumption
(IW1), that:

Ut(m
′)−Ut(m) = U0(m

′)−U0(m)+

∫ t

0
(φs(m

′)−φs(m))·dBs+

∫ t

0
(ψs(m

′)−ψs(m))·dNs

=

∫ 1

0

∫

δmU0(m
λ, x)(m′−m)(dx) dλ+

∫ t

0

(
∫ 1

0

∫

δmφs(m
λ, x)(m′−m)(dx) dλ

)

·dBs

+

∫ t

0

(
∫ 1

0

∫

δmφs(m
λ, x)(m′−m)(dx) dλ

)

·dNs,

By the Fubini theorem, this provides Ut(m
′) − Ut(m) =

∫ 1
0

∫

Fs(m
λ, x)(m′ − m)(dx) dλ,

where Ft(m,x) is given by the right hand side of (4.2). Moreover, it follows from (IW2)
that the maps δmU0, δmφs, δmψs have linear growth in x, uniformly in m. As E[|B|2TV +
〈N〉T ] < ∞ by (IW3), this implies that the map Ft(m,x) also has linear growth in x,
uniformly in m. Notice also that

• Ft inherits the continuity of δmU0, δmφt, and δmψt, by the dominated convergence
theorem due to their boundedness, uniformly in t,m, assumed in (IW2). We may
then conclude that δmUt = Ft by the definition of the linear functional derivative.

• ∂2xδmU exists and inherits the continuity of ∂2xδmU0, ∂
2
xδmφ, and ∂

2
xδmψ, by the dom-

inated convergence theorem due to their boundedness, uniformly in t,m, assumed
in (IW2)

Finally, observe that the coefficients of the SDEs driving U and δmU (with fixed x)
satisfy the same conditions in (IW1) and (IW2). Applying the previous argument to the
process δmUt(m,x), for fixed x, it follows that δ

2
mUt and ∂x∂x̂δ

2
mUt(m,x, x̂) also exist and

are continuous, with decomposition given by the third expression in (i).

2. Let πn : 0 = tn0 < tn1 < . . . < tnpn = T be a dense sequence of partitions of [0, T ]. As in
the proof of Itō’s formula, we start from the telescopic decomposition:

Utni
(µtni )− Utni−1

(µtni−1
) = R1 +R2 where R1 := Utni

(µtni )− Utni
(µtni−1

), (4.3)

R2 := Utni
(µtni−1

)−Utni−1
(µtni−1

) =

∫ tni

tni−1

dUs(µtni−1
),

with dynamics of {Us(m), s ≥ 0} given by (4.1). We next further compute R1 by using
the definition of the functional linear derivative:

R1=

∫ 1

0

∫

δmUtni
(µλtni−1

, .)d(µtni −µtni−1
)dλ =

∫ 1

0
E
0
[

δmUtni
(µλtni−1

,Xtni
)−δmUtni

(µλtni−1
,Xtni−1

)
]

dλ.
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By the second order Taylor theorem, we may rewrite this as

R1 =

∫ 1

0
E
0

[

∂xδmUtni
(µλtni−1

,Xtni−1
)·∆πnXtni

+
1

2
∂2xδmUtni

(µλtni−1
, ξtni−1

) :(∆πnXtni
)(∆πnXtni

)⊺
]

dλ,

for some r.v. ξtni−1
lying between Xtni−1

and Xtni
. Denoting γs := ∂xδmUs, we compute that

{

γtni (.,Xtni−1
)
}

µtn
i−1

µλ
tn
i−1

=

∫ 1

0

∫

δmγtni (µ
λλ′

tni−1
,Xtni−1

, x̂)(µλtni−1
−µtni−1

)(dx̂) dλ′

= λ

∫ 1

0
Ê
0

[

{

δmγtni (µ
λλ′

tni−1
,Xtni−1

, ·)
}X̂tn

i

X̂tn
i−1

]

dλ′

= λ

∫ 1

0
Ê
0
[

∂x̂δmγtni (µ
λλ′

tni−1
,Xtni−1

, ξ̂tni−1
)∆πnX̂tni

]

dλ′,

for some ξ̂tni−1
between X̂tni−1

and X̂tni
. By the regularity results obtained in Step 1 of the

present proof, we may also write γtni (µtni−1
,Xtni−1

) = γtni−1
(µtni−1

,Xtni−1
)+

∫ tni
tni−1

dγs(µtni−1
,Xtni−1

).

Substituting back the expression of the map γ, this provides:

R1 = E
0
[

∂xδmUt(µtni−1
,Xtni−1

)·∆πnXtni

]

+ E
0

[

(

∫ tni

tni−1

dγs(µtni−1
,Xtni−1

)
)

·∆πnXtni

]

+ E
0
Ê
0

[
∫ 1

0

∫ 1

0
λ∂x̂δm∂xδmUtni

(µλλ
′

tni−1
,Xtni−1

, ξ̂tni−1
) :(∆πnXtni

)(∆πnX̂tni
)⊺ dλ′ dλ

]

+

∫ 1

0
E
0

[

1

2
∂2xδmUtni

(µλtni−1
, ξtni−1

) :(∆πnXtni
)(∆πnXtni

)⊺
]

dλ,

where dγs(µtni−1
,Xtni−1

) = fs(µtni−1
,Xtni−1

) dBs + gs(µtni−1
,Xtni−1

) dNs, s ∈ [tni−1, t
n
i ), with

(fs, gs) := ∂xδm(φs, ψs).

Summing the decomposition (4.3), and denoting by tn(s) the closest subdivision point
strictly to the left of s, this provides:

UT (µT )− U0(µ0) =

∫ T

0
dUs(µtn(s)) +

∫ T

0
E
0
[

∂xδmUtn(s)(µtn(s),Xtn(s))·dXs

]

+

pn
∑

i=1

E
0
[(

∫ tni

tni−1

fs(µtni−1
,Xtni−1

) dBs + gs(µtni−1
,Xtni−1

) dNs

)

·∆πnXtni

]

+

pn
∑

i=1

E
0
Ê
0

[
∫ 1

0

∫ 1

0
λ∂x̂δm∂xδmUtni

(µλλ
′

tni−1
,Xtni−1

, ξ̂tni−1
) :(∆πnXtni

)(∆πnX̂tni
)⊺ dλ′ dλ

]

+

pn
∑

i=1

∫ 1

0
E
0

[

1

2
∂2xδmUtni

(µλtni−1
, ξtni−1

) :(∆πnXtni
)(∆πnXtni

)⊺
]

dλ.
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3. We now show that the different terms of the last decomposition converge towards the
formula announced in the theorem, for a certain dense sequence of subdivisions.

3.1 We first prove that, after possibly passing to a subsequence,
∫ T

0
dUs(µtn(s)) =

∫ T

0
φs(µtn(s))·dBs + ψs(µtn(s))·dNs −→

∫ T

0
dUs(µs) a.s. (4.4)

By the dominated convergence theorem for the Stieltjes integral
∫

·dBs, and the bound-
edness of φ, we obtain the convergence of the finite variation part

∫ T

0
φs(µtn(s))·dBs −→

∫ T

0
φs(µs)·dBs, a.s.

As for the stochastic integral component, we estimate by the Itō isometry that

E

[

(
∫ T

0
(ψs(µtn(s))− ψs(µs))·dNs

)2
]

≤ E

[
∫ T

0
(ψs(µtn(s))− ψs(µs))

⊗2 :d〈N〉s
]

,(4.5)

Since ψ and µ are a.s. continuous and ψ is bounded, it follows from dominated convergence
for the Stieltjes stochastic integral

∫

·d〈N〉s that
∫ T

0

(

ψs(µtn(s))−ψs(µs)
)⊗2

:d〈N〉s −→ 0,

a.s. Furthermore, |
∫ T

0

(

ψs(µtn(s))− ψs(µs)
)⊗2

:d〈N〉s| ≤ 4||ψ||2∞Tr[〈N〉T ], which is in L
1.

We then deduce from (4.5) and the dominated convergence theorem that
∫ T

0
ψs(µtn(s))·dNs −→

∫ T

0
ψs(µs)·dNs in L

2, and a.s. along some subsequence,

thus completing the proof of (4.4).

For the remaining terms, we use the same method as in the proof of Theorem 1, by
arguing that the sequence inside the conditional expectations converges in L

1 towards the
desired results.

3.2. Denote Hs := ∂xδmUs(µs,Xs). The convergence of the second term is implied by
the following two convergence results:

∫ T

0
Htn(s) ·dAs −→

∫ T

0
Hs ·dAs, and

∫ T

0
Htn(s) ·dMs −→

∫ T

0
Hs ·dMs, in L

1.(4.6)

The first convergence of the finite variation part follows from the a.s. pathwise continuity of
the process H, together with the dominated convergence theorem for the Stieltjes integral
∫

·dAs together with the linear growth of ∂xδmUs in the x−variable, as implied by (IW2).
Similarly, it follows from the BDG inequality and the dominated convergence theorem for
the Stieltjes integral

∫

·d〈M〉s that
∫ T

0 Htn(s) ·dMs −→
∫ T

0 Hs ·dMs in L
1.

3.3. In this step, we justify the L
1 convergence of the third term. Denoting Ft :=

∫ t

0 fs(µs,Xs) dBs, and Gt :=
∫ t

0gs(µs,Xs) dNs, we shall now show that

Φn :=

pn
∑

i=1

∫ tni

tn
i−1

fs(µtni−1
,Xtni−1

) dBs ·∆πnXtni
−→ Tr[〈X,F 〉T ] = 0, in L

1, as n→ ∞

Ψn :=

pn
∑

i=1

∫ tni

tni−1

gs(µtni−1
,Xtni−1

) dNs ·∆πnXtni
−→ Tr[〈X,G〉T ], in L

1, as n→ ∞,
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where we have 〈F,X〉T = 0, a.s. due to the fact that the process F has finite variation.
In order to prove the first convergence, we use Lemma 1 to conclude that, along some
subsequence,

pn
∑

i=1

(∆πnXtni
) · (∆πnFtni

) −→ Tr[〈X,F 〉T ], in L
1.

As ∂xf and ∂x̂δmf are bounded by Condition (IW2), it follows that the process δns :=
fs(µtn(s),Xtn(s))− fs(µs,Xs) satisfies

|δns | ≤ C ̟πn

X , for some constant C > 0, with ̟πn

X := sup
|t−t′|≤|πn|

|Xt −Xt′ |. (4.7)

We then estimate the error term by

E

∣

∣

∣
Φn −

pn
∑

i=1

(∆πnXtni
)·(∆πnFtni

)
∣

∣

∣
= E

∣

∣

∣

pn
∑

i=1

(∆πnXtni
)·
∫ tni

tni−1

δns dBs

∣

∣

∣

≤ E

[

sup
1≤j≤pn

|∆πnXtnj
|
∫ T

0
|δns |d|Bs|TV

]

≤ CE

[

|B|TV

(

̟πn

X

)2
]

≤ C
∥

∥|B|TV

∥

∥

∞
E

[

(

̟πn

X

)2
]

−→ 0,

as n→ ∞, by Conditions (IW3).

A similar argument allows to justify the L
1 convergence of Ψn towards Tr[〈G,X〉T ] in

L
1. Indeed, using again Lemma 1, we are reduced to the following estimate involving the

process ηns := gs(µtn(s),Xtn(s))− gs(µs,Xs):

E

∣

∣

∣

pn
∑

i=1

∆Xtni
·
∫ tni

tni−1

ηns dNs

∣

∣

∣
≤ E

[

̟πn

X

∣

∣

∣

pn
∑

i=1

∫ tni

tni−1

ηns dNs

∣

∣

∣

]

= E

[

̟πn

X

∣

∣

∣

∫ T

0
ηns dNs

∣

∣

∣

]

≤ E

[

(

̟πn

X

)2] 1

2

E

[

∫ T

0
(ηns )(η

n
s )

⊺ :d〈N〉s
]

1

2

,

by the Cauchy-Schwartz inequality and the Itō isometry. Notice that Conditions (IW2)
induces the same estimates for the process ηn as those for δn in (4.7). Then, the required
convergence result follows from Conditions (IW3).

3.4. We finally analyse the last two terms by applying the same calculations as in
the proof of the standard Itō formula, using Lemma 1, and we obtain the convergence as
n→ ∞:

pn
∑

i=1

∫ 1

0

1

2
∂2xδmutni (µ

λ
tni−1

, ξtni−1
) :(∆πnXtni

)(∆πnXtni
)⊺ dλ −→ 1

2

∫ T

0
∂2xδmus(µs,Xs) :d〈X〉s
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and

pn
∑

i=1

∫ 1

0

∫ 1

0
λ∂x̂δm∂xδmutni (µ

λλ′

tni−1
,Xtni−1

, ξ̂tni−1
) :(∆πnXtni

)(∆πnX̂tni
)⊺ dλ′ dλ

−→ 1

2

∫ T

0
∂x̂δm∂xδmu(µs,Xs, X̂s) :d〈X, X̂〉s

in L
1. This completes the proof. ⊔⊓

4.1 Examples

4.1.1 Brownian Case

Let us consider the special case where the process X and the random field U are Itō
processes defined by

dUt(m) = φt(m) dt+ ψt(m) · dWt + ψ0
t (m) · dW 0

t ,

dXt = bt dt+ σt dWt + σ0t dW
0
t

where W , W 0 are Brownian motions. We choose here F0 = (F0
t )0≤t≤T to be the filtration

generated by W 0. This setting reduces to that of dos Reis & Platonov [dRP22]. The
conditionally independent copy X̂ is defined by

dX̂t = b̂t dt+ σ̂t dŴt + σ̂0t dW
0
t

where b̂, σ̂, σ̂0, Ŵ are conditionally independent copies of b, σ, σ0,W , respectively. We
rephrase our Theorem 2 in the present setting in order to compare it with the corresponding
statement in [dRP22].

Corollary 1. For f ∈
{

U0, φt, ψt, ψ
0
t , t ∈ [0, T ]

}

, assume:

• f, δmf, ∂2xδmf, δ2mf, ∂2x̂δ2mf, ∂x∂x̂δ2mf exist and are continuous;

• ∂2xδmf, ∂2x̂δ2mf, ∂x∂x̂δ2mf are bounded;

• E

[

∫ T

0 (|X0|2 + |bs|2 + |σsσ⊺s |2 + |σ0s(σ0s)⊺|2) ds
]

<∞.

Then δmU, ∂
2
xδmU, δ

2
mU, ∂x∂x̂δ

2
mU exist, are continuous a.s., and are Itō processes driven by

the Brownian motionsW andW 0, with coefficients defined by the corresponding derivatives
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of the coefficients of U . Moreover, we have:

UT (µT )− U0(µ0) =

∫ T

0
φs(µs) ds+

∫ T

0
ψs(µs)·dWs +

∫ T

0
ψ0
s(µs)·dW 0

s

+E
0

[
∫ T

0
∂xδmUs(µs,Xs)·bs ds+

∫ T

0
(σ0s)

⊺∂xδmUs(µs,Xs)·dW 0
s

]

+
1

2
E
0

[
∫ T

0
∂2xδmUs(µs,Xs) :(σsσ

⊺

s + σ0s(σ
0
s)

⊺) ds

]

+E
0

[
∫ T

0
∂xδmψ

0
s(µs,Xs) :(σ

0
s )

⊺ ds

]

+
1

2
E
0
Ê
0

[
∫ T

0
∂x∂x̂δ

2
mUs(µs,Xs, X̂s) :σ

0
s (σ̂

0
s)

⊺ ds

]

, a.s.

We thus find the same formula as in [dRP22], with the only additional hypothesis that
the highest-order derivatives are bounded instead of square-integrable.

4.1.2 Semimartingale factor random field model

Suppose that X is a continuous semimartingale:

Xt = X0 +At +Mt for all t ∈ [0, T ],

where (At)t is a finite-variation process and (Mt)t is a martingale. In this section, we
consider the case where the random field is defined by Ut(m) := u(t,m, Yt) for some factor
process Y = (Yt)0≤t≤T which is another continuous semimartingale :

Yt = Y0 + Vt + St,

with finite-variation process V , and a martingale S. Here, the deterministic function
u : (t,m, y) ∈ [0, T ] × P2(R

d) × R 7→ u(t,m, y) ∈ R will be assumed to be sufficiently
smooth. For this, we extend naturally the definition of the functional linear derivative by
reducing to the standard definition once the variables (t, y) are frozen. The second order
functional linear derivative δ2m is also defined similarly. The following result is a direct
restatement of Theorem 2 in the present context.

Corollary 2. Let us suppose that

• ∂tu, ∂2yu, δmu, ∂2xδmu, δ2mu, ∂x∂x̂δ2mu, δm∂yu, ∂xδm∂yu exist and continuous;

• ∂2yu, ∂2xδmu, ∂x∂x̂δ2mu, ∂xδm∂yu are bounded ;

• X0, |A|TV, |V |TV, 〈M〉T and S are square integrable.
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Then, denoting Θt = (t, µt, Yt) for all t ∈ [0, T ], we have:

u(ΘT )− u(Θ0) =

∫ T

0
∂tu(Θs) ds+ ∂yu(Θs)·dYs +

1

2
∂2yu(Θs) :d〈Y 〉s

+E
0

[
∫ T

0
∂xδmu(Θs,Xs)·dXs +

1

2
∂2xδmu(Θs,Xs) :d〈X〉s + ∂xδm∂yu(Θs,Xs) :d〈X,Y 〉s

]

+
1

2
E
0
Ê
0

[
∫ T

0
∂x∂x̂δ

2
mu(Θs,Xs, X̂s) :d〈X, X̂〉s

]

a.s.

Proof. By the standard Itō formula for finite-dimension Itō processes, the random field
{

Ut(m) = ut(t,m, Yt), (t,m) ∈ [0, T ] × P2(R
d)
}

has the following semimartingale decom-
position:

dUt(m) = φt(m) · dBt + ψt(m) · dNt

with Bt = (t, Vt, 〈S〉t), Nt = St, φt(m) =
(

∂tut(m,Yt), ∂yut(m,Yt),
1
2∂

2
yut(m,Yt)

)

and
ψt(m) = ∂yut(m,Yt). The result is now a direct application of Theorem 2. ⊔⊓

5 Application to Mean-Field Control: HJB Equation

Let Ω = C0(R+,R
d) × C0(R+,R

d0) with canonical process (Xt,W
0
t ) : (ω, ω0) ∈ Ω 7→

(ω, ω0)(t) ∈ R
d × R

d0 . The corresponding canonical filtration is denoted by F = {Ft, t ≥
0}. We also introduce the control space A consisting of all F−progressively measurable
processes α with values in a compact subset A of a finite dimensional space.

Let b, σ, and σ0 be given bounded maps

(b, σ, σ0) : R+ ×R
d × R

d × P2(R
d)×A −→ R

d ×Md,d(R)×Md,d0(R),

and

(k, γ, γ0) : R+ × R
d −→ R

d ×Md,d(R)×Md,d0(R).

For t ≥ 0 and m ∈ P2(R
d), we denote by P(t, y,m) the collection of all probability

measures P on (Ω,F) satisfying:

(i) W 0 is a P-Brownian Motion;

(ii) The process Y is defined by

Yt = y, and dYs = k(s, Ys) ds+ γ(s, Ys) dB
P

s + γ0(s, Ys) dW
0
s , s ≥ t, P− a.s

for some P-Brownian motion BP;

17



(iii) the conditional marginal law of Xt given W 0 is P
W 0

Xt
:= P ◦ (Xt|W 0)−1 = m, and

there exists a control process α ∈ A such that for s ≥ t:

dXs = b(s,Xs, Ys,P
W 0

Xs
, αs) ds+σ(s,Xs, Ys,P

W 0

Xs
, αs) dW

P

s +σ
0(s,Xs, Ys,P

W 0

Xs
, αs) dW

0
s ,

P−a.s. for some P-Brownian motion W P. Here, PW 0

Xs
is the conditional law of Xs

under P given {W 0
r , r ≥ 0}.

Let us suppose that P(t, y,m) is compact for every (t, y,m) ∈ [0, T ]× R
d × P2(R

d).

We define the objective function as

J(t, y,m,P) := Et

[
∫ T

t

fαs(Ys,P
W 0

Xs
) ds+ g(YT ,P

W 0

XT
)

]

, for all P ∈ P(t, y,m),

with running reward map f : A×R
d×P2(R

d) → R, and final reward g : P2(R
d) → R

d×R.
The dynamic version of the control problem is defined by:

V (t, y,m) := sup
P∈P(t,y,m)

J(t, y,m,P).

We start from the Dynamic Programming Principle (DPP) which holds under fairly general
assumptions, see e.g. Djete, Possamäı & Tan [DPT20]:

V (t, y,m) = sup
P∈P(t,m)

Et

[

∫ θP

t

fαs(Xs, Ys,P
W 0

Xs
) ds+ V (θP, YθP ,P

W 0

X
θP
)

]

,

for any family {θP}P∈P(t,m) of [t, T ]-valued stopping times.

Proposition 1. Suppose that

• ∂tV, ∂yV, ∂
2
yV, δmV, ∂xδmV, ∂

2
xδmV, δ

2
mV, ∂x∂x̂δ

2
mV, ∂xδm∂yV exist;

• σ0
⊺

∂xδmV , γ⊺∂yV and γ0
⊺

∂yV are uniformly bounded;

• ∂tV, ∂yV, ∂xδmV, ∂
2
xδmV, ∂x∂x̂δ

2
mV, ∂xδm∂yV are Lipschitz in m uniformly in all other

arguments.

Then V satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = −∂tV − k ·∂yV − 1

2
(γγ⊺ + γ0γ0

⊺

) :∂yyV

− sup
a∈L0(A)

{

∫

(

fa+ba ·∂xδmV +
1

2

(

σaσa
⊺

+σ0
a

σ0
a⊺)

:∂xxδmV +σ0
a

γ0
⊺

:∂xδm∂yV
)

(., x)m(dx)

+
1

2

∫∫

σ0
a

(., x)σ0
a

(., x̂) :∂2xx̂δ
2
mV (., x, x̂)m(dx)m(dx̂)

}

,

V
∣

∣

t=T
= g.

where we denoted ϕa(., x) := ϕ
(

t, y,m, x, a(x)
)

for all function ϕ.
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Proof. We write the proof for d = d0 = 1.

• For t ∈ [0, T ], let α be a control process satisfying the definition of P(t, y,m). By
the Dynamic Programming Principle, for any stopping time θ,

V (t, y,m) ≥ Et

[
∫ θ

t

fαs(Ys, µs) ds+ V (θ, Yθ, µθ)

]

,

that is,

Et

[
∫ θ

t

fαs(Ys, µs) ds+ V (θ, Yθ, µθ)− V (t, y,m)

]

≤ 0. (5.1)

By Itō-Wentzell’s formula,

V (θ, Yθ, µθ)− V (t, y,m) =

∫ θ

t

LαV (s, Ys, µs) ds+

∫ θ

t

∂yV (s, Ys, µs)γs dBs

+

∫ θ

t

(

E
0
[

∂xδmV (s, Ys, µs,Xs)σ
0
s

]

+ ∂yV (s, Ys, µs)γ
0
s

)

dW 0
s ,

where

LαV (s, y,m) := ∂tV (s, y,m) + ∂yV (s, y,m)ks +
1

2
∂2y(γ

2
s + (γ0s )

2)V (s, y,m)

+

∫

∂xδmV (s, y,m, x)bsm(dx) +
1

2

∫

∂2xδmV (s, y,m, x)(σ2s + (σ0s)
2)m(dx)

+

∫

∂xδm∂yV (s, y,m, x)σ0sγ
0
sm(dx) +

1

2

∫ ∫

∂2xx̂δ
2
mV (s, y,m, x, x̂)σ0s σ̂

0
sm(dx)m(dx̂).

Let us now choose θ = θh := inf{s > t, |Xs−Xt| ≥ 1 or |Ys−Yt| ≥ 1}∧(t+h), for h >
0. SinceX,Y, σ0, γ, γ0, µ, ∂yV and ∂xδmV are continuous, E0

[

∂xδmV (s, Ys, µs,Xs)σ
0
s

]

,
∂yV (s, Ys, µs)γ

0
s and ∂yV (s, Ys, µs)γs are bounded over [t, θh] and therefore

Et

[
∫ θh

t

(

E
0
[

∂xδmV (s, Ys, µs,Xs)σ
0
s

]

+ ∂yV (s, Ys, µs)γ
0
s

)

dW 0
s +

∫ θh

t

∂yV (s, Ys, µs)γs dBs

]

= 0.

Then, dividing (5.1) by h > 0:

Et

[

1

h

∫ θh

t

(fαs(Ys, µs) + LαV (s, Ys, µs)) ds

]

≤ 0.

But a.s., for h small enough θh = t+ h and

1

θh − t

∫ θh

t

(fαs(Ys, µs) + LαV (s, Ys, µs)) ds −→ fαt(y,m) + LαV (t, y,m) a.s.

By dominated convergence for the expectation, we then have that

Et [f
αt(y,m) + LαV (t, y,m)] = fαt(y,m) + LαV (t, y,m) ≤ 0.

Since α was taken arbitrarily, we can conclude that

sup
a∈L0(A)

LaV (t, y,m) + fa(y,m) ≤ 0.
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• Now, let ε > 0. There are P
ε ∈ P(t, y,m) and an associated control process α = αε

such that for every deterministic stopping time θ > t,

−ε+ V (t, y,m) ≤ E
ε
t

[
∫ θ

t

fαs(Ys, µs) ds+ V (θ, y, µθ)

]

.

Then, by Itō-Wentzell’s formula,

ε ≥ −E
ε
t

[
∫ θ

t

fαs(Ys, µs) ds+ (V (θ, Yθ, µθ)− V (t, y,m))

]

= −E
ε
t

[
∫ θ

t

fαs(Ys, µs) ds+

∫ θ

t

LαsV (s, Ys, µs) ds

]

− E
ε
t

[
∫ θ

t

(

E
0
[

∂xδmV (s, Ys, µs,Xs)σ
0
s

]

+ ∂yV (s, Ys, µs)γ
0
s

)

dW 0
s +

∫ θh

t

∂yV (s, Ys, µs)γs dBs

]

= −E
ε
t

[
∫ θ

t

(fαs(Ys, µs) + LαsV (s, Ys, µs)) ds

]

.

We used the fact that (∂xδmV )σ0, ∂yV γ and ∂yV γ
0 are taken to be uniformly

bounded.

With
F (s, y,m) := sup

a
fa(y,m) + LaV (s, y,m),

we have that

E
ε
t

[
∫ θ

t

(fαs(Ys, µs) + LαsV (s, Ys, µs)) ds

]

≤ sup
a

E
ε
t

[
∫ θ

t

(fa(Ys, µs) + LaV (s, Ys, µs) ds)

]

≤(θ − t)F (t, y,m) + sup
a

E
ε
t

[
∫ θ

t

|fa(Ys, µs) + LaV (s, Ys, µs)− (fa(y,m) + LaV (t, y,m))|ds
]

.

Let us show that m 7→ fa(y,m) + LaV (s, y,m) is Lipschitzian in m uniformly on
(a, y, s) ∈ A× R

d × [0, T ].

– By assumption, f , ∂tV and ∂yV are Lipschitzian in m uniformly on (s, y) and
k is uniformly bounded;

– for (s, s′) ∈ [0, T ]2, (y, y′) ∈ (Rd)2, (m,m′) ∈ (P2(R
d))2 and (a, a′) ∈ A2,

∣

∣

∣

∣

∫

∂xδmV (s′, y′,m′, x)b(s′, x, y′,m′, a′) dm′(x)−
∫

∂xδmV (s, y,m, x)b(s, x, y,m, a) dm(x)

∣

∣

∣

∣

=
∣

∣E
[

∂xδmV (s′, y′,m′,X ′)b(s′,X ′, y′,m′, a′)− ∂xδmV (s, y,m,X)b(s,X, y,m, a)
]
∣

∣
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for X,X ′ random variables such that X ∼ m and X ′ ∼ m′. Since, by assump-
tion, ∂xδmV is Lipschitzian in m uniformly on (s, y, x), we have, with K the
Lipschitz constant,

|∂xδmV (s′, y′,m′,X ′)b(s′,X ′, y′,m′, a′)− ∂xδmV (s, y,m,X)b(s,X, y,m, a)|
≤||b||∞|∂xδmV (s′, y′,m′,X ′)− ∂xδmV (s, y,m,X)|
≤||b||∞Kd(m′,m),

hence the result;

– with similar calculations, (s, y,m, a) 7→ 1

2

∫

∂2xδmV (s, y,m, x)(σ2s+(σ0s)
2)m(dx),

(s, y,m, a) 7→ 1

2

∫ ∫

∂2xx̂δ
2
mV (s, y,m, x, x̂)σ0s σ̂

0
sm(dx)m(dx̂) and

(s, y,m, a) 7→
∫

∂xδm∂yV (s, y,m, x)σ0sγ
0
sm(dx) are Lipschitzian in m uniformly

on (s, y, a).

Therefore, there exists C > 0 such that, for every (a, s, y,m), (a′, s′, y′m′) ∈ (A ×
[0, T ] × (Rd)2 × P2(R

d))2,

|fa′(y′,m′) + La′V (s′, y′,m′)− (fa(y,m) + LaV (s, y,m))| ≤ Cd(m′,m).

Then

E
ε
t

[
∫ θ

t

(fαs(Ys, µs) + LαsV (s, Ys, µs)) ds

]

≤(θ − t)F (t, y,m) + sup
a

E
ε
t

[

C

∫ θ

t

|d(µs,m)|ds
]

.

However,

E [d(µs,m)] = E

[

inf
{

E
0
[

|Zµ − Zm|2
]

,PZµ|W 0 = µs,PZm|W 0 = m
}

1

2

]

≤ E

[

E
0
[

|Xs −Xt|2
]
1

2

]

≤ E
[

E
0
[

|Xs −Xt|2
]]

1

2

≤
(

||b||2∞(s − t)2 + (||σ||2∞ + ||σ0||2∞)(s − t)
)

1

2

≤ ||b||∞(s− t) + (||σ||2∞ + ||σ0||2∞)
1

2

√
s− t,

where we used Cauchy-Schwarz’s inequality.

Therefore,

E
ε
t

[
∫ θ

t

(fαs(Ys, µs) + LαsV (s, Ys, µs)) ds

]

≤(θ − t)F (t, y,m) + C

(

||b||∞
(θ − t)2

2
+

2

3
(||σ||2∞ + ||σ0||2∞)

1

2 (θ − t)3
)

.
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With θ = t+
√
ε, C1 =

1
2C||b||∞ and C2 =

2
3C(||σ||2∞ + ||σ0||2∞)

1

2 , we obtain that

ε ≥ −
√
εF (t, y,m) − C1ε− C2ε

3

2 .

Dividing by
√
ε and taking the limit ε −→ 0 finally yields that F (t, y,m) ≥ 0.

6 Appendix: Proof of Lemma 1

For simplicity, we only report the proof for d = 1, as the extension to arbitrary dimension
does not raise any difficulty. Let us first notice that

pn
∑

i=1

Hn
tn
i−1

(∆πn〈M〉tni ) −→
∫ T

0
Hs d〈M〉s in L

1.

Now, with transparent notations, it is obvious that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn
∑

i=1

Htni−1

(

(∆πXtni
)2 −∆πn〈M〉tni

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn
∑

i=1

Htni−1
(∆πAtni

)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn
∑

i=1

Htni−1

(

(∆πMtni
)2 −∆πn〈M〉tni

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

+ 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn
∑

i=1

Htni−1
∆πAtni

∆πMtni

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

.

For the first term on the right-hand side: writing ||H||∞ for a uniform, deterministic
bound on |Hn|, n ≥ 1,

∣

∣

∣

∣

∣

pn
∑

i=1

Hn
tni−1

(∆πnAtni
)2

∣

∣

∣

∣

∣

≤ ||H||∞
pn
∑

i=1

(∆πnAtni
)2 = ||H||∞QVπn(A)

where QVπn(A) is the quadratic variation of the finite-variation process A along the par-
tition πn. As QVπn(A) −→ 0 a.s. and QVπn(A) ≤ |A|2TV which is in L

1, it follows from
the dominated convergence theorem that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn
∑

i=1

Hn
tni−1

(∆πnAtni
)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

−→ 0.

For the middle term, we introduce the martingale defined by R
tni−1

t := (∆πnMt)
2−∆πn〈M〉t

for t ≥ tni−1 and we now show that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn−1
∑

i=1

Hn
tni−1

R
tni−1

tni

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn
∑

i=1

Hn
tni−1

(

(∆πnMtni
)2 −∆πn〈M〉tni

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

−→ 0.

22



To see this, we directly compute that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn−1
∑

i=1

Hn
tni−1

R
tni−1

tni

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

= E

[

pn
∑

i=1

Hn
tni−1

2(R
tni−1

tni
)2

]

+ 2E





∑

0≤i<j≤n−1

Hn
tni−1

Hn
tnj
R

tni−1

tni
R

tnj
tnj+1





= E

[

pn
∑

i=1

Hn
tni−1

2(R
tni−1

tn
i

)2

]

+ 2
∑

0≤i<j≤n−1

E

[

Hn
tni−1

Hn
tnj

nR
tni−1

tn
i

E

[

R
tnj
tn
j+1

|Ftnj

]]

.

As E
[

R
tnj
tnj+1

|Ftnj

]

= 0, this implies that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn
∑

i=1

Hn
tni−1

((∆πnMtni
)2 −∆πn〈M〉tni )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤ ||H||2∞
pn
∑

i=1

E

[

(R
tni−1

tni
)2
]

.

We next estimate that

E

[

(R
tni−1

tni
)2
]

= E
[

(∆πnMtni
)4 − 2(∆πnMtni

)2∆πn〈M〉tni + (∆πn〈M〉tni )
2
]

≤ E
[

(∆πnMtni
)4
]

+ E
[

(∆πn〈M〉tni )
2
]

≤ (1 + C4)E
[

(∆πn〈M〉tni )
2
]

for some constant C4 induced by the BDG inequality for the order p = 4. Therefore,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

pn
∑

i=1

Hn
tni−1

(

(∆πnMtni
)2 −∆πn〈M〉tni

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

≤ (1 + C4)||H||2∞E [QVn
π(〈M〉)]

where QVn
π(〈M〉) =

∑pn
i=1(〈M〉tni − 〈M〉tni−1

)2. Since 〈M〉 is a finite-variation process,

QVn
π(〈M〉) −→ 0 almost surely as n → ∞, and since QVn

π(〈M〉) ≤ 〈M〉2T ∈ L
1 by

Condition (IW3), we conclude by dominated convergence.

Finally, for the last term, note that the previous calculations, for H = 1, show that
∑

i(∆
πnMtni

)2 −→ 〈M〉T in L
2. Then, by applying the Cauchy-Schwarz inequality twice:

E

[
∣

∣

∣

∣

∣

pn
∑

i=1

Hn
tni−1

(∆πnAtni
)(∆πnMtni

)

∣

∣

∣

∣

∣

]

≤ ||H||∞E





√

√

√

√

pn
∑

i=1

(∆πnAtni
)2

√

√

√

√

pn
∑

i=1

(∆πnMtni
)2





≤ ||H||∞

∣
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∣

∣

∣

∣

∣

∣
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∑
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

−→ 0,

since E
[
∑pn

i=1(∆
πnAtni

)2
]

→ 0 by dominated convergence (see first term calculations).
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