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We propose a family of exactly solvable quasiperiodic lattice models with analytical complex mobility edges,
which can incorporate mosaic modulations as a straightforward generalization. By sweeping a potential tun-
ing parameter δ, we demonstrate a kind of interesting butterfly-like spectra in complex energy plane, which
depicts energy-dependent extended-localized transitions sharing a common exact non-Hermitian mobility edge.
Applying Avila’s global theory, we are able to analytically calculate the Lyapunov exponents and determine
the mobility edges exactly. For the minimal model without mosaic modulation, a compactly analytic formula
for the complex mobility edges is obtained, which, together with analytical estimation of the range of complex
energy spectrum, gives the true mobility edge. The non-Hermitian mobility edge in complex energy plane is
further verified by numerical calculations of fractal dimension and spatial distribution of wave functions. Tuning
parameters of non-Hermitian potentials, we also investigate the variations of the non-Hermitian mobility edges
and the corresponding butterfly spectra, which exhibit richness of spectrum structures.

Introduction.–In the past few decades, quasiperiodic lat-
tices [1–7] have become a versatile platform to investigate
disorder-induced localization transitions, which is one of key
topics of fundamental importance in the frontiers of con-
densed matter physics. As is well known, the topic was
originally proposed by Anderson in his seminal work in
the context of electronic systems with truly random disor-
ders [8, 9]. While scaling theory [10] demonstrates that for
truly random systems all single-particle eigenstates are al-
ready localized in one and two dimensions even under ar-
bitrary small but finite disorder strength and thus there is
no extra space left for localization transition to occur, qua-
sicrystals containing the so-called determinant correlated dis-
orders [1–7] have been proven to be able to host various
extended-localized transitions in low-dimensional systems.
Moreover, intriguing energy-dependent localization transi-
tions have also been revealed in various low-dimensional
quasiperiodic systems, for which under the same set of param-
eters extended and localized single-particle eigenstates can
coexist and be separated by a critical energy Ec, known as
mobility edge (ME) [11]. Inspired by the influential Aubry-
André-Harper (AAH) model, various generalized AAH-like
models have been proposed [12–17] and discovered to be ca-
pable of accommodating localization transitions with mobil-
ity edges [17–30]. Notably, a few of these models are ex-
actly solvable [16, 17, 19, 20], which is a fact highly appeal-
ing and significant for further exploration of the mobility edge
physics.

In recent years, non-Hermitian physics has experienced
a revival and become a renewed prosperous research field.
Growing attention has been paid to the interplay of non-
Hermiticity and quasiperiodicity [31–55]. Many previous re-
search efforts [33–39, 49–54] have been devoted to parity-
time (PT ) symmetric [56] quasiperiodical systems, for which
a well established correspondence between real-complex

transition in eigenenergy and extended-localized transition
has been revealed. However, for a general non-Hermitian
quasiperiodical system, the spectrum is usually complex, and
no obligate relation between the change of spectrum structure
and localization transition exits. Although some recent works
have demonstrated the existence of complex mobility edge in
various non-Hermitian quasiperiodical systems [48, 49], an-
alytical results of complex mobility edges are rare and thus
are particularly important for the broadening of the concept of
MEs from real to the complex plane.

In this work, we propose a family of non-Hermitian
quasiperiodic models with a compact analytical expression of
complex mobility edges, which can further incorporate mo-
saic modulations as a straightforward generalization. Utiliz-
ing Avila’s global theory, we are able to calculate the Lya-
punov exponent Γ(E) analytically and get a uniform formula
of non-Hermitian mobility edge (NHME). Thus, an accurate
characterization of the NHME can be implemented and its in-
tersection with the physical spectrum produces the true mo-
bility edge. By varying a potential parameter δ, we obtain
a kind of intriguing butterfly-like spectra in complex energy
plane. For a typical system, we showcase that the extended
and localized states distribute on the body and wings of but-
terfly, respectively, separated by the NHMEs. Varying the
non-Hermiticity parameter γ can lead to the change of spec-
trum structure and NHME. We also show the deformation of
the non-Hermitian butterfly spectrum for systems with various
parameters.

Model and non-Hermitian butterfly spectrum.–We pro-
pose a family of generic non-Hermitian quasiperiodic mod-
els which are described in a unified manner by the following
eigenvalue equation,

t (ϕj−1 + ϕj+1) + Vjϕj = Eϕj , (1)

where j is the index of lattice site, and t is the nearest-
neighbour hopping amplitude. The core feature of the model
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Figure 1. (a) Sketch of the family of 1D non-Hermitian quasiperiodic
lattice model. The solid blue lines denote the homogenous hopping t.
The red circles denote lattice sites with non-Hermitian quasiperiodic
potential Vκm with m being an integer, while the other circles in be-
tween denote lattice sites with zero potential. (b) The non-Hermitian
butterfly spectrum of the minimal model with κ = 1. Fractal dimen-
sion (FD) of each eigenstate is encoded in the color of each energy
point in the spectrum. The true non-Hermitian mobility edge is de-
noted by a green line which is given by a comprehensive consider-
ation of both Eq.(3) and the actual range of the model’s spectrum.
Parameters: L = 987, λ = 1, α = 0.5, γ = π/2, θ = 0, t = 1, and
the modulation parameter δ varies from −7 to 7.

Eq.(1) then is the non-Hermitian quasiperiodic mosaic [19]
on-site potential with

Vj =

{
λeiγ cos(2πjb+θ)+δ
1−α cos(2πjb+θ) , j = mκ,

0, otherwise,
(2)

in which κ is a positive integer and m = 1, 2, ..., N . Ap-
parently, the quasiperiodic potential occurs periodically with
period κ, which is pictorially shown in Fig.1(a). N can be
seen as the number of quasicells, therefore the lattice size of
the model is L = Nκ. So κ = 1 is for the usual quasiperiodic
lattice while each κ ≥ 2 corresponds to a mosaic quasiperi-
odic lattice [19, 34]. Here the quasiperiodic on-site potential
is controlled by two modulation parameters λ, δ and a defor-
mation parameter α. The parameter b is an irrational num-
ber which is responsible for the quasiperiodicity of the on-site
potential. To be concrete and without loss of generality, in
this work we choose b = (

√
5 − 1)/2. The parameter γ is a

phase angle dictating the non-Hermitian nature of the on-site
quasiperiodic potential and θ denotes a phase offset. Obvi-
ously, a non-Hermitian potential in this form does not respect
parity-time (PT ) symmetry which is otherwise a key ingre-
dient of previous works addressing non-Hermitian localiza-
tion transitions [33–39, 49–54]. For convenience, we shall set
t = 1 as the energy unit in the following calculation.

In this work, we shall study the general non-Hermitian case

with κ ≥ 1 and α ∈ (−1, 1) in the presence of both λ and
δ terms. By applying Avila’s global theory, we can derive
NHMEs analytically by calculating the Lyapunov exponents
for the general case with κ ≥ 1. We shall prove that the
model has exact NHMEs separating localized states and ex-
tended states. However, to facilitate our discussion we focus
on the minimal model with κ = 1 and then showcase exam-
ples with κ ≥ 2. For the minimal model, a compactly analyt-
ical formula for the non-Hermitian mobility edges (NHMEs)
can be obtained,

[αRe(E) + λ cos γ]
2
+

[αIm(E) + λ sin γ]
2

1− α2
= 4t2, (3)

where Re(E) and Im(E) are respectively the real and imag-
inary parts of E. Eq.(3) is our key result. For the gen-
eral case with γ ̸= nπ, Eq.(3) indicates that the ME takes
a complex value, which is irrelevant to the parameter δ.
When γ = 0, the potential Vj is real, and the model re-
duces to the generalized Ganeshan-Pixley-Das Sarma (GPD)
model [17, 58, 59]. Since E takes a real value, Eq.(3) is sim-
plified to αRe(E)+λ cos γ = ±2t, consistent with the results
of generalized GPD model.

Before proceeding with a rigorous proof of Eq.(3), we first
conduct a numerical verification to gain an intuitive under-
standing. In Fig. 1(b), by implementing numerical calcula-
tions we display in the complex plane the energy spectrum
of Eq.(1) with the color encoding the fractal dimension (FD)
of the corresponding eigenstate. For an arbitrary normal-
ized eigenstate ϕ, the fractal dimension is defined as FD =
− limL→∞ ln(

∑
j |ϕj |4)/ lnL, which acts as a good indica-

tor for distinguishing localized and extended states in that
FD→ 0 for localized states and FD→ 1 for extended states.
As the modulation parameter δ varies, we get intriguing non-
Hermitian butterfly spectra displayed in Fig. 1(b), in which the
localized states and extended states are well separated. Obvi-
ously, the separation between localized and extended states is
energy-dependent in the complex-energy plane, which coin-
cides well with the green line plotted according to the ana-
lytical formula Eq.(3). Notably, the resultant appearance of
the NHME denoted by the green line in Fig. 1(b) is actually
obtained after a proper estimation of the range of the model’s
energy spectrum. Such an estimation in detail is given in the
Supplemental Material [57]. In Fig. 1(b), the lattice size is
L = 987, λ = 1, α = 0.5, γ = 0.5π, θ = 0, and the modula-
tion parameter δ varies from −7 to 7.

Representative distributions of eigenstates corresponding to
different regions of the non-Hermitian butterfly spectrum in
Fig. 1(b) is shown in Fig. 2. The three eigenstates are denoted
respectively by blue diamond, black triangle, and red dot in
the non-Hermitian butterfly spectrum. Clearly, Fig. 2(a) and
Fig. 2(c) display typical extended state and localized state, re-
spectively, while Fig. 2(b) shows critical state with multifrac-
tal structure.

Analytical derivation of NHME. –Analytically, the non-
Hermitian mobility edge of the generic non-Hermitian
quasiperiodic mosaic model in Eq. (1) can be exactly derived
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Figure 2. Typical spatial distributions of eigenstates in different re-
gions of the non-Hermitian butterfly spectrum. (a) Extended state
corresponding to eigenenergy denoted by a blue diamond in Fig. 1.
(b) Critical state corresponding to eigenenergy denoted by a black
triangle in Fig. 1. (c) Localized state corresponding to eigenenergy
denoted by a red dot in Fig. 1. Model parameters are the same as in
Fig. 1.

by computing Lyapunov exponent. For convenience, t is ab-
sorbed into λ and E in the intermediate derivation process and
will be restored later.

According to Avila’s global theory of one-frequency analyt-
ical SL(2,R) cocycle[60], the Lyapunov exponent Γ(E) can
be calculated as

Γ(E) = lim
N→∞

1

Nκ
ln

∣∣∣∣∣∣∣∣∏N

m=1
Tm

∣∣∣∣∣∣∣∣ , (4)

where ∥ · ∥ denotes the norm of matrix. Tm is the one-step
transfer matrix of the Schrödinger operator at the m-th quasi-
cell, which can be explicitly written as

Tm =

(
E − Vκm −1

1 0

)(
E −1
1 0

)κ−1

(5)

with Vκm given by Eq.(2).
To ease the calculation of Γ(E) according to Eq.(4), one

can reorganise Tm as

Tm =
Ym

Xm
,

where

Xm = 1− α cos(2πbκm+ θ),

Ym =

(
EXm − VκmXm −Xm

Xm 0

)(
aκ −aκ−1

aκ−1 −aκ−2

)
.

Noting that, a convenient mathematical relation has been im-
plemented above, as(

E −1
1 0

)κ−1

=

(
aκ −aκ−1

aκ−1 −aκ−2

)
,

in which

aκ =
1

D

[(
E +D

2

)κ

−
(
E −D

2

)κ]
(6)

with D =
√
E2 − 4.

In this way, the Lyapunov exponent can be rewritten as

Γ(E) = lim
N→∞

1

Nκ

[
ln

∥∥∥∥∏N

m=1
Ym

∥∥∥∥−
∑N

m=1
ln |Xm|

]
,

(7)
in which

lim
N→∞

1

Nκ

N∑
m=1

ln |Xm| =
1

2πκ

∫ 2π

0

ln(1− α cosφ)dφ

=
1

κ
ln

1 +
√
1− α2

2
.

With the above preparations, we can now focus on tackling
the remaining part of Eq.(7). Following the typical procedure
of Avila’s global theory[60], the first step is to perform an
analytical continuation of the phase in Ym, i.e. θ → θ + iϵ.
Considering large-ϵ limit, a straightforward derivation leads
to

Ym(ϵ) =
1

2
e−i(2πbκm+θ)eϵ

×
(
−χaκ + αaκ−1 χaκ−1 − αaκ−2

−αaκ αaκ−1

)
+ o(1),

where χ = αE + λeiγ . This accordingly leads to

lim
N→∞

1

Nκ
ln

∥∥∥∥∏N

m=1
Ym

∥∥∥∥ =
1

κ
ϵ+

1

κ
ln f,

in which,

f = max

{∣∣∣∣2αaκ−1 − χaκ ±G

4

∣∣∣∣} , (8)

with

G =
√

χ2a2κ − 4αχaκaκ−1 + 4α2aκaκ−2. (9)

Thus, we have κΓϵ(E) = ϵ + ln 2f

1+
√
1−α2

. Avila’s global
theory [60] shows that, κΓϵ(E) is a convex, piecewise linear
function of ϵ with integer slopes. This implies that κΓϵ(E) =
max{ϵ+ ln 2f

1+
√
1−α2

, κΓ0(E)}. Furthermore, Avila’s global
theory proves that, E does not belong to the spectrum, if and
only if Γ0(E) > 0, and Γϵ(E) is an affine function in a neigh-
borhood of ϵ = 0. Therefore, for any E lies in the spectrum,
we have

Γ(E) =
1

κ
max{ln 2f

1 +
√
1− α2

, 0}. (10)

Then NHMEs for general κ can be determined exactly by let-
ting Γ(E) = 0. Notably, a compact formula Eq.(3) of NHMEs
for the simplest case κ = 1 can be obtained in this way.
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Figure 3. Variations of the non-Hermitian butterfly spectrum for
the minimal model with κ = 1 by tuning model parameters. (a)
γ = π/4, λ = 1.5, and α = 0.5. (b) γ = 3π/4, λ = 1.5, and
α = 0.5. (c) γ = π/4, λ = 1.5, and α = 0.3. (d) γ = π/2, λ = 2,
and α = 0.5. Fractal dimension (FD) of each eigenstate is denoted
by the color of each energy point in the spectrum. The true non-
Hermitian mobility edge is denoted by a green line which is given by
a comprehensive consideration of both Eq.(3) and the actual range of
the model’s spectrum. Other parameters are as follows, L = 987,
t = 1, θ = 0, and the modulation parameter δ varies from −7 to 7.

NHMEs for other cases with κ ≥ 2 could be found in the
Supplemental Material [57].

Variations of the non-Hermitian butterfly spectrum.–The
richness and exact solvability of the proposed generic non-
Hermitian quasiperiodic model given in Eq.(1) grants us
plenty of tangible freedom to introduce variations to the in-
teresting butterfly spectrum and the exact non-Hermitian mo-
bility edge within the spectrum.

As the concrete workhorse, the minimal model with κ = 1
possesses a favorable and compact analytic formula Eq.(3)
for the exact non-Hermitian mobility edge, which is sim-
ply an ellipse equation with properties that are familiar to
us. Apparently, the center of the exact NHME lies at the
point (−λ cos γ/α,−λ sin γ/α) of the complex plane. As the
non-Hermiticity parameter γ varies from 0 to 2π, the center
of the ellipse which is also the center of possibly presented
extended-region in the butterfly spectrum, will run around a
circle. In other words, the parameter γ determines the orien-
tation of the center of the ellipse, while the ratio between λ
and α controls the distance of the ellipse center from the ori-
gin of the complex plane. In Fig. 3(a) and Fig. 3(b), we show
the non-Hermitian butterfly spectrum and the corresponding
non-Hermitian mobility edge line for the minimal model with
different non-Hermiticity parameter γ, i.e., (a) γ = π/4 and
(b) γ = 3π/4. It is clearly shown that the orientation of the
non-Hermitian mobility edge line is dependent on the non-
Hermiticity parameter γ.

Moreover, it is obvious that the semi-major axis and the

semi-minor axis of the ellipse are a = |2t/α| and b =
|2t

√
1− α2/α|, respectively. As hopping amplitude t has

been set to be the energy unit throughout the paper, the defor-
mation parameter α is the sole parameter which can be used
to monitor the size of the ellipse. Since the energy area in-
side the ellipse in the complex plane corresponds to extended
eigenstates, changing the value of α may alter the portion of
extended eigenstates in the whole spectra. This can be clearly
illustrated by comparing Fig. 3(a) and Fig. 3(c). Compared to
Fig. 3(a), the deformation parameter α for Fig. 3(c) decreases
from 0.5 to 0.3, resulting in the obvious enlargement of the
extended region in the exotic non-Hermitian butterfly spectra.

Also, knowledge obtained from investigation on AAH-like
models tells that increasing the value of λ may increase the
number of localized eigenstates and decrease the number of
extended eigenstates. This fact is illustrated in Fig. 3(d). For
Fig. 1(b) and Fig. 3(d), all model parameters are the same ex-
cept λ increased from 1 to 2. As a result, the extended region
in the non-Hermitian butterfly spectrum clearly shrinks. It is
worth noting that in order to precisely modulate the interest-
ing non-Hermitian butterfly spectrum and the non-Hermitian
mobility edge, we also need to consider the structure and the
actual distribution range of the system’s energy spectrum. A
rough analytic estimation of the range of the model’s com-
plex energy spectrum is provided in the supplemental mate-

Figure 4. The non-Hermitian butterfly spectrum of the generic non-
Hermitian mosaic quasiperiodic model with (a) κ = 2 and (b) κ = 3.
Fractal dimension (FD) of each eigenstate is denoted by the color of
each energy point in the spectrum. The exact non-Hermitian mobility
edge is denoted by a green line which is obtained by numerically
solving the exact relation Eq.(11) and considering the actual range of
the model’s spectrum at the same time. Parameters: (a) L = 610,
λ = 1.1, α = 0.5, γ = π/4, θ = 0, t = 1, (b): L = 987, λ = 1,
α = 0.5, γ = π/2, θ = 0, t = 1. The modulation parameter δ
varies from −7 to 7.
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rial [57].
Before ending the letter, we would like to showcase the

spectra and NHMEs for the cases with κ = 2 and κ = 3.
The exact NHME for general κ can be obtained by solving
the following exact relation [57],

2f

1 +
√
1− α2

= 1 (11)

with f given by Eq.(8). As shown in Fig. 4(a) and Fig. 4(b),
both spectra display intriguing butterfly-like structures and the
numerical results agree well with curves of NHMEs plotted
according to solving Eq.(11) with κ = 2 and κ = 3, respec-
tively.

Summary.–In summary, we have proposed a family of ex-
actly solvable 1D quasiperiodic lattice models with complex
MEs. With the help of Avila’s global theory, we derived
a compactly analytical formula of NHMEs, which indicates
clearly how the complex mobility edges form and are af-
fected by modulation parameters. Our models exhibit intrigu-
ing butterfly-like spectra in the complex energy plane with
extended and localized states separated by NHMEs. Tuning
parameters of non-Hermitian potentials leads to the change
of the NHMEs and deformation of butterfly spectra, which
exhibit rich structures. Our models can be directly extended
to cases incorporated mosaic modulations. Our analytical re-
sults provide a firm ground for the broadening of the concept
of MEs from real to the complex plane.
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Supplementary Material

This Supplemental Material provides additional information for the main text. In Sec. S-1, we demonstrate more details of
the energy spectrum characteristics of the general non-Hermitian quasiperiodic model described by Eq.(1). In order to obtain
the actual non-Hermitian mobility edges, one should also take into account the actual range of the model’s energy spectrum in
addition to the exact non-Hermitian mobility edges obtained through the analytical calculation of Lyapnov exponents. Thus,
in Sec. S-2, a rough estimation of the model’s practical energy spectrum is given and numerical verification is also provided
therein. As mentioned in the main text, the analytical derivation of the exact NHME for the generic non-Hermitian quasiperiodic
model also apply to cases with larger κs. In Sec. S-3, we present the non-Hermitian Butterfly Spectra and the corresponding
exact non-Hermitian mobility edges for cases with larger κs other than the simplest case with κ = 1 which has been intensively
discussed in the main text.

S-1. THE SPECTRUM OF THE GENERIC NON-HERMITIAN MODEL

For the model described by Eq.(1), the non-Hermitian physics is mainly governed by a general exponential term eiγ . Ap-
parently, this Hamiltonian does not possess an explicit PT symmetry. Therefore, most of its eigenvalues are genuine complex
with non-zero imaginary parts, as is shown in Fig.S1(b) corresponding to the simplest case with κ = 1. Unlike non-Hermitian
quasiperiodic systems with PT symmetry, real-complex transition is generally absent from the spectrum for the model Eq.(1).
No obligate connection between the change of energy spectrum structure and extended-localized transition exists. This is in
stark contrast with PT -symmetric non-Hermitian model, for which there exists well-established correspondence between real-
complex transition in energy and extended-localized transition. To make an intuitive comparison, we also calculate the energy
spectrum of a brief and elegant PT -symmetric AAH model, which is described by an eigenvalue equation as follows,

t (ϕj−1 + ϕj+1) + λ cos(2πjb+ ih)ϕj = Eϕj , (S1)

where ih denotes a complex phase factor dictating the non-Hermiticity of the PT -symmetric AAH model. t denotes the hopping
amplitude, j is the lattice site index, λ describe the stength of the quasiperiodic potential, and b an irrational number responsible
for the quasiperiodicity of the lattice. From Fig.S1(c) and Fig.S1(d), one can clearly see that extended-localized transitions
are well coincident with real-complex transitions in the spectrum. However, this appealing connection is absent in Fig.S1(b)
for a generic non-Hermitian quasiperiodic model like Eq.(1). Therefore, it is no longer possible to describe the fundamental
extended-localized transitions solely exploiting the real parts of eigenenergies.

Figure S1. Energy spectrum of non-Hermitian models as a function of the potential parameter λ. (a) and (b) show respectively the real parts
and the imaginary parts of the eigenvalues for the generic non-Hermitian model in Eq.(1) with κ = 1, L = 987, t = 1, δ = 0, θ = 0,
α = 0.5, and γ = π/2. (c) and (d) display respectively the real parts and the imaginary parts of the eigenvalues for the non-Hermitian
PT -symmetric AAH model in Eq.(S1) with L = 987, t = 1, h = π/2. The color of each eigenenergy point denotes the fractal dimension of
the corresponding eigenstate.

However, on the other hand, one can clearly see that energy-dependent localization transitions indeed occur as λ varies. So
a natural question arises: How to appropriately describe the localization transitions and also the possible mobility edges for
this family of generic non-Hermitian quasiperiodic models. This precisely constitutes the basic motivation of this work. Since it
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turns out that only utilizing the real parts of eigenvalues is not adequate, it may imply that one should also consider the imaginary
parts of eigenvalues and tackle this problem in the full complex energy plane. We have adopted this idea in the main text.

Figure S2. The example energy spectrum of the generic non-Hermitian model with κ ≥ 2 as a function of the potential parameter λ. (a) and
(b) show respectively the real parts and the imaginary parts of the eigenvalues for the generic non-Hermitian model in Eq.(1) with κ = 2,
L = 610, t = 1, δ = 0, θ = 0, α = 0.5, and γ = π/4. (c) and (d) display respectively the real parts and the imaginary parts of the eigenvalues
for the generic non-Hermitian model in Eq.(1) with κ = 3, L = 987. And other parameters are the same as the case of κ = 2. The color of
each eigenenergy point denotes the fractal dimension of the corresponding eigenstate.

In Fig.S2, we provide more examples of the energy spectrum for the generic non-Hermitian model with κ ≥ 2. It is not difficult
to conclude that the above discussions on the energy spectrum of the minimal model without mosaic modulation also apply to
mosaic case with large κ. Apparently, energy-dependent localization does occur as the strength of the on-site quasiperiodic
potential λ varies. However, no evident real-complex transition in energy shows up. Thus, one needs to study the non-Hermitian
mobility edge physics for this family of generic non-Hermitian models utilizing the full complex energy domain.

S-2. A ROUGH ESTIMATION OF THE RANGE OF ENERGY SPECTRUM

Utilizing Avila’s global theory, one can analytically calculate the Lyapunov exponent Γ(E). And by letting Γ(E) = 0, a
preliminary form of the mobility edge is obtained. Then, its intersection with the system’s actual energy spectrum gives the true
mobility edge. Accordingly, one needs to be clear about the actual range of the model’s energy spectrum in advance. Here we
present a rough estimation of the range of energy spectrum for the generic non-Hermitian qasiperiodic model in Eq.(1), which
features a on-site potential as follows,

Vj =


λeiγ cos(2πjb+ θ) + δ

1− α cos(2πjb+ θ)
, j = mκ,

0, otherwise.

(S2)

As shown in Sec. S-1, it is clear that the eigenvalues of model Eq.(1) are generally complex. Thus naturally, we’d better estimate
their range separately for the real parts and the imaginary parts.

According to the operator theory, the range of the physical possible energy spectrum E of the model Eq.(1) can be estimated
as

Re(E) ⊆ [−2 |t|+min(Re(Vj)), 2 |t|+max(Re(Vj))] , (S3)

and

Im(E) ⊆ [min(Im(Vj)),max(Im(Vj))] . (S4)

Firstly, we present in detail the estimation process for the range of the real part Re(E) of the eigenvalue.
For the minimal model with κ = 1, apparently we have,

Re(Vj) =
λ cos(γ) cos(2πjb+ θ) + δ

1− α cos(2πjb+ θ)
. (S5)
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Upon this point, we make a symbol notation: Λ = λ cos(γ)/α. Then, the real part of the on-site potential for the κ = 1 case can
be rewritten as,

Re(Vj) =
Λ + δ

1− α cos(2πjb+ θ)
− Λ (S6)

Therefore, for the case with κ = 1, the range of the real part of the eigenvalue can be straightforwardly given as follows.
(i) when Λ + δ > 0, we have,

Re(E) ⊆
[
−2 |t|+ Λ+ δ

1 + |α|
− Λ, 2 |t|+ Λ+ δ

1− |α|
− Λ

]
. (S7)

(ii) when Λ + δ < 0, we have,

Re(E) ⊆
[
−2 |t|+ Λ+ δ

1− |α|
− Λ, 2 |t|+ Λ+ δ

1 + |α|
− Λ

]
. (S8)

The validity of the above estimation process for Re(E) is exemplified in Fig.S3.

Figure S3. An example to demonstrate the validity of the estimation of the range of the real parts of eigenvalues for the simplest case with
κ = 1. The red line denotes the analytically estimated upper bound of the range of Re(E) and the blue line denotes the lower bound. Model
parameters in this example are listed as follows, L = 377, t = 1, δ = 1, θ = 0, α = 0.5, and γ = π/4.

However, when it comes to cases with κ ≥ 2, one needs to further take into account those lattice sites with zero on-site
potential to determine max(Re(Vj)) and min(Re(Vj)). Similar to the simplest case with κ = 1, it can also be divided into two
cases for analysis, but now each case is further subdivided into three sub-cases. Thus we have the following result.

For case (i), Λ + δ > 0. It has the following three sub-cases.
When Λ+δ

1+|α| − Λ > 0, the value of min(Re(Vj) should be 0. Accordingly, we have,

Re(E) ⊆
[
−2 |t| , 2 |t|+ Λ+ δ

1− |α|
− Λ

]
. (S9)

When Λ+δ
1−|α| − Λ < 0, the value of max(Re(Vj)) should be 0.

Re(E) ⊆
[
−2 |t|+ Λ+ δ

1 + |α|
− Λ, 2 |t|

]
. (S10)

When Λ+δ
1+|α| − Λ < 0 < Λ+δ

1−|α| − Λ, the range of Re(E) falls back to the same result as κ = 1 case.

Re(E) ⊆
[
−2 |t|+ Λ+ δ

1 + |α|
− Λ, 2 |t|+ Λ+ δ

1− |α|
− Λ

]
. (S11)

For case (ii), Λ + δ < 0. Similarly, it also has three sub-cases as following.
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When Λ+δ
1−|α| − Λ > 0, the value of min(Re(Vj) should be 0. Accordingly, we have,

Re(E) ⊆
[
−2 |t| , 2 |t|+ Λ+ δ

1 + |α|
− Λ

]
. (S12)

When Λ+δ
1+|α| − Λ < 0, the value of max(Re(Vj)) should be 0.

Re(E) ⊆
[
−2 |t|+ Λ+ δ

1− |α|
− Λ, 2 |t|

]
. (S13)

When Λ+δ
1−|α| − Λ < 0 < Λ+δ

1+|α| − Λ, the range of Re(E) also falls back to the same result as κ = 1 case.

Re(E) ⊆
[
−2 |t|+ Λ+ δ

1− |α|
− Λ, 2 |t|+ Λ+ δ

1 + |α|
− Λ

]
. (S14)

To demonstrate the validity of the estimation process of the range of the real parts of eigenvalues for mosaic cases with larger
κs, we numerically provide two examples in Fig.S4.

Figure S4. Examples to show the validity of the estimation of the range of the real parts of eigenvalues for mosaic cases with larger κs. (a)
κ = 2. Other model parameters are as follows, L = 377, t = 1, δ = 10, θ = 0, α = 0.5, and γ = 7π/10. (b) κ = 3. And other model
parameters are as follows, L = 377, J = 1, δ = −10, θ = 0, α = 0.5, and γ = π/4. The red line denotes the analytically estimated upper
bound of the range of Re(E) and the blue line denotes the lower bound.

Secondly, we provide the estimation process for the range of the imaginary part Im(E) of the eigenvalue. The deduction
process is much briefer than that of the real part discussed above.

Apparently for any κ, the imaginary part of the on-site potential is always in a form as,

Im(Vj) =
λ sin(γ) cos(2πjb+ θ)

1− α cos(2πjb+ θ)
. (S15)

For ease of representation, we could define ∆ = λ sin(γ)/α. Then, the imaginary part of the on-site potential can be rewritten
as,

Im(Vj) =
∆

1− α cos(2πjb+ θ)
−∆. (S16)

Therefore, on one hand, for the case ∆ > 0, we have

Im(E) ⊆
[

∆

1 + |α|
−∆,

∆

1− |α|
−∆

]
, (S17)

while on the other hand, for ∆ < 0, we have

Im(E) ⊆
[

∆

1− |α|
−∆,

∆

1 + |α|
−∆

]
. (S18)

We provide numerical verifications for the analytical estimation of the range of the imaginary parts of eigenvalues for the family
of generic non-Hermitian quasiperiodic models in Fig.S5

Accordingly, for the parameter settings corresponding to Fig.1(b) in the main text, the range of the imaginary part Im(E) of
the model’s actual spectrum is easily obtained as [−2/3, 2]. The intersection of the range [−2i/3, 2i] in complex plane with the
exact non-Hermitian mobility edge given by Eq.(3) produce the true mobility edge which is shown in Fig.1(b) in the main text.
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Figure S5. Exemplification of the validity of the estimation of the range of the imaginary parts of eigenvalues for the family of generic non-
Hermitian quasiperiodic models. (a) κ = 1. Other model parameters are as follows, L = 377, t = 1, δ = 1, θ = 0, α = 0.5, and γ = π/2.
(b) κ = 3. And other model parameters are as follows, L = 377, J = 1, δ = −10, θ = 0, α = 0.5, and γ = π/4. The red line denotes the
analytically estimated upper bound of the range of Im(E) and the blue line denotes the lower bound.

Figure S6. A non-Hermitian butterfly spectrum example for the generic non-Hermitian mosaic quasiperiodic model with κ = 2. Fractal
dimension (FD) of each eigenstate is denoted by the color of each energy point in the spectrum. The exact non-Hermitian mobility edge is
denoted by a green line which is obtained by numerically solving the exact relation Eq.(S21) and considering the actual range of the model’s
spectrum at the same time. Parameters: L = 610, λ = 1.2, α = 0.6, γ = 0.7π, θ = 0, t = 1, and the modulation parameter δ varies from −7
to 7.

S-3. THE NON-HERMITIAN BUTTERFLY SPECTRA AND THE EXACT NHMES FOR CASES WITH LARGER κS

In the main text, for simplicity and clarity, we mainly focus on the minimal model without mosaic modulation and show the
exact non-Hermitian mobility edge along with the exotic butterfly spectrum in the full complex plane. The analytical derivation
of the exact non-Hermitian mobility edge is provided in the main text, where we mentioned that the analytical deduction process
also applies to general mosaic cases with larger κs. In this section, we provide some examples for the non-Hermitian butterfly
spectra and the exact NHMEs for generic non-Hermitian quasiperioic mosaic models with larger κs. Although it is usually
difficult to obtain a compact formula for the exact NHME of the model with large κ, one can resort to numerical calculations to
obtain the exact result of the NHME. As concrete examples, we present more details for two mosaic cases with κ = 2 and κ = 3
in the following.

In the main text, by using Avila’s global theory, we have analytically obtained the Lyapunov exponent for the model in the
general case as

Γ(E) =
1

κ
max{ln 2f

1 +
√
1− α2

, 0}, (S19)
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Figure S7. A non-Hermitian butterfly spectrum example for the generic non-Hermitian mosaic quasiperiodic model with κ = 3. Fractal
dimension (FD) of each eigenstate is denoted by the color of each energy point in the spectrum. The exact non-Hermitian mobility edge is
denoted by a green line which is obtained by numerically solving the exact relation Eq.(S21) and considering the actual range of the model’s
spectrum at the same time. Parameters: L = 987, λ = 0.7, α = −0.5, γ = 0.3π, θ = 0, t = 1, and the modulation parameter δ varies from
−7 to 7.

in which,

f = max

{∣∣∣∣∣2αaκ−1 − χaκ ±
√
χ2a2κ − 4αχaκaκ−1 + 4α2aκaκ−2

4

∣∣∣∣∣
}
. (S20)

Then NHMEs can be determined exactly by letting Γ(E) = 0. Therefore, an exact relation is obtained as follows,

2f

1 +
√
1− α2

= 1, (S21)

which basically produces the exact non-Hermitian mobility edge. Simplifying Eq.(S21), an elegant and compact analytical
formula could be obtained for the case κ = 1. However, for cases with κ ≥ 2, such a analytical formula for NHME is generally
either very long and complex or difficult to obtain. Therefore, we mainly adopt numerical methods for the later cases instead.
As concrete examples, in Fig. 4, Fig.S6 and Fig.S7 we give out the exact NHMEs for the cases with κ = 2 and κ = 3 by solving
the exact relation Eq.(S21) numerically.
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