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Abstract— The performance of robots in their applications
heavily depends on the quality of sensory input. However,
designing sensor payloads and their parameters for specific
robotic tasks is an expensive process that requires well-
established sensor knowledge and extensive experiments with
physical hardware. With cameras playing a pivotal role in
robotic perception, we introduce a novel end-to-end optimiza-
tion approach for co-designing a camera with specific robotic
tasks by combining derivative-free and gradient-based optimiz-
ers. The proposed method leverages recent computer graphics
techniques and physical camera characteristics to prototype
the camera in software, simulate operational environments
and tasks for robots, and optimize the camera design based
on the desired tasks in a cost-effective way. We validate the
accuracy of our camera simulation by comparing it with
physical cameras, and demonstrate the design of cameras with
stronger performance than common off-the-shelf alternatives.
Our approach supports the optimization of both continuous and
discrete camera parameters, manufacturing constraints, and
can be generalized to a broad range of camera design scenarios
including multiple cameras and unconventional cameras. This
work advances the fully automated design of cameras for
specific robotics tasks. Code and data are available on our
project page at https://roboticimaging.org/Projects/TaCOS/.

I. INTRODUCTION

Modern robotic systems heavily rely on inputs from their
perception systems, where cameras play a critical role. The
quality of the camera captures directly impacts the perfor-
mance of the robots. An analogy in nature is the significant
impact of animals’ visual perceptions on their everyday
tasks. It is widely accepted that evolution designs distinct
visual perception systems for different species to suit their
habitats [1]. Therefore, a sophisticated approach is necessary
for robots to design their cameras based on their applications.

The current method for designing cameras for robots is
a cumbersome process, typically requiring professionals to
devise designs based on their experiences, followed by exten-
sive experiments with various design decisions. Furthermore,
off-the-shelf cameras are often chosen for robots, designed in
isolation from the perception tasks, while jointly designing
the cameras with tasks has shown its advantages in literature.

Existing works model and optimize the imaging system
for the tasks through software. Ray tracing renderers are
typically used as they simulate the physical light transport
and image formation process. Many existing works have
employed a ray tracing renderer to design and evaluate
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Fig. 1. Our method combines a derivative-free optimizer and gradient-
based optimizer to co-design the camera with robotic perception tasks with
a camera simulation built in UE5 with real-time ray tracing and a physics-
based noise model. Our approach supports the optimization of discrete
and continuous camera parameters for manufacture constraints and the
generalization to other camera design problems.

cameras for autonomous driving [2]–[6]. However, manual
tuning of camera parameters for optimization is still required,
and joint optimization of the cameras and the tasks is not
addressed in these methods.

Other works propose to co-design the imaging system
with perception tasks automatically using differentiable ray
tracing or proxy neural networks to simulate the imaging sys-
tems [7]–[22]. Nevertheless, their design space is restricted
by the image datasets which prevent them from generalizing
to more complex camera design problems involving field-of-
view (FOV), multi-cameras, or unconventional cameras.

Game engines, such as Unreal Engine (UE), have been
repurposed for simulating cameras as they support ray tracing
and allow the production of video sequences and interaction
with virtual environments closely resembling the operations
of robots. Klinghoffer et al. [23] propose a reinforcement
learning (RL) method to design cameras and evaluate via a
UE-based simulator. Although achieving high performance,
this method optimizes a complex neural network that learns
to design cameras, which is inefficient compared to a method
that directly optimizes the camera parameters.

As illustrated in Fig. 1, we introduce an end-to-end camera
design method that directly optimizes camera parameters for
perception tasks with simulation. To design and evaluate the
cameras, we establish a procedural generation algorithm gen-
erating virtual environments in UE5 for robotic operations
with machine learning labels. We propose a camera simulator
that allows the tuning of a variety of camera parameters,
and we additionally address the images’ signal-to-noise ratio
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(SNR) by including a physics-based noise model [24].
Inspired by evolutionary processes we employ a genetic

algorithm [25], a derivative-free optimizer, to optimize dis-
crete, continuous, and categorical variables in our simulation
framework. The approach supports manufacturing constraints
and categorical variables, allowing selection of parts (op-
tics, image sensors, etc.) from catalogues where customized
manufacture is infeasible. Finally, we propose an alternative
quantized continuous approach to discrete variables that
allows consideration of the interdependencies between them.

We implement our approach on example tasks of ob-
stacle avoidance, object detection, and feature detection.
We demonstrate that the camera designed by our approach
achieves compelling performance compared to high-quality
robotic and machine vision cameras in our simulation, and
we validate the accuracy of our simulation by comparing it
with physical cameras. In summary, we make the following
contributions:

• We introduce an end-to-end camera design method
that combines derivative-free and gradient-based opti-
mization to automatically co-design the camera with
downstream perception tasks and allows optimization
of continuous and discrete camera variables.

• We develop a camera simulation and evaluation tech-
nique that includes a physics-based noise model and
procedurally generated virtual environments.

• We validate our simulator and evaluation method by es-
tablishing equivalence of both low-level image statistics
and high-level task performance between synthetic and
captured imagery.

• We demonstrate the design of cameras with stronger
performance than common off-the-shelf alternatives.

This work is a key step in simplifying the process of
designing cameras for robots, where mobility and the perfor-
mance of tasks are significant and the manufacturability of
cameras is constrained. Code and data will be released upon
acceptance of the paper.

Limitations: The experiment in this work focuses on
optimizing a single RGB camera with a CMOS image
sensor. However, since our optimization method supports
both discrete and continuous variables, and our camera
simulator can handle additional camera design decisions, we
expect our method can be immediately generalized to more
complex camera design problems involving multiple cameras
and unconventional cameras. Furthermore, our experiment
solely considers camera parameters determined at the manu-
facturing stage, camera parameters that can be dynamically
adjusted during robot operation such as exposure settings
will be addressed in future work.

II. RELATED WORK
Designing cameras tailored for robotics or machine learn-

ing tasks using software simulation has gained popularity.
Blasinski et al. [2] propose optimizing a camera design to
detect vehicles for autonomous driving. They used synthetic
data generated with ISET3D [26] and ISETCam [27]. The
method optimizes cameras by experimentally analyzing the

impact of different image postprocessing pipelines and auto-
exposure algorithms on downstream object detection tasks.
This work continues in [3]–[6], extending the experiments
to larger datasets and more diverse synthetic datasets, and
an optimization framework for high dynamic range (HDR)
imaging applications. Nevertheless, these methods often re-
quire manual tuning and testing of different camera param-
eters, whereas our method is an end-to-end approach that
automatically optimizes the camera design.

Other works have also proposed end-to-end methods to
optimize the imaging system based on tasks. Many use
gradient-based optimization with differentiable camera sim-
ulators, including differentiable ray tracing algorithms and
proxy neural networks for non-differentiable image forma-
tion processes. In these works, images captured by phys-
ical cameras are used as input scenes to their pipeline,
and their simulators which simulate the image formation
process convert the input images to images formed by
their proposed cameras. Applications include extended depth
of field (DOF) [7], [8], depth estimation [9]–[12], object
detection [13]–[16], HDR imaging [17], [18], image clas-
sification [19]–[21], and motion deblurring [22]. However,
these methods use physically captured image datasets so that
their camera simulation is restricted to the domains of the
datasets. Key camera design decisions such as the camera’s
FOV, resolution, use of multiple cameras, and the design of
unconventional cameras (light field, etc.), are not addressed.
Our method establishes a virtual environment to support the
simulation and optimization of a much broader range of
camera designs.

Recent works have explored the application of RL for
end-to-end optimization of imaging systems. Klinghoffer et
al. [23] advocate for RL-based training of a camera designer,
encompassing various camera parameters using the CARLA
Simulator [28]. Hou et al. [29] introduce another RL-based
approach for pedestrian detection. Although RL demonstrates
impressive results in camera design, it involves optimiz-
ing complex neural networks that learn to design cameras,
demanding more training data and time since the neural
network contains a larger number of parameters that need
to be optimized. In contrast, our approach directly optimizes
the camera’s parameters, yielding competitive results with
much less computation.

III. METHOD

In this work, we introduce a procedural generation method
in UE5 for photorealistic renders, followed by a physics-
based noise model. The quality of the resulting images is
then evaluated in robotic tasks and utilized to optimize the
camera design. The proposed method is illustrated in Fig. 2.

A. Simulation Environment

To create diverse environments for evaluation, we imple-
mented the procedural generation of random virtual environ-
ments and their associated semantic labels, with support for
application-specific objects. Our virtual environment is gen-
erated with UE5. We utilize real-time hardware ray tracing,
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Fig. 2. Proposed methodology. We establish a virtual environment in UE5 with a procedural generation method and obtain renders from the environment
using a ray-traced simulated camera. We then add physics-based sensor-specific image noise to the renders and input them to the robotic perception tasks.
In our optimization, we jointly optimize the camera parameters Φcamera on a fitness function F with a derivative-free optimizer, as well as the weights of
an object detector ΦOD on an object detection loss function lOD with a gradient-based optimizer.

combined with the software ray tracing global illumination
and reflection method supported by UE5. This combination
provides realistic shadowing, ambient occlusion, illumina-
tion, reflections, etc [30].

An auto-agent, simulating the robot, navigates the virtual
environment automatically. Its trajectory is randomly gener-
ated with the environment using UE Navigation System [30].
The auto-agent carries a UE5 camera, capturing scene ren-
ders as it moves, and it interacts with the environments so
that every object the agent collides with is recorded.

B. Camera Simulation

Our camera simulation comprises two components, as
depicted in Fig. 2, including a scene capture component and
an image noise synthesis component.

Scene Capture. We employ a UE camera to capture scene
irradiance from the virtual environment with ray tracing.
The scene capture component allows the configuration of
parameters associated with cameras’ placement (location,
orientation), optics (focal length and aperture), the image
sensor (width, height, and pixel count), exposure settings
(shutter speed and ISO), and multi-camera designs (number
of cameras and their poses), as well as the configuration of
algorithms in the image processing pipeline (white balancing,
tone mapping, colour correction, gamma correction, and
compression).

We experimentally validate our method using parameters
readily supported by UE. Additional parameters like geomet-
ric distortion and defocus blur could be added by augmenting
the renderer. The noise synthesis model described below
serves as an example of such an augmentation.

Noise Synthesis. Image noise is a fundamental limiting
factor for many robotic vision tasks that is tightly coupled
to camera design parameters such as pixel size and exposure
settings. As the UE5 simulation lacks a realistic noise model,
we incorporate a post-render image augmentation that intro-
duces noise. We employ thermal and signal-dependent Pois-

son noise following the affine noise model (Heteroscedastic
Gaussian) [24]. The affine noise model expresses the pixel
variance (σ2) as

σ
2 = σ

2
p Ī +σ

2
t , (1)

where σ2
t is the variance of constant thermal noise, σ2

p is a
scaling factor for intensity-varying photon noise, and Ī is the
mean intensity observed at a pixel. The measured intensity
by the camera is the integration of the input intensity arriving
at the pixel over the camera’s exposure time, scaled by the
camera’s gain:

I = EGIinput, (2)

where E and G are the exposure time and gain, respectively.
Calibrating the noise model follows established meth-

ods [31]–[33]. In this work, we use a greyscale test target
with colorbars containing uniformly distributed grey levels
from fully white to fully black. With captured images of the
test target, we determine mean intensities and variances for
each pixel, using these values to fit the affine noise model
defined in Eq. 1.

The noise model can be generalized to different camera
exposure and gain settings. Considering the observed pixel
intensity by the camera, changes due to exposure time setting
are reflected in the intensity value, as explained by Eq. 2,
therefore, we generalize the noise model to other exposure
and gain settings by multiplying the ratio of the new gain
(G) and the calibrated gain (G0) used in the noise calibration
stage. Since the noise model describes the variance of the
noise, the gain ratio is in the second order. Substituting the
new gain with the ratio into Eq. 2, replacing Ī in Eq. 1 with
Eq. 2, and rewriting σ2

t with the new gain using the ratio,
the noise model becomes

σ
2 =

G
G0

σ
2
p Ī +

G2

G2
0

σ
2
r . (3)

We generalize our noise model to different image sen-
sors by considering the ratio of their pixel sizes. For the



same illumination condition, larger pixel sizes capture more
photons, resulting in a higher input intensity level (Iinput ).
This is readily reflected by adjusting the gain in Eq. 3
inversely proportional to the pixel area. While we employ
these observations to generalise noise characterisations, it is
also possible to directly characterize multiple sensors and
directly use these characterizations.

C. Optimization

Optimizers. We combine derivative-free and gradient-
based optimizers to optimize the camera design and the
downstream perception task respectively. Specifically, we use
the genetic algorithm [25] to optimize the camera design and
use the Adam [34] optimizer to optimize the object detection
model. We also expect other derivative-free optimizers would
apply in our proposed approach.

Camera Parameters. Our optimizer can handle the opti-
mization of all parameters captured in the camera simulation,
e.g. those outlined in Sec. III-B. The genetic algorithm
is designed to accommodate both continuous and discrete
parameters, enhancing the generalizability of our method.
For instance, parameters related to optics and image sensors
can be optimized as continuous variables if there are no
manufacturing constraints on new optics and sensors. Al-
ternatively, they can be selected from existing lens/sensor
catalogs, allowing manufacturing and availability to be con-
sidered.

Discrete Variable Optimization. The discrete variable
optimization in our approach offers two schemes: fully
discrete and quantized continuous. In the fully discrete
scheme, we optimize the parameter x, representing an index
of the parameter in its available values, by constraining the
mutation stage of the genetic algorithm to ensure that only
available values of this variable are used.

In the quantized continuous scheme, we adopt the “quan-
tized continuous variables” method introduced in [16]. Here,
in each iteration, the discrete parameter x can freely change
as a continuous variable from its current best value obtained
in the previous iteration. However, it is then replaced with
the closest value from its available range:

x∗ = argmin
k

||x− xk||22, (4)

where x∗ is the parameter retained from its available range,
x is the variable obtained from the optimization process, and
xk represents the k-th parameter in its available values.

A limitation of the fully discrete scheme appears when
the variable x connects to other variables. For example,
if x is the available image sensors, then this single vari-
able encompasses multiple sensor-related parameters such
as width, height, and pixel size. Selecting x categorically
does not benefit from the interrelationships between these
parameters. The quantized continuous scheme overcomes
this by allowing all included parameters in x to be optimized
freely and then replaced by a set of values corresponding to
the closest categorical x.

Fitness Functions. To optimize the camera design, we
establish a fitness function based on several robotic tasks.
Initially, we ensure that the FOV is sufficient to capture
obstacles in the robots’ motion path. Therefore, we propose
an obstacle detection term for the fitness function, given by
the ratio of the number of obstacles the camera sees (oseen)
to the total number of obstacles in the robot’s path (ototal):

Fobstacle =
oseen

ototal
. (5)

Object detection is another essential robotic task. In this
work, we jointly train an object detection network with the
optimization of the camera. The object detection network is
trained using its loss function (lOD), established based on
the specific model in use. Simultaneously, the parameters
of the camera are optimized using the average precision
(AP) as a term in the fitness function, accounting for both
object classification accuracy (precision) and object detection
accuracy (intersection-over-union or IoU). We compute the
AP with an IoU threshold of 0.5:

FOD = AP@0.5IoU. (6)

Simultaneous Localization and Mapping (SLAM) is com-
mon in robotics, and we address this task by optimizing the
number of features found in the camera’s frames as many
SLAM methods, such as ORB-SLAM [35], rely on features
extracted from input images. Inspired by [36], we use the
number of inlier features, which are the correctly matched
features that accurately represent the same points or regions
across consecutive frames, combined with the ratio of inlier
features to total features (inliers plus outliers), in our fitness
function to emphasize both the number of inlier features and
the accuracy of the features detected:

Ff eature = λinlierninlier +λratio
ninlier

ntotal
, (7)

where ninlier and ntotal are the average numbers of inlier
features and total detected features over all images captured
with one set of camera parameters, respectively, and λ s
represent the weights of these two terms.

All terms of the fitness function are combined to form the
total fitness function used in this optimization:

F = λobstacleFobstacle +λODFOD +λ f eatureFf eature, (8)

where λ s are the weights of the tasks.

IV. RESULTS

We apply our approach to a camera design problem for
an indoor robot. We provide details for our implementation,
validate our proposed simulator, and compare our optimized
cameras to those designed by humans.

A. Implementation

Assumptions. Our experiment is conducted under the
following assumptions: (1) objects’ distances to the camera
exceed the camera’s hyperfocal distance so that the DOF
is safely neglected, (2) the lens of our camera is free
of geometric distortion and chromatic aberration, and (3)
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Fig. 3. Captured and synthetic images of the colorbar test target and their histograms. Despite the differences in colour intensities caused by the manufacture
of the test target, the distribution of the pixel values in the synthetic image matches with the captured image, validating the accuracy of our noise model.

the height of the robot is between 1m to 2m, which is
addressed by randomly changing the camera’s height during
optimization.

Scene Generation. We establish an indoor environment
to evaluate our approach, set to a common size of 15 meters
in width, 15 meters in length, and 3 meters in height. During
optimization, the floorplan and object locations are randomly
generated to introduce variability. The objects belong to 10
classes, including sofa, bed, table, chair, bathtub, bathroom
basins, computer/TV, plant, lamp, and toy. The objects are
3D assets obtained from the UE marketplace.

Design Space. We focus on designing geometric pa-
rameters determining the camera’s FOV and photometric
parameters determining the resolution as they affect the
robot’s mobility and the effective resolution of objects.

For FOV, we consider the mounting angle (θ ) of the
camera on the robot, which is the pitch angle dictating
the FOV’s orientation, along with the focal length ( f ) and
image sensor dimensions (width w and height h) dictating
the FOV’s size. The number of pixels is determined by the
image sensor’s pixel size (p) and its dimensions.

We restrict our design to readily available sensors by
optimizing the image sensor (i) as a categorical variable,
selecting from a catalogue of available parts. We collect
a catalogue of 54 commercial CMOS image sensors (ic1,
ic2,..., ic54), where each i comprises a set of sensor-related
parameters (w, h, and p). We compare two optimisation
techniques, treating i as fully discrete and using the quantized
continuous approach.

Data Collection. We collect a dataset of 2000 images
using our simulator to pre-train the object detector before
the optimization phase. These images were captured with 10
random camera configurations. Throughout the optimization
process, the camera designs in each iteration are assessed
in real time. We collect 500 images from the virtual envi-
ronment for each camera design, evaluating them through
perception tasks. The images are captured in three distinct
procedurally generated environments for each camera design.

Noise Synthesis. For noise synthesis, we calibrate the
noise characteristics of a FLIR Flea3 Camera [37] with a
Sony IMX172 sensor and fit it to the affine noise model. This
model is then generalized to other image sensors in our cata-
logue, which comprises 54 sensors from five manufacturers.
Notably, 34 sensors are from Sony due to their widespread

use in robotic and machine vision cameras. This intentional
bias toward sensors from the same manufacturer aligns with
our assumption about image noise being closer to the truth
for sensors from the same manufacturer. Hence, we also
selected a Sony sensor to calibrate and use as the baseline.
We validate our noise model together with our rendering in
Sec. IV-B.

Obstacle Positioning. To assess the camera’s capability to
detect obstacles that might impact the mobility of the robot,
we position gold-coloured thresholds at the entrance of each
room within our simulation environment, as depicted in the
tasks section of Fig. 2. These thresholds represent low-height
obstacles that could potentially pose a danger to robots,
emphasizing the need for a camera with an appropriate
FOV. We solely place low-height obstacles, as the detection
of taller obstacles is constrained by the object and feature
detection tasks. The determination of whether the obstacle
is visible to the camera is based on whether the obstacle is
visible in the rendered imagery. Additionally, the auto-agent
is programmed to recognize and respond to stepping on a
threshold, even if it is not rendered visually.

Feature Detector and Inlier Feature Matching. In this
work, We extract Oriented FAST and Rotated BRIEF (ORB)
features [38], and we employ the Brute-Force Matcher in
OpenCV [39] to identify inlier features across consecutive
frames.

Object Detector. We utilize a Faster-RCNN [40] object
detector with a ResNet-50 [41] backbone. The object detector
is pre-trained on the image dataset of 2000 images we
collected and is fine-tuned for each camera design during the
optimization process. Training and fine-tuning are carried out
using an Adam optimizer [34] with a batch size of 8. The
learning rate is set to 1 · 10−4 with a decay rate of 0.5 for
every 5 steps in both pre-training and fine-tuning stages.

Derivative-Free Optimization. The genetic algorithm is
implemented with 20 generations and 10 solutions per gener-
ation. For each generation, the top 3 solutions are kept in the
next generation, while the top 5 solutions are used as parents
to produce the offspring via a uniform crossover method in
the optimization, where each parameter in the offspring is
randomly selected from each parent. Then the offspring are
mutated by applying a multiplication factor and an addition
value, the multiplication factor is randomly selected between
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in real and synthetic images for the OAK-D, FLIR, and Basler cameras. The
graph shows the ranking of the cameras’ performance in our simulation
aligns with the physical cameras, and the differences in their performance
between the captured and synthetic images are consistent.

0.8 and 1.2, whereas the addition value is randomly selected
from -3 to 3.

For the weights in our fitness function (Eq. 7 and Eq. 8),
we balance the weights of all terms by setting λinlier to
0.0025 (inlier number in an image is typically 100-200),
λratio to 0.5, λobstacle, λOD, and λ f eature to 1 as we consider
these tasks equally significant.

B. Simulator Validation

To validate our simulator, we compare synthetic images
from our simulator with those captured by physical cameras
in terms of image statistics and task performance.

Image Statistics. We employ a test target with greyscale
colorbars in a controlled illumination environment in the
physical world. Images are captured using the FLIR camera
used for noise model calibration. Subsequently, the same test
target is recreated in our UE5 simulator, ensuring consistency
in illumination, relative camera position, and camera param-
eters. Fig. 3 displays the captured and synthetic images along
with their histograms.

The synthetic image exhibits a linear intensity response
since our simulator operates in a linear colorspace without
introducing gamma correction, as indicated by the uniform
greylevel distribution of colorbars in the test target. In con-
trast, the captured image shows non-linear colour distribution
introduced by the printer when manufacturing the test target.
Despite histogram differences, the comparison reveals that,
for a given mean intensity, pixel values in the synthetic image
align with the distribution observed in the captured image.
This alignment validates the accuracy of our noise model.

Perception Task Performance. To validate task perfor-
mance, we focus on the feature detection task, as obstacle
avoidance is accurately evaluated by the physical interaction
between objects and the auto-agent in our simulator, and the
object detection task presents challenges in aligning real and
virtual objects. The feature detection task is chosen for its
suitability for physical and virtual experiments.

We utilize a test target employed in [42], which incorpo-
rates features with varying scales and depths, placed against a
texture-less background. Ten consecutive frames are captured
with a constant translational motion, maintaining consistent

(b) Night - Contrast Stretched(a) Day

Fig. 5. Example images captured in (a) daytime scenario (20 lux) with a
lower baseline camera gain (5 dB), and in (b) a nighttime scenario (2 lux)
with a higher baseline camera gain (15 dB).

illumination, camera parameters, and relative positioning
between the target and the camera for both real and virtual
experiments, the result is illustrated in Fig. 4.

The comparison involves three robotic/machine vision
cameras: the RGB camera of the Luxonis OAK-D Pro Wide
camera [43] with a Sony IMX378 sensor, the FLIR Flea3
Camera [37] with a Sony IMX172 sensor, and the Basler
Dart DaA1280-54uc camera [44] with an Onsemi AR0134
sensor. Specific noise models are applied to these cameras
in our simulator, calibrated through the method detailed in
Sec. III-B. The feature detection task provides a reliable
measure of performance consistency between physical and
simulated environments.

The experiment demonstrates that synthetic images from
our simulator yield a larger number of inlier features and
a higher ratio of inlier features to the total number of
features extracted due to the reduction in quality of the test
target resulting from the manufacturing process. However,
the relative performance of cameras, critical for optimization
purposes, is maintained across simulated and physical set-
tings. This consistency validates that our camera simulations
accurately reflect the real-world performance of the cameras
and effectively evaluate the performance of camera designs.

C. Performance Evaluation

We present the optimized set of camera parameters ob-
tained through our approach and evaluate the camera’s
performance in Tab. I, considering the obstacle (threshold)
detection accuracy, the AP score, the average number of
inlier ORB features across consecutive frames, and the ratio
of the average number of inlier features to the average
number of total ORB features detected. Additionally, we
report the optimized set of parameters under two different
application scenarios. One scenario involves daytime oper-
ation in a well-illuminated simulation environment, while
the other pertains to nighttime operation with limited light
in the environment, illustrated in Fig. 5. We observed that
different application scenarios led to distinct camera designs.
Our approach designed a camera with a larger pixel size
for nighttime applications, which is expected as a sensor
with larger pixels delivers higher SNR since larger pixels
gather more light. Hence, sensors with larger pixels require
lower gain to capture images with the comparable measured
intensity compared to sensors with smaller pixels.

We compare our optimized camera with three human-
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TABLE I
THE COMPARISON OF THE PARAMETERS AND PERFORMANCE OF CAMERAS DESIGNED WITH OUR METHOD USING FULLY DISCRETE AND QUANTIZED

CONTINUOUS SCHEMES AND 3 ROBOTIC/MACHINE VISION CAMERAS. THE OPTIMIZED PARAMETERS VIA OUR METHOD ARE LABELLED WITH•,
INCLUDING ALL PARAMETERS OF OUR CAMERAS, THE OBJECT DETECTION NETWORK, AND MOUNTING ANGLES OF OFF-THE-SHELF CAMERAS. OUR

APPROACH DESIGNS CAMERAS WITH HIGHER PERFORMANCE IN BOTH SCENARIOS, WHILE THE QUANTIZED CONTINUOUS SCHEME ACHIEVES HIGHER

PERFORMANCE COMPARED TO THE FULLY DISCRETE SCHEME IN THIS EXPERIMENT DUE TO ITS CONSIDERATION OF PARAMETERS’
INTERDEPENDENCIES.

Scenario Camera
Camera Parameters Performance

Pitch Angle Focal Length Sensor Size Pixel Size Obstacle Detect. Object Detect. • Inlier Number Inlier Ratio
θ (◦) f (mm) w×h (mm) p (µm) Accuracy AP@0.5IoU

Day

OAK-D [43] -20.04 • 2.75 • 6.29×4.71 • 1.55 • 1 0.37 115 0.07
FLIR [37] -23.28 • 3.6 • 6.2×4.65 • 1.55 • 1 0.37 77 0.05
Basler [44] -25.90 • 3.6 • 4.8×3.6 • 3.75 • 1 0.23 131 0.08

Ours - Fully Discrete -24.69 • 3.77 • 8.45×6.76 • 6.6 • 1 0.51 189 0.12
Ours - Quantized Continuous -26.34 • 2.88 • 7.31×5.58 • 4.5 • 1 0.64 224 0.13

Night

OAK-D [43] -19.72 • 2.75 • 6.29×4.71 • 1.55 • 1 0.34 117 0.06
FLIR [37] -22.71 • 3.6 • 6.2×4.65 • 1.55 • 1 0.36 69 0.03
Basler [44] -25.83 • 3.04 • 4.8×3.6 • 3.75 • 1 0.16 122 0.07

Ours - Fully Discrete -23.66 • 3.10 • 7.2×5.4 • 4.5 • 1 0.42 170 0.11
Ours - Quantized Continuous -22.58 • 3.49 • 14.48×9.94 • 9 • 1 0.57 172 0.11

designed robotic and machine vision cameras, OAK-D,
FLIR, and Basler, used in previous experiments. This com-
parison takes place within our simulation environment, where
we apply specific noise models to these cameras as before,
and we optimize the mounting angles of these cameras as it
is configurable, while the others remain fixed. Configurable
parameters in this experiment are indicated with•, and fixed
parameters are marked with • in Tab. I. Fig. 6 illustrates
the FOVs and example evaluations of our proposed cameras
and the robotic/machine vision cameras.

The results of the comparison demonstrate improvements
in the performance of all tasks, with performance being
notably lower under the nighttime scenario due to a reduced
SNR, as well as with the fully discrete optimization scheme
due to the disregard of parameters’ interdependencies. Ad-
ditionally, we show our method achieves compelling results
with only 20 iterations, requiring 200 camera design evalu-
ations in total. In contrast, the RL method proposed in [23]
requires 30000 to 40000 camera design evaluations for a task
and design space of lower complexity.

V. CONCLUSION
In this work, we present a novel end-to-end approach that

combines derivative-free and gradient-based optimizers to
co-design cameras with multiple robotic perception tasks.

Utilizing UE5 and an affine noise model, we construct a cam-
era simulator tailored for robotics, subsequently validating
its accuracy through comparison with physical cameras. Our
method takes into account continuous, discrete, and categori-
cal camera parameters, and advances a quantized continuous
approach to discrete variables that allows consideration of
the interdependencies between them. We believe this work
is an important step toward principled and automated design
of cameras for robots that accounts for the interdependency
between the cameras and the algorithms that interpret them.

We expect our method can immediately generalize to
more complex camera design problems involving multiple
cameras and more camera parameters by including more
discrete variables and fully utilizing the configurable camera
parameters in our simulation. For future work, we aim to
extend to a task-driven control algorithm that dynamically
adjusts camera parameters such as gain and exposure settings
in an online manner.
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