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SYLOW THEOREMS FOR SUPERGROUPS

VERA SERGANOVA, ALEXANDER SHERMAN, DMITRY VAINTROB

Abstract. We introduce Sylow subgroups and 0-groups to the theory of complex
algebraic supergroups, which mimic Sylow subgroups and p-groups in the theory of
finite groups. We prove that Sylow subgroups are always 0-groups, and show that they
are unique up to conjugacy. Further, we give an explicit classification of 0-groups which
will be very useful for future applications. Finally, we prove an analogue of Sylow’s
third theorem on the number of Sylow subgroups of a supergroup.

1. Introduction

In this paper, we introduce 0-groups and Sylow subgroups of supergroups, which are
super-analogues of p-groups and Sylow subgroups of finite groups. We classify 0-groups,
and establish analogues of several basic statements concerning Sylow subgroups in the
supergroup setting. These include the uniqueness of Sylow subgroups up to conjugacy.

1.1. Finite groups. Sylow subgroups, and more generally p-local subgroups, play a
central, if mysterious, role in the representation theory of finite groups. As a simple
example, consider the McKay conjecture (see [14]): the number of simple representations
of a finite group G whose dimension is coprime to p should be the same as that of the
normalizer of a p-Sylow subgroup.

Sylow subgroups, and more generally p-local subgroups, are particularly important
when studying modular (i.e. characteristic p) representations of a finite group G. Any
block of representations determines a defect subgroup H (which is a p-group), and
restriction to the the defect is faithful on derived categories. For instance, a p-Sylow
subgroup is a defect subgroup of the principal block, and thus detects all the homological
complexity of RepkG (k an algebraically closed field of characteristic p).

Such guiding principles in modular representation theory often go under the heading
of local representation theory. Famous results and conjectures arising from these ideas
include Green’s correspondence, the Broué abelian defect conjecture, and the Alperin
weight conjecture. In addition, the study of p-local subgroups plays a key role in un-
derstanding the Balmer spectrum of Repk G.

1.2. Supergroups. One may initially look suspiciously upon attempted analogies be-
tween finite groups and supergroups. Supergroups are geometric in nature, usually
involving high-dimensional group manifolds, and are not determined by their closed
points. Nevertheless, as we seek to demonstrate here and in future work, there are
clear (if not always perfect) analogies, and much can be understood by naively following
them.

Perhaps the first indications of an analogy appear in the works of Boe, Kujawa and
Nakano on cohomological support varieties ([3]). For a simple Lie superalgebra g, they
define a detecting subalgebra f ⊆ g, which conjecturally controls the cohomological
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support variety of a g-module, similarly to how a Sylow subgroup would. Their ideas
led them more recently to a description of the Balmer spectrum for Rep gl(m|n), see
[4]. In a future work, we will use our ideas to answer many questions raised in [3] about
cohomological support varieties

1.3. Sylow subgroups. We take a broader approach to these questions. Let G be a
complex algebraic supergroup such that G0, the even underlying algebraic group of G,
has reductive identity component. Such supergroups are called quasireductive. Then
RepG, the category of all G-modules (not necessarily finite-dimensional) is a Frobenius
category, just as Repk G is. In fact, every finitely generated Frobenius symmetric tensor
category of moderate growth over the complex numbers is equivalent to the category of
finite-dimensional representations of some quasireductive supergroup. This follows from
Deligne’s theorem [6] and Prop. 2.3.1 of [8].

In [17], the first two named authors introduced the notion of a splitting subgroup K ⊆
G, which analogizes the condition of containing a Sylow subgroup. Namely, we require
that K is quasireductive and that the restriction functor gives a faithful embedding of
Db(RepG) inside Db(RepK). From this one may define a Sylow subgroup of G to be a
minimal splitting subgroup of G. With this definition, the existence of Sylow subgroups
is a trivial matter.

In [17] and [19], nontrivial splitting subgroups were constructed for simple supergroups
by computing volumes of certain homogeneous superspaces. Already these results led
to strong projectivity criterion for simple supergroups, as explained in [19]. However,
the questions of whether these subgroups are Sylow, i.e. minimal, and further if they
are unique up to conjugacy, were not addressed.

In this paper we deal with these questions for arbitrary quasireductive supergroups.
Namely, we prove the following:

Theorem 1.1. Let G be quasireductive. Then all Sylow subgroups of G are unique up
to conjugacy.

To prove Theorem 1.1, we introduce analogs of p-groups to the super setting, which we
call 0-groups. Just as in the case of finite groups, one can view 0-groups as an orthogonal
notion to that of a reductive supergroup G, i.e. one for which RepG is semisimple.

We use 0 in our notation on the one hand because we are working in characteristic
0. Another reason is as follows: one may define a p-group P to be one for which
vol(P/H) = |P/H| is divisible by p for every nontrivial subgroup H ⊆ P . Equivalently,
vol(P/H) is zero in k. For 0-groups, we have the following equivalent characterizations.
(We refer to Section 7.3 for definitions.)

Theorem 1.2 (Theorem/Definition). Let O be quasireductive. Then O is a 0-group if
one of any of the following equivalent conditions hold:

(1) O is its own Sylow subgroup.
(2) vol(O/K) = 0 for any proper, quasireductive subgroup K ⊆ O with Ber(o/k) a

trivial K-module (a necessary condition in order for volume to be defined).
(3) O is oddly generated and oneat

1
= {0}.

(4) O is oddly generated and the nil-cone is contained in the cone of self-commuting
odd elements.
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In Theorem 1.2, we write vol(O/K) for the volume of an associated compact CS man-
ifold, see Section 3. In the super setting, volume forms are generalized to Berezin forms,
hence the importance of the Berezin module Ber(o/k) in defining volumes. Understand-
ing the relationship between volumes and splitting subgroups was the key ingredient
that allowed us to make progress on these problems. Namely, we have:

Theorem 1.3. Let K ⊆ G be quasireductive supergroups. Then K is splitting in G if
and only if Ber(g/k) is a trivial K-module, and vol(G/K) 6= 0.

Using Theorem 1.3, we obtain the following characterization of Sylow subgroups.

Theorem 1.4. Let O ⊆ G be quasireductive supergroups. Then O is a Sylow subgroup
if and only if it is a splitting 0-subgroup.

While Theorem 1.2 is a very neat characterization of 0-groups, it is useful in practice
to have a more explicit description of what a 0-group looks like. In the setting of finite
groups, one could never hope to classify all p-groups; however they are all nilpotent,
and this controls aspects of their representation theory.

While the problem of classifying 0-groups is also wild, we have the following:

Theorem 1.5. Every 0-group O is isomorphic to a central extension of T × V, where
T is a Takiff 0-supergroup, and V is an odd abelian supergroup.

For the definition of a Takiff 0-supergroup, we refer to Section 7.1. Theorem 1.5 allows
us to understand something about the representation theory of 0-groups, which is both
very useful in the proof of Theorem 1.1, and will be critical in future works.

1.4. Maximal 0-subgroups. Our analogy with finite groups breaks down in the fol-
lowing way: for a finite group G, every maximal p-subgroup is Sylow. However it is
not true that every maximal 0-subgroup is Sylow, i.e. it need not be splitting. A simple
counterexample is provided by the subgroup of GL(n|n) corresponding to the following
subalgebra of gl(n|n):

[

A B
λIn A

]

,

where A,B are arbitrary n× n matrices, and λ ∈ C.
We expect that there are only finitely many maximal 0-subgroups up to conjugacy.

An important question is whether they have a representation-theoretic meaning, and at
this point we have no indications as such. The study of maximal 0-subgroups will be
taken up in future work.

1.5. The third Sylow theorem. The third Sylow theorem may be stated as follows:
if G is a finite group and P is a Sylow subgroup of G, then |G/NG(P )| is congruent to
1 (mod p), i.e. vol(G/NG(P )) = 1 in the base field.

Now let G be quasireductive with Sylow subgroup O. Our definition of volume
is only well-defined up to non-zero scaling, so we cannot hope to assign meaning to
vol(G/NG(O)). However we have another approach to understand the ‘size’ of G/NG(O).
Let g = LieG, and let x ∈ g1 such that [x, x] is semisimple in g0; we call such an x
homological. Then we obtain the Duflo-Serganova functor DSx : RepG → sVec, a sym-
metric monoidal functor (see Section 9.2). For a finite-dimensional module V ∈ RepG,
we have sdim(DSxV ) = sdim V , so in this sense DSx preserves size.
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Theorem 1.6. Let T ⊆ O0 be a maximal torus of O0, and define

WG := NG(T )/CG(T ), WNG(O) := NNG(O)(T )/CNG(O)(T ).

Then WNG(O) ⊆ WG are finite groups, and for a generic (see Section 9.2) homological
x ∈ g1, we have a natural isomorphism of algebras:

DSxC[G/NG(O)] ∼= C[WG/WNG(O)].

In this way, we may view G/NG(O) as having ‘size’ |WG/WNG(O)|, which we note is a
finite number, and is often equal to one (see Section 9.3).

1.6. Supergroups vs. superalgebras. So far we have only discussed supergroups, but
in fact our above discussion works just as well for quasireductive Lie superalgebras (see
Definition 2.2). In fact, 0-superalgebras and Sylow subalgebra are often easier to discuss
and work with than 0-groups and Sylow subgroups.

In Section 2 we will explain the passages between supergroups and superalgebras,
and throughout the paper we will work with one or the other, as is convenient. All
structure theorems stated about supergroups, for example, will have an analogue for
superalgebras, and vice-versa.

1.7. Future work and open problems. In an upcoming preprint, the first two named
authors and J. Pevtsova will continue the work of extending the analogy between finite
groups and supergroups. Namely, we will define analogs of elementary abelian subgroups
in the super setting, and prove a strong projectivity criteria for supergroups which
analogizes Chouinard’s theorem. Using this, we will give an explicit description of the
cohomological support variety.

Further questions of future interest are to develop a theory of defect subgroups for
blocks, and understanding what Green’s correspondence looks like for supergroups. We
expect that a meaningful, general definition of atypicality and defect should arise from
our machinery.

1.8. Outline of article. In Section 2 we recall the definitions of quasireductive su-
pergroups/Lie superalgebras, and explain how to pass between them via the notion of
global forms. The notion of an oddly generated supergroup/superalgebra will be of par-
ticular importance later on. In Section 3 we define algebraic integrals on homogeneous
superspaces and explain the consequences of admitting an algebraic integral. Section
4 recalls necessary language and facts from the theory of Berezin integration on CS
manifolds. In Section 5 we apply Berezin integration to CS manifolds arising from com-
plex homogeneous superspaces, and use this to classify when a homogeneous superspace
admits an algebraic integral. Section 6 then defines Sylow subgroups and 0-groups, and
relates their definitions to the work on volumes in Section 5. Section 7 characterizes
and classifies 0-groups, and deduces facts about their representation theory. In Section
8 we prove that all Sylow subgroups are unique up to conjugacy. Finally, in Section 9
we prove the third Sylow theorem as stated in the introduction.
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2. Quasireductive supergroups and quasireductive Lie superalgebras

Throughout, unless stated otherwise, we work over the complex numbers C. For a
super vector space V , we write V = V0 ⊕ V1 for its parity decomposition.

2.1. Supergroups and superalgebras. By a supergroup G we mean an algebraic
supergroup, that is the spectrum of a supercommutative Hopf superalgebra, which we
write as C[G]. Given a supergroup G, we write G0 for its even part, given by the spectrum
of C[G]/(C[G]1), which will be an algebraic group. We use the symbols G,H,K,O . . . for
supergroups, and the symbols g, h, k, o . . . for Lie superalgebras. If not otherwise stated,
g, h, k, o, . . . will be the Lie superalgebra of G,H,K,O, . . . . However in some cases our
notation will be set up so that g and LieG are distinct. However, usually g ⊆ LieG. We
hope the relationship between G and g is always clear from context.

Whenever we discuss subsupergroups of a supergroup G we will simply refer to them
as subgroups, and same for Lie subalgebras, etc.

Definition 2.1. We say that a supergroup G is quasireductive if the connected com-
ponent of the identity of G0 is reductive. In particular, we do not assume that G is
connected. We write RepG for the abelian, symmetric monoidal category of rational
G-modules; that is, the category of comodules over C[G]. We emphasize that infinite-
dimensional modules are included.

In much of the rest of the text we use many known facts about quasireductive su-
pergroups. We refer to [16] for the foundations of their structure and representation
theory.

2.2. Global forms of quasireductive Lie superalgebras.

Definition 2.2. We say that a Lie superalgebra g is quasireductive if g0 is reductive and
acts ad-semisimply on g. We write Repg

0

g for the category of locally finite g-modules
which are semisimple over g0. We say a module is locally finite if it is a union of its
finite-dimensional submodules.

Note that there may not exist a quasireductive supergroup G for which g = LieG.

Definition 2.3. We say that k ⊆ g are quasireductive superalgebras if g is quasireductive
and k is a subalgebra of g such that k0 acts ad-semisimply on g. In particular, k will also
be quasireductive under this definition.

Definition 2.4. Let g be a quasireductive Lie superalgebra (see Definition 2.2). Then
we call a quasireductive supergroup G a global form of g if the following conditions hold:
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(1) g is a Lie subalgebra of LieG;
(2) if K ⊆ G is any subgroup with g ⊆ LieK, then K = G.

Example 2.5. Let g be the quasireductive Lie superalgebra with even basis x and odd
basis H , and such that [H,H ] = x. Then for any positive integer n there exits a global
form G of g of dimension (n|1). In fact for a fixed n > 1, there are uncountably many
such global forms up to isomorphism.

Lemma 2.6. (1) Every quasireductive Lie superalgebra admits a global form, and it
is always connected.

(2) If G is a global form of g, then g1 = (LieG)1 and G0 is a global form of the Lie
algebra g0.

(3) If k ⊆ g are quasireductive Lie superalgebras and G is a global form of g, then
there exists a unique subgroup K ⊆ G such that k ⊆ LieK, and K is a global form
of k.

Proof. We first prove (3). Suppose that G is a global form of g. Then let K ⊆ G be the
subgroup of G corresponding to the super Harish-Chandra pair (see [5]) (K0, k), where
K0 is the minimal algebraic subgroup of G0 whose Lie superalgebra contains k0. Then
it is clear that K is a global form of k and is connected.

To prove (1), apply Ado’s theorem for Lie superalgebras to obtain a faithful repre-
sentation k ⊆ gl(V ) which is semisimple over k0. Now we are reduced to (3) where
G = GL(V ).

Finally, to prove (2), if G is a global form of g, then use (3) to obtain K0 ⊆ G0

which is a global form of g0. Note that g ⊆ LieG is K0-stable with respect to the
adjoint action and [g1, g1] ⊂ g0 ⊂ LieK0. Hence we obtain a super Harish-Chandra pair
(K0,LieK0⊕g1), which will give a quasireductive subgroup of G whose Lie superalgebra
contains g. Thus K = G by the definition of a global form. �

Lemma 2.7. Let g be quasireductive, and let G be a global form of g. Then RepG is a
full monoidal, topologizing, Serre subcategory of Repg

0

g, and in particular contains the
principal block of Repg

0

g.

Proof. We have a natural faithful, exact tensor functor F : Repfd G → Repfd
g
0

g, where

(−)fd denotes the full subcategories of finite-dimensional modules. Note that these are
super-Tannakian categories. Let C be the finitely generated super-Tannakian subcat-
egory of Repfd

g
0

g generated by F (V ), where V is a finite-dimensional G-module. By

super-Tannakian reconstruction, C = Repfd G ′ for some supergroup G ′, and we have a
natural inclusion of supergroups G ′ ⊆ G. However, we have g ⊆ LieG ′ ⊆ LieG. Since G
is a global form of g, this implies G ′ = G, meaning that F is also full. �

2.3. Oddly generated supergroups and superalgebras.

Definition 2.8. (1) We say that a quasireductive supergroup G is oddly generated
if G0 is a global form of [(LieG)1, (LieG)1].

(2) We say that a quasireductive Lie superalgebra g is oddly generated if g0 = [g1, g1].

Remark 2.9. (i) An oddly generated supergroup is necessarily connected.
6



(ii) If g is an oddly generated superalgebra, then any global form of it is also oddly
generated. However, if G is oddly generated then LieG need not be oddly gen-
erated.

To help put the following lemma in context, we remark that given a global form G of
g and a subgroup H ⊆ G, there may or may not exist a subalgebra h ⊆ g for which H
is a global form of h. Further, when such a subalgebra exists it need not be unique.

Lemma 2.10. Suppose that g is quasireductive, and let G be a global form of g. Then
we have a G0-equivariant bijection of G0-sets

G : sAlgogen → sGrpogen.

Here sAlgogen is the set of oddly generated subalgebras h ⊆ g, and sGrpogen is the set of
oddly generated subgroups H ⊆ G.

Proof. The map G takes an oddly generated subalgebra h ⊆ g to a global form G(h) ⊆ G
as in (3) of Lemma 2.6. The inverse map G−1 takes an oddly generated subgroup H ⊆ G
with the given properties to the Lie superalgebra

G−1(H) = [(LieH)1, (LieH)1] + (LieH)1.

This correspondence is both clearly bijective and intertwines the adjoint action of G0 on
sAlgogen with the conjugation action on sGrpogen. �

3. Algebraic integrals on homogeneous affine supervarieties

3.1. Homogeneous spaces. Given a subgroup H ⊆ G, we may construct the smooth
homogeneous supervariety G/H, see [13]. Note that G/H admits an action of G on the
left by translation. If both G and H are quasireductive, then G/H will be an affine
supervariety.

3.2. Geometric induction. Given a a subgroup H ⊆ G, we have a functor
IndG

H : RepH → RepG given by

IndG
H V = (V ⊗ C[G])H,

where we take the H action on C[G] by right translation. In the case that both H and
G are quasireductive, IndG

H(−) is exact.
Observe that IndG

H C = C[G]H = C[G/H]. Further, IndG
H V always has the structure

of a C[G/H]-module which is compatible with the G-action.

Lemma 3.1. Let H ⊆ G be quasireductive supergroups, and let V be a simple H-module.
Then IndG

H V is simple as a C[G/H] − G module. In particular, C[G/H] is a simple G-
algebra.

Proof. This follows immediately from the fact that IndG
H is an exact functor and Barr-

Beck monadicity.
�
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3.3. Algebraic integrals.

Definition 3.2. Let H ⊆ G be quasireductive supergroups. An algebraic integral on
G/H is a G-equivariant map ι : C[G/H] → C, which may be either even or odd.

Given an algebraic integral ι on G/H, we obtain a symmetric bilinear form (−,−)ι
on C[G/H] given by (f, g)ι = ι(fg), and satisfying (fg, h)ι = (f, gh)ι.

Lemma 3.3. If ι 6= 0 then (−,−)ι is nondegenerate, i.e. its kernel is trivial as a bilinear
form.

Proof. Suppose that (−,−)ι has a nontrivial kernel, which we call K. Clearly K is G-
stable, and if g ∈ C[G/H], f ∈ K, then (fg, h)ι = (f, gh)ι = 0. Thus fg ∈ K, meaning
K is a G-stable ideal. This contradicts Corollary 3.1, so we are done. �

Notice that the form (−,−)ι induces a G-equivariant map Φι : C[G/H] → C[G/H]∗.

Corollary 3.4. If ι 6= 0 then the induced map Φι : C[G/H] → C[G/H]∗ is an isomor-
phism onto the G-finite vectors ΓG(C[G/H]∗) of C[G/H]∗.

Proof. By Lemma 3.3, Φι is injective. For surjectivity, first observe that for any simple
G0-module L, we have

[ResGG0
C[G/H] : L] < ∞.

Indeed, we have:

HomG0
(L,ResGH C[G/H]) ∼= HomG(Ug⊗Ug

0
L, IndG

H C)

∼= HomH(Res
G
H(Ug⊗Ug

0
L),C),

and the latter is clearly finite. Thus we may write

C[G/H] ∼=
⊕

L

L⊕nL ,

where the isomorphism is of G0-modules, and L runs over all simple G0-modules up to
parity. It follows that

C[G/H]∗ ∼=
∏

L

(L∗)⊕nL,

It is straightforward to see that

ΓG(
∏

L

(L∗)⊕nL) =
⊕

L

(L∗)⊕nL.

It follows that Φι defines an injective map

C[G/H] ∼=
⊕

L

L⊕nL →֒
⊕

L

(L∗)⊕nL.

Thus we obtain nL∗ ≤ nL for all L, implying that nL = nL∗ for all L, meaning that Φι

is an isomorphism. �

Lemma 3.5. Suppose that G/H admits a nonzero algebraic integral ι. Then any other
algebraic integral on G/H is a scalar multiple of ι.
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Proof. Indeed, we see that Φι(1) = ι, thus the image of 1 determines the integral.
However the existence of ι 6= 0 implies that ΓG(C[G/H]∗) ∼= C[G/H] by Corollary 3.4.
Thus

(C[G/H]∗)G = ΓG(C[G/H]∗)G ∼= C[G/H]G = C〈1〉.

�

4. CS manifolds, Berezin forms, and Berezin integration

For further details on CS manifolds, Berezins, and Berezin integration, we refer to
[12], [15], and [22].

4.1. Integration on CS manifolds. Recall that a CS supermanifold is a locally ringed
space that is locally isomorphic to

R
m|n
CS := (Rm, C(Rm)⊗

∧•
(Cn)),

for some m,n ∈ N. Here C(Rm) denotes the algebra of smooth, complex-valued func-
tions on Rm.

Let X be either a CS supermanifold or a smooth complex algebraic supervariety.
Then we have the usual notion of the cotangent bundle ΩX on X . Thus we may con-
sider BerX := Ber(ΩX ), the sheaf of Berezin forms on X . To be precise, for a vector
bundle V of dimension (r|s), Ber(V) is defined to be the line bundle with local generator
given by a local, ordered, homogeneous basis (a1, . . . , ar, b1, . . . , bs) of V, and such that
(a1, . . . , ar, b1, . . . , bs) = Ber(A)(c1, . . . , cr, d1, . . . , ds) if the second basis is transformed
into the first basis via A, a local automorphism of V.

We now restrict to the CS manifold setting to define Berezin integration. Given ho-

mogeneous coordinates x1, . . . , xm, ξ1, . . . , ξn on R
m|n
CS , we write dx1···dxm

dξ1···dξn
for the generator

of Ber(Ω
R
m|n
CS

) given by (dx1, . . . , dxm, dξ1, . . . , dξn).

Given a compactly supported Berezin form ω on R
m|n
CS with coordinates x1, . . . , xm, ξ1, . . . , ξn,

we may present it as

ω =
∑

I

fIξI
dx1 · · ·dxm

dξ1 · · · dξn
,

where the fI ∈ C(Rm) are compactly supported, and I runs over all subsets of {1, . . . , n}.
Then we define

∫

R
m|n
CS

ω =

∫

Rm

f{1,...,n}dx1 · · · dxm.

That this expression is independent of coordinate changes is proven in Theorem 11.3.2
of [15].

Now let ω ∈ BerX be an arbitrary compactly supported section, and let (Ui, ϕi) be a
partition of unity of X . We define

∫

X

ω =
∑

i

∫

Ui

ϕiω.

By the independence of the choice of coordinates on R
m|n
CS in the local setting, we find

this is again well-defined.
9



4.2. Integration along odd fibers. We define an integration along odd fibres mor-
phism, which we emphasize works in both the algebraic and CS settings. At the end we
show they are compatible in the setting of interest to us.

Let X be a smooth supervariety or a CS manifold, and suppose that we have a
splitting π : X → X0. Define the integration along odd fibres map

π∗ : BerX → Ωtop
X0

to be the following map of sheaves: first suppose that X = SpecA is affine if X is a

supervariety, and if X is a CS manifold then suppose that X = R
m|n
CS , and set A =

Γ(X ,OX ). In both cases write A = A/(A1).
Our splitting π corresponds to a splitting π∗ : A → A of the projection A → A. Let us

further assume that A has global coordinates by shrinking down our affine neighborhood
further. If x1, . . . , xm are global coordinates for A ⊆ A, and ξ1, . . . , ξn are global odd
coordinates for A, then x1, . . . , xm, ξ1, . . . , ξn will be global coordinates for A, and we
have an algebra isomorphism

A ∼= A[ξ1, . . . , ξn].

Since dx1···dxm

dξ1···dξn
trivializes BerX , we have an isomorphism of A-modules:

BerX ∼=
⊕

I

AξI
dx1 · · · dxm

dξ1 · · · dξn
,

where I runs over all subsets of {1, . . . , n}. It therefore makes sense to define

π∗

(

∑

I

fIξI
dx1 · · ·dxm

dξ1 · · · dξn

)

= f{1,...,n}dx1 · · · dxm.

That this is independent of coordinates is given for instance in Section 6 of Chapter 4
of [12]. To extend to all of X , we patch together the local constructions. The following
lemmas are now clear.

Lemma 4.1. Let X be either a smooth algebraic supervariety or a CS manifold. If we
have a splitting π : X → X0, then π∗ : BerX → Ωtop

X0
is a surjective map of sheaves. In

particular, if X0 is an affine variety or a manifold, then it defines a surjective map on
global sections.

Lemma 4.2. If X is a CS manifold with a splitting π : X → X0, then for a compactly
supported ω ∈ Γ(X ,BerX ) we have

∫

X

ω =

∫

X0

π∗(ω).

Proof. This follows directly from the definition of Berezin integration and π∗. �

4.3. Real forms. Suppose that X is a smooth algebraic supervariety such that X0 has
a real form (X0)R ⊆ X0. Then by [21], XR := ((X0)R,Oan

X |(X0)R) has the structure of a
CS manifold. Write i : XR → X for the natural map of locally ringed spaces, and let
i0 : (X0)R → X0 be the embedding of underlying spaces.

Then we have a natural map i∗ : BerX → BerXR
, where to emphasize, BerX denotes

the Berezin sheaf of the complex algebraic cotangent sheaf ΩX , and BerXR
is the Berezin

sheaf of the CS cotangent sheaf ΩXR
.
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Lemma 4.3. A splitting of algebraic supervarieties π : X → X0 determines a unique,
compatible splitting πR : XR → (X0)R, and we have for ω ∈ BerX :

i∗0(π∗(ω)) = (πR)∗(i
∗(ω)).

Proof. The fact that π determines a unique splitting πR is immediate. To obtain the
equality, we note that if x1, . . . , xm, ξ1, . . . , ξn are local coordinates on X , then they
restrict to local coordinates on XR. The rest follows from the formula for integration
along odd fibers. �

5. Volumes of homogeneous superspaces

5.1. Existence of compact forms. In the following, we recall that maximal com-
pact subgroups of a complex algebraic group whose identity component is reductive are
unique up to conjugacy, see [2].

Let G be a quasireductive supergroup with quasireductive subgroup H. Let H0,c

denote a maximal compact subgroup of H0, and let G0,c be a maximal compact subgroup
of G0 containing H0,c. These give compact real forms of G0,H0 respectively, and so we
obtain compact real CS forms Hc ⊆ Gc of H and G, respectively.

Further, G0,c/H0,c ⊆ G0/H0 is a real form, and so we may consider the compact CS
manifold given by

Gc/Hc := (G0,c/H0,c,O
an
G/H|G0,c/H0,c

).

Lemma 5.1. Let H ⊆ G be quasireductive supergroups with Lie superalgebras h ⊆ g.
Then we have a natural isomorphism of super vector spaces

Ber(g/h)H
∼
−→ Γ(G/H,BerG/H)

G .

In particular, dimΓ(G/H,BerG/H)
G ≤ 1, and further if ω ∈ Γ(G/H,BerG/H)

G is non-
zero, then it trivializes BerG/H.

Proof. Indeed,

Γ(G/H,BerG/H)
G = G(C[G]⊗ Ber(g/h))H = C〈1〉 ⊗ Ber(g/h)H.

�

Proposition 5.2. Let H ⊆ G be quasireductive supergroups, set X := G/H, and suppose
that ωX ∈ Γ(X ,BerX ) is non-zero and G-invariant. Let Xc = Gc/Hc with inclusion
i : Xc →֒ X . Then the morphism ιωX

: Γ(X,OX ) → C given by

ιωX
: f 7→

∫

Xc

i∗(fωX ),

is non-zero and G-equivariant. In particular, ιωX
defines an algebraic integral on G/H.

Proof. We first note that by Lemma 5.1, ωX trivializes BerX . Further, since X0 is
the quotient of a reductive group by a reductive subgroup, Ωtop

X0
admits a G0-invariant

trivializing form.
Since X is smooth and affine, it is split; thus choose a splitting π : X → X0, and

write πc : Xc → (Xc)0 for the induced splitting of Xc (see Lemma 4.3). By Lemma
4.1, π∗ : BerX → Ωtop

X0
is surjective, so there exists f ∈ Γ(X ,OX ) such that π∗(fωX )

is G0-invariant and trivializes Ωtop
X0

. Thus if i0 : (Xc)0 →֒ X0 is the natural inclusion,
11



we have that i∗0(π∗(fωX )) is a trivializing top differential form on (Xc)0, implying its
integral over (Xc)0 is nonzero. Thus by Lemmas 4.2 and 4.3,

ιωX
(f) =

∫

Xc

i∗(fωX )

=

∫

(Xc)0

(πc)∗(i
∗(fωX ))

=

∫

(Xc)0

i∗0(π∗(fωX)) 6= 0.

We refer to Thm. 16 of [19] for the proof that ιωX
is G-equivariant. �

5.2. Existence of integrals.

Theorem 5.3. Let H ⊆ G be quasireductive. Then there exists a nontrivial algebraic
integral ι : C[G/H] → C if and only if Ber(g/h) is trivial as an H-module (i.e. is
isomorphic to either C or ΠC.)

Note that Theorem 5.3 was proven in the analytic setting in [1].

Proof. Observe that BerG/H ∼= IndG
H Ber(g/h). We always have a G-equivariant natural

pairing
C[G/H]⊗ BerG/H → C

given by

f ⊗ ω 7→

∫

Gc/Hc

i∗(fω)

as in Proposition 5.2. We claim this defines a perfect pairing. To see this, notice that if
it is not zero it is automatically perfect because otherwise a kernel would define nontriv-
ial G-stable ideal in C[G/H] or a G-stable submodule of IndG

H Ber(g/h), contradicting
Lemma 3.1. On the other hand it is not zero by Lemmas 4.1 and 4.2, using the existence
of a nonvanishing top form on G0,c/H0,c whose integral is 0.

Thus we obtain in every case an isomorphism IndG
H Ber(g/h) ∼= ΓGC[G/H]∗ as in Corol-

lary 3.4. Therefore, if G/H has an algebraic integral, we obtain via this isomorphism a
G-invariant Berezin form, implying that Ber(g/h) is trivial. Conversely, if Ber(g/h) is
a trivial H-module, then a global G-invariant Berezin form exists, call it ω. Then via
Proposition 5.2 we obtain a non-zero algebraic integral ιω as desired. �

5.3. Volumes of homogeneous superspaces.

Definition 5.4. Suppose that X is a compact cs manifold and let ω ∈ BerX be a
trivialization. Then we define the volume of X with respect to ω to be:

vol(ω) = volω(X ) :=

∫

X

ω.

If H ⊆ G are quasireductive supergroups, with Ber(g/h) a trivial H-module, we define

vol(G/H) := vol(ωG/H|Gc/Hc
),

12



where ωG/H is a non-zero G-invariant Berezin form on G/H, and we have chose compact
forms Hc ⊆ Gc. Observe that vol(G/H) is only well-defined up to non-zero scalar; as a
result it is only well-defined to state that vol(G/H) is either zero or non-zero.

We remark that for vol(G/H) to be well-defined in Definition 5.4, we need it to be
independent of the choices Hc ⊆ Gc. For this we use Cor. 1.3 of Chpt. 7 in [2].

For the following proposition, let π : E → B be a locally trivial fibration of compact
CS manifolds with fibre F . Then we have a short exact sequence of vector bundles on
E :

0 → π∗ΩB → ΩE → ΩE/B → 0.

This implies that Ber(ΩE) ∼= Ber(ΩE/B)⊗ Ber(π∗ΩB).

Proposition 5.5. Suppose that ωE , ωB, and ωF are global Berezin forms on E ,B, and
F respectively. Suppose further that Ber(ΩE/B) is trivialized by a section ωE/B satisfying
that ωE/B|F = ωF along each fibre F , and that ωE = π∗ωB · ωE/B. Then,

vol(ωE) = vol(ωB)vol(ωF).

Proof. Let (Ui, ϕ) be a partition of unity of B on which our fibre bundle is trivial,
i.e. π−1(Ui) ∼= Ui ×F . We have

∫

E

ωE =
∑

i

∫

π−1(Ui)

π∗(ϕi)π
∗(ωB)ωE/B

=
∑

i

∫

Ui×F

ϕiωBωF

=
∑

i

∫

F

(
∫

Ui

ϕiωB

)

ωF

= vol(ωF)
∑

i

∫

Ui

ϕiωB = vol(ωF)vol(ωB).

�

6. Sylow subgroups and 0-groups

6.1. Splitting subgroups. We recall the following definition from [17].

Definition 6.1. Let H ⊆ G be quasireductive supergroups. Then we say that H is
splitting in G if any of the following equivalent conditions hold:

(1) C〈1〉 splits off C[G/H] as a G-module.
(2) For every G-module M , the natural map of G-modules M → IndG

H ResGH(M)
splits.

(3) The natural map ExtiG(M,N) → ExtiH(M,N) is injective for all i and for all
G-modules M,N .

(4) The natural map Ext1G(M,N) → Ext1H(M,N) is injective for all G-modules
M,N .

(5) Every G-module M is relatively projective over H.
13



Remark 6.2. Applying our definition of splitting to a finite group G over a field of
characteristic p, one sees that a subgroup K of G is splitting if and only if it contains a
Sylow p-subgroup, or equivalently vol(G/K) = |G/K| 6= 0 (mod p).

In particular, a Sylow p-subgroup is exactly a minimal splitting subgroup in charac-
teristic p.

The next lemma and the corollary following it are the main payoffs of our work on
Berezin integration on CS manifolds.

Lemma 6.3. If H ⊆ G is quasireductive, then H is splitting in G if and only if Ber(g/h)
is trivial and vol(G/H) 6= 0.

See Definition 5.4 for the meaning of the volume of G/H being zero or not.

Proof. By Theorem 5.3, if Ber(g/h) is trivial then we obtain a non-zero algebraic integral
ι : C[G/H] → C. By definition, vol(G/H) = ι(1), so it is clear that if vol(G/H) 6= 0 we
have that H ⊆ G is splitting.

Conversely, if H ⊆ G is splitting we obtain by (1) of Definition 6.1 a non-zero al-
gebraic integral ι on G/H. Once again by Theorem 5.3, this implies that Ber(g/h)
is trivial, thus giving rise to a non-zero algebraic integral from Berezin integration.
However by Lemma 3.5, all algebraic integrals are scalar multiples of ι, meaning that
vol(G/H) = ι(1) 6= 0. �

Corollary 6.4. If K ⊆ H ⊆ G are quasireductive supergroups, then K is splitting in G
if and only if K is splitting in H and H is splitting in G.

Proof. Using Cor. 2.7 of [17], we may assume that Ber(g/k), Ber(g/h), and Ber(h/k) are
all trivial.

Let Kc ⊆ Hc ⊆ Gc be compact CS forms of K ⊆ H ⊆ G. We set E = Gc/Kc,
B = Gc/Hc, and F = Hc/Kc, so that we have a fibration E → B with fibre F . Choose
nonzero elements

bg/h ∈ Ber(g/h), bh/k ∈ Ber(h/k), bg/k := bg/h · bh/k ∈ Ber(g/k).

Here we have used that Ber(g/k) ∼= Ber(g/h)⊗ Ber(h/k).
From each bg/k, bh/k, and bg/h we obtain global Berezin forms ωE , ωB, and ωF which

trivialize their respective Berezin sheaves.
Now Ber(ΩE/B) will be a G-equivariant bundle on G/K with fibre naturally isomorphic

to Ber(h/k), so we may trivialize it using bh/k to give a global trivialization ωE/B. By
equivariance, it is clear that ωE/B|F = ωF for any fibre, and thus we obtain ωE =
π∗(ωB)ωE/B as required to apply Proposition 5.5. From this the corollary is clear. �

Corollary 6.5. Suppose that G ∼= G1×G2, and K ⊆ G is splitting, where all supergroups
are quasireductive. Then K ∩ Gi ⊆ Gi is splitting.

Proof. We show it for i = 1. First observe that K ∩ G1 is indeed quasireductive being
the kernel of K → G2.

Using Corollary 6.4, K is splitting in G1 × π2(K). We use that the quotient of a
quasireductive group is quasireductive. On the other hand, we have an isomorphism of
quasireductive supergroups

G1 × π2(K)/K ∼= G1/K ∩ G1,
14



and since this isomorphism is G1-equivariant, we learn that K∩G1 is splitting in G1. �

6.2. Sylow subgroups and 0-groups. In analogy with finite groups, we make the
following definition.

Definition 6.6. A Sylow subgroup of a quasireductive supergroup G is a minimal split-
ting subgroup of G.

Note that the existence of Sylow subgroups follows from the Zariski topology being
Noetherian.

Remark 6.7. For a quasireductive supergroup G, RepG is semisimple if and only if the
trivial subgroup is a Sylow subgroup.

Recall that in the theory of finite-groups, a p-group P is one for which vol(P/H) =
|P/H| = 0 in Fp for all nontrivial subgroups H in P . Equivalently, P contains no
nontrivial splitting subgroups over characteristic p.

Definition 6.8. We say that a quasireductive supergroup O is a 0-group if it satisfies
any of the following equivalent conditions:

(1) O is its own Sylow subgroup.
(2) O contains no nontrivial splitting subgroups.
(3) For every quasireductive subgroup K ⊆ O such that Ber(o/k) is a trivial K-

module, we have vol(O/K) = 0.

Remark 6.9. If O is a 0-group, then by Lem. 2.11 of [17], O must be oddly generated
(see Definition 2.8).

Corollary 6.10. Given quasireductive subgroups O ⊆ G, O is a Sylow subgroup if and
only if it is a splitting 0-group.

Remark 6.11. One point of divergence from the theory of finite groups is that it is not
true that every 0-subgroup of a quasireductive supergroup G will lie in a Sylow subgroup.
Indeed, if G = GL(m|n), then the lie superalgebra has a Z-grading g = g−1 ⊕ g0 ⊕ g1,
and if mn > 1 then g1 will not Lie in any Sylow subgroup.

The question of classifying all maximal 0-subgroups will be taken up in future work.

6.3. Splitting subalgebras. In the following, we write Exti(g,g
0
)(−,−) for the Ext

groups in the category Repg
0

g (see Definition 2.2).

Lemma 6.12. Let g be quasireductive and k ⊆ g a quasireductive subalgebra of g. Then
the following are equivalent:

(1) there exists global forms K ⊆ G of k ⊆ g such that K is splitting in G;
(2) if K ⊆ G are any global forms of k ⊆ g, then K is splitting in G.
(3) Exti(g,g

0
)(M,N) → Exti(k,k

0
)(M,N) is injective for all i and for all M,N in Repg

0

g;

(4) Ext1(g,g
0
)(M,N) → Ext1(k,k

0
)(M,N) is injective for all M,N in Repg

0

g.

Proof. (2) ⇒ (1) and (4) ⇒ (3) are clear, as is (3) ⇒ (2) by Lemma 2.7. For (1) ⇒ (4),
it suffices to show that Ext•(g,g

0
)(M,N) → Ext•(k,k

0
)(M,N) is injective when N is a finite-

dimensional g-module, and thus we may assume that N = C by tensoring M by N∗.
15



We may write M = M ′ ⊕M ′′, where M ′ lies in the principal block of (g, g0), and M ′′

has no simple constituents lying in the principal block. Thus
Exti(g,g

0
)(M,C) = Exti(g,g

0
)(M

′,C), and so we may assume M lies in the principal block.
But the principal block of Repg

0

g lies in RepG by Lemma 2.7, so we are done. �

Definition 6.13. If k ⊆ g are quasireductive, then we say that k is splitting in g if any
of the equivalent conditions of Lemma 6.12 holds.

The following is a consequence of Corollary 6.4 and Corollary 6.5.

Corollary 6.14. (1) If k ⊆ h ⊆ g are quasireductive, then k is splitting in g if and
only if k is splitting in h and h is splitting in g.

(2) If h ⊆ g1 × g2 is splitting, then h ∩ gi is splitting in gi.

6.4. Sylow subalgebras and 0-superalgebras.

Definition 6.15. Let g be quasireductive. We say that a quasireductive subalgebra
o ⊆ g is a Sylow subalgebra if o is splitting in g, and is minimal with this property.

Definition 6.16. We say that a Lie superalgebra o is a 0-superalgebra if it is a Sylow
subalgebra of itself.

Remark 6.17. If o is a 0-superalgebra, then it must be oddly generated (see Definition
2.8).

Lemma 6.18. If o is a 0-superalgebra and O is a connected global form of o, then O is
a 0-group.

Proof. Let K ⊆ O be a Sylow subgroup. By Lemma 6.12, this implies that k = LieK is
splitting in LieO. On the other hand, since k1 + [k1, k1] is splitting in k and is contained
in o, it must also be splitting inside o. Since o is a 0-superalgebra, we obtain that k = o,
which in turn implies K = O. �

The following Lemma follows immediately from 6.12 and 6.18.

Lemma 6.19. Suppose that o ⊆ g are quasireductive Lie superalgebras such that o is
Sylow in g. If O ⊆ G are global forms of o and g, then O is Sylow in G.

Corollary 6.20. If g is quasireductive, then a quasireductive subalgebra o ⊆ g is Sylow
if and only if it is a splitting 0-subalgebra.

6.5. Bijective correspondence of 0-subalgebras and 0-subgroups.

Lemma 6.21. Let g be a Lie superalgebra with global form G.

(1) The bijection G of Lemma 2.10 defines a G0-equivariant bijection between the
0-subalgebras of g and the 0-subgroups of G.

(2) The bijection G restricts to a G0-equivariant bijection between the Sylow subal-
gebras of g and the Sylow subgroups of G.

(3) Further, G restricts to G0-equivariant bijection between the maximal 0-subalgebras
of g and the maximal 0-subgroups of G.

Proof. This is a straightforward consequence of Lemmas 6.18, 6.19 and 2.7. �
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6.6. Neat and homological elements. Let G be quasireductive. We recall from [8]
the following definition.

Definition 6.22. An element x ∈ g1 is called neat if either x = 0 or if there exists a
subalgebra osp(1|2) ∼= k ⊆ g with x ∈ k1.

Note that the definition of neat elements in [8] is different than the one given here,
although is shown to be equivalent in loc. cit.

Definition 6.23. The homological elements of g1 are defined as

ghom1 = {x ∈ g1 : [x, x] is semisimple in g0}.

By Thm. 2.15 of [17], if K ⊆ G is splitting then we must have

G0 · k
hom
1 = ghom1 , (6.1)

where · stands for the adjoint action. In particular, if RepG is semisimple, then nec-
essarily ghom

1
= {0}. We now show the converse, which can be viewed as a version of

Cauchy’s lemma for supergroups.

Proposition 6.24. The following conditions on a quasireductive Lie superalgebra g are
equivalent:

(1) ghom
1

= {0};
(2) Every odd element of g is neat;
(3) Repg

0

g is semisimple.

Proof. Let us show first that (1) implies (2). Let x ∈ g1, x 6= 0 and [x, x] = ys + yn be
the Jordan decomposition of y = [x, x]. By our assumption yn 6= 0. Therefore by the
Jacobson-Morozov theorem there exists an sl(2)-triple {e, h, f} ⊂ gys such that e = yn.

Since [e, x] = 0 we can write x =
∑l

k=0 xk such that [h, xk] = kxk. We first note that
[x0, x0] = ys and hence by (1) x0 = ys = 0. The relations [h, e] = 2e and [x, x] = e imply
[xk, xk] = 0 for k > 1 and hence by (1) we get x = x1. Now one can easily see that
{e, h, f, x, [f, x]} form a basis of the osp(1|2) subalgebra in g.

Let us now show that (2) implies (3). Since osp(1|2) is simple we have that if (2)
holds for g and r ⊂ g is an ideal, then (2) holds for r and g/r. On the other hand, if (3)
holds for r and g/r then r is splitting for g and therefore (3) holds for g. Now we can
proceed by induction on dimension of g and we have to check the statement only for
simple Lie superalgebra g. Now the statement follows from the classification of simple
Lie superalgebras ([11]), which shows that only g = osp(1|2n) has that gneat

1
= g1.

Finally, (3) implies (1) by the argument before the proposition. �

Corollary 6.25. If G is a quasireductive supergroup such that ghom
1

= {0}, then RepG
is semisimple.

6.7. A priori results on Sylow subgroups and 0-groups.

Lemma 6.26. Let O be a 0-group with Lie superalgebra o.

(1) Any quotient of O is again a 0-group.
(2) O does not admit a simple quotient.
(3) O does not admit a nontrivial, purely even quotient.
(4) o does not have simple ideal.
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(5) The product of two 0-groups is again a 0-group.

Proof. For (1), if O is a 0-group and π : O → O′ is a quotient of O with nontrivial
subgroup K ⊆ O′, then

vol(O′/K) ∼= vol(O/π−1(K)) = 0,

which implies that O′ is a 0-group.
For (2), we use (1) and the results of [17] and [19], whose main theorems show that

any simple quasireductive supergroup admits a nontrivial splitting subgroup.
Once again (3) follows from (1) because a nontrivial reductive group is never a 0-

group.
For (4) assume s is a simple ideal in o. Let i be a maximal ideal in o which intersects

s by zero and set ō := o/i. Note that ō is the Lie superalgebra of a 0-group. On the
other hand, o is a subalgebra of der s. By [16] (see also Lemma 8.4, der s/s is a purely
even algebra unless s = psq(n) for n ≥ 3 and der s = pq(n). Therefore ō = s unless
ō = pq(n). The former case is impossible by (2) and the latter case is also impossible,
see [17].

Finally, (5) follows from Corollary 6.5. �

7. Classification and structure of 0-groups

In this section, we classify 0-groups and give several equivalent characterizations.

7.1. Takiff superalgebras and supergroups.

Definition 7.1. We call a Lie superalgebra s a Takiff superalgebra, if there exist simple
(even) Lie algebras s1, . . . , sk such that

s ∼=
⊕

i

si ⊗ C[ξi],

where each C[ξi] is a supercommutative algebra with one odd generator ξi.

Observe that a Takiff superalgebra is never a 0-superalgebra, as it is not oddly gen-
erated.

Definition 7.2. A Lie superalgebra g is called a Takiff 0-superalgebra if g is semisim-
ple (has trivial radical), g is oddly generated (i.e. [g1, g1] = g0), and [g, g] is a Takiff
superalgebra. It is equivalent to the condition that

⊕

i

si ⊗ C[ξi] ⊆ g ⊆
⊕

i

si ⊗ C[ξi]⋊ C〈∂ξi〉,

and that [g1, g1] = g0. Clearly, we may write g =
⊕

i

si ⊗ C[ξi] ⋊ d, where d ⊆

C〈∂ξ1 , . . . , ∂ξk〉. Then the condition [g1, g1] = g0 is equivalent to asking that the natural
projections d → C〈∂ξi〉 are surjective for all i.

Definition 7.3. A supergroup S is called a Takiff supergroup if s = LieS is a Takiff
superalgebra. Similarly, a supergroup G is called a Takiff 0-supergroup if g = LieG is a
Takiff 0-superalgebra.
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Example 7.4. Examples of Takiff 0-superalgebras include:

(sl2 ⊗ C[ξ1]⊕ sl3 ⊗ C[ξ2])⋊C〈∂ξ1 − ∂ξ2〉.

Another example is

pq(2) ∼= spe(2) ∼= (sl(2)⊗ C[ξ])⋊C〈∂ξ〉,

where spe(2) is the commutator subalgebra of the periplectic Lie superalgebra pe(2),
and pq(2) is the quotient of the queer Lie superalgebra q(2) by its centre.

A non-example of a Takiff 0-superalgebra is

(sl2 ⊗ C[ξ1]⊕ sl3 ⊗ C[ξ2])⋊ C〈∂ξ1〉.

Remark 7.5. For a Takiff superalgebra s =
k
⊕

i=1

si ⊗ C[ξ], we have:

Der(s)/s = 〈∂ξ1 , . . . , ∂ξk , ξ1∂ξ1 , . . . , ξk∂ξk〉.

See, for instance, Lem. 6.6 of [16].

7.2. Classification theorem. In the following, a central extension may be of arbitrary
size.

Theorem 7.6. A quasireductive supergroup O is a 0-group if and only if O is oddly
generated and isomorphic to a central extension of T × V, where V is an odd abelian
supergroup and T is a Takiff 0-supergroup.

We note that by Lemma 6.21, Theorem 7.6 is equivalent to the statement that a
quasireductive Lie superalgebra o is a 0-superalgebra if and only if it is oddly generated
and isomorphic to a central extension of t× v, where t is a Takiff 0-superalgebra, and v

is an odd Lie abelian superalgebra.
For the backwards direction of Theorem 7.6, we will need the following lemma:

Lemma 7.7. Let G = G ′ ⋉ D where G,G ′ are quasireductive, and D is an odd abelian
supergroup that commutes with G0. Then D is contained in every splitting subgroup of
G. Further, K = K′ ⋉D is splitting in G if and only if K′ is splitting in G ′.

Proof. Since LieD consists of homological, G0-fixed vectors, the first claim follows from
6.1.

For the second statement, observe that the natural map G ′/K′ → G/K is an isomor-
phism of G ′-varieties. We clealy have a natural isomorphism Ber(g/k) ∼= Ber(g′/k′), and
since K′

0 = K0, Ber(g/k) is trivial as a K-module if and only Ber(g′/k′) is trivial as a
K′-module.

Thus let us assume these Berezin modules are trivial, meaning both G/K and G ′/K′

admit global, invariant, Berezin forms ωG/K and ωG′/K′ . Since ωG/K pulls back to ωG′/K′

under the isomorphism G ′/K′ ∼= G/K, it is clear that vol(G/K) 6= 0 if and only if
vol(G ′/K′) 6= 0, so we may conclude by Lemma 6.3. �

Proof of Theorem 7.6. Let O be oddly generated and a central extension of T × V,
where T is a Takiff 0-supergroup and V is odd abelian. To show that O is a 0-group,
we may quotient by the centre, and thus assume that O ∼= T ×V. However this implies
O ∼= S ⋉ D, where S is a Takiff supergroup and D is an odd abelian subgroup that
commutes with O0. Thus we may apply Lemma 7.7, which implies that any splitting
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subgroup K of O must be of the form K′ ⋉D, where K′ ⊆ S is splitting. However, s1 is
an odd abelian ideal of s, implying that s1 ⊆ k′. Thus o1 = k1, implying K = O.

For the converse direction, we apply Lemma 6.26 and the following Lemma 7.8. �

Lemma 7.8. Let O be an oddly generated quasireductive supergroup with Lie superal-
gebra o such that o/z(o)0 contains no simple ideal. Then O is isomorphic to a central
extension of T × V, where T is a Takiff 0-supergroup and V is odd abelian.

Proof. Let O be a such a supergroup, and assume without loss of generality that O has
trivial centre. Thus we want to show that O = T ×V, where T is a Takiff 0-supergroup
and V is odd abelian.

By Lem. 5.6 of [16], the minimal ideals of o = LieO are either simple, odd abelian,
or a Takiff superalgebra. Let c(o) be the product of minimal ideals of o. Since by
assumption o does not have simple ideals, by Thm. 6.9 of [16], c(o) is isomorphic to
s× v for a Takiff superalgebra s and an odd abelian ideal v. Further, o/c(o) = r⋉ l for
a reductive Lie algebra r and an odd abelian ideal l. However [o1, o1] ⊆ c(o), so we must
have r = 0.

Thus we have o = (s× v)⋊ l. Hence:

l ⊆ Der(s× v)1.

Clearly [l, v] = 0. By Remark 7.5, we are done. �

7.3. Characterization via neat elements and the nil-cone. Let G be quasireduc-
tive with Lie superalgebra g. We now recall three definitions, the first from [8] and the
third from [10].

Definition 7.9. We define the nil-cone of N(g1) ⊆ g1 to be the set of x ∈ g1 such that
0 lies in the closure of G0 · x in g1.

Observe that if K ⊆ G are quasireductive supergroups, then N(k1) ⊆ N(g1).

Definition 7.10. For a Lie superalgebra g, set Xg := {x ∈ g1 : [x, x] = 0}. This is the
cone of odd self-commuting elements of g (see [10]).

Observe that ghom
1

∩N(g1) ⊆ Xg.

Proposition 7.11. Let O be an oddly generated quasireductive supergroup. Then the
following are equivalent:

(1) O is a 0-group;
(2) N(o1) ⊆ Xo.
(3) N(o1) ⊆ ohom

1
;

(4) oneat
1

= {0}.

Proof. (1)⇒(2) Let O be a 0-group. Then after quotienting by the center, o = s ⋊ d,
where s is a Takiff superalgebra and d is an odd abelian subalgebra fixed by O0. Because
d is fixed by O0, we see that N(o1) ⊆ s1. However s1 ⊆ Xo, as desired. (2)⇒ (3) is
obvious

For (3) ⇒ (4), if gneat
1

6= {0} then there exists an embedding osp(1|2) ⊆ g. But

N(osp(1|2)1) = osp(1|2)1, while osp(1|2)hom
1

= {0}, giving a contradiction.
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(4)⇒(1) Suppose that oneat
1

= {0}. By a check, one can show that any simple quasire-
ductive Lie superalgebra admits non-zero neat elements. In particular, o does not con-
tain any simple ideal. We conclude by Lemma 7.8. �

Corollary 7.12. Let o be a 0-superalgebra, and let o′ ⊆ o be an oddly generated, quasire-
ductive subalgebra. Then o′ is again a 0-superalgebra.

Proof. This follows easily from (o′
1
)neat ⊆ oneat

1
= {0} and part (4) of Proposition 7.11.

�

7.4. Root decomposition for 0-groups.

Lemma 7.13. Let o be a 0-superalgebra. Then there exists x ∈ ohom1̄ such that:

(1) h := co(x
2) is a Cartan subalgebra of o.

(2) [h1̄, h1̄] = h0̄.
(3) The root system ∆ ⊆ h∗

0
coincides with the root system of o0̄ and hence is a

classical reduced root system.
(4) For any root α ∈ ∆, the subalgebra oα generated by root spaces o±α is isomorphic

to psq(2) or sq(2).
(5) For any root α ∈ ∆, oα is an irreducible h-module.

Proof. This follows directly from the description of 0-groups in Theorem 7.6, and the
fact that the same is true for Takiff 0-superalgebras. �

Remark 7.14. We remark that in the language of [20], Lemma 7.13 shows that 0-
superalgebras are all queer Kac-Moody. In fact, it was shown in loc. cit. that all
finite type queer Kac-Moody superalgebras are products of Takiff 0-superalgebras and
the queer Lie superalgebra q(n) (up to central extensions).

Lemma 7.15. Let o be a 0-superalgebra and let L ∈ Repo
0

o be a simple module. Let

P(L) denote the set of weights of L.

(1) If the center of o annihilates L, then L 6∼= ΠL, and Reso
0
L is a direct sum of

several copies of one simple o0̄-module.
(2) If L is nontrivial then the superdimension of any weight space is zero.
(3) If 0 /∈ P(L) then Ext1(o,o

0
)(C, L) = 0.

(4) If L, L′ are simple modules such that P(L) ∩P ′(L) = ∅ then Ext1(o,o
0
)(L, L

′) = 0.

(5) If the multiplicity of any weight space of L equals (1|1), then L is not isomorphic
to L∗.

Proof. To prove (1) we may assume without loss of generality that the center of o is
trivial. Then if h ⊆ o denotes a Cartan subalgebra, we have a decomposition h = h1⊕h2,
where [h1, h1] = [h2, h2] = 0. Thus any simple h-module will not be isomorphic to its
parity shift, implying the same for any simple o-module by highest weight theory.

Now write o1̄ = m⊕o
o0̄
1̄
. Then m is a purely odd abelian Lie superalgebra, and Lm 6= 0

is o0̄-invariant. Let M0 be a simple o0̄-submodule of Lm. We have that L is a quotient of
U(o)⊗U(o0̄+m) M0. Since all simple o0̄-components of the latter module are isomorphic,
this completes the proof of (1).

Let us prove (2). For any nonzero weight, the statement follows from Lemma 7.13
(2). Therefore (2) holds if L is not trivial over the center of o. If the center acts trivially
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on L consider the highest weight space of L. If the highest weight is not zero, then the
highest weight space has superdimension 0 and the statement follows from (1).

For (3), by Lemma 7.13 the root lattice of o is equal to the root lattice of o0, implying
a corresponding decomposition of Rep0 o into modules with weights lying in a given
coset of the weight lattice modulo the root lattice. This implies the result.

(4) follows from (3) by using Ext1(o,o
0
)(L, L

′) = Ext1(o,o
0
)(C, L

∗ ⊗ L′).

(5) If L ≃ L∗ then the center acts trivially on L. The condition on weight multiplicity
and (1) ensures that L0̄ ≃ L1̄ is a simple o0̄-module. On the other hand, since L 6∼= ΠL,
L must admit an invariant even symmetric or skew symmetric form, which would mean
that L0̄ admits both a symmetric and skew-symmetric form, which is impossible. �

8. Uniqueness of Sylow subgroups up to conjugacy

Theorem 8.1. Let G be a quasireductive supergroup. Then any two Sylow subgroups
O,O′ of G are conjugate under G0.

The proof of Theorem 8.1 will be given in steps, and will occupy the rest of the section.
Write g = LieG.

Using Lemma 6.21, we easily obtain that Theorem 8.1 holds if and only all Sylow
subalgebras of g are conjugate. Thus we sometimes work with g and sometime with G,
as is convenient.

We start with a useful lemma.

Lemma 8.2. Let G be a quasireductive supergroup, and suppose that G̃ = Gc⋊D, where
Gc is an even central extension of G and D = D0 is even reductive. Then the Sylow
subgroups of G are in natural bijection with the Sylow subgroups of G̃, and this bijection
respects conjugation by G0.

Proof. Write π : Gc → G for the natural quotient. Using Lem. 2.9 of [17], it is easy
to check that a subgroup O ⊆ Gc is Sylow if and only if π(O) is Sylow in G, and this
correspondence clearly respects conjugation. Therefore we may assume Gc = G, so that
G̃ = G ⋊D.

Because D is reductive, it is clear that every Sylow subgroup of G̃ is contained, and
thus also a Sylow subgroup, of G. Conversely, since G is splitting in G̃, a Sylow subgroup
in G is also a Sylow subgroup in G̃, giving our conjugation-preserving bijection. �

8.1. Uniqueness up to conjugacy when g is simple. The simple Lie superalgebras
were classified in [11]. All quasireductive simple Lie superalgebras appear in the follow-
ing table. The work in [17] and [19] implies that we have the following table of Sylow
subalgebras of the (almost) simple superalgebras:
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g Sylow subalgebra o

g Kac Moody of defect d sl(1|1)d

psl(d|d) p(sl(1|1)d)

pe(2n+ 1) ,spe(2n+ 1) spe(2)n × spe(1)

pe(2n), spe(2n) spe(2)n

psq(2n+ 1) ps(q(2)n × q(1))

psq(2n) ps(q(2)n)

Some explanations:

(1) we write pe(n) for the periplectic Lie superalgebra, and spe(n) for its derived
subalgebra;

(2) p(sl(1|1)d) denotes the quotient of sl(1|1)d by the one-dimensional central ideal
spanned by (h, . . . , h), where h ∈ sl(1|1) is a non-zero central element.

(3) sq(n) denotes the commutator subalgebra of q(n), and psq(n) is the quotient of
sq(n) by its one-dimensional centre.

(4) s(q(2)n(×q(1))) denotes the odd codimension-one subalgebra of q(2)n(×q(1))
given by the kernel of the superalgebra homomorphism φ : q(2)n × q(1) → C0|1,
where φ the sum of the odd trace maps from each factor.

(5) ps(q(2)n(×q(1))) is the quotient of s(q(2)n(×q(1))) by the subalgebra spanned
by (c, . . . , c), where c is a nonzero central element in each factor q(2) or q(1),
respectively.

Remark 8.3. The roots of the Sylow subalgebras of simple Lie superalgebras in the above
table always form an iso-set, as defined in [9].

The following lemma is proven in, for instance, Section 6 of [16].

Lemma 8.4. Let g be a quasireductive, simple Lie superalgebra, and let Out(g) =
Der(g)/g.

(1) We have a splitting Out(g) ⊆ Der(g)g0, and Out(g) = Der(g)g0 unless g =
sl(m|n) for m 6= n, mn > 1, or g = osp(2|2n) for n > 0.

(2) Further, we have:
(a) Der(g)g0 = 0 when g = osp(m|2n) for m 6= 2, and for g = d(2|1; a), ag(1|2),

ab(1|3);
(b) Der(g)g0 = C〈h〉 for h an even grading operator, when g = osp(2|2n) for

n > 0, g = sl(m|n) for m 6= n, mn > 1, g = psl(n|n) for n ≥ 3, and
g = spe(n) for n ≥ 3;

(c) Der(psl(2|2))psl(2|2)0 ∼= sl(2);
(d) Der(psq(n))psq(n)0 = C〈H〉, where H is odd, and ad(H) : psq(n)1 → psq(n)0

is an isomorphism.

Proposition 8.5. Sylow subalgebras of simple quasireductive Lie superalgebras are unique
up to conjugacy and stable under Der(g)g0. In particular, they are stable under Out(g).

We now prove Proposition 8.5 by showing that in every case listed in our table above,
the Sylow subalgebra presented is unique up to conjugacy. Note that one can check
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directly that each such subalgebra is stable under Der(g)g0 , implying the second half of
Proposition 8.5.

It will sometimes be convenient to work not with the simple Lie superalgebra g, but
rather a larger Lie superalgebra g̃ which is obtained from g via an even central extension
and adding even derivations, as in Lemma 8.2. From this we use that Sylow subalgebras
are stable under the even outer derivations, so that the bijection from Lemma 8.2 will
descend to a bijection on conjugacy classes.

8.1.1. Queer superalgebra psq(n). We have that pq(n) = psq(n) ⋊ C〈H〉, where H ∈
pq(n)1 commutes with the even part and has that [H,H ] = 0. Thus by 6.1, H must lie
in every splitting subalgebra o of pq(n), so we may write o = o′ ⋊ C〈H〉, where o′ is
splitting in psq(n) by Lemma 7.7.

Let h be a Cartan subalgebra of psq(n). Then using the same arguments as in the
proof of Prop. 3.13 of [17], we obtain that, up to conjugacy, any splitting subalgebra
o′ ⊆ psq(n) contains h, and therefore is a root subalgebra of psq(n). In particular it
must be stable under H , so that o′ ⋊ C〈H〉 will be a splitting subalgebra of pq(n). It
further follows that every splitting subalgebra of pq(n) is of this form.

Therefore we obtain a bijection between the splitting subalgebras of pq(n) and psq(n)
which respects inclusion and conjugation, implying the same holds for Sylow subalge-
bras. We may now conclude by Prop. 3.13 of [17].

8.1.2. Defect one Kac-Moody superalgebras. The case when g is a defect one Kac-Moody
superalgebra is covered by Prop. 3.12 of [17].

8.1.3. gl(m|n), and osp(m|2n).

Lemma 8.6. Let L be a faithful irreducible representation of a 0-superalgebra o such
that o is a splitting subgroup in GL(L). Then dimL = (1|1) and o = sl(1|1).

Proof. By Lemma 7.15, part (2), we know that L has zero superdimension. Suppose
dimL = (n|n). Let x ∈ gl(L) be a generic homological element such that the semisimple
element h = [x, x] is diagonal with eigenvalues a1, . . . an linearly independent over Q.
By 6.1, we may assume without loss of generality that x ∈ o. There exist a basis
{v1, . . . , vn} of L0̄ and a basis {w1, . . . , wn} of L1̄ such that hvi = aivi, hwi = aiwi. By
Lemma 7.15(1) we obtain that L0̄ and L1̄ are isomorphic irreducible representation of o0̄
with dimension equal the rank of o0̄. The latter is only possible if o0̄ ≃ gl(n) is embedded
diagonally into gl(L)0̄. On the other hand, o1̄ must contain self-commuting elements of
rank (0|1) and (1|0). This forces o ≃ sl(n|n) and the latter is a zero-superalgebra only
for n = 1. �

Lemma 8.7. Let g = gl(m|n) or g = osp(m|2n). Let d be the defect of g and let
{α1, . . . , αd} be a set of mutually orthogonal linearly independent isotropic roots. Let o
be the Sylow subalgebra of g generated by the roots spaces g±αi

for i = 1, . . . , d. Then
every Sylow subalgebra of g is conjugate to o.

Proof. Let k ⊆ g be a Sylow subalgebra of g, and let V be the standard representation of
g Let us choose a generic homological x ∈ k1̄ which also a generic homological element in
g. If g = gl(V ), then h has purely even or purely odd kernel and eigenvalues a1, . . . , an
linearly independent over Q. If g = osp(V ), the kernel of h is purely even, purely
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odd, or has dimension (1|2k) and eigenvalues are ±a1, . . . ,±an with a1, . . . , an linearly
independent over Q.

Let L1, . . . , Lk denote the simple non-trivial k-constituents in the restriction of V to
k. Note that each Li satisfies condition (5) of Lemma 7.15. In particular every Li is not
self dual. Next we notice that 0 /∈ P(Li). Indeed, the zero weight space of Li must have
superdimension zero. If ker h is purely odd or purely even, then clearly 0 /∈ P(Li). If
dim ker h = (1|2k) and 0 ∈ P(Li), then using the self-duality of V , there exists j 6= i
with L∗

i ≃ Lj, and so 0 ∈ P(Lj). This again is impossible by dimension constraints.
Finally, from weight multiplicities we obtain that P(Li) ∩ P(Lj) = ∅ if i 6= j. Using
Lemma 7.15 (4) we obtain that V is semisimple as a k-module when ker h is purely even
or purely odd. If g = osp(V ) with dim ker h = (1|2k), any nontrivial extension between
C and ΠC will violate self-duality of V , so once again we find that V is semisimple.

Set

g′ =

k
∏

i=1

gl(Li) ⊂ g

for g = gl(V ). If g = osp(V ) then we have k = 2l with Li ≃ L∗
l+i, and we set

g′ =
l
∏

i=1

gl(Li) ⊂ g.

Since k ⊂ g′ ⊂ g, k is splitting in g′. That means k ∩ gl(Li) is splitting in gl(Li)
by Corollary 6.5. Now Lemma 8.6 implies dimLi = (1|1). Thus, k is isomorphic the
product of SL(1|1)d. After conjugation, we may assume x ∈ o, and that forces o = k,
as desired. �

8.1.4. pe(n).

Lemma 8.8. Let L be a faithful irreducible representation of a 0-superalgebra o such that
L ≃ ΠL∗ and o is a splitting subalgebra in pe(L). Then dimL = (2|2) and o ∼= spe(2).

Proof. By Lemma 7.15, part (2), we know that L has zero superdimension. Suppose
dimL = (n|n). Let x ∈ pe(L) be a generic homological element. By 6.1, we may assume
without loss of generality that x ∈ o.

If n = 2k then the eigenvalues of the semisimple element h = [x, x] are ±a1, . . . ,±ak
such that a1, . . . , ak are linearly independent over Q. Let T denote the global form
of C〈h〉 and t = Lie T . If n = 2k + 1, zero is also an eigenvalue. The dimension of
every eigenspace of h equals (1|1) and h is a generic semisimple element in sl(n). Since
L ∼= ΠL∗, the center of o must act trivially, so Lemma 7.15, part (1), implies L0̄ and ΠL1̄

are isomorphic, simple o0̄-modules. Furthermore, all t-weights of L0̄ have multiplicity
1 and all non-zero weights are highest weights with respect to some Borel subalgebra
of o0̄. Thus, L0̄ is minuscule for n = 2k and quasi-minuscule for n = 2k + 1. On
the other hand, dimL0 ≤ 2 rk o0 + 1. By comparing with the list of quasi-minuscule
representations we see only the following possibilities for o0̄: sl(L0̄), so(L0̄) and sp(L0̄)
(for even n only).

Now pe(L)1̄ = S2L0̄ ⊕ Λ2L∗
0̄ decomposes into the sum of at most three irreducible

components with respect to the adjoint action of o0̄.
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If o1̄ = sl(L0̄) then S2L0̄ and Λ2L∗
0̄ are irreducible and by 6.1 o1̄ must contain an

element from both components. Then pe(L)1̄ = o1̄ and hence spe(L) ⊂ o

If o1̄ = so(L0̄) then S2L0̄ = R⊕C where R is irreducible, and Λ2L∗
0̄ is irreducible. By

6.1 o1̄ must contain elements from both nontrivial components. It is easy to see that R
and Λ2L∗

0̄ generate spe(L) and hence spe(L) ⊂ o.
For o1̄ = sp(L0̄) we can show that spe(L) ⊂ o by the same argument as in the previous

case. The only difference is that S2L0̄ remains irreducible while Λ2L∗
0̄ = R ⊕ C.

Since o is a 0-superalgebra and spe(L) ⊂ o is oddly generated, Corollary 7.12 implies
that spe(L) is a 0-superalgebra. This implies that n = 1 or n = 2. But the case n = 1
must be excluded as spe(1) has no faithful irreducible representation. �

Lemma 8.9. Let g = pe(n). Then every Sylow subalgebra is conjugate to spe(2)k if
n = 2k and spe(2)k × spe(1) if n = 2k + 1.

Proof. Let o be a Sylow subalgebra. We choose a generic homological x as in the proof
of Lemma 8.8, and assume without loss of generality that x ∈ o.

First, we consider the case when n is even. As in the proof of Lemma 8.7 we can
conclude that the restriction of the standard g-module V to o is semisimple. Write V
as a direct sum of simple o-modules

V =

m
⊕

i=1

(Li ⊕ΠL∗
i )⊕

l
⊕

j=1

Sj,

where Sj ≃ ΠS∗
j . Now o must be splitting in

∏

gl(Li)×
∏

pe(Sj). This implies o∩gl(Li)
is splitting in gl(Li), hence dimLi = (1|1), and o ∩ pe(Sj) is splitting in pe(Sj) hence
dimSj = (2|2). However, gl(Li) is not a splitting subgroup in pe(Li⊕ΠL∗

i ) and therefore
m = 0. Now by Lemma 8.9 we obtain o =

∏

spe(Sj) which implies the statement for
even n.

The case of odd n is more subtle because of the zero weight space of dimension (1|1).
In this case we have V = V ′ ⊕W where W is a (1|1)-dimensional o-module and V ′ is a
semisimple o-module. The condition W ≃ ΠW ∗ implies o ∩ pe(W ) = spe(W ) and the
proof can be finished as in the first case. �

This now completes the proof of Proposition 8.5.

8.2. Step 2: the case when z(g)0 = 0. Let us now prove Theorem 8.1 in the case
when z(g)0 = 0. In this case, by Thm. 6.9 of [16], we have that g = c(g)⋊ (r⋉ l), where
c(g) is the product of minimal ideals of g, r is a reductive Lie algebra, and l is an odd
abelian subalgebra with trivial action of [r0, r0]. Further, r × l acts faithfully by outer
derivations on c(g), i.e. we have a natural embedding r× l ⊆ Out(c(g)).

Lemma 8.10. We have a bijection between Sylow subalgebras of c(g) and Sylow subal-
gebras of g given by

c(g) ⊇ o 7→ (o+ [l, o1])⋊ l.

This bijection preserves conjugacy classes, and so all Sylow subalgebras of g are conjugate
if and only if the same is true for c(g).
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Proof. Write c(g) = k1 × · · · kl as a product of minimal ideals. By Corollary 6.14, the
Sylow subalgebras of c(g) are of the form o = o1 × · · · ol, where oi ⊆ ki is a Sylow
subalgebra.

By Lem. 5.6 of [16], ki is either simple, odd abelian, or isomorphic to s ⊗ C[ξ] for a
simple Lie algebra s. If ki is simple, then by Proposition 8.5, oi is stable under r⋉ l. If
ki is odd abelian, then ki = oi by Lem. 2.12 of [17], and again oi is stable under r⋉ l.

Finally, if ki ∼= s⊗C[ξ] for a simple Lie algebra s, then necessarily oi = ξs. However,
because ki is a minimal ideal, oi + [l, oi] = ki. Therefore we obtain that

(o+ [o, l])⋊ l

is a quasireductive subalgebra of g. We claim that it is a Sylow subalgebra. Indeed, it
is a 0-superalgebra by direct inspection, using Theorem 7.6. On the other hand it is
splitting by Lemma 7.7.

Conversely, given a Sylow subalgebra o′ ⊆ g, it must contain l by 6.1, since l ⊆ ghom
1

and G0 acts on l by characters. Since [g1, g1] ⊆ c(g), we may write o′ = o⋊ l. By Lemma
7.7, o will be a splitting subalgebra of

c(g) ∼= k1 × · · · kl.

By Corollary 6.14, oi := o ∩ ki is splitting in ki, and is clearly l-stable. From this we
see that oi ⊆ ki is Sylow whenever ki is simple or odd abelian, while oi = ki when
ki ∼= s⊗ C[ξ]. Therefore our correspondence is indeed a bijection of Sylow subalgebras.

That our bijection preserves conjugacy classes is straightforward, completing the proof
of the lemma. �

Now using step 1, it is straightforward to see that Sylow subalgebras are unique up
to conjugacy in c(g). Therefore by Lemma 8.10, Sylows are unique up to conjugacy in
g, completing step 2.

8.3. Final (third) step: g arbitrary. For this step we simply apply Lemma 8.2 to
reduce to step 2. This completes the proof of Theorem 8.1.

Remark 8.11. The proof of Theorem 8.1 in fact shows that a maximal 0-subgroup K ⊆ G
satisfying 6.1 must be Sylow.

9. Normalizers of Sylow subgroups

In the final section, we give a precise description of the normalizer of a Sylow subal-
gebra. Afterward, we give a version of the third Sylow theorem.

9.1. Normalizer of a Sylow subalgebra. Let g be quasireductive with Sylow subal-
gebra g. We would like to describe ng(o), the normalizer of o in g.

First, it is clear that ng(o) will contain the centre of g, so we may assume that
z(g)0 = 0. Thus using Thm. 6.9 of [16], we may write

g = c(g)⋊ (l⋊ r),

where c(g) = k1×· · ·× kℓ is the product of minimal ideals ki, l is odd abelian, and r = r0
is reductive. As we showed in the proof of Theorem 8.1, we may write

o = o′ ⋊ l,
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where o′ ⊆ c(g) is a splitting subalgebra. Writing o′i = ki ∩ o, we have

o′ = o′1 × · · · × o′ℓ,

and o′i = ki if ki is either Takiff or odd abelian, while o′i ⊆ ki is a Sylow subalgebra if
ki is simple. In the below table, we give ng(o) where o ⊆ g is a Sylow subalgebra of a
simple Lie superalgebra g.

(g, o) ng(o)

m < n: (sl(m|n), sl(1|1)m) s(gl(1|1)m × gl(n−m))

(psl(n|n), p(sl(1|1)n)) ps(gl(1|1)n)

m > 2n: (osp(m|2n), sl(1|1)n) gl(1|1)n × so(m− 2n)

2m ≤ 2n: (osp(2m|2n), sl(1|1)m) gl(1|1)m × sp(2(n−m))

2m+ 1 ≤ 2n: (osp(2m+ 1|2n), sl(1|1)m) gl(1|1)m × osp(1|2(n−m))

(d(2, 1;α), sl(1|1)) gl(1|1)× C

(ag(1|2), sl(1|1)) gl(1|1)× sl(2)

(ab(1|3), sl(1|1)) gl(1|1)× sl(3)

(psq(2n), ps(q(2)n)) ps(q(2)n)

(psq(2n+ 1), ps(q(2)n × q(1))) ps(q(2)n × q(1))

(spe(2n), spe(2)n) s(pe(2)n)

(spe(2n + 1), spe(2)n × spe(1)) s(pe(2)n × pe(1))

Lemma 9.1. nc(g)(o
′) is quasireductive and stable under l⋊ r.

Proof. The fact that nc(g)(o
′) is quasireductive is immediate from the above table. By

Lemma 8.4, o′ is stable under l× r, and thus the same must be true of nc(g)(o
′). �

Proposition 9.2. Let g be quasireductive with o ⊆ g a Sylow subalgebra. Then z(g)0 ⊆
ng(o), and we have

ng(o)/z(g)0 = nc(g)(o
′)⋊ (l⋊ r).

where o′ = (o/(z(g)0 ∩ o)) ∩ c(g).

Proof. This is clear from the previous lemma. �

Corollary 9.3. Let o ⊆ g be a Sylow subalgebra, and write ng(o) for its normalizer in
g. Then we have:

(1) ng(o) is quasireductive in g;
(2) if k = ng(o)/o, then Repk

0

k is semisimple;

(3) ng(o)
hom
1

= ohom
1

.

Proof. Part (1) follows from Proposition 9.2. Part (2) is because the quotient will have
the trivial superalgebra as a splitting subalgebra. Part (3) then follows from Proposition
6.24. �
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For completeness and future use, we also record here the table which describes, for
g simple, the algebraic group of inner automorphisms of g which stabilize a Sylow
subalgebra o ⊆ g. We write this algebraic group as N0.

(g, o) N0

m < n: S(GL(1|1)m0 ×GL(n−m))⋊ Sm

(sl(m|n), sl(1|1)m)

(psl(n|n), p(sl(1|1)n)) PS(GL(1|1)n0)⋊ Sn

m > 2n: [GL(1|1)n0 × SO(m− 2n)]⋊ ((Z/2Z)n ⋊ Sn)

(osp(m|2n), sl(1|1)n)

2m ≤ 2n: [GL(1|1)m0 × Sp(2(n−m)]⋊ ((Z/2Z)m−1 ⋊ Sm)

(osp(2m|2n), sl(1|1)m)

2m+ 1 ≤ 2n: [GL(1|1)m0 × Sp(2(n−m)]⋊ ((Z/2Z)m ⋊ Sm)

(osp(2m+ 1|2n), sl(1|1)m)

(d(2, 1;α), sl(1|1)) G3
m ⋊ Z/2Z

(ag(1|2), sl(1|1)) [G2
m × SL(2)]⋊ Z/2Z

(ab(1|3), sl(1|1)) [G2
m × SL(3)]⋊ Z/2Z

(psq(2n), ps(q(2)n)) PS(GL(2)n)⋊ Sn

(psq(2n+ 1), ps(q(2)n × q(1))) PS(GL(2)n ×GL(1))⋊ Sn

(spe(2n), spe(2)n) S(GL(2)n)⋊ Sn

(spe(2n+ 1), spe(2)n × spe(1)) S(GL(2)n ×GL(1))⋊ Sn

Corollary 9.4. If G is quasireductive with Sylow subgroup O ⊆ G, then NG(O) is once
again quasireductive, and RepNG(O)/O is semisimple.

The following result is extremely useful. Ideally, one could find a simple proof which
doesn’t rely on the explicit description of Sylow subalgebras.

Corollary 9.5. Let g be quasireductive with Sylow subalgebra o ⊆ g. Let t ⊆ o0 be a
maximal torus. Then cg(t) ⊆ ng(o).

Proof. This follows from our explicit description of ng(o) given in Proposition 9.2. �

Corollary 9.6. Let G be quasireductive with Sylow subgroup O ⊆ G. Write T ⊆ O0

for a maximal torus of O0. Then there exists x ∈ ohom
1

such that CG(x2) = CG(T ). In

particular CG(x2) ⊆ NG(O).

Definition 9.7. We call an element x ∈ ghom
1

generic if for some Sylow subgroup O ⊆ G,
x ∈ LieO and satisfies the conditions of Corollary 9.6.
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Proof of Corollary 9.6. The second statement follows from the connectedness of central-
izers of tori and Corollary 9.5.

For the first statement, write g = LieG. Clearly we may assume that z(g)0 = 0, and
so we do assume this. As usual, write g = c(g) ⋊ (l ⋊ r), so that o = o′ ⋊ l, where
o = LieO. Writing t = Lie T , it is clear that t ⊆ o′, so we only need to find such an
element x when g is either simple or a Takiff 0-superalgebra. These cases are easily
checked, case by case. �

Lemma 9.8. The set of generic elements of g1 form a Aut(g)-stable subset of ghom
1

.

Proof. The property of being generic is clearly preserved under any automorphism, so
the result is clear. �

Lemma 9.9. Let g be quasireductive with Sylow subalgebra o. Then the set of generic
elements in o1 is open and dense in o1.

Proof. Let V ⊆ o0 be the open subset of regular semisimple elements t for which
cg(t) = cg(co(t)). Then the set of generic elements is exactly the preimage of V un-
der the squaring map o1 → o0. By Corollary 9.6 this preimage is nonempty, and so we
are done. �

Corollary 9.10. Let g be quasireductive with Sylow subalgebras o, o′ such that o0 = o′
0
.

Then o = o′.

Proof. Let t ⊆ o0 be a maximal torus, and let h denote the centralizer of t in o. Then
by Corollary 9.5,

h ⊆ cg(t) ⊆ ng(o
′).

Since h1 = hhom
1

, by Corollary 9.3 we must have h ⊆ o′. Now we apply Lemma 7.13 to
obtain:

o = h+ [h, o0] = o′.

�

Corollary 9.11. Let G be quasireductive with Sylow subgroups O,O′ ⊆ G. If O0 = O′
0,

then O = O′.

9.2. The third Sylow Theorem. Let G be a finite group, and write Sylp(G) for the set
of Sylow p-subgroups of G. The third Sylow theorem states that |Sylp(G)| is congruent
to 1 modulo p. Since it is clear that |Sylp(G)| = |G/NG(P )| for any Sylow subgroup P ,
we may view this as saying that vol(G/NG(P )) = 1 in the base field.

We would like to give an analogous result in the super setting. One statement is
that vol(G/NG(O)) 6= 0 for any Sylow subgroup O ⊆ G; however this is obvious by 6.3
because NG(O) contains O, and thus is splitting.

We formulate a slightly different claim which is quite useful. For this, recall that if
x ∈ ghom

1
, then we have the Duflo-Serganova functor DSx : Repg

0

g → sVec given by

DSxM =
Ker(x : M → M)

Im(x : M → M) ∩Ker(x : M → M)
.

We refer to [10] for more details about this functor.
If A is a supercommutative algebra in Repg

0

g, then a straightforward check shows
that DSxA will once again be a supercommutative algebra.
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Definition 9.12. Let G be quasireductive with Sylow subgroup O ⊆ G, and let T ⊆ O0

be a maximal torus inO0. DefineWG := NG(T )/CG(T ), andWO := NNG(O)(T )/CNG(O)(T ).

Lemma 9.13. Both WG and WNG(O) are finite groups, and WNG(O) is naturally a sub-
group of WG.

Proof. That these groups are finite is a consequence of the following statement from the
theory of reductive groups: the normalizer modulo the centralizer of any torus is always
a finite group. It is clear that WNG(O) is a subgroup of WG . �

Theorem 9.14. Let G be quasireductive with Sylow subgroup O, and let x ∈ ohom
1

be
generic. Then we have an isomorphism of algebras

DSxC[G/NG(O)] = C[WG/WNG(O)],

induced by the inclusion of spaces WG/WNG(O) ⊆ G/NG(O).

Proof. Write T = CG(x2) ⊆ O0, which is a maximal torus of O0 by definition of generic
element.

Suppose that x vanishes at some closed point gNG(O) for g ∈ G(C). Then Ad(g)(x) ∈
ng(o)

hom
1

= ohom
1

, where the last equality is by Corollary 9.3. If we write T ′ = CG(Ad(g)(x2)),
then T ′ will also be a maximal torus of O0, so after multiplying by some element of
O(C) we may assume that T ′ = T , and thus g ∈ NG(T )(C). If g ∈ CG(T ), then by
Corollary 9.5 we have g ∈ NG(O)(C).

Thus we have shown that the zeroes of x lie in the image of the natural map WG →
G/NG(O), and from this it is clear that the zeroes are exactly given by WG/WNG(O).

Finally, we observe that for every zero z of x, the endomorphism [x,−] of T ∗
z G/NG(O)

is an isomorphism, once again by Corollary 9.5 and the definition of generic elements.
Thus we may conclude by Thm. 4.1 of [18]. �

9.3. Table of inclusions WNG(O) ⊆ WG. We finish by giving a table of the groups
WNG(O) and WG for each simple superalgebra. Observe that WNG(O) = WG unless g is of
type q.
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(g, o) WNG(O) ⊆ WG

m < n: (sl(m|n), sl(1|1)m) WNG(O) = WG = Sm

(psl(n|n), p(sl(1|1)n)) WNG(O) = WG = Sn

m > 2n: (osp(m|2n), sl(1|1)n) WNG(O) = WG = (Z/2Z)n ⋊ Sn

2m ≤ 2n: (osp(2m|2n), sl(1|1)m) WNG(O) = WG = (Z/2Z)m−1 ⋊ Sm

2m+ 1 ≤ 2n: (osp(2m+ 1|2n), sl(1|1)m) WNG(O) = WG = (Z/2Z)m ⋊ Sm

(d(2, 1;α), sl(1|1)) WNG(O) = WG = Z/2Z

(ag(1|2), sl(1|1)) WNG(O) = WG = Z/2Z

(ab(1|3), sl(1|1)) WNG(O) = WG = Z/2Z

(psq(2n), ps(q(2)n)) WNG(O) = (S2)
n ⋊ Sn ⊆ S2n = WG

(psq(2n+ 1), ps(q(2)n × q(1))) WNG(O) = (S2)
n ⋊ Sn ⊆ S2n+1 = WG

(spe(2n), spe(2)n) WNG(O) = WG = (S2)
n ⋊ Sn

(spe(2n+ 1), spe(2)n × spe(1)) WNG(O) = WG = (S2)
n ⋊ Sn
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