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Abstract. Urban traffic resilience has gained increased attention, with most studies adopting an engineering perspective that

assumes a single optimal equilibrium and prioritizes local recovery. On the other hand, systems may possess multiple metastable

states, and ecological resilience is the ability to switch between these states according to perturbations. Control strategies from these

two different resilience perspectives yield distinct outcomes. In fact, ecological resilience oriented control has rarely been viewed

in urban traffic, despite the fact that traffic system is a complex system in highly uncertain environment with possible multiple

metastable states. This absence highlights the necessity for urban traffic ecological resilience definition. To bridge this gap, this

paper defines urban traffic ecological resilience as the ability to absorb uncertain perturbations by shifting to alternative states.

The goal is to generate a system with greater adaptability, without necessarily returning to the original equilibrium. Our control

framework comprises three aspects: portraying the recoverable scopes; designing alternative steady states; and controlling system

to shift to alternative steady states for adapting large disturbances. Among them, the recoverable scopes are portrayed by attraction

region; the alternative steady states are set close to the optimal state and outside the attraction region of the original equilibrium; the

controller needs to ensure the local stability of the alternative steady states, without changing the trajectories inside the attraction

region of the original equilibrium as much as possible. Note that, this paper gives inner and outer estimations of attraction region

with explicit algebraic expressions, as the attraction region for nonlinear systems are usually very complex and difficult to obtain.

Comparisons with classical engineering resilience oriented urban traffic resilience control schemes show that, proposed ecological

resilience oriented control schemes have better adaptability and can generate greater resilience. These results will contribute to the

fundamental theory of future resilient intelligent transportation system.

Key words: Urban traffic resilience; resilience control; ecological resilience; macroscopic fundamental diagram; attraction

region; stability; alternative steady state

1. Introduction
Traffic congestion is plaguing most of megacities (Huang et al. (2020a), Zeng et al. (2019)). Congested

transportation systems are highly vulnerable, and often fall into collapse under extreme events such as

poor weather and accidents. Such vulnerability of transportation network operations is a "persistent urban

1

ar
X

iv
:2

40
4.

11
08

2v
1 

 [
nl

in
.A

O
] 

 1
7 

A
pr

 2
02

4



2

disease". Therefore, how to sustain functional road transportation systems has been a long-standing research

topic, in particular the challenging objective is to improve the resilience of operations towards uncertain

perturbations.

Resilience, first proposed by Holling (1973) in the ecology field, denotes the system ability to absorb

unexpected disturbances and to keep persistence. Over the past few decades, resilience has been greatly

developed in various disciplines including ecology, engineering, and psychology (Martin-Breen and

Anderies (2011), Hosseini, Barker, and Ramirez-Marquez (2016a)). In general, there are two perspectives

on resilience: engineering resilience and ecological resilience (Holling (1996)). Noteworthy, this catego-

rization of resilience is discipline-independent. One can use ball-and-cup heuristic to illustrate these two

perspectives (Scheffer et al. (1993), Rölfer, Celliers, and Abson (2022), Liao (2012), Walker et al. (2004)),

as shown in Fig. 1: when the ball is at the cup bottom, it symbolizes a steady state, known as an “attractor”;

the shape of the cup portrays the recoverable phase space of the corresponding attractor, usually described

as the shape of potential function (landscape) or attraction basin; the yellow arrows represent perturbations

and system responses. Fig. 1(a) illustrates the engineering resilience, which usually assumes there exists

a single steady state and characterizes the system ability to absorb disturbances and recover to this single

steady state. Studies related to engineering resilience typically aim at rapid local or global recovery of a

single steady-state system (Tilman and Downing (1994), O’Neill et al. (1986), Pimm (1984)). In contrast,

Fig. 1(b) shows the ecological resilience, which features multiple metastable states and the perturbations

are absorbed through a multi-state shifting, without requiring the returning to a single steady state. Clearly,

ecological resilience emphasizes persistence with uncertainty (Holling (1973), Folke (2006), Zeng et al.

(2022)). As such, ecological resilience can transform a system under instability from one basin of attrac-

tion to another (Holling (1973)), even for cases where they are far from the stable equilibrium as defined

otherwise in engineering resilience.

(a) Engineering resilience (b) Ecological resilience

Figure 1 Schematic diagram of (a) engineering resilience and (b) ecological resilience (Liao (2012), Rölfer,

Celliers, and Abson (2022))

Road network resilience is an emerging research subject. Most of the developed works are towards engi-

neering resilience, aiming at a rapid recovery to a non-congested equilibrium or a single optimal equi-
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librium. For example, the classic perimeter control schemes developed based on the macroscopic funda-

mental diagram (short for MFD) characterization of congestion dynamics, have received much attention

in recent years (Geroliminis and Daganzo (2008), Haddad and Geroliminis (2012), Aghamohammadi and

Laval (2020), Laval, Leclercq, and Chiabaut (2017), Johari et al. (2021), Haddad (2015), Khwais and Had-

dad (2022), Haddad and Zheng (2020), Mariotte, Leclercq, and Laval (2017), Haddad and Mirkin (2020),

Ramezani, Haddad, and Geroliminis (2015), Li, Yildirimoglu, and Ramezani (2021), Mohajerpoor, Cai,

and Ramezani (2023), Kouvelas, Saeedmanesh, and Geroliminis (2023), Tsitsokas, Kouvelas, and Geroli-

minis (2023), Yang, Menendez, and Zheng (2019), Dantsuji, Fukuda, and Zheng (2021), Ampountolas,

Zheng, and Geroliminis (2017), Yang, Zheng, and Menendez (2018), Su et al. (2020)). The perimeter con-

trol schemes regulate the proportion of entering traffic at the perimeter of the networks via traffic signal

control. In this direction, Haddad and Geroliminis (2012) calculated the "region of attraction" (short for

RA) and designed a state feedback control to increase the RA for enlarging the recoverable area towards a

single non-congested stable equilibrium. One pre-condition though, is that the system is within the states as

defined by RA. In face of the so-called “hyper-congestion” which is far beyond the stable equilibrium state

(e.g. a congestion density value twice as much as the critical density) and beyond RA, recovering to the

desired system equilibrium cannot be guaranteed, and the system will inevitably fail, e.g. becoming unre-

coverable grid lock. On the other hand, Zhong et al. (Zhong et al. (2020a, 2018a,b)) and Huang et al. (Huang

et al. (2020b)) developed control schemes where the control would aim at a designated point, for example

the point near the critical density or critical accumulation where the network flow reaches its maximum.

However, the sufficient conditions of these controllers require that the disturbance to the systems, i.e. the

incoming traffic demand to the road networks, cannot be high and fast-varying over time, which limits the

controllability towards real world traffic situations. Most recently, Gao et al. (2022) proposed a novel con-

trol scheme based on RA, denoted as RCS-single, focusing specifically towards the recovery to the single

optimal equilibrium from hyper-congested states. This is one of the first exploratory works looking at the

“resilience” of system control. Nevertheless, this work was still within the framework of a single equilib-

rium system, and the recovery speed is very slow. For systems where instability is coupled with complex

disturbances, in the case of hyper-congestions accompanied by persistently high travel demand, the existing

controls are not only time-consuming, but also the objective of returning to single equilibrium is impracti-

cal. In literature, the impact of large changes in travel demand causing the instability of MFD was pointed

out in multiple studies, such as Daganzo, Gayah, and Gonzales (2011), Zhong et al. (2020b), Haddad and

Zheng (2020).

Urban traffic is a complex dynamic system, which may exist multiple metastable states (Zeng et al.

(2020)). Given the above discussion on the limitation of the single-objective control schemes, a more realis-

tic way appears to be guiding the system to switch between multiple metastable states under perturbations.

While the engineering resilience-oriented system controls have its values, there is a need to address the
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limitation towards system perturbations. Future resilient traffic system, that is capable of withstanding large

and rapidly changing environments and contingencies, absorbing environmental uncertainties and develop-

ing different adaptive landscapes, would be by nature an ecosystem-like dynamic system. In other words,

controlling such system should embrace an ecological perspective, where the ecological operation essen-

tially enables the system to shift among alternative stable states (Holling (1996), Folke et al. (2010), Walker

and Salt (2012), Gunderson (2000), Dakos and Kéfi (2022), Scoones et al. (2020)). Therefore, this work

develops an ecological resilience control for managing congested urban road systems. The control aim is to

enhance road traffic flow systems with greater adaptability towards different perturbations, such as conges-

tion, unusual travel demand, sudden infrastructure closure, and accidents. Our work will, for the first time,

provide an analytical modeling framework and the proves on system shifting between alternative steady

states. Our work will demonstrate that such system is superior and much more resilient, comparing to con-

trolled systems that aiming at returning to a single state, such as an original equilibrium or a pre-defined

optimal state.

Built upon the MFD-based traffic flow representation system, this paper proposes a methodology for

deriving ecological resilience control under large disturbances. Our control methodology comprises three

aspects: portraying the recoverable system states, designing the target steady system states, and devel-

oping control mechanisms to regulate system towards steady states. Specifically, the RA framework will

be adopted but extended, where the recoverable scopes are portrayed by attraction region; the alternative

steady states are set close the optimal state and outside the attraction region of the original equilibrium;

the controller is devised to guarantee the local stability of the alternative steady states, without changing

the dynamics around the original equilibrium as much as possible. We showcase the proposed method-

ology in two-region road systems (i.e. two congested road networks whose traffic flow and congestion

interact with each other, and each road network has its own MFD to describe its traffic dynamics). We

first derive the explicit algebraic expressions of the boundaries of inner and outer estimations of the attrac-

tion regions. Building upon these theoretical boundary delineations, we then design two distinct resilience

control schemes, denoted as RCS-1 and RCS-2, respectively. Considering a four-equilibria system as an

illustration, we test two resilient control schemes. The control performance can be seen in Fig. 13 and

Fig. 15 (more details and discussions will be provided in section 5). CPC (denotes constant perimeter con-

trol) and RCS-single (proposed by Gao et al. (2022)) are two benchmark methods. As a general remark,

the proposed resilience control schemes and RCS-single can prevent the evolution of vehicle density (also

called vehicle accumulation) n1 or n2 to jam vehicle density (corresponding to zero completion flow), while

CPC is unable to impede such occurrences. Furthermore, the resilience measures summarized in Table 2

indicate that, RCS-1 and RCS-2 outperform RCS-single as they exhibit greater resilience measures in most

cases, corresponding to smaller resilience triangle (resilience loss). This superiority stems from the ability
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of RCS-1 and RCS-2 to guide the trajectories towards alternative stable states that are more easily attain-

able, thereby enhancing adaptability. Moreover, the local landscape (local Lyapunov function (Wang et al.

(2021), Willems (1971), Blanchini (1995))) near the target point of controlled system with RCS-2 clearly

shows the effect of our control scheme.

The main contributions of this study encompass three key aspects:

(1) We establish a theoretical foundation for the approximate depiction of recoverable states for multi-

equilibrium systems, by deriving the inner and outer estimations of attraction regions with explicit

algebraic expressions for multi-equilibrium MFD dynamics, utilizing invariant sets. Note that the com-

putation of RA for multiple equilibria nonlinear systems is especially intricate and hard to obtain.

(2) We innovatively propose a leap from single-steady state control (from an engineering resilience per-

spective) to multi-steady states control (from an ecological resilience perspective), by leveraging the

developed theory of approximate depiction of recoverable states and the stability theory of switch sys-

tems. This effort yields explicit control methodological, providing a clear pathway for the implementa-

tion of a control system that navigates across different stability landscapes.

(3) We innovatively design a resilience measure utilizing the classical resilience triangle and completion

flow. And it intuitively depicts the loss of completed trips compared to the maximum potential number

of trips that could have been completed during the recovery period.

2. The control system dynamics and its ecological resilience
This paper showcases the advancement and performance of an ecological resilience-oriented control in a

two-region system (known also as two-reservoir system in literature) traffic flow control problem, where

the traffic dynamics of the two regions follow an MFD-based representation. Sec. 2.1 firstly gives the math-

ematical description of the MFD-based modeling framework, Sec. 2.2 illustrates the ecological resilience

control framework for MFD dynamics, and then Sec. 2.3 defines ecological resilience measure.

2.1. Two-region MFD dynamics

To start with, we consider a two-region MFD system, illustrated in Fig. 2. The urban traffic network is parti-

tioned into three parts: Region 1, Region 2, and the Outside. Our primary focus lies on Regions 1 and 2, and

each endowed with its own MFD. The MFD delineates the correlation between the travel completion flow

Gi(ni(t)) and vehicle accumulation (density) ni of region i at time t, manifesting a single peak, characterized

by an initial ascent succeeded by a descent. Classical perimeter control methodologies regulate the traffic

flow ratio entering Regions 2 and 1 through signal controls, denoted as allowed pass rates u1 and u2. As

illustrated in Fig. 2, for each region at time t, there are two inflows (marked as gray arrows directed toward

region i) and one completion flow Gi(ni(t)) (marked as gray circle). The first inflow, u jG j(n j(t)) ( j = 1,2,

j ̸= i) signifies the allowed traffic inflow transferred from j to i with the pass rate u j. The second inflow,
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Figure 2 Two region MFD dynamics (Aboudolas and Geroliminis (2013), Gao et al. (2022)).

denoted as di, represents the fixed net inflow from the outside to i, encapsulating uncontrollable demand,

commonly known as disturbance.

The model can be described by MFD dynamic (Aboudolas and Geroliminis (2013), Gao et al. (2022)):

dn1(t)
dt

= F1(n1(t),n2(t)) :=−G1(n1(t))+u2G2(n2(t))+d1,

dn2(t)
dt

= F2(n1(t),n2(t)) :=−G2(n2(t))+u1G1(n1(t))+d2,

(1)

with the boundary condition:

0 ≤ n1(t)≤ p1, 0 ≤ n2(t)≤ p2,

0 ≤ u1 ≤ u1,max, u1,max = min
{

1,
G2,max

G1,max

}
,

0 ≤ u2 ≤ u2,max, u2,max = min
{

1,
G1,max

G2,max

}
.

(2)

Let n= (n1(t),n2(t)), F (n) = ((F1(n1(t),n2(t),F2(n1(t),n2(t))), and ṅ= dn
dt , system (1) can be simplified

to ṅ= F (n). Note that perimeter controllers u1 and u2 are assumed to be constants. Therefore, they can be

denoted as constant perimeter control, short for CPC. The fixed net inflow di is also assumed to be constants.

Moreover, as a realistic scene, we here use the parabolic-MFD: Gi(ni) = −aini(ni − pi) with opening size

ai > 0 and jam accumulation pi of region i, as shown in Fig. 2 and Fig. 3. Then we have the maximum

capacity Gi,max =
ai pi

2

4 at the critical vehicle accumulation pi
2 . Note that d j ≤ G j,max, uiGi,max ≤ G j,max and

u1 ×u2 ̸= 1 are satisfied to avoid overflow. Without loss of generality, we can assume G1,max ≤ G2,max, then

the condition of u1 and u2 in Eq. (2) can be simplified as Condition (H):

0 ≤ u1 ≤ 1, 0 ≤ u2 ≤
G1,max

G2,max
, but u1 ×u2 ̸= 1. (3)

For the two-region MFD dynamic (1) with boundary condition (2) under traffic demand (d1,d2), given

the MFD function (G1(n1),G2(n2)), we aim to generate a transportation system from ecological resilience

perspective by combining the stability characteristics of the MFD dynamics.
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To achieve this objective, we first introduce concepts related to stability characteristics. The stability

characteristics can be elucidated by phase portrait, where the phase portrait is a geometric representation of

the dynamic system trajectories on the phase plane. As shown in Fig. 3(a), the phase plane is n1 − n2, and

each point (state) in n1 −n2 plane denotes the vehicle accumulation in two regions. Progressing to the right

or upward along the n1 − n2 plane signifies a corresponding increase in the vehicle accumulation within

Region 1 (Region 2). Moreover, the axis n2 in Fig. 3(a) corresponds to the ordinate of the right MFD and

axis n1 corresponds to the abscissa of the upper MFD. The completion flow G1(n1)(G2(n2)) increases with

the vehicle accumulation before the critical vehicle accumulation p1
2 ( p2

2 ), reaching a peak G1,max (G2,max),

and subsequently decreases until it diminishes to zero at the right (upper) boundary, signifying a traffic jam.

As shown in Fig. 3(a), the attraction region (light pink region) of the equilibrium point n0 = (n0
1,n

0
2) (green

circle) is a set of the initial points. The trajectories start from these initial points will converge towards n0,

while trajectories start from outside attraction region will move away from n0 and towards either the upper

or right boundary. Note that equilibrium point n0 = (n0
1,n

0
2) satisfies F1(n0

1,n
0
2) = 0, F2(n0

1,n
0
2) = 0. We can

introduce the definition of attraction region for the general equilibrium n∗ = (n∗
1,n

∗
2) as follows:

DEFINITION 1. (Gao et al. (2022)) For system (1) with boundary restrictions (2), denoting n(t) =

(n1(t),n2(t)) and D= {(n1(t),n2(t))|0 ≤ ni(t)≤ pi, i = 1,2} , define

R(n∗) =

{
ninit ∈ D|n(0) = ninit and lim

t→+∞

n(t) = n∗
}
, (4)

as the attraction region for n∗ = (n∗
1,n

∗
2).

Note that, the classical concept of the "attraction domain" was originally defined for asymptotically stable

equilibria (Wang, She, and Ge (2020b), Zheng et al. (2018), Ratschan and She (2010), Wang, She, and Ge

(2020a)). Especially, for MFD dynamic (1), Gao et al. (2022) defined the "attraction region" for the unsta-

ble single equilibrium point. Differently, we here in this paper define for the general equilibrium (n∗
1,n

∗
2),

including both unstable equilibrium and stable equilibrium.

2.2. Ecological resilience control framework for MFD dynamics

In the traffic flow theory and traffic control community, how to recover the traffic system from congestion

has been a challenging research question. The classical perimeter control schemes, which utilizes MFD

as references for optimal control, target on recovering the traffic system to a specified equilibrium. Such

schemes are known to be constrained and uneconomical for hyper-congestion conditions, because these

conditions are far from the single optimal control objective and there exist complex dynamics in the system

that prevent the system from even getting closer to the targeted equilibrium. For this reason, our approach

defines a new control objective, built upon which a corresponding control methodology is developed.

In essence, ecological resilience considers the existence of multiple metastable states in a dynamic sys-

tem, and it enables the system to shift between states as a way to absorb or adapt to rapid external changes.
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Figure 3 Schematic representation of the phase portraits under (a) CPC, (b) RCS-single, and (c) desired

control. Note that desired phase portraits exhibit multiple metastable states. The attraction region

of each metastable state is demarcated by different colors. The green area signifies the selectable

range of the alternative steady states. the green circle represents the steady states; the blue lines

with arrows depict state trajectories, indicating the evolution of a point (state) over time. The phase

portraits and the Macroscopic Fundamental Diagram (MFD) exhibit a correlation. Each point in the

phase portraits corresponds to the vehicle density (accumulation) in two regions, and the corre-

sponding completion flows can be identified on the MFD.

Inspired by this nature, we aim to construct an ecological resilience traffic system resembling Fig. 3(c),

with multiple metastable states (marked as green circles), where multiple metastable states includes the

original uncongested equilibrium n0 and alternative steady states ni = (ni
1,n

i
2) (i = 1, · · · ,r with number of

alternative steady states r).

To generate the ecological resilience traffic system resembling Fig. 3(c), our first critical issue is how to

select multiple metastable states. Initially, we aim to leverage the inherent landscape of the system as much

as possible. Therefore, we preserve the original non-congested equilibrium point of the system, denoted as

n0. This point coincidentally aligns with the single equilibrium point set by the classical CPC control system

(as shown in Fig. 3(a)) or the single equilibrium point of the RCS-single control system proposed by Gao

et al. (2022) (as depicted in Fig. 3(b)), satisfying F1(n
0)= 0, F2(n

0)= 0. After determining n0, the next step

involves selecting alternative stable states ni = (ni
1,n

i
2). There are two key criteria for selecting alternative

stable states: one to position them as close to the optimal and critical vehicle accumulation
( p1

2 ,
p2
2

)
as

possible; the other is to position them outside the attraction region R(n0) (depicted in the light pink region)

of the original non-congested equilibrium point n0. The first criterion seeks to increase the completion flow,

given that such completion flow tends to decline as the vehicle accumulation gets further from the critical

vehicle accumulation (see Fig. 3(c)). The second criterion is crucial because states within the attraction

region of n0 will spontaneously recover to n0. Here, we provide a quantitative description of the selectable
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range. For the first criterion, we aim to select ni = (x,y), such that the absolute distance between completion

flow (G1(x),G2(y)) and maximum completion flow (G1,max,G2,max) is less than ∆0, where ∆0 denotes the

absolute distance between completion flow of the original equilibrium n0 and maximum completion flow.

That is,

|G1(x)−G1,max|+ |G2(y)−G2,max| ≤ ∆0, (5)

substituting Gi(ni) =−aini(ni − pi) and Gi,max =
ai pi

2

4 , yields

E =

{
(x,y)|

(
x− p1

2

)2

a2
+

(
y− p2

2

)2

a1
≤ ∆0

a1a2

}
, (6)

E corresponds to the interior of an ellipse. Combining the second criterion, the selectable range of alterna-

tive stable states S is

S =
{
(x,y)|(x,y) ∈ E

∧
(x,y) /∈ R

}
, (7)

as the green region shown in Fig. 3(c).

Once multiple metastable states have been chosen, the next consideration is how to devise a control

scheme that enables the system to recover to appropriate steady states. Controlling a system with multi-

steady states poses more challenges compared to a system with a single stable state. The first challenge lies

in determining which state the system should recover to, and the second challenge is devising a strategy to

facilitate the system recovery to the respective target stable state. To address the first challenge, we need to

identify the attraction region of the original equilibrium. It is essential to note that, for nonlinear systems, the

attraction region is typically intricate, and obtaining explicit algebraic expressions for it can be challenging.

In this direction, Gao et al. (2022) derived the attraction region with explicit algebraic expressions for the

single-equilibrium MFD dynamics. Different from their work, we consider multi-equilibria (including two-

equilibria and four-equilibria) systems in this paper. Given the involvement of multiple equilibrium points

and nontrivial boundary shapes, their approach can not be applicable here. To this end, our first effort is the

estimation of the attraction region for the multi-equilibria systems (see Sec. 3 and App. A). Upon obtaining

an estimation of the attraction region with explicit expressions for the boundaries (including inner and

outer estimations) of the original uncongested equilibrium point, a natural boundary between the original

uncogested equilibrium and the alternative steady state emerges.

The second challenge, i.e., how to devise a strategy to facilitate the system recovery to the respective

target steady state is also intricate. To tackle this issue, we make a second effort using a switched controlled

system and design two control schemes based on the inner and outer estimations of the attraction region

(see Sec. 4). It is essential to emphasize that Gao et al. (2022) also explored this direction. Their switched

controlled system is depicted in Fig. 3(b), where trajectories originating outside the attraction region are

directed towards its boundary before spontaneously converging towards the single equilibrium. The pro-

posed control, however, addresses a significantly different and more complex problem. We aim to utilize
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the escaped trajectories (from attraction region) and guide them to appropriate steady points. Therefore, this

novel framework faces new technical barriers, namely how to find a feasible control that can recover system

to ε −Neighborhood of target point (n̄1, n̄2) within recovery time t f under corresponding perturbations,

where ε denotes an arbitrarily small positive number; and ε −Neighborhood of a state (n̄1, n̄2) is described

as the set {(n1,n2) : (n1 − n̄1)
2 + (n2 − n̄2)

2 ≤ ε}. Note that the target point (n̄1, n̄2) can be any state in

multiple metastable states, depending on the size of the perturbation; and system can switch between mul-

tiple metastable states in facing with different perturbations. Moreover, the system can also switch between

optimal and suboptimal states, if the optimal state satisfies the conditions of the alternative steady states.

2.3. Measuring urban traffic resilience

We have depicted the envisioned ecological traffic resilience system and presented the resilience control

framework. However, a quantitative indicator for traffic ecological resilience is still absent. It is imperative

to establish a quantitative measure for traffic ecological resilience, thereby enhancing a more intuitive per-

ception of the ecological resilience of traffic and facilitating a more straightforward evaluation and reference

for control effectiveness.

The quantitative assessment of resilience can be categorized into two main types: general resilience

measure methods and structure-based model-driven resilience measure (Hosseini, Barker, and Ramirez-

Marquez (2016b)). We prioritize general resilience measure in this paper, given that the second type is

more reliant on specific models. Among general resilience measure, the “resilience triangle” introduced in

Bruneau et al. (2003) has gained notable attention. Originally designed for assessing a community resilience

loss during earthquakes, it calculates the resilience loss through a definite integral:

RL =
∫ t1

t0
(1−Q(t))dt, (8)

where Q(t) represents community service quality at time t, expressed as a percentage scale from 0 to 100%.

Q(t) starts declining at t0 and returns to the normal state at t1. The deviation between the quality of degraded

infrastructure and the normal infrastructure quality is quantified through 1−Q(t). A higher RL indicates

lower resilience, while a lower RL suggests higher resilience.

In this direction, Gao et al. (2022) marks one of the initial attempts to provide a quantitative interpreta-

tion of urban traffic resilience. They defined urban traffic resilience as the integral of the absolute deviation

between vehicle density (vehicle accumulation) and the optimal vehicle density during the recovery period.

However, the defined resilience measure lacks an evident physical interpretation. Thus, we revise the defi-

nition of deviation Ds(t) as the difference between the completion flow Gi(ni)(i = 1,2) and the maximum

completion flow Gi,max. That is:

Ds(t) = |G1(n1)−G1,max|+ |G2(n2)−G2,max| . (9)
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Figure 4 Schematic representation of resilience triangle. Here we consider hyper-congestion (large Ds(t0))

scenario, and we assume that the original equilibrium is a non-congested equilibrium (not the

optimal state). CPC is unable to recover the system, and instead leading to a rapid collapse. Pro-

posed control (RCS-single) recovers the system to a functional level with deviation −Ds1 (−Ds2)

from the maximum completion flow at t1
f (t2

f ), having a smaller (larger) resilience loss, depicted as

the dark (light) brown shaded region. Note that the resilience loss is the absolute value of the area

enclosed by the resilience triangle. Proposed control outperforms RCS-single, as proposed control

can recover system to a functional state with less deviation (Ds1 < Ds2) faster (t1
f < t2

f ).

Note that, the unit of Ds(t) is [veh/h]. Based on the defined Ds(t), we can define the ecological traffic

resilience measure as follows:

R =
∫ t f

t0
(0−Ds(t))dt =−

∫ t f

t0
Ds(t)dt. (10)

Here t f is the time when system recovers and stabilizes at functional steady states. Formula (10) implies that

R is negative. Thus, −R corresponds to the area of the resilience triangle, depicted as the dark brown shaded

region in 4. Noteworthily, the unit of resilience measure R is [veh], and it denotes the loss of completed trips

compared to the maximum potential number of trips that could have been completed during the recovery

period.

We depict a schematic diagram of the resilience triangle under three different controls, as shown in

Fig. 4. Notably, under hyper-congestion, CPC fails to recover system and instead rapidly collapses system;

while RCS-single and the proposed control can ensure recoverability. The resilience control proposed in

this paper outperforms RCS-single, as it enables the system to recover to an alternative stable states with

higher completion flow within a shorter time. Thus, the resilience triangle (loss) under our proposed control

method (the dark brown area in Fig. 4) is smaller than that of RCS-single (the light brown area). Note that

the original equilibrium is assumed to be a stable non-congested state, rather than an optimal state.

3. Stability analysis and spontaneous attraction region estimation for
multi-equilibria system

In the previous section, for multi-equilibria system, we defined ecological resilience of urban traffic with

an MFD-based representation. In this section, we will derive the global phase portrait and the spontaneous
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attraction region for the multi-equilibria system under CPC (u1 and u2). Sec. 3.1 discusses and verifies the

local stability of the MFD dynamic; Sec. 3.2 derives and illustrates the global phase portrait; and Sec. 3.3

presents the estimation of spontaneous attraction region that are used to design the proposed control in

Sec. 4. Note that multiple equilibria systems include both two-equilibrium systems and four-equilibrium

systems. According to Gao et al. (2022), two equilibria exist if and only if Condition (K2a): u2d2+d1
1−u1u2

= G1,max

∧ u1d1+d2
1−u1u2

< G2,max or Condition (K2b): u2d2+d1
1−u1u2

< G1,max ∧ u1d1+d2
1−u1u2

= G2,max holds; four equilibria exist if and

only if Condition (K4): u2d2+d1
1−u1u2

< G1,max ∧ u1d1+d2
1−u1u2

< G2,max holds. We in this section mainly present the

theoretical analysis for two-equilibria system. The theoretical analysis for four-equilibria system can be

found in App A.

3.1. Local stability verification

Consider the two-equilibria case with Condition (K2a). According to Condition (K2a), we have:

d1 = (1−u1u2)G1,max −u2d2,

d2 < G2,max −u1G1,max.
(11)

Bringing the first equation of (11) into system (1), the system dynamics become:

dn1(t)
dt

= −u2a2(n2(t)−
p2

2
)2 +a1(n1(t)−

p1

2
)2 +u2

(
a2 p2

2

4
−u1

a1 p2
1

4
−d2

)
,

dn2(t)
dt

= −u1a1(n1(t)−
p1

2
)2 +a2(n2(t)−

p2

2
)2 +

(
u1a1 p2

1

4
− a2 p2

2

4
+d2

)
. (12)

For systems (12), the two equilibria can be denoted as P2a
k = ( p1

2 , p2a
k ) (k = 1,2), where p2a

k = p2+(−1)k×M
2 ,

M =
√

p2
2 − 4d2+u1a1 p2

1
a2

. Upon substituting Formula (11) into Formula (1), the system (1) reduces by one

variable, d1, significantly simplifying our analysis. However, Formula (12) remains cumbersome. To further

simplify the system for subsequent analysis, we shift equilibrium point P2a
1 of the system (12) to (0,0). That

is, letting x1(t) = n1(t)− p1
2 and x2(t) = n2(t)− p2a

1 , we can simplify system (12) as:

dx1(t)
dt

= H2a
1 (x1(t),x2(t)) := u2a2Mx2(t)+

(
a1x1

2(t)−u2a2x2
2(t)

)
,

dx2(t)
dt

= H2a
2 (x2(t),x2(t)) :=−a2Mx2(t)+

(
−u1a1x1

2(t)+a2x2
2(t)

)
, (13)

The two equilibria for the new system (13) are P̂2a
1 = (0,0) and P̂2a

2 = (0,M). Noteworthy, system (13)

possesses the same properties as system (12) since system (13) is obtained by shifting system (12). Due

to the simpler formulation of system (13), we in the following use system (13) to derive local stability

characteristics, global phase portraits, and attraction region estimations. The properties obtained are equally

valid for system (12). Therefore, all our propositions and theorems are summarized for system (12).

From the aforementioned conversion, we derive the following proposition for its two equilibria.

PROPOSITION 1. Under Condition (H), the two equilibria P2a
1 and P2a

2 of system (12) are both saddle-

node points.
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Proof: We have that P2a
1 and P2a

2 of system (12) are equivalent to P̂2a
1 and P̂2a

2 of system (13), thus we con-

sider the stability of P̂2a
1 and P̂2a

2 . For P̂2a
1 , we have

 ∂H2a
1 (x1,x2)

∂x1

∂H2a
1 (x1,x2)

∂x2
∂H2a

2 (x1,x2)

∂x1

∂H2a
2 (x1,x2)

∂x2

∣∣∣∣∣
(0,0)

=

 0 u2a2M

0 −a2M

, indicating

that:

Rank


 ∂H2a

1 (x1,x2)

∂x1

∂H2a
1 (x1,x2)

∂x2
∂H2a

2 (x1,x2)

∂x1

∂H2a
2 (x1,x2)

∂x2


∣∣∣∣∣
(0,0)

= 1,

and

div(H2a
1 ,H2a

2 )|(0,0) = ∂H2a
1 (0,0)
∂x1

+
∂H2a

2 (0,0)
∂x2

̸= 0.

According to Theorem 7.1 in Zhang (2006), we can analyze the nature of equilibrium points P̂2a
1 by

calculating the bifurcation function B(x1(t)) (defined in Zhang (2006)), yields:

B(x1(t)) = H2a
1 (x1,x2(x1)) = H2a

1 (x1,±

√
u1a1x2

1

a2
+

M2

4
+

M
2
) = (1−u1u2)x2

1(t),

where x2(x1) = ±
√

u1a1x2
1

a2
+ M2

4 + M
2 is obtained by letting H2a

2 (x1,x2) = 0. Since Condition (H) holds, we

have B(x1(t))> 0 holds for all x1(t)∈
[
− p1

2
p1
2

]
except x1(t) = 0. Moreover, the power exponent of function

B(x1(t)) is 2. Thus, (0,0) is a saddle-node point (see Zhang (2006) Theorem 7.1(iii)), indicating that P2a
1 is

a saddle-node point. Similarly, we can prove that P2a
2 is a saddle-node point. □

Proposition 1 reveals that, for system (1) under (K2a), the two equilibria P2a
1 and P2a

2 are both saddle-

node point. Similarly, for system (1) under (K2b), we can also prove that two equilibria P2b
1 and P2b

2 are

both saddle-node point. These results will help us to reveal the local stability of the two equilibria, which

will assist in subsequent derivations of attraction region, providing foundation for understanding the global

properties of the system.

For the four-equilibria system, we also try to capture the local stability through linearization, and the

detailed analysis can be found in App. A.1. In App. A.1, we denote the four equilibria as P4
m (m = 1,2,3,4),

and we have that P4
1 is a locally stable node, P4

2 and P4
3 are saddle points, P4

4 is an unstable node, which can

be summarized as Proposition 2 in App. A.1.

3.2. Global phase portrait derivation

To capture more properties of the system, we aim to delve further into its global nature. Global analysis of

dynamical systems is often intricate, lacking a unified analytical approach. For MFD dynamics, we over-

come this gap by first dividing the phase space into several subregions using demarcation lines, followed

by delineating the trajectory trends within each subregion, and ultimately analyzing and deriving the global

phase portrait leveraging the trajectory trends in each subregion. For simplicity in analysis, we continue to

consider the more straightforward formulation of Formula (13). Note that, the aforementioned demarcation

lines are obtained by solving dx1(t)
dt =0 or dx2(t)

dt =0 respectively. The trajectory trends in each region are deter-

mined by dx1(t)
dt and dx2(t)

dt . For instance, if dx1(t)
dt > 0 ( dx2(t)

dt > 0), the trajectories move to the right (upward),
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(a) K2a ∧H1 (b) K2a ∧H2

(c) K2a ∧H3 (d) K2a ∧H4

Figure 5 Theoretical schematic phase portraits of the two equilibria for system (13) under Condition (K2a ∧

H). Red circle: undesired saddle-node equilibrium. Blue circle: desired saddle-node equilibrium.

Red dotted curves: ẋ1 = 0, blue dotted curves: ẋ2 = 0, green arrows: trajectory directions.

while if dx1(t)
dt < 0 ( dx2(t)

dt < 0), the trajectories move to the left (downward). Furthermore, considering that the

demarcation lines dx1(t)
dt =0 or dx2(t)

dt =0 take different shapes under four distinct parameter conditions, we will

separately examine these under four conditions.

First consider Condition (H1): 0 < u1, u2 ≤ 1 ∧ u1u2 ̸= 1. Under this condition, both demarca-

tion lines manifest as hyperbolas, illustrated by the red and blue dotted curves in Fig. 5(a), with the

expressions (x2−M
2 )

2

M2
4

− x2
1

u2a2M2
4a1

= 1 and (x2+
M
2 )

2

M2
4

− x2
1

a2M2
4u1a1

= 1. In addition, we have dx1(t)
dt = 0 and dx2(t)

dt =

(1−u1u2)a2x2(t)(x2(t)−M)> 0 on the red dotted curves except for (0,0) and (0,M); and we have dx2(t)
dt = 0

and dx1(t)
dt = 1−u1u2

u1
a2x2(t)(x2(t)−M) > 0 on the blue dotted curves except for (0,0) and (0,M). It is worth

mentioning that, since u2a2M2

4a1
< a2M2

4u1a1
holds, the location of these four curves are is uniquely determined, as

shown in Fig. 5(a). Then, the plane R2 can be divided into seven unbounded regions by these four curves.

Moreover, Table 1 summarizes the symbols of dxi(t)
dt (i = 1,2) in these seven regions. On the basis of Table

1, the phase portrait of (13) under Condition (H1) can be obtained, as shown in Fig. 5(a).

Table 1 Symbols of the seven regions for system (13) under Condition (H1).

Derivative
Symbol in region

A B C D E F G

dx1(t)
dt + − + + + − +

dx2(t)
dt + + + − + + +
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Subsequently, we can verify that regions B and E are both positive invariant sets by utilizing proof by

contradiction. Given that the trajectories starting from B and E will not escape, we can further obtain that

there exist no close orbits for system (13) under Condition (H1).

When Condition (H2): u1 = 0∧0 < u2 ≤ 1, (H3): 0 < u1 ≤ 1∧u2 = 0 or (H4): u1 = 0∧u2 = 0 hold, the

two demarcation lines can manifest as one hyperbola and one straight line (as shown in Fig. 5(b) and 5(c))

or as two straight lines (as shown in Fig. 5(d)). After obtaining the demarcation lines, we follow similar

steps as above. As such, we verify that no close orbits exist under these conditions, and the corresponding

phase portraits are illustrated in Fig. 5(b), 5(c) and 5(d). Similarly, we can also obtain the phase portrait for

system (1) under Condition (K2b), and there also exists no close orbit.

For the four-equilibria system, we also try to capture the global phase portraits, and the detailed analysis

can be found in App. A.2. Note that the steps of global phase portrait derivation differ from that used

for two-equilibrium system. Due to the increased number of equilibria, the combination of demarcation

lines becomes intricately complex. On one hand, variations in demarcation line types (e.g., two hyperbolas,

one hyperbola and one straight line, two straight lines, etc.) lead to different phase portraits. On the other

hand, different relative positions of demarcation lines (e.g., whether the foci of two hyperbolas lie on the

same axis) add another layer of complexity. The method for two equilibria are insufficient to address the

challenges posed by four equilibria. Furthermore, the increased number of equilibrium points also hinders

us from directly determining the locations of corresponding separatrices. New methods are required to

capture the global phase portrait. We solve these in App. A.2 by subdividing Condition (K4) into five

new distinct conditions. That is, Condition (K̂4
1): M1 < 0∧M2 < 0; Condition (K̂4

2): M1 = 0∧M2 < 0;

Condition (K̂4
3): M1 < 0∧M2 = 0; Condition (K̂4

4): M1 > 0∧M2 < min
{
−M1

u2
,−u1M1

}
; Condition (K̂4

5):

M1 < min
{
−u2M2,−M2

u1

}
∧M2 > 0, where M1 = d1 + u2

a2 p2
2

4 − a1 p1
2

4 ; and M2 = d2 + u1
a1 p1

2

4 − a2 p2
2

4 . The

five conditions mentioned above correspond to different positions of demarcation lines. In App. A.2, by

discussing the shape of critical demarcation lines under each condition, we have summarized 20 distinct

phase portraits for four-equilibria system and verifies that no closed orbit exists.

3.3. Spontaneous attraction region estimation

In the following, for two-equilibria system (12), the attraction region for the unstable saddle-node point

P2a
1 will be derived. Note that, Gao et al. (2022) developed a method to find certain special trajectories,

e.g., x2(t) = qx1(t) for system with single-equilibrium. This form of special solution cannot apply here for

multi-equilibrium systems. In this case, the theoretical attraction region boundaries are identified by finding

certain separatrices of the equivalent systems (13), and the inner and outer attraction regions can be obtained

by finding the positive invariant sets, under the aforementioned four conditions respectively.
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Firstly, we consider Condition (H1). As shown in Fig. 6(a), the two red dotted demarcation curves can

be denoted as x2 = r̂2a
i (x1) (i = 1,2), where r̂2a

i (x1) = (−1)i
√

a1
u2a2

x2
1 +

M2

4 + M
2 . Similarly, the two blue dot-

ted demarcation lines can be denoted as x2 = b̂2a
i (x1) (i = 1,2), where b̂2a

i (x1) = (−1)i
√

u1a1
a2

x2
1 +

M2

4 + M
2 .

Obviously, the vertexes of the demarcation lines are exactly the two equilibria P̂2a
1 = (0,0) and P̂2a

2 = (0,M).

Assuming the lower blue dotted line x2 = b̂2a
1 (x1) intersects x1 = −k1 with k1 > 0 at (−k1,x1

D) and

(−k1,x2
D), where x1

D < x2
D. The trajectory starting from (−k1,x1

D) and (−k1,0) will go into P̂2a
1 in E as t →

+∞; and the trajectory starting from (−k1,x2
D) will escape A from the upper boundary of A and stay in B

moving away from P̂2a
1 as t →+∞. Thus, due to the continuous dependence theorem of solutions on initial

conditions (Zhang (2006)), there exists a D∗ with 0 < D∗ < x2
D, such that the trajectory starting from any

(−k1,xD) with 0 < xD ≤ D∗ will enter E and then go to P̂2a
1 in E as t →+∞, and the trajectory starting from

any (−k1,xD) with D∗ < xD ≤ x2
D will enter A, then escape A from the upper boundary of A and stay in

B moving away from P̂2a
1 as t → +∞. Thus, the trajectory starting from (−k1,xD∗), donated as Φ̂1(P̂2a

1 )=

Φ̂
2a,1
t (−k1,xD∗), is a stable separatrix of P̂2a

1 , as shown in Fig. 6(a). Similarly, assuming the lower red dotted

line x2 = r̂2a
1 (x1) intersect x2 = −k2 with k2 > 0 at (x1

F ,−k2) and (x2
F ,−k2). By similar analysis, we can

obtain that there exists an F∗ with 0 < F∗ < x2
F , such that the trajectory starting from any (xF ,−k2) with

0 < xF ≤ F∗ will enter E and then go to P̂2a
1 in E as t →+∞, and the trajectory starting from any (xF ,−k2)

with F∗ < xF ≤ x2
F will enter G, then escape G from the upper boundary of G and stay in D moving away

from P̂2a
1 as t →+∞. Thus, the trajectory starting from (xF∗ ,−k2), donated as Φ̂2(P̂2a

1 ) = Φ̂
2a,2
t (xF∗ ,−k2), is

a stable separatrix of P̂2a
1 , as shown in Fig. 6(a).

Subsequently, combining with phase portrait Fig. 5(a), we can verify that the region Ŝ2a
in is a positive

invariant set utilizing proof by contradiction, where Ŝ2a
in = {(x1,x2)|xi ≤ 0, i = 1,2}, depicted as the light

blue zone in Fig. 6(a). Or else, there will be at least one trajectory originated from Ŝ2a
in , and enter V̂ 2a

1 (or V̂ 2a
2 )

through the upper boundary (or right boundary) of Ŝ2a
in , where V̂ 2a

1 =
{
(x1,x2)|x1 < 0, 0 < x2 < b̂2a

2 (x1)
}

and

V̂ 2a
2 = {(x1,x2)|x1 > 0, x2 < r̂2a

1 (x1)}. Obviously, it is contradictory with the trajectory direction in phase

portrait 5(a). Further, joining Fig. 6(a) with Fig. 5(a), we have that: the trajectory starting from any point in

D∧ Ŝ2a
in will escape D from the lower boundary of D and entering E, and the trajectory starting from any point

in F ∧ Ŝ2a
in will escape F from the left boundary of F and entering E. Since E is a positive invariant set, and

we have ẋ1 > 0 and ẋ2 > 0 in E, the trajectory starting from any point in E will go to P̂2a
1 as t →+∞. Thus,

the trajectory starting from any point in the positive invariant set Ŝ2a
in will go to P̂2a

1 as t → +∞, implying

Ŝ2a
in ⊂ R(P̂2a

1 ), i.e., Ŝ2a
in is an inner estimation of attraction region (Zheng et al. (2018), Wang, She, and Ge

(2020b)) for P̂2a
1 .

Similarly, region Û2a = Û2a
1 ∨ Û2a

2 ∨ Û2a
3 (the light yellow region shown in Fig. 6(a)) is also a positive

invariant set, where

Û2a
1 =

{
(x1,x2)|

(
x1 < 0∧ x2 ≥ b̂2a

2 (x1)
)
∨
(
x1 > 0∧ x2 ≥ r̂2a

2 (x1)
)}

,
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(a) K2a ∧H1 (b) K2a ∧H2

(c) K2a ∧H3 (d) K2a ∧H4

Figure 6 Certain separatrices of P̂2a
1 =(0,0) or P̂2a

2 =(0,M), and the inner and outer estimations of attraction

regions for system (13). Red dotted curves ẋ1 = 0; blue dotted curves: ẋ2 = 0; yellow curves: sepa-

ratrices, also serving as boundaries of attraction region; purple lines: boundary of the inner esti-

mation of attraction region; bright blue lines: boundary of the outer estimation of attraction region.

The green dashed grid is to distinguish Û2a
1 , Û2a

2 and Û2a
3 .

Û2a
2 =

{
(x1,x2)|x1 > 0∧ b̂2a

2 (x1)≤ x2 ≤ r̂2a
2 (x1)

}
,

Û2a
3 =

{
(x1,x2)|x1 ≥ 0∧ r̂2a

1 (x1)≤ x2 < b̂2a
2 (x1)

}
/(0,0).

Note that Û2a
1 and Û2a

3 are also positive invariant sets. In addition, the trajectory starting from point in Û2a
2

will escape from the upper boundary of Û2a
2 and enter Û2a

1 moving far from P̂2a
1 , or escape from the lower

boundary of Û2a
2 and enter Û2a

3 moving far from P̂2a
1 . Thus, we can obtain that R(P̂2a

1 )⊂ Ŝ2a
out =R2 \Û2a, i.e.,

the region Ŝ2a
out is an outer estimation of attraction region for P̂2a

1 . Further, we can obtain that Φ̂1(P̂2a
1 ) ∈ V̂ 2a

1

and Φ̂2(P̂2a
1 ) ∈ V̂ 2a

2 , as the yellow lines shown in Fig. 6(a).

When Condition (H2) hold, we can obtain two stable separatrices Φ̂1(P̂2a
1 ) and Φ̂2(P̂2a

1 ) of P̂2a
1 ; the inner

estimation of attraction region Ŝ2a
in ; and outer estimation of attraction region Ŝ2a

out by similar analysis. Fur-

thermore, we have Φ̂1(P̂2a
1 ) ∈ V̂ 2a

1 and Φ̂2(P̂2a
1 ) ∈ V̂ 2a

2 , as shown in Figs. 6(b). When (H3) or (H4) hold, we

can first simplify the system (13) by bringing in corresponding conditions. Then, by repeating the above

analysis, we can obtain corresponding results, as shown in Figs. 6(c) and 6(d).

Consequently, for the system (13), the estimation of the attraction region for the saddle-node points P̂2a
1

has been obtained. Further, letting n1(t) = x1(t)+
p1
2 and n2(t) = x2(t)+

p2−M
2 , the estimation of attraction

region for P2a
1 can be obtained. Denoting b2a

i (n1) = b̂2a
i (n1 − p1

2 )+
p2−M

2 and r2a
i (n1) = r̂2a

i (n1 − p1
2 )+

p2−M
2 ,

where i = 1,2, we can obtain the theorem as below.
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(a) K2a ∧H1 (b) K2a ∧H2

(c) K2a ∧H3 (d) K2a ∧H4

Figure 7 Attraction region of the P2a
1 for system (12) under Condition K2a ∧Hi (i = 1,2, · · · ,4). Red circle: unde-

sired saddle-node equilibrium. Blue circle: desired saddle-node equilibrium. The yellow curves:

the separatrices, also serving as boundaries of attraction region. Purple lines and bright blue lines

denote the boundary of inner and outer estimations of attraction regions, respectively.

THEOREM 1. For the unstable saddle-node point P2a
1 , under Condition (H), we have S2a

in ⊆ S2a
A =

R(P2a
1 ) ⊆ S2a

out , where the attraction region S2a
A , the inner estimation of attraction region S2a

in and the outer

estimation of attraction region S2a
out are defined as follows:

(1) Under Conditions (H1) and (H2), S2a
A = {(n1,n2)|n1 ≤ g2a

2 (n2), n2 ≤ g2a
1 (n1)}, where n2 = g2a

1 (n1) and

n1 = g2a
2 (n2) denotes the two stable separatrices Φ1(P2a

1 ) and Φ2(P2a
1 ) of P2a

1 , respectively;

S2a
in =

{
(n1,n2)|n1 ≤ p1

2 , n2 ≤ p2−M
2

}
; S2a

out = S2a,1
out ∨S2a,2

out , where

S2a,1
out =

{
(n1,n2)|n1 ≤ p1

2 , n2 < b2a
2 (n1)

}
and S2a,2

out =
{
(n1,n2)| p1

2 ≤ n1 ≤ p1, n2 < r2a
1 (n1)

}
.

(2) Under Condition (H3), S2a
A =

{
(n1,n2)|n1 ≤ p1

2 , n2 < g2a
3 (n1)

}
, where n2 = g2a

3 (n1) denotes the stable

separatrix Φ(P2a
2 ) of P2a

2 ; S2a
in =

{
(n1,n2)|n1 ≤ p1

2 , n2 <
p2+M

2

}
; S2a

out = S2a,1
out ;

(3) Under Condition (H4), S2a
in = S2a

A = S2a
out =

{
(n1,n2)|n1 ≤ p1

2 , n2 <
p2+M

2

}
.

Note that ni ≥ 0 (i = 1,2) holds all the time.

The geometries of S2a
A in Theorem 1 are illustrated as the pale pink region shown in Fig. 7.

Similarly, for system (1) under Condition (K2b), we can obtain the inner (S2b
in ) and outer (S2b

out) estimations

of attraction regions for P2b
1 under four different conditions, as shown in Fig. 8.

For the four-equilibrium system, we also try to obtain the inner (S4
in) and outer (S4

out) estimations of

attraction regions, and the detailed analysis can be found in App. A.3. Note that for the four-equilibrium
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(a) K2b ∧H1 (b) K2b ∧H2

(c) K2b ∧H3 (d) K2b ∧H4

Figure 8 Attraction region of the P2b
1 for system (1) under Condition K2b ∧Hi (i = 1,2, · · · ,4). Red circle: unde-

sired saddle-node equilibrium. Blue circle: desired saddle-node equilibrium. The yellow curves:

the separatrices, also serving as boundaries of attraction region. Purple lines and bright blue lines

denote the boundary of inner and outer estimations of attraction regions, respectively.

system, the attraction regions become more intricate due to the increased number of equilibria. In App.

A.3, through a novel classification method, we obtained 20 distinct inner and outer estimations of attraction

regions, which can be summarized as Theorems 2, 3, and 4 in App. A.3. The geometries of the attraction

region for the four-equilibrium system are illustrated as the pale pink region shown in Fig. 9.

4. Ecological resilience control design
In the previous two sections, we obtain the inner (Sin) and outer (Sout) estimations of attraction regions with

explicit algebraic expressions under each condition for a multi-equilibria MFD-represented traffic dynamic

system (1). Note that for two-equilibria system, Sin corresponds to S2a
in or S2b

in , and Sout corresponds to S2a
out

or S2b
out ; for two-equilibria system, Sin corresponds to S4

in and Sout corresponds to S4
out . While In this section,

we will design two distinct resilience control schemes, aiming to facilitate the recoverability of the system

to its respective steady states while minimally altering the original landscape, utilizing the obtained Sin and

Sout . Sec. 4.1 illustrates the resilience control schemes utilizing Sin, denoted as RCS-1, and Sec. 4.2 provides

the resilience control schemes utilizing Sout , denoted as RCS-2.

The trajectories starting from inside attraction region (or inner estimations of attraction regions) can con-

verge to the original equilibrium, while for those that starting from outside attraction region (or outer esti-

mations of attraction regions) will move away from the equilibrium. Our primary task is to control the tra-

jectories that move away from the equilibrium point and guide them towards an alternative steady state. For
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(m) K̂4
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(q) K̂4
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5 ∧H1, type 3 (t) K̂4

5 ∧H3, type 3

Figure 9 Attraction region of the P4
1 of system (1) under Condition K̂4

s ∧Hi (s = 1,2, · · · ,5 and i = 1,2, · · · ,4).

Green circle: desired uncongested stable equilibrium. Yellow circle: saddle equilibrium. Yellow-

brown circle: unstable equilibrium. Yellow curves with arrows: the separatrices, also serving as

boundaries of attraction region. Purple lines and bright blue lines denote the boundary of inner

and outer estimations of attraction regions, respectively.

multi-equilibria systems (1), we set up an alternative steady state n1=(ns1,ns2) in D\Sin or D\Sout , respec-

tively. Then, the control schemes (RCS-1 and RCS-2) shall steer the trajectories to the ε −Neighborhood

of n1 within the recovery time t f . Note that the control does not necessarily bring the system to the equi-
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librium state n0, which allows the system to be adaptive (to a feasible steady state) and recoverable (to less

congested state progressively).

Generally speaking, there are three main differences between the RCS-1 and RCS-2 schemes. With

respect to control “intensity”, RCS-1 is more aggressive than RCS-2. That is, the control region for RCS-1

is much larger than RCS-2, as control action U1(n) (U2(n)) are imposed in D\Sin (D\Sout) under RCS-1

(RCS-2) and we have Sin ⊂ Sout . With respect to control mechanism, RCS-1 has a universal control algo-

rithm applied to all alternative steady states, while RCS-2 applies three forms of control, depending on the

location of the alternative steady state. Here, we choose three control methods to prevent the emergence of

new equilibrium points on the boundary of outer estimation of attraction regions. For instance, trajectories

from the boundary of Sout tend to escape Sout , and one control scheme might lead to intersections between

trajectories from D\Sout and trajectories from Sout . This could potentially generate new equilibrium points

on the boundary of the outer estimation of attraction regions, complicating theoretical derivations and caus-

ing control inefficiencies. With respect to control effect, the trajectories starting from D \ Sout will move

towards n1, while trajectories starting from D\Sin will move towards n1 (Fig. 10(b)), or n0 (Fig. 10(c)).

4.1. Control formulation of RCS-1

The domain D can be divided into two subregions: Sin and D\Sin, as shown in Fig. 10. If the starting points

are in Sin, CPC u1 and u2 that satisfy Conditions K2a, K2b or K4 are conducted. According to Theorems

1, 2 and 4, trajectories from these starting points will move towards the n0. Instead, if the initial states

are in D\Sin, new control action U in(n) is activated for recovering trajectories starting from D\Sin to the

ε −Neighborhood of the target point within the recovery time t f , The target point can be the uncongested

equilibrium n0 or the alternative steady state n1 in D\Sin. Specifically, for system (1), if the starting states

are in D\Sin, we apply the following control U in(n1,n2) = (U in
1 (n1,n2),U in

2 (n1,n2)), defined by:

U in
1 (n1,n2) =−γ1 (n1 −ns1)−u2G2(n2(t))+G1(n1(t))−d1,

U in
2 (n1,n2) =−γ2 (n2 −ns2)−u1G1(n1(t))+G2(n2(t))−d2.

(14)

where γi =
2Gi,max

pi
. By adding proposed controller (14) to system (1), the trajectories starting from D\Sin will

move towards n1 directly (Fig. 10(b)), or intersect Sin (Fig. 10(c)). Once intersecting Sin, we rest the control,

i.e., U in
1 =U in

2 = 0 immediately, as such that the trajectories will follow the initial system (1). According to

Theorems 1, 2 and 4, trajectories from these starting points will move towards the n0.

By doing so, we have developed a switched controlled system (She and Xue (2014), Skafidas et al.

(1999), Gao et al. (2022), She et al. (2020)) as:

ṅ= F (n)+U1(n),

where U1(n)≡ 0 when n ∈ Sin, U1(n) =U in(n1,n2) when n ∈ D\Sin.
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(a) CPC (b) RCS-1 (c) RCS-1

Figure 10 Schematic representation of phase portraits under CPC (a) and RCS-1 ((b) and (c)). Notice that

in (c), the trajectories under RCS-1 intersect Sin. Once intersecting Sin, we rest the control U in = 0

immediately, then trajectories spontaneously move towards the n0.

REMARK 1. For multi-equilibria systems (1), certain inner estimations of attraction regions do not con-

tain its partial boundaries lex (e.g. Figs. 6(d), 8(d), 9(b) etc.). This is because the trajectories starting from the

partial boundaries will deviate from the uncongested equilibrium point. In such cases, U in(n) are imposed

until the trajectories intersect with l̂ex, where l̂ex is obtained by moving the line lex down (or left) by ε .

4.2. Control formulation of RCS-2

RCS-2 is designed based on Sout . Likewise, the domain D can be divided into Sout and D\Sout , and D\Sout

can be further divided into R1, R2 and R3, as illustrated in Fig. 11. If the starting states are in Sout , CPC

u1 and u2 that satisfy Conditions K2a, K2b or K4 will be conducted. According to Theorems 1, 2 and 4,

trajectories from these starting points will move towards n0 or escape from the upper boundaries of Sout

and enter D \ Sout . Once the states enter in D \ Sout , control action U out(n) will be activated for recovering

trajectories to the ε −Neighborhood of n1 in D\Sout within the recovery time t f .

Specifically, for a given system (1), there are three cases of control action U out(n), depending on the

location of n1. First consider Case 1, where n1 lies in R1, as depicted in Fig. 11(b). In this case, pro-

posed RCS-2 is as follows: in addition to u1 and u2, we will apply an additional control U out
1 (n1,n2) =(

Uout
1,1 (n1,n2),Uout

1,2 (n1,n2)
)

in R1∨R2, and U out
2 (n1,n2) =

(
Uout

2,1 (n1,n2),Uout
2,2 (n1,n2)

)
in R3, where U out

1 (n1,n2)

are defined by:

Uout
1,1 (n1,n2) =−γ1 (n1 −ns1)−u2G2(n2(t))+G1(n1(t))−d1,

Uout
1,2 (n1,n2) =−γ2 (n2 −ns2)−u1G1(n1(t))+G2(n2(t))−d2,

(15)

and U out
2 (n1,n2) are defined by:

Uout
2,1 (n1,n2) = −u2G2(n2(t))+G1(n1(t))−d1,

Uout
2,2 (n1,n2) = −γ2n2 −u1G1(n1(t))+G2(n2(t))−d2. (16)

by adding proposed controller (16) to system (1), the trajectories starting from R3 will vertically escape

from the upper boundary of R3 and enter R2. Moreover, by adding proposed controller (15) to system (1),
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(a) CPC (b) RCS-2, Case 1

(c) RCS-2, Case 2 (d) RCS-2, Case 3

Figure 11 Schematic representation of phase portraits under CPC (a) and RCS-2 ((b), (c) and (d)). Note that

there are three cases of control action, depending on the location of n1. Three cases of control

action are chosen to prevent the emergence of new equilibrium points on the boundary of Sout .

the trajectories starting from R1 ∨ R2 will move towards n1 directly, as shown in Fig. 11(b). Thus, any

trajectories entering D\Sout will move towards n1 under the controller.

Then consider Case 2, where n1 lies in R2. In this case, U out
1 (n1,n2) =

(
Uout

1,1 (n1,n2),Uout
1,2 (n1,n2)

)
in

D\Sout will be applied. Subsequently, any trajectories going into D\Sout will go to n1 under our proposed

controller, as shown in Fig. 11(c).

Finally consider Case 3, where n1 lies in R3, as shown in Fig. 11(d). similarly, we will apply control

action U out
1 (n1,n2) =

(
Uout

1,1 (n1,n2),Uout
1,2 (n1,n2)

)
in R3 ∨R2, and U out

3 (n1,n2) =
(
Uout

3,1 (n1,n2),Uout
3,2 (n1,n2)

)
in

R1, where U out
3 (n1,n2) are defined by:

Uout
3,1 (n1,n2) = −γ1n1 −u2G2(n2(t))+G1(n1(t))−d1,

Uout
3,2 (n1,n2) = −u1G1(n1(t))+G2(n2(t))−d2. (17)

by adding proposed controller (17) to system (1), the trajectories starting from R1 will horizontally escape

from the right boundary of R1 and enter R2. Moreover, by adding proposed controller (15) to system (1),

the trajectories starting from R2 ∨ R3 will move towards n1 directly, as shown in Fig. 11(d). Thus, any

trajectories entering D\Sout will move towards n1 under our proposed controller.

By doing so, we have developed another switched controlled system (She and Xue (2014), Skafidas et al.

(1999), Gao et al. (2022), She et al. (2020)) as:

ṅ= F (n)+U2(n),
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where U2(n) ≡ 0 when n ∈ Sout , and U2(n) features different formulation in different cases when n ∈
D\Sout . Specifically,

• in case 1, U2(n) =U out
1 (n1,n2) when n ∈ R1 ∨R2 and U2(n) =U out

2 (n1,n2) when n ∈ R3;

• in case 2, U2(n) =U out
1 (n1,n2) when n ∈ D\Sout ;

• in case 3, U2(n) =U out
1 (n1,n2) when n ∈ R2 ∨R3 and U2(n) =U out

3 (n1,n2) when n ∈ R1.

REMARK 2. U in(n1,n2) and U out
2 (n1,n2) would have the same formulation if the alternative steady state

n1 in both controllers are same. This implies that there may exist initial states, such that the system may

end up with identical recovery trajectories under RCS- 1 and RCS-2, respectively.

Furthermore, for a given system (1), if a stable equilibrium point exists (i.e., Condition (K4) holds),

a local Lyapunov function can be found (Wang et al. (2021), Willems (1971), Blanchini (1995)) for the

new controlled system with RCS-2. Specifically, denoting n = (n1,n2)
T, we can prove that the function

V = (n−n0)
T
B (n−n0)(n−n1)

T
(n−n1) is a local Lyapunov function for system (1) with RCS-2,

where B = (P −1)
T
P −1 and

P =

 p11 p12

p21 p22

=

 −a1 s1+a2 s2+Q
2a1 s1 u1

−a1 s1+a2 s2−Q
2a1 s1 u1

1 1


with Q=

√
a1

2 s1
2 +a2

2 s2
2 −2a1 a2 s1 s2 +4a1 a2 s1 s2 u1 u2; s1 =

1
2

√
p1

2 − 4d1+4u2d2
a1(1−u1u2)

; s2 =
1
2

√
p2

2 − 4d2+4u1d1
a2(1−u1u2)

.

Obviously, V > 0 holds for all n ∈ D except for n= n0 and n= n1. Moreover, V = 0 holds if and only if

n = n0 and n = n1. In addition, in the neighborhood of n0, we have dV (t)
dt < 0 holds, and detailed proofs

are as follows:

Letting n−n0 = Py, where y = (y1,y2)
T, we can transform the system (1) into:

dy1(t)
dt

= λ1y1(t)+H1(y1(t),y2(t)),

dy2(t)
dt

= λ2y2(t)+H2(y1(t),y2(t)),
(18)

where λ1 =−a1 s1−a2 s2+Q< 0; λ2 =−a1 s1−a2 s2−Q< 0; H1(y1(t),y2(t)) and H2(y1(t),y2(t)) represent

second-order remained terms.

By the above coordinate transformation, denoting δ = n1 −n0 = (δ1,δ2)
T, we can obtain that:

V (t) =
(
n−n0

)T
B

(
n−n0

)(
n−n1

)T (
n−n1

)
,

= (Py)TB(Py)(Py−δ)
T
(Py−δ) ,

= yTy (Py−δ)
T
(Py−δ) ,

= V1 ·V2 (19)

where V1 = y1
2 + y2

2 and V2 = (p11y1 + p12y2 −δ1)
2 +(p21y1 + p22y2 −δ2)

2. Then we have:

dV (t)
dt

=
∂V
∂y1

· dy1(t)
dt

+
∂V
∂y2

· dy2(t)
dt

,

= 2(δ 2
1 +δ

2
2 )(λ1y1(t)2 +λ2y2(t)2)+H1

v (y1(t),y2(t)). (20)
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where H1
v (y1(t),y2(t)) represents the high-order remained terms, and the lowest power of it is cubic. Obvi-

ously, dV (t)
dt < 0 holds for arbitrary (y1,y2) in the neighborhood of (0,0) except (0,0), as we have λ2 < λ1 < 0.

That is, dV (t)
dt < 0 holds for arbitrary (n1,n2) in the neighborhood of n0, implying function V serves as a local

Lyapunov function for the system in the neighbor of n0.

Similarly, we can prove that dV (t)
dt < 0 holds in the neighborhood of n0. Specifically, letting z1 = n1 −ns1

and z2 = n2 −ns2, we have

dV (t)
dt

=−2(δ1 δ2)B(δ1 δ2)
T(z1(t)2 + z2(t)2)+H2

v (z1(t),z2(t)). (21)

where H2
v (z1(t),z2(t)) represents the high-order remained terms, and the lowest power of it is cubic. Obvi-

ously, dV (t)
dt < 0 holds for arbitrary (z1,z2) in the neighborhood of (0,0) except (0,0), as B is a symmetric

positive definite matrix. In other words, dV (t)
dt < 0 holds for arbitrary (n1,n2) in the neighborhood of n1,

implying function V is also local Lyapunov function for system in the neighbor of n1.

5. Case studies
In this section, the control performance of the proposed resilient control by comparative case studies are

demonstrated. In particular, we benchmark with the classical perimeter control (CPC) and the traffic-

resilience oriented control proposed in Gao et al. (2022).

5.1. Numerical verification

A two-region system is set up for case studies, where the network and traffic settings follow the Downtown

San Francisco road network from Aboudolas and Geroliminis’ work (Aboudolas and Geroliminis (2013)).

We adopt the function form of the MFD models from Gao et al. (2022) for comparison purposes, i.e.,

G1(n1) = − 28
289 n1(n1 − 850) for region 1 and G2(n2) = − 32

961 n2(n2 − 1550) for region 2, with maximum

capacity G1,max = 7×104, G2,max = 8×104 [veh/h] and jam accumulations p1 = 1700, p2 = 3100 [veh].

Based on this MFD data, we consider traffic flow dynamics following Eq. (1) and (2) as defined in Sec.

2.1. We first validate the theoretical results of inner and outer estimation of attraction regions for both two

and four equilibria derived in Sec. 3 (refer to Theorems 1, 2 and 4, Figs. 7, 8 and 9), accumulating to a total

of 28 distinct phase portraits (8 for two-equilibria system and 20 for four-equilibria system). To achieve this,

we consider 28 different scenarios, labeled as Scenario 1 to Scenario 28. Each scenario has distinct allowed

flow rates ui and net fixed demand di (i = 1,2), corresponding to the 28 conditions in Sec. 3. For example,

Scenario 1 corresponds to Condition K2a ∧H1. We showcase two scenarios (scenario 1 and scenario 9) in

Fig. 12. Fig. 12(a) depicts the phase portrait for Scenario 1: u1 = 0.4,u2 = 0.5128,d1 = 3×104,d2 = 5×104

[veh/h], satisfying Condition K2a∧H1, corresponding to the two-equilibrium case. It verifies Theorem 1 (or

Fig. 7(a)). Fig. 12(b) presents the phase portrait for Scenario 9: u1 = 0.3,u2 = 0.4,d1 = 3×104,d1 = 5×104

[veh/h], satisfying Condition K4
1 ∧H1, corresponding to the four-equilibrium case. It verifies Theorem 2 (or
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Fig. 9(a)). Parameters and numerical results for other scenarios can be found in App. B: Fig. 22, Fig. 23 and

Table 4. The results are also consistent with our theoretical findings.

Next, numerical phase portraits of the controlled systems under RCS-1 and RCS-2 are demonstrated, as

depicted in Fig. 13(b), 13(c), and 13(e), 13(f). Here we use Scenario 9 as a showcase, which corresponds

to the complex four-equilibria case. For the simpler two-equilibria case, the control scheme can also be

applicable. Note that Case i(i = 1,2,3) denotes the case where the alternative steady state n1 ∈ Ri. The

illustration of Ri can be found in Fig. 11. Here, we take Case 1 (n1 ∈ R1) and Case 3 (n1 ∈ R3) as examples.

Fig. 13(a) represents the results under CPC control, serving as a benchmark control. Let us focus on the

part D \ Sin in Fig. 13(a), (b), and (e). In Fig. 13(a), a small portion of the trajectories in D \ Sin enters

Sin, while a larger portion of the trajectories moves towards the upper or right boundaries of the phase

portrait, approaching grid-lock, i.e., high traffic density but low outflow. In contrast, Fig. 13(b) and 13(e)

demonstrate that RCS-1 is capable of guiding trajectories starting from D \ Sin towards either the non-

congested equilibrium point n0 or the alternative steady state n1 in D \ Sin, avoiding grid-lock. Similarly,

in Fig. 13(a), trajectories in D \ Sout all move towards the upper and right boundaries of the phase portrait,

while Fig. 13(c) and 13(f) confirm that RCS-2 directs trajectories in D\Sout towards the alternative steady

state n1 in D\Sout . These results demonstrate the recoverability under RCS-1 and RCS-2. Furthermore, the

similar trajectories in R1∨R2 (upper region in D\Sout) in Fig. 13(b) and 13(c) confirm that there exist some

initial states such that the recovery trajectories starting from them under RCS-1 and RCS-2 are identical, as

illustrated in Remark 2. This is because, in R1∨R2, RCS-1 and RCS-2 have the same control formulation.

Moreover, for the case where the system has a stable equilibrium (we here use scenario 9 as a showcase),

we can find the function V (t) defined in Sec. 4.2, as shown in Fig. 14(a), is a local Lyapunov function for

the controlled system with RCS-2. Moreover, the projection of V (t) in the plane n1 − n2 is shown in the

Fig. 14(b). Note that the local Lyapunov is only applicable to four-equilibria system, and is not suitable for

two-equilibria system, as the there exist no stable equilibria in two-equilibria system.

5.2. Comparison on proposed two control schemes with CPC and RCS-single

In this section, we compare our proposed control schemes (RCS-1 and RCS-2) with two classical perimeter

control strategies (RCS-single in Gao et al. (2022) and CPC in Haddad and Geroliminis (2012)) to show the

resilience of our approaches. We maintain the same MFD setup as in the previous section, and use scenario

9 as an example. Fig. 13(d) depicts the numerical simulation of phase portrait for the control system with

RCS-single, where trajectories within the whole region recover to the original equilibrium n0. The key

distinction between RCS-single and proposed schemes lies in the trajectories within the part: our proposed

control schemes can recover to the alternative steady state n1, while RCS-single can only recover to the

original equilibrium n0.

Then, we calculate the resilience measure (defined in Eq. (10)) under different control schemes.

Resilience measures are situation-dependent, where situations referring to states (vehicle accumulations)



27

0 500 1000 1500
0

500

1000

1500

2000

2500

3000

(a) K2a ∧H1 (scenario 1)

0 500 1000 1500
0

500

1000

1500

2000

2500

3000

(b) K4
1 ∧H1 (scenario 9)

Figure 12 Numerical simulation phase portraits for system (1) under Conditions (a) K2a ∧H1 (scenario 1)

and (b) K4
1 ∧H2 (scenario 9). Red circle: undesired saddle-node equilibrium. Blue circle: desired

uncongested saddle-node equilibrium. Green circle: desired uncongested stable equilibrium. Yel-

low circle: saddle equilibrium. Yellow-brown circle: unstable equilibrium. Green line with arrows:

the trajectories. Purple line and light blue line represent the inner and outer estimations of attrac-

tion regions, respectively. The yellow lines represent the numerical attraction region boundaries,

solid yellow lines indicating the boundary line belongs to attraction region, while dashed yellow

lines indicating the boundary line does not belong to attraction region. The agreement of this

figure with Figs. 7(a) and Fig. 9(a) validate the theoretical analysis.

after disturbances, also known as initial recovery states. For instance, we assume state perturbations sud-

denly occur at moment t = 0.5 [h]. Situation i denotes the disturbed state at t = 0.5 [h] as Ai (i = 1,2,3).

Here, we consider three situations, i.e., A1 = (500,2800), A2 = (1500,2800) and A3 = (1428,1395), marked

as three pentagrams in Fig. 13. Following these trajectories (the black lines in Fig. 13) departing from

the pentagrams, we plot the vehicle accumulation n1(t), completion flow rate G1(n1(t)), and the numerical

diagrams of deviation from maximum completion flow (G1,max and G2,max) evolving with time under each

control scheme (CPC, RCS-1, RCS-2, RCS-single) in Fig. 15. Here we use Case 1 (corresponding to Fig.

13(b) and 13(c)) as an example to illustrate performance the proposed control schemes, and the results for

Case 2 and Case 3 can be found in App. B, Fig. 24 and Fig. 25.

Clearly, as depicted in Fig. 15(g), (h), and (i), traffic system collapses rapidly under CPC (blue solid line)

(within 0.006 [h] for A1, 0.01 [h] for A2 and 0.007 [h] for A3); under RCS-single (red solid line), system

initially rises slowly approaching maximum completion flow, then rebounds and stabilizes at a deviation of

26140 [veh/h] (within 0.70 [h] for A1, 1.61 [h] time for A2 and 1.04 [h] for A3); under the proposed RCS-1

(yellow solid line), the system swiftly recovers to a deviation of 17441 [veh/h] (within 0.16 [h] for A1 and

0.16 [h] for A2, coinciding with the green solid line), or it first rises rapidly approaching the maximum com-

pletion flow, then rebounds and stabilizes at a deviation of 26140 [veh/h] (within 0.21 [h] for A3); under the

proposed RCS-2 (green solid line), the system swiftly recovers to a deviation of 17441 [veh/h] (within 0.16

[h] for A1 and 0.16 [h] for A2), or it resists the continued deterioration of the system, guiding a swift recovery,

and stabilizes at a deviation of 17441 [veh/h] (within 0.19 [h] for A3). Here, we take A1 as an example to
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Figure 13 Numerical simulation phase portraits of system (1) with (a) CPC, (b) RCS-1 (case 1), (c) RCS-2

(case 1), (d) RCS-single, (e) RCS-1 (case 3) and (f) RCS-2 (case 3) under condition K4
1 ∧H1 (sce-

nario 9). Green circle: uncongested equilibrium n0 and alternative steady state n1. Pentagrams

denote three situations (i.e., three initial recovery states), black lines departing from the penta-

grams are the corresponding recovery trajectories. CPC cannot recover the system; RCS-single

recovers to the original equilibrium n0 = (481,926), while RCS-1 and RCS-2 can recover to alterna-

tive stable states n1. Here we choose n1 = (850,2274) for Case 1 and n1 = (1269,1550) for Case 3,

both satisfying the selectable range of alternative stable states Eq. 7. Note that Case i(i = 1,2,3)

denotes the case where the alternative steady state n1 ∈ Ri. The illustration of Ri can be found in

Fig. 11.

elucidate the reasons for the aforementioned phenomena. Under CPC, the vehicle accumulation n2(t) (Fig.

15(d), blue dotted line) develops from 2800 to a jam vehicle accumulation of 3100 [veh] within 0.006 [h],

leading to the completion flow G2(n2(t)) (blue solid line) tending towards 0. This causes Region 2 to enter a

gridlock state from which it cannot recover. Under RCS-single, the vehicle accumulation n1(t) (Fig. 15(a),

red dotted line) initially decreases slowly from 500 [veh], then slowly increases before decreasing again,

finally stabilizing at the original equilibrium of 481 [veh]. Correspondingly, the completion flow decreases

slowly, then increases slowly, before decreasing again and stabilizing at 56818 [veh/h]. Simultaneously, the

vehicle accumulation n2(t) (Fig. 15(d), red dotted line) decreases slowly at first, then rapidly decreases and

stabilizes at 926 [veh]. Consequently, the completion flow G2(n2(t)) (Fig. 15(d), red solid line) first rises
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Figure 14 (a) V function with respect to n1 and n2. (b) Projection of the V function on the n1 − n2 plane.

The black line with arrows represents several trajectories of system with RCS-2. Green circle:

the equilibrium points of system with RCS-2 (case 2). Note that scenario 9 is considered. Here,

n0 = (481,926) and n1 = (1219,2174).

slowly to maximum completion flow, then rapidly decreases and stabilizes at 67045 [veh/h]. Therefore,

the recoverability of RCS-single is guaranteed, but with a longer duration. Under the proposed RCS-1 and

RCS-2, due to high travel demand, the vehicle accumulation n1(t) (Fig. 15(a), green dotted line) rapidly

increases from 500 [veh] and stabilizes at 850, resulting in the completion flow (Fig. 15(a), green solid line)

rapidly rising and stabilizing at the maximum completion flow of 7×104 [veh/h]. Simultaneously, the vehi-

cle accumulation n2(t) (Fig. 15(b), green dotted line) rapidly decreases from 2800 to 2274 [veh], leading the

completion flow G2(n2(t)) quickly stabilized at 62559 [veh/h]. Consequently, RCS-1 and RCS-2 can ensure

rapid recoverability, outperforming RCS-single. It is noteworthy that in this scenario, RCS-1 and RCS-2

exhibit identical recovery trajectories. We also provide the cases of RCS-1 and RCS-2 employing different

recovery trajectories, as shown in Fig. 15(c), (f), and (i).

For a more accurate comparison, based on Fig. 15 and Eq. (10), we integrate the curve of −Ds versus t

to obtain the value of resilience measure, R under RCS-1, RCS-2, and RCS-single. The results are outlined

in Table 2. Noteworthy, the absolute value of R corresponds to the area of the resilience triangle during the

recovery period, and it signifies the loss of actual completed trips compared to the maximum number of

trips that could have been completed during the recovery period. A larger resilience measure R corresponds

to a smaller area of the resilience triangle (less loss), indicating greater resilience. As presented in Table 2,

for all three Situations (A1, A2 and A3), resilience measures for RCS-1 and RCS-2 are significantly larger

than RCS-single, demonstrating exceptional recovery capabilities.

6. Conclusion
In this paper, we define the ecological resilience of urban traffic, and further propose a resilience control

methodology from the perspective of ecological resilience. Specifically, the ecological resilience of urban

traffics is defined by the ability for a traffic system to resist uncertain perturbations by shifting to alterna-

tive states. The resilience control methodology comprises three aspects: portraying the recoverable scopes,
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Figure 15 Vehicle accumulations (dotted line) and completion flow rates (solid line) of Region 1 (((a), (b) and

(c))) and Region 2 ((d), (e) and (f)). The numerical diagrams of deviation from maximum complete

flow −Ds ((g), (h) and (i)) evolving with time t under CPC, RCS-1, RCS-2 and RCS-single. Scenario

9 is considered. Note that for (a)-(f), we employ dual y-axes. The left y-axis represents vehicle

accumulation (density), while the right y-axis represents completion flow. Ai (i = 1,2,3) are the

same as the three pentagrams in Fig. 13. The results in (a)(d)(g) ((b)(e)(h) and (c)(f)(i)) are obtained

by following the recovery trajectories (black lines in Fig. 13) departing from the pentagram A1 (A2

and A3). Reaffirming that RCS-single, RCS-1, and RCS-2 can ensure recoverability, while CPC can

not. The resilience triangles in (g), (h) and (i) reveal that RCS-1 and RCS-2 outperform RCS-single,

as RCS-1 and RCS-2 have smaller resilience triangles (loss) in most scenarios.
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Table 2 Resilience measure [veh].

resilience control
A1 A2 A3

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

RCS-1 -4031 -4384 -3110 -4284 -5646 -3681 -4250 -3302 -1710

RCS-2 -4031 -4384 -5800 -4284 -6558 -6615 -3776 -3302 -1744

RCS-single -24568 -56501 -20584 -24568 -56501 -20584 -24568 -56501 -20584

Case i(i = 1,2,3) denotes the case where the alternative steady state n1 ∈ Ri, as shown in Fig. 11. Ai

denotes three situations, corresponding to three pentagrams in Fig. 13 and Fig. 15.

designing alternative steady states, controlling system to shift to alternative steady states for adapting large

disturbances. Among them, the recoverable scopes are portrayed by inner and outer estimations of attraction

regions; the alternative steady states are set close to the optimal state and outside the recoverable scopes

of the original equilibrium; the controller ensures the local stability of the alternative steady states, with-

out changing the trajectories inside the recoverable scopes of the original equilibrium as much as possible.

We implemented the proposed control framework in a two-region traffic network described by parabolic

MFD dynamic, and designed proposed control schemes (RCS-1 and RCS-2). Comparisons with the clas-

sical urban traffic resilience control schemes (CPC and RCS-single, etc.) show that, proposed resilience

control schemes (RCS-1 and RCS-2) has a better adaptability and generates a greater resilience measure.

Noteworthy, RCS-1 differs with RCS-2 in control intensity, control formulation and control effect. Note

that, for multi-region (more than two-region) MFD dynamics, our resilience control idea can still be applied.

The difficulty in implementing the resilience control idea is that for N-dimensional system, the equilibrium

point will be more complex, and the attraction region maybe more difficult to obtain. Moreover, the inner

estimation of attraction region we can obtain may shrink and the outer estimation of attraction region may

expand, potentially affecting the effectiveness of the regulation scheme.

There is still work to be done in the future. Given this paper considers mainly constant MFD dynamics,

and it is worth to extend the methodology of this paper to more general time-varying MFD dynamics in the

future. Moreover, a feasible resilience control is provided in this paper, and future work will be extended to

find an optimal resilience control scheme.
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Appendix A: Global phase portrait and attraction region for four-equilibria system

we will consider the four-equilibria cases, derive its qualitative characteristics under CPC (u1 and u2), and further pro-

vide an inner and outer estimations of attraction regions. Specifically, local stability verification of the four-equilibria

system will be shown in App. A.1; global phase portrait derivation is performed in App. A.2; and spontaneous attrac-

tion region estimation of four-equilibria system will be included in App. A.3.

A.1. Local stability verification

According to Condition (K4), we have:

u2d2 +d1 − (1−u1u2)G1,max < 0,

u1d1 +d2 − (1−u1u2)G2,max < 0.
(22)

For system (1) satisfying (22), the four equilibria are denoted as P4
m =

(
p4

m,1, p4
m,2

)
, where m = 1,2,3,4, p4

m,1 =

p1+(−1)m
√

p12− 4d1+4d2u2
a1(1−u1u2)

2 ; p4
m,2 =

p2−
√

p22− 4d2+4d1u1
a2(1−u1u2)

2 when m = 1,2 and p4
m,2 =

p2+

√
p22− 4d2+4d1u1

a2(1−u1u2)

2 when m = 3,4.

We first verify the local stability of the four equilibria for system (1) satisfying (22). Under Condition (K4 ∧H), we

have the following proposition for its four equilibria.

PROPOSITION 2. Under Condition (K4 ∧H), for system (1), P4
1 is a locally stable node, P4

2 and P4
3 are saddle

points, P4
4 is an unstable node.

Proof: For system (1), we can get the derivative operator A|P4
m

(m = 1,2,3,4) at the equilibrium P4
m as follows:

A|P4
m
= D f |P4

m
=

 ∂F1(n1,n2)
∂n1

∂F1(n1,n2)
∂n2

∂F2(n1,n2)
∂n1

∂F2(n1,n2)
∂n2

∣∣∣∣∣
P4

m

=

 2a1(p4
m,1 −

p1
2 ) −2u2a2(p4

m,2 −
p2
2 )

−2u1a1(p4
m,1 −

p1
2 ) 2a2(p4

m,2 −
p2
2 )

 .

Thus, the two eigenvalues λm, j ( j = 1,2) of A|P4
m

satisfy:

λ
2
m, j −2

[
a1(p4

m,1 −
p1

2
)+a2(p4

m,2 −
p2

2
)
]

λm, j +4(1−u1u2)a1a2(p4
m,1 −

p1

2
)(p4

m,2 −
p2

2
) = 0. (23)

Note that the discriminant ∆m for Eq. (23) is:

∆m = 4
[
a1(p4

m,1 −
p1

2
)+a2(p4

m,2 −
p2

2
)
]2

−16(1−u1u2)a1a2(p4
m,1 −

p1

2
)(p4

m,2 −
p2

2
).

1. For P4
1 =(p4

1,1,p4
1,2), we can get ∆1 > 0, then Eq. (23) has two real roots λ1,1 and λ1,2. Moreover, we have:

λ1,1+λ1,2 = 2
[
a1(p4

1,1 −
p1
2 )+a2(p4

1,2 −
p2
2 )

]
< 0, λ1,1λ1,2 = 4(1−u1u2)a1a2(p4

1,1−
p1
2 )(p4

1,2−
p2
2 )> 0, which

implies λ1,1 < 0,λ1,2 < 0. Thus, we can conclude the equilibrium point P4
1 is a locally stable node.

2. For P4
2 =(p4

2,1,p4
2,2), we can get ∆2 > 0, then Eq. (23) has two real roots λ2,1 and λ2,2, where λ2,1 < λ2,2. Moreover,

we have: λ2,1λ2,2 = 4(1−u1u2)a1a2(P21− p1
2 )(p4

2,2−
p2
2 )< 0, which implies λ2,1 < 0 < λ2,2. Thus, we have that

the equilibrium point P4
2 is a saddle point.

3. For P4
3 =(p4

3,1,p4
3,2), we also have ∆3 > 0, then Eq. (23) has two real roots λ3,1 and λ3,2, where λ3,1 < λ3,2.

Moreover, we have: λ3,1λ3,2 < 0, which indicates λ3,1 < 0 < λ3,2. Thus, P4
3 is a saddle point.

4. For P4
4 =(p4

4,1,p4
4,2), we have ∆4 > 0, Moreover, the two real roots λ41 and λ4,2 of Eq. (23) satisfy λ4,1 +λ4,2 > 0,

λ4,1λ4,2 > 0, which implies λ4,1 > 0,λ4,2 > 0. Thus, P4
4 is an unstable node.

□
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A.2. Global phase portrait derivation

Subsequently, for the four-equilibria system (1) under Condition (K4 ∧H), the global phase portrait will be derived.

First letting x1(t) = n1(t)− p4
1,1 and x2(t) = n2(t)− p4

1,2, we simplify system (1) as:

dx1(t)
dt

=−u2a2(x2 − s2)
2 +a1(x1 − s1)

2 +M1,

dx2(t)
dt

=−u1a1(x1 − s1)
2 +a2(x2 − s2)

2 +M2,

(24)

where s1 =
1
2

√
p12 − 4d1+4u2d2

a1(1−u1u2)
, s2 =

1
2

√
p22 − 4d2+4u1d1

a2(1−u1u2)
, M1 = d1 +u2

a2 p2
2

4 − a1 p1
2

4 , and M2 = d2 +u1
a1 p1

2

4 − a2 p2
2

4 .

Obviously, the corresponding four equilibria of system (24) are P̂4
1 = (0,0), P̂4

2 = (2s1,0), P̂4
3 = (0,2s2) and P̂4

4 =

(2s1,2s2). Note that the four equilibria of the original system (1) are P4
1 = ( p1−2s1

2 , p2−2s2
2 ), P4

2 = ( p1+2s1
2 , p2−2s2

2 ),

P4
3 =( p1−2s1

2 , p2+2s2
2 ), and P4

4 =( p1+2s1
2 , p2+2s2

2 ). Moreover, since M1+u2M2 = d1+u2d2−(1−u1u2)G1,max and M2+

u1M1 = d2 + u1d1 − (1−u1u2)G2,max, we have that Condition K4 (or inequality (22)) holds if and only if Condition

(K̂4):

M1 +u2M2 < 0,

M2 +u1M1 < 0,
(25)

holds. Further, Condition (K̂4) can be divided into five sub-conditions:

(1) Condition (K̂4
1): M1 < 0∧M2 < 0;

(2) Condition (K̂4
2): M1 = 0∧M2 < 0

(3) Condition (K̂4
3): M1 < 0∧M2 = 0

(4) Condition (K̂4
4): M1 > 0∧M2 < min

{
−M1

u2
,−u1M1

}
;

(5) Condition (K̂4
5): M1 < min

{
−u2M2,−M2

u1

}
∧M2 > 0

Thus in the following, we will discuss the global qualitative characteristics and attraction region for equivalence system

(24) under Condition (K̂4
i ∧H) respectively, where i = 1,2, · · · ,5.

To begin with, we consider the phase portrait under Condition (K̂4
1 ∧H), which can be partitioned into four sub-

Conditions: (K̂4
1 ∧H1), (K̂4

1 ∧H2), (K̂4
1 ∧H3) and (K̂4

1 ∧H4).

First consider Condition (K̂4
1∧H1). Following the steps in Sec. 3.2, we have that: the demarcation lines are (x1−s1)

2

−M1
a1

−

(x2−s2)
2

− M1
u2a2

= 1 and (x2−s2)
2

−M2
a2

− (x1−s1)
2

− M2
u1a1

= 1, portrayed as the red and blue dotted curve respectively in Fig. 16(a). In

addition, we have dx1(t)
dt = 0 and dx2(t)

dt = (1−u1u2)a2x2(t)(x2(t)−2s2) on these two red curves, indicating dx2(t)
dt > 0

when x2(t) < 0 or x2(t) > 2s2 holds and dx2(t)
dt < 0 when 0 < x2(t) < 2s2 holds. Similarly, we have dx2(t)

dt = 0 and
dx1(t)

dt = (1−u1u2)a1x1(t)(x1(t)−2s1) on these two blue curves, implying dx1(t)
dt > 0 when x1(t) < 0 or x1(t) > 2s1

holds and dx1(t)
dt < 0 when 0 < x1(t)< 2s1 holds. Obviously, we can obtain nine unbounded regions in R2 divided by

these four curves. Moreover, Table 3 summarizes the symbols of dxi(t)
dt (i = 1,2) in these nine regions. On the basis of

Table 3, the phase portrait of (24) under Condition (K̂4
1 ∧H1) can be obtained, as shown in Fig. 16(a). Subsequently,

based on the phase portrait 5(a), by utilizing proof by contradiction, we can verify that regions B, G and F are positive

invariant sets. Since the trajectories starting from B, G and F will not escape, there exist no close orbits for system (24)

under Condition (K̂4
1 ∧H1).
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(a) K̂4
1 ∧H1 (b) K̂4

1 ∧H2 (c) K̂4
1 ∧H3 (d) K̂4

1 ∧H4

Figure 16 Theoretical schematic phase portraits of system (24) under Condition (K̂4
1 ∧H). Green circle:

desired uncongested stable equilibrium. Yellow circle: saddle equilibrium. Yellow-brown circle:

unstable equilibrium. Red dotted curves: ẋ1 = 0, blue dotted curves: ẋ2 = 0, green arrows: trajec-

tory directions.

Table 3 Symbols of the nine regions for system (24) under Condition K̂4
1 ∧H1.

Derivative
Symbol in the region

A B C D E F G H I

dx1(t)
dt + − + + − + + − +

dx2(t)
dt + + + − − − + + +

Then, for Conditions (K̂4
1∧H2), (K̂4

1∧H3) and (K̂4
1∧H4), we can also simplify the system (24) and then perform the

above analysis. In a similar way, we can obtain four corresponding curves under each Condition, which separate R2 to

nine unbounded regions. Then the corresponding phase portraits of (24) under these three Conditions can be acquired,

as shown in Figs. 16(b), 16(c) and 16(d). Further, we can also obtain the positive invariant sets under each Condition,

which verify that there is no close orbit for system (24) under Conditions (K̂4
1 ∧H2), (K̂4

1 ∧H3) and (K̂4
1 ∧H4). Thus,

there exists no close orbit, for the system (1) under Condition K̂4
1 ∧H.

A.3. Spontaneous attraction region estimation

Based on the nonexistence of close orbits and Fig. 16, we will next analyze the attraction region of the locally stable

node P4
1 . For this purpose, we wish to find certain corresponding separatrices of system (24) under Conditions (K̂4

1 ∧

H1), (K̂4
1 ∧H2), (K̂4

1 ∧H3) and (K̂4
1 ∧H4). However, due to the increased number of equilibria, it seems very difficult

to find certain separatrices directly. Thus, we will first find inner and outer estimations of attraction regions, and then

find certain corresponding separatrices under the above four conditions.

To start with, we consider Condition (K̂4
1 ∧H1). The two red dotted demarcation lines can be denoted as x1 =

r̂4,1
i (x2) (i = 1,2), where r̂4,1

i (x2) = (−1)i
√

u2a2
a1

(x2 − s2)
2 − M1

a1
+ s1. Similarly, the two blue dotted demarcation lines

can be denoted as x2 = b̂4
i (x1) (i = 1,2), where b̂4

i (x1) = (−1)i
√

u1a1
a2

(x1 − s1)
2 − M2

a2
+ s2. Obviously, the vertex of

the line x1 = r̂4,1
i (x2) is Vei = ((−1)i

√
−M1

a1
+ s1,s2) and the vertex of the line x2 = b̂4

i (x1) (i = 1,2) is Vei+2 =

(s1,(−1)i+2
√

−M2
a2

+ s2). Subsequently, in light of Fig. 16(a), we can similarly verify that the region Û4 (the light

yellow region shown in Fig. 17(a)) is a positive invariant set, where Û4 =
{
(x1,x2)|x1 ≥ l̂2

out(x2)∨ x2 ≥ l̂1
out(x1)

}
with

l̂i
out(xi) =

{√
uiai
a j

(xi − si)
2 − M j

a j
+ s j xi < 0

2s j 0 < xi < 2si
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(a) K̂4
1 ∧H1 (b) K̂4

1 ∧H2 (c) K̂4
1 ∧H3 (d) K̂4

1 ∧H4

Figure 17 Qualitative characteristics of system (24) ((a)-(d)) and system (1) ((e)-(h)) under Condition (K̂4
1 ∧H).

Green circle: desired uncongested stable equilibrium. Yellow circle: saddle equilibrium. Yellow-

brown circle: unstable equilibrium. Red dotted curves: ẋ1 = 0, blue dotted curves: ẋ2 = 0, yellow

curves: the separatrices, also serving as boundaries of attraction region. Light pink region: attrac-

tion region of P4
1 .

Moreover, by similar analysis to Û2a in two-equilibria case, we can arrive that R(P̂4
1 )⊂R2 \Û4, i.e., Ŝ4

out =R2 \Û4 ={
(x1,x2)|x1 < l̂2

out(x2), x2 < l̂1
out(x1)

}
is an outer estimation of attraction region for P̂4

1 .

In addition, Ŝ4
in (the light blue region shown in Fig. 17(a)) is also a positive invariant set, where

Ŝ4
in =

{
(x1,x2)|x1 ≤ l̂2

in(x2), x2 ≤ l̂1
in(x1)

}
with

l̂i
in(xi) =


2s j xi < 0√

uiai
a j

(xi − si)
2 − M j

a j
+ s j 0 < xi < si√

−M j
a j

+ s j si ≤ n2 < 2si

Further, we can prove that Ŝ4
in is an inner estimation of attraction region for P̂4

1 by following two steps. Firstly, the

trajectory starting from any point in Ŝ4
in will entering the bounded region Ŝ4

in ∧R2
1 as t →+∞, where

R2
1 =

{
(x1,x2)|x1 ≥− p1 −2s1

2
, x2 ≥− p2 −2s2

2

}
,

as we have ẋ1 > 0 on the left boundary of Ŝ4
in ∧R2

1 and ẋ2 > 0 on the lower boundary of Ŝ4
in ∧R2

1. Secondly, the

trajectory starting from any point in bounded region Ŝ4
in ∧R2

1 will go to P̂4
1 as t → +∞, since there is no closed orbit,

and there exists only one stable node P̂4
1 in the bounded region (Zhang (2006)).

As for Conditions (K̂4
1 ∧H2), (K̂4

1 ∧H3) and (K̂4
1 ∧H4), through similar analysis, we can obtain the inner and

outer estimations of attraction regions for P̂4
1 , as shown in the Figs. 17(b), 17(c) and 17(d). Further, letting n1(t) =

x1(t)+
p1−2s1

2 and n2(t) = x2(t)+
p2−2s2

2 , the inner and outer estimations of attraction regions for P4
1 can be obtained.

Denoting li
in(ni) = l̂i

in(ni − pi−2si
2 )+

p j−2s j
2 and li

out(ni) = l̂i
out(ni − pi−2si

2 )+
p j−2s j

2 , where i, j = 1,2 and i ̸= j, we can

arrive at the following theorem.

THEOREM 2. Under Condition (K̂4
1 ∧H), for the local stable point P4

1 , we have S4
in ⊂ R(P4

1 ) ⊂ S4
out , where the

inner estimation of attraction region S4
in and the outer estimation of attraction region S4

out are defined as follows:

(1) Under Condition (K̂4
1 ∧H1),

S4
in =

{
(n1,n2)|n1 ≤ l2

in(n2), n2 ≤ l1
in(n1)

}
;S4

out =
{
(n1,n2)|n1 ≤ l2

out(n2), n2 ≤ l1
out(n1)

}
.
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(2) Under Condition (K̂4
1 ∧H2),

S4
in =

{
(n1,n2)|n1 ≤ l2

in(n2), n2 <
n2 +2s2

2

}
; S4

out =

{
(n1,n2)|n1 ≤ l2

out(n2), n2 <
n2 +2s2

2

}
.

(3) Under Condition (K̂4
1 ∧H3),

S4
in =

{
(n1,n2)|n1 <

n1 +2s1

2
, n2 ≤ l1

in(n1)

}
; S4

out =

{
(n1,n2)|n1 <

n1 +2s1

2
, n2 ≤ l1

out(n1)

}
.

(4) Under Condition (K̂4
1 ∧H4), S4

in = S4
out =

{
(n1,n2)|n1 <

n1+2s1
2 , n2 <

n2+2s2
2

}
.

Note that ni ≥ 0 (i = 1,2) holds all the time.

Clearly, according to Theorem 2, the inner and outer estimations of attraction regions for P4
1 under (K̂4

1 ∧Hi) with

i = 1,2,3,4 can be obtained, as shown in the Figs. 9(a)–9(d).

Moreover, we will derive the boundaries of the attraction region of P4
1 under Condition (K̂4

1∧H1), by finding certain

corresponding separatrices located in
3⋃

i=1
V̂ 4,i = Ŝ4

out \ Ŝ4
in of equivalent systems (24), as shown in Fig. 17(a), where

V̂ 4,1 =
{
(x1,x2)|x1 < 0, l̂1

in(x1)< x2 < l̂1
out(x1)

}
,

V̂ 4,3 =
{
(x1,x2)|l̂2

in(x2)< x1 < l̂2
out(x2), x2 < 0

}
,

and V̂ 4,2 = V̂ 4,2
1 ∨V̂ 4,2

2 , where

V̂ 4,2
1 =

{
(x1,x2)|0 < x1 < 2s1, l̂1

in(x1)< x2 < l̂1
out(x1)

}
,

V̂ 4,2
2 =

{
(x1,x2)|l̂2

in(x2)< x1 < l̂2
out(x2), 0 < x2 < 2s2

}
.

Obviously, we can obtain a stable separatrix Φ̂1(P̂4
3 ) ∈ V̂ 4,1 for the saddle point P̂4

3 and a stable separatrix Φ̂1(P̂4
2 ) ∈

V̂ 4,3 for the saddle point P̂4
2 . Moreover, we can further obtain another stable separatrix Φ̂2(P̂4

3 ) of P̂4
3 , which satisfy

Φ̂2(P̂4
3 ) ∈ V̂ 4,2

1 and limt→−∞ Φ̂2(P̂4
3 ) = P̂4

4 , by following two steps. Firstly, we can verify that the region V̂ 4,2
1 is a

negative invariant set, otherwise there will exist contradiction with the trajectory direction at the boundary line of

region V̂ 4,2
1 . Secondly, the trajectory starting from any point in bounded region V̂ 4,2

1 will go to P̂4
4 as t → −∞, since

there is no closed orbit, and there exists only one unstable node P̂4
4 in the bounded region (Zhang (2006)). Similarly, we

can obtain another stable separatrix Φ̂2(P̂4
2 ) for P̂4

2 , which satisfies Φ̂2(P̂4
2 ) ∈ V̂ 4,2

2 and limt→−∞ Φ̂2(P̂4
2 ) = P̂4

4 . Clearly,

these four separatrices are exactly the boundaries of the attraction region for P̂4
1 .

Further, letting n1(t) = x1(t)+
p1−2s1

2 and n2(t) = x2(t)+
p2−2s2

2 , the attraction region boundary for P4
1 under Condi-

tion (K̂4
1∧H1) can be obtained. Denoting Φi(P4

2 ) (i= 1,2) to be the two stable separatrices of P4
2 , and Φ j(P4

3 ) ( j = 1,2)

to be the two stable separatrices of P4
3 , the below theorem can be arrived.

THEOREM 3. Under Condition (K̂4
1 ∧H1), for the local stable point P4

1 , we have S4
A = R(P4

1 ), where

S4
A :=

{
(n1,n2)|ni < g4

j(n j), i, j = 1,2, j ̸= i
}

satisfying l j
in(n j)< g4

j(n j)< l j
out(n j), and g4

j(n j), j = 1,2 are defined as:

g4
1(n1) =

{
Φ1(P4

3 ) n1 <
p1−2s1

2
Φ2(P4

3 )
p1−2s1

2 < n1 <
p1+2s1

2

and

g4
2(n2) =

{
Φ1(P4

2 ) n2 <
p2−2s2

2
Φ2(P4

2 )
p2−2s2

2 < n2 <
p2+2s2

2

with limt→−∞ Φ2(P4
2 ) = P4

4 and limt→−∞ Φ2(P4
3 ) = P4

4 . Note that ni ≥ 0 (i = 1,2) holds all the time.
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(a) K̂4
2 ∧H1 (b) K̂4

2 ∧H2 (c) K̂4
3 ∧H1 (d) K̂4

3 ∧H3

Figure 18 Qualitative characteristics of system (24) under corresponding conditions.

In summary, the attraction region of P4
1 under corresponding conditions are plotted as light pink zones in the

Figs. 9(a)-9(d).

Secondly, we consider Condition (K̂4
2 ∧H), which can be partitioned into two sub-Conditions: (K̂4

2 ∧H1) and (K̂4
2 ∧

H2). Note that K̂4
2 ∧H3 =∅ and K̂4

2 ∧H4 =∅. By repeating the analysis as above, the corresponding phase portraits

of (24) under these two sub-conditions can be obtained; and further prove that there is no close orbit for system

(24) under above two sub-conditions. In addition, we can obtain the inner and outer estimations of attraction regions

for P̂4
1 , and deduce the boundary of attraction region for P̂4

1 , as shown in the Figs. 18(a) and 18(b). Further, letting

n1(t) = x1(t)+
p1−2s1

2 and n2(t) = x2(t)+
p2−2s2

2 , we can obtain the inner and outer estimations of attraction regions

for P4
1 which are defined in Theorem 2 (1), and the attraction region boundary for P4

1 under Conditions (K̂4
2 ∧H1) and

(K̂4
2 ∧H2), as shown in Figs. 9(e) and 9(f).

Thirdly, we analyze the phase portrait and the attraction region of P4
1 under Condition (K̂4

3 ∧H), which can be

partitioned into two sub-Conditions: (K̂4
3 ∧H1) and (K̂4

3 ∧H3). Note that K̂4
3 ∧H2 =∅ and K̂4

3 ∧H4 =∅. Notice that

Condition (K̂4
3 ∧H) is symmetric to Condition (K̂4

2 ∧H), so the analysis process and results are similar. Thus, we

can obtain the inner and outer estimations of attraction regions for P̂4
1 in a similar way, as shown in Figs. 18(c) and

18(d). Further, letting n1(t) = x1(t)+
p1−2s1

2 and n2(t) = x2(t)+
p2−2s2

2 , the attraction region of P4
1 under Conditions

(K̂4
3 ∧H1) and (K̂4

3 ∧H3) can be obtained, as shown in Figs. 9(g) and 9(h).

Fourthly, we consider Condition (K̂4
4 ∧H), which can be partitioned into two sub-Conditions: Condition (K̂4

4 ∧H1)

and (K̂4
4 ∧H2). Note that K̂4

4 ∧H3 =∅ and K̂4
4 ∧H4 =∅.

We first consider Condition (K̂4
4∧H1). For system (24) under Condition (K̂4

4∧H1), following the steps as Condition

(K̂4
1 ∧H1), the global phase portrait can be obtained, as shown in Fig. 19(a); further prove that there exist no close

orbits; and subsequently derive the inner estimation of attraction region Ŝ4,1
in =

{
(x1,x2)|x1 ≤ 2s1, x2 ≤ l̂1,1

in (x1)
}

and

the outer estimation of attraction region Ŝ4,1
out = R2 \Û4,1 =

{
(x1,x2)|x1 ∈ R, x2 < l̂1,1

out (x1)
}

, where

l̂1,1
in (x1) =

−
√

M1
u2a2

+ s2 x1 < s1

−
√

a1
u2a2

(x1 − s1)
2 + M1

u2a2
+ s2 s1 < x1 < 2s1

and

l̂1,1
out (x1) =


√

u1a1
a2

(x1 − s1)
2 − M2

a2
+ s2 x1 < 0

2s2 0 < x1 < 2s1

−
√

a1
u2a2

(x1 − s1)
2 + M1

u2a2
+ s2 x1 > 2s1

Thus, we will next deduce the boundaries of the attraction region of P4
1 by finding certain corresponding

separatrices located in
4⋃

i=3
V̂ 4,i = Ŝ4,1

out \ Ŝ4,1
in of equivalent systems (24), as shown in Fig. 19(b), where V̂ 4,4 =
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(a) K̂4
3 ∧H1 (b) K̂4

3 ∧H1

Figure 19 Phase diagram (a) and qualitative characteristics (b) of system (24) under Condition (K̂4
4 ∧H1).

(a) K̂4
4 ∧H1, type 1 (b) K̂4

4 ∧H1, type 2 (c) K̂4
4 ∧H1, type 3

Figure 20 Three types of qualitative characteristics of system (24) ((a)-(c)) and system (1) ((d)-(f)) under

Condition (K̂4
4 ∧H1).

{
(x1,x2)|x1 < 2s1, l̂1,1

in (x1)< x2 < l̂1,1
out (x1)

}
and V̂ 4,3 =

{
(x1,x2)|x1 > 2s1, x2 < l̂1,1

out (x1)
}

. By similar analysis as

above, we can obtain a stable separatrix Φ̂1(P̂4
3 )∈ V̂ 4,1 for the saddle point P̂4

3 ; a stable separatrix Φ̂1(P̂4
2 )∈ V̂ 4,3 for the

saddle point P̂4
2 ; and another stable separatrix Φ̂2(P̂4

3 ) of P̂4
3 , which satisfy Φ̂2(P̂4

3 ) ∈ V̂ 4,2
1 and limt→−∞ Φ̂2(P̂4

3 ) = P̂4
4 .

Note that V̂ 4,1 and V̂ 4,2
1 are defined above. As for another stable separatrix for P̂4

2 in V̂ 4,4, there are three types, where

in type 1, limt→−∞ Φ̂2(P̂4
2 ) =−∞; in type 2, limt→−∞ Φ̂2(P̂4

2 ) = P̂4
3 ; and in type 3, limt→−∞ Φ̂2(P̂4

2 ) = P̂4
4 ; as shown in

Figs. 20(a), 20(b) and 20(c), respectively.

Further, we can refine the inner and outer estimations of attraction regions under each type. Specifically, In type 1,

the outer estimation of attraction region can be refined as Ŝ4,2
out =

{
(x1,x2)|x1 ∈ R, x2 < l̂1,2

out (x1)
}

, where

l̂1,2
out (x1) =



√
u1a1
a2

(x1 − s1)
2 − M2

a2
+ s2 x1 < 0√

a1
u2a2

(x1 − s1)
2 + M1

u2a2
+ s2 0 < x1 < s1√

M1
u2a2

+ s2 s1 < x1 < 2s1

−
√

a1
u2a2

(x1 − s1)
2 + M1

u2a2
+ s2 x1 > 2s1

since the region V̂ 4,4
1 = Ŝ4,2

out \ Ŝ4,1
out is a negative invariant set and the trajectory starting from any point in bounded region

V̂ 4,4
1 will go to P̂4

4 as t →−∞. In type 2, the outer estimation of attraction region can also be refined as Ŝ4,2
out for the same

reason. Moreover, the inner estimation of attraction region can be refined as Ŝ4,2
in =

{
(x1,x2)|x1 ∈ R, x2 < l̂1,2

in (x1)
}

,
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where

l̂1,2
in (x1) =


2s2 x1 < 0

−
√

M1
u2a2

+ s2 0 < x1 < s1

−
√

a1
u2a2

(x1 − s1)
2 + M1

u2a2
+ s2 s1 < x1 < 2s1

since any trajectory starting from the region V̂ 4,4
2 = Ŝ4,1

in \ Ŝ4,2
in will also go to P̂4

1 as t → +∞. In type 3, the inner

estimation of attraction region can be refined as Ŝ4,2
in for the same reason.

In summary, the refined inner and outer estimations of attraction regions in each type are obtained, as shown in

Figs. 20(a), 20(b) and 20(c). Then, letting n1(t)= x1(t)+
p1−2s1

2 and n2(t)= x2(t)+
p2−2s2

2 , we can obtain the attraction

region, inner and outer estimations of attraction regions in each type of system (1) under Conditions (K̂4
4 ∧H1), which

are shown in Fig. 20. Moreover, denoting l1,i
out(n1) = l̂1,i

out(n1− p1−2s1
2 )+ p2−2s2

2 and l1,i
in (n1) = l̂1,i

in (n1− p1−2s1
2 )+ p2−2s2

2 ,

where i = 1,2, the below theorem can be arrived.

THEOREM 4. Under Condition (K̂4
4 ∧H1), for the local stable point P4

1 , we have S4
in ⊂ S4

A = R(P4
1 )⊂ S4

out , where

S4
A, the inner estimation of attraction region S4

in and outer estimation of attraction region S4
out have three types, which

are defined as follows:

(1) In type 1: S4
A =

{
(n1,n2)|n1 ≤ p1, n2 < g4

3(n1)
}

, where g4
3(n1) represents Φ1(P4

2 ) when n1 <
p1+2s1

2 and Φ2(P4
2 )

when p1+2s1
2 < n1 ≤ p1;

S4
in =

{
(n1,n2)|n1 ≤ p1, n2 < l1,1

in (n1)
}

; S4
out =

{
(n1,n2)|n1 ≤ p1, n2 < l1,2

out (n1)
}
.

(2) In type 2: S4
A =

{
(n1,n2)|n1 ≤ p1, n2 < g4

4(n1)
}

, where g4
4(n1) represents Φ1(P4

3 ) when n1 <
p1−2s1

2 , represents

Φ2(P4
2 ) when p1−2s1

2 < n1 <
p1+2s1

2 , and represents Φ1(P4
2 ) when p1+2s1

2 < n1 ≤ p1;

S4
in =

{
(n1,n2)|n1 ≤ p1, n2 < l1,2

in (n1)
}

; S4
out =

{
(n1,n2)|n1 ≤ p1, n2 < l1,2

out (n1)
}
.

(3) In type 3: S4
A is defined in Theorem 3;

S4
in =

{
(n1,n2)|n1 ≤ p1, n2 < l1,2

in (n1)
}

; S4
out =

{
(n1,n2)|n1 ≤ p1, n2 < l1,1

out (n1)
}
.

Note that ni ≥ 0 (i = 1,2) holds all the time.

Then, for Conditions (K̂4
4 ∧H2), we can also simplify the system (24) and then perform the above analysis. In a

similar way, we can obtain the phase portrait for system (24) and further verify that there are no close orbits under

Conditions (K̂4
4 ∧H2). Thus, we can obtain three types of attraction regions, and further obtain three types of refined

the inner and outer estimations of attraction regions under each type, as shown in Figs. 21(a), 21(b) and 21(c). Then

letting n1(t) = x1(t)+
p1−2s1

2 and n2(t) = x2(t)+
p2−2s2

2 , we can obtain three types of attraction regions of (1) under

Conditions (K̂4
4 ∧H2), as shown in Figs. 9(j), 9(n) and 9(r).

Finally, we analyze the phase portrait and the attraction region of P4
1 under Condition (K̂4

5 ∧H), which can be

partitioned into two sub-Conditions: (K̂4
5 ∧H1) and (K̂4

5 ∧H3). Note that K̂4
5 ∧H2 =∅ and K̂4

5 ∧H4 =∅. Notice that

Condition (K̂4
5 ∧H) is symmetric to Condition (K̂4

4 ∧H), so the analysis process and results are similar. By repeating

the analysis as above, we can get the refined results under Conditions (K̂4
5 ∧H1) and (K̂4

5 ∧H3), as shown in Figs. 21

and 9.

Appendix B: Numerical verification of the Global phase portrait and attraction region
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(a) K̂4
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4 ∧H2, type 2 (c) K̂4
4 ∧H2, type 3

(d) K̂4
5 ∧H1, type 1 (e) K̂4

5 ∧H1, type 2 (f) K̂4
5 ∧H1, type 3

(g) K̂4
5 ∧H3, type 1 (h) K̂4

5 ∧H3, type 2 (i) K̂4
5 ∧H3, type 3

Figure 21 Three types of qualitative characteristics of system (24) under corresponding condition.
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Figure 22 Numerical simulation phase portraits for system (1) under Condition under Conditions (K2a) and

(K2b). Red circle: undesired saddle-node equilibrium. Blue circle: desired uncongested saddle-

node equilibrium. Green line with arrows: the trajectories. Purple line and light blue line represent

the inner and outer estimations of attraction regions, respectively. The yellow lines represent the

numerical attraction region boundaries, solid yellow lines indicating the boundary line belongs

to attraction region, while dashed yellow lines indicating the boundary line does not belong to

attraction region. The agreement of this figure with Figs. 7 and Fig. 8 validate the theoretical

analysis.
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Figure 23 Numerical simulation phase portraits for system (1) under Condition (K4). Green circle: desired

uncongested stable equilibrium. Yellow circle: saddle equilibrium. Yellow-brown circle: unstable

equilibrium. Green line with arrows: the trajectories. Purple line and light blue line represent the

inner and outer estimations of attraction regions, respectively. The yellow lines represent the

numerical attraction region boundaries, solid yellow lines indicating the boundary line belongs

to attraction region, while dashed yellow lines indicating the boundary line does not belong to

attraction region. The agreement of this figure with Fig. 9 validate the theoretical analysis.
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Table 4 Parameter values for different scenarios

Scenarios Flow rates Network-outside demands [veh/h] Satisfying Condition Corresponding phase portrait

Scenario 1 u1 = 0.3 u2 = 0.4 d1 = 3×104 d2 = 5×104 Condition (K2a ∧H1) Fig. 22(a)

Scenario 2 u1 = 0 u2 = 0.8 d1 = 3×104 d2 = 5×104 Condition (K2a ∧H2) Fig. 22(b)

Scenario 3 u1 = 0.4 u2 = 0 d1 = 7×104 d2 = 5×104 Condition (K2a ∧H3) Fig. 22(c)

Scenario 4 u1 = 0 u2 = 0 d1 = 7×104 d2 = 5×104 Condition (K2a ∧H4) Fig. 22(d)

Scenario 5 u1 = 0.4386 u2 = 0.48 d1 = 3×104 d2 = 5×104 Condition (K2b ∧H1) Fig. 22(e)

Scenario 6 u1 = 0 u2 = 0.4 d1 = 3×104 d2 = 8×104 Condition (K2b ∧H2) Fig. 22(f)

Scenario 7 u1 = 0.8 u2 = 0 d1 = 0.5×104 d2 = 8×104 Condition (K2b ∧H3) Fig. 22(g)

Scenario 8 u1 = 0 u2 = 0.8 d1 = 6×104 d2 = 8×104 Condition (K2b ∧H4) Fig. 22(h)

Scenario 9 u1 = 0.4 u2 = 0.4 d1 = 3×104 d2 = 5×104 Condition (K̂4
1 ∧H1) Fig. 23(a)

Scenario 10 u1 = 0 u2 = 0.8 d1 = 5×104 d2 = 1×104 Condition (K̂4
1 ∧H2) Fig. 23(b)

Scenario 11 u1 = 0.8 u2 = 0 d1 = 0.2×104 d2 = 5×104 Condition (K̂4
1 ∧H3) Fig. 23(c)

Scenario 12 u1 = 0 u2 = 0 d1 = 4×104 d2 = 3×104 Condition (K̂4
1 ∧H4) Fig. 23(d)

Scenario 13 u1 = 0.8 u2 = 0.8 d1 = 0.6×104 d2 = 2×104 Condition (K̂4
2 ∧H1) Fig. 23(e)

Scenario 14 u1 = 0 u2 = 0.8 d1 = 0.6×104 d2 = 3×104 Condition (K̂4
2 ∧H2) Fig. 23(f)

Scenario 15 u1 = 0.8 u2 = 0.8 d1 = 0.3×104 d2 = 2.4×104 Condition (K̂4
3 ∧H1) Fig. 23(g)

Scenario 16 u1 = 0.8 u2 = 0 d1 = 4×104 d2 = 2.4×104 Condition (K̂4
1 ∧H3) Fig. 23(h)

Scenario 17 u1 = 0.8 u2 = 0.8 d1 = 2×104 d2 = 0.5×104 Condition (K̂4
4 ∧H1) Fig. 23(i)

Scenario 18 u1 = 0.8 u2 = 0.8 d1 = 0.78×104 d2 = 1.99×104 Condition (K̂4
4 ∧H1) Fig. 23(m)

Scenario 19 u1 = 0.8 u2 = 0.8 d1 = 0.72×104 d2 = 2×104 Condition (K̂4
4 ∧H1) Fig. 23(q)

Scenario 20 u1 = 0 u2 = 0.8 d1 = 1.5×104 d2 = 6×104 Condition (K̂4
4 ∧H2) Fig. 23(j)

Scenario 21 u1 = 0 u2 = 0.8 d1 = 1.5×104 d2 = 5.6×104 Condition (K̂4
4 ∧H2) Fig. 23(n)

Scenario 22 u1 = 0 u2 = 0.8 d1 = 1.5×104 d2 = 5×104 Condition (K̂4
4 ∧H2) Fig. 23(r)

Scenario 23 u1 = 0.8 u2 = 0.8 d1 = 0.02×104 d2 = 2.85×104 Condition (K̂4
5 ∧H1) Fig. 23(k)

Scenario 24 u1 = 0.8 u2 = 0.8 d1 = 0.02×104 d2 = 2.82×104 Condition (K̂4
5 ∧H1) Fig. 23(o)

Scenario 25 u1 = 0 u2 = 0.8 d1 = 0.02×104 d2 = 2.6×104 Condition (K̂4
5 ∧H1) Fig. 23(s)

Scenario 26 u1 = 0.8 u2 = 0 d1 = 5×104 d2 = 3.9×104 Condition (K̂4
5 ∧H3) Fig. 23(l)

Scenario 27 u1 = 0.8 u2 = 0 d1 = 5×104 d2 = 3.78×104 Condition (K̂4
5 ∧H3) Fig. 23(p)

Scenario 28 u1 = 0.8 u2 = 0 d1 = 5×104 d2 = 3×104 Condition (K̂4
5 ∧H3) Fig. 23(t)

Note that these are all the scenarios used in this paper. In each scenario, the different formula of the inner and outer

estimations of attraction regions are derived (see in Sec. 3), and we have plotted the phase portraits in each scenario,

as shown in Figs. 22 and 23.
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Figure 24 Vehicle accumulations (dotted line) and completion flow rates (solid line) of Region 1 (((a), (b) and

(c))) and Region 2 ((d), (e) and (f)). The numerical diagrams of deviation from maximum complete

flow −Ds ((g), (h) and (i)) evolving with time t under CPC, RCS-1, RCS-2 and RCS-single. Scenario

9 is considered. Note that for (a)-(f), we employ dual y-axes. The left y-axis represents vehicle

accumulation (density), while the right y-axis represents completion flow. Scenario 9 is consid-

ered. Here we consider case 2 (in Fig. 15 we consider case 1). Other data settings are the same

as Fig. 15.
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Figure 25 Vehicle accumulations (dotted line) and completion flow rates (solid line) of Region 1 (((a), (b) and

(c))) and Region 2 ((d), (e) and (f)). The numerical diagrams of deviation from maximum complete

flow −Ds ((g), (h) and (i)) evolving with time t under CPC, RCS-1, RCS-2 and RCS-single. Scenario

9 is considered. Note that for (a)-(f), we employ dual y-axes. The left y-axis represents vehicle

accumulation (density), while the right y-axis represents completion flow. Scenario 9 is consid-

ered. Here we consider case 3 (in Fig. 15 we consider case 1). Other data settings are the same

as Fig. 15.
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