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Abstract

In the design process of large adaptive mirrors numerical simulations represent the first step to
evaluate the system design compliance in terms of performance, stability and robustness. For the
next generation of Extremely Large Telescopes increased system dimensions and bandwidths lead
to the need of modeling not only the deformable mirror alone, but also all the system supporting
structure or even the full telescope. The capability to perform the simulations with an acceptable
amount of time and computational resources is highly dependent on finding appropriate meth-
ods to reduce the size of the resulting dynamic models. In this paper we present a framework
developed together with the company Microgate to create a reduced order structural model of
a large adaptive mirror as a preprocessing step to the control system simulations. The reduced
dynamic model is then combined with the remaining system components allowing to simulate the
full adaptive mirror in a computationally efficient way. We analyze the feasibility of our reduced
models for Microgate’s prototype of the adaptive mirror of the Giant Magellan Telescope.

Keywords: model order reduction, modal truncation, balanced truncation, Krylov subspace
methods, moment matching, adaptive mirrors
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1 Introduction

For ground-based telescopes, so-called Adaptive Optics (AO) systems are used to compensate the
image distortions in astronomical observations caused by atmospheric turbulence, using the flexible
shape of an optical surface. The control of an AO system is complex and requires at least a wavefront
sensor to get information about the atmospheric turbulence causing the image distortions, a known
natural or laser guide star as reference source, a mirror shape command generator, and a deformable
mirror to compensate for the atmospheric turbulence.
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We consider the control of an adaptive mirror based on non-contacting voice-coil actuators, which
are co-located to capacitive position sensors [12]. This deformable mirror technology was developed
by the company Microgate1 together with other partners (ADS International2, INAF-Osservatorio
Astrofisico di Arcetri3, and the Aerospace Engineering Department of Politecnico di Milano4). It has
been already deployed realizing the adaptive secondary mirror of several large telescopes, including the
Multiple Mirror Telescope, the Large Binocular Telescope, and the Very Large Telescope. Microgate
is engaged in the final design and construction of the adaptive mirrors for the next generation of
Extremely Large Telescopes (ELTs). Sub-system and full-system multiphysics simulation plays a key
role in the design phase of such complex projects. Therefore, numerical simulation has always been
intensively pursued by the company. Several design solutions need to be compared and the impact of
different modelling choices have to be verified.

The structural dynamic models used to describe the large adaptive mirror are of high order, caused by
the need to describe well high spatial order deformations and by the inherent complexity of the system
supporting structure. Hence, a reduced order mirror model is required that guarantees high fidelity
results with a reasonable simulation time. The earliest methods for model order reduction techniques
go back to the 1960s in the field of structural dynamics. These methods rely on the identification of
eigenfrequencies and are referred to as mode displacement methods [22,40]. In the 1980s the important
reduced order method balanced truncation [15,35] has been developed in the system and control theory
community. In the field of numerical mathematics, approaches such as Pade-via-Lanczos and rational
interpolation methods came up in the 1990s and are still under research, e.g. in [2, 16, 27]. Nowadays
these methods are often used for the design and analysis of large electronic circuits. In recent years
data driven approaches gained a lot of traction, see e.g. [2, 4, 8, 24–26, 31]. In the literature various
reviews on model order reduction techniques exist [1, 3, 5, 6, 9–11,13,14,17,19,28].

In the framework of this paper a reduced order model is created by applying different methods as a
preprocessing step to the control system simulations. In [33] the authors used balanced truncation for
reducing the complexity of an adaptive mirror model, which is a common approach for control theory
applications. However, in contrast to the model presented in this paper theirs did not take into account
the system supporting structure up to the full telescope and was thus less complex. Moreover, here we
also consider Krylov subspace based methods and the Loewner framework. We combine the reduced
order structural model with the remaining system components and run full system simulations using
different numerical tools. Our developments are validated via simulations of Microgate’s P72 [18],
which is a 72 actuation points prototype of the Giant Magellan Telescope (GMT).

The outline of this paper is as follows: We start with a brief description of the physical model of
the adaptive mirror in Section 2. Section 3 is dedicated to an overview of existing model order
reduction methods from the field of structural dynamics, control theory, and numerical mathematics.
In Section 4 we describe our framework for performing high fidelity mirror simulations with a reduced
order structural model and we give some implementation details. Numerical simulations for the GMT
P72 adaptive mirror, including a performance evaluation of different reduced order methods, are shown
in Section 5. We end with a summary and conclusions in Section 6.

2 Physical model

The physical modeling of the deformable mirrors treated in this paper usually requires a multiphysics
description. The level of modeling accuracy and complexity can be set on the basis of the needs and

1https://engineering.microgate.it
2https://www.ads-int.com/
3https://www.arcetri.inaf.it/en/
4https://www.aero.polimi.it/it/il-dipartimento
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usually involves the description of (see Figure 1):

• a thin deformable mirror, usually a Zerodur shell about 2 mm thick;

• a reference structure called reference body, also made of Zerodur to grant the required thermal
stability;

• the squeeze film action of the air trapped in the thin gap, about 100 microns, between the
mirror and the reference body, which significantly contributes to the deformable mirror damping,
affecting both the control loop stability and the controlled system performance;

• the cold plate, typically made by aluminum, where the Voice Coil Motor (VCM) actuators are
mounted, which sustains the VCM reaction forces providing adequate mechanical stability and
taking care of the system cooling;

• the system positioner, typically a hexapod, responsible for the system alignment and offloading
of the mirror low-order modes;

• the mirror capacitive sensors and VCM actuators with their signal conditioning and the digital
feedforward-feedback control loop.

Figure 1: Deformable mirror and supporting structure.

The focus of this paper is on model order reduction methods for the structural dynamics of the system
components mentioned above, even if the effectiveness of the reduced order models are verified also
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through the simulation of the full system behavior. Details about the fluid dynamic model and the
control system are omitted and can be found in [34].

The deformable mirror is described using a linear structural model in the time domain. One way
to represent the structural dynamics is via its degrees of freedoms using second order differential
equations. Another way is given by its system states with first order differential equations often
referred to as state space representation. This formulation is preferred by control engineers as linear
control system analyses and design methods are usually given in the state space form. Besides the
form of equations the model can be represented via different coordinate systems. Commonly, nodal
and modal coordinates are employed. The nodal coordinates are expressed through displacements and
velocities of specific physical locations, also called nodes. In contrast, modal coordinates are defined
through structural eigenmodes [21].

2.1 Second order structural models

The structural model of the adaptive mirror shape can be represented by second order linear differential
equations using nodal coordinates, i.e., in terms of displacement, velocity and acceleration. Typically,
the Finite Element (FE) method with piecewise polynomial basis functions [44] is applied, where the
structure is described by the mass, stiffness and damping matrices. The discretized displacement uh,
which depends on the spatial variable z and the time t, is represented via

uh(z, t) =

ng∑
i=1

ψi(z)ui(t), (1)

where ng is the number of degrees of freedom, ψi(z) are the linear independent FE basis functions, and
(ui)

ng

i=1 =: u⃗h(t) ∈ Rng are the time dependent coefficients of the FE solution uh. With Equation (1)
we can identify the FE function uh with its coefficient vector u⃗h. Assuming a linear structural model
described by its degrees of freedom the FE discretization leads to the following system of Ordinary
Differential Equations (ODEs)

Mg
¨⃗uh +Dg

˙⃗uh +Kgu⃗h = Bg(f
c
a + fda ), (2)

where Mg is the ng × ng mass matrix, Dg is the ng × ng damping matrix, Kg is the ng × ng stiffness
matrix and Bg is the ng × na force influence matrix. The control and disturbance force vectors at the
na actuation points are denoted by f ca and fda , respectively. For more details about the mechanical
model and the coupling with the fluid part we refer to [33].

Equation (2) can be formulated in modal coordinates. When considering free vibrations of a structure
without damping, i.e., a structure without external excitation and with a damping matrix D = 0, the
vibration modes are found using a time harmonic representation of the displacement of the unforced
system in (2). This leads to the following generalized eigenvalue problem

(Kg − ω2
iMg)ϕi = 0, (3)

where ω2
i with i ∈ {1, . . . , nm} is an eigenfrequency and ϕi the corresponding mode shape vector. The

so-called modal displacement can be written as

qm =

nm∑
i=1

ϕiqi, (4)

with the modal coefficients denoted by qi. The displacement written in matrix notation becomes

qm = Φgq, Φg = [ϕ1, ϕ2, . . . , ϕnm
] ∈ Rng×nm , (5)
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with the ng × nm modal shape matrix Φg normalized such that

Mm := ΦT
gMgΦg = I, (6)

Km := ΦT
gKgΦg = diag(ω2

i ). (7)

The adaptive mirrors considered in this paper experiences, at least most of the time, only light damping.
In this setting it is common, see e.g. [21], to include a diagonal modal damping approximation with
damping coefficients ξi

Dm := diag{2ξiωi} ≈ ΦgDgΦ
T
g . (8)

The force influence matrix is transformed similarly

Bm := ΦT
g Bg. (9)

In this way the equation of motion (2) in modal coordinates becomes fully uncoupled

q̈i + 2ξiωiq̇i + ω2
i qi = f cmi

+ fdmi
, i ∈ {1, . . . , nm}, (10)

where f cmi
and fdmi

denote the i-th component of the modal force vectors

f cm := Bmf
c
a, (11)

fdm := Bmf
d
a . (12)

Note that for the numerical simulations we focus on modal coordinates as the FE model provided by
the company is given in this representation.

2.2 State space representation

For control theory applications it is common to rewrite the second order differential equations in (2)
into a so-called state space representation, which is a set of first order differential equations. We
consider the Linear Time Invariant (LTI) state space representation of the form

ẋ = Ax+Bu (13)

y = Cx, (14)

where u ∈ Rm is the input and y ∈ Rp the output of the system. The state vector is denoted by x ∈ Rn

and A ∈ Rn×n is commonly referred to as state matrix. The input matrix is denoted by B ∈ Rn×m

and the output matrix by C ∈ Rp×n.

By applying the Laplace transform the model can be represented via its transfer function, which
describes the input-output behavior of the system. In this paper we assume to have a stable system,
i.e., all eigenvalues of A have a negative real part [21]. Moreover, we assume a minimal realization,
i.e., all components of the state vector contribute to the input-output behavior. The transfer function
of the system in (13)-(14) is given by

H(s) = C(sI −A)−1B, s ∈ C. (15)

Note that the transfer function is invariant under coordinate transformation.

The modal version of the state space representation (13)-(14) of flexible structures has a special form,
in which the state matrix Am in modal coordinates is block diagonal

Am = diag(Ami
),
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with Ami
being 2 × 2 blocks, see e.g. [21]. The input and output matrices in modal coordinates are

arranged accordingly

Bm = [Bm1 , . . . , Bmnm
]T Cm = [Cm1 , . . . , Cmnm

]. (16)

The state vector is split into nm components that represent the state of a certain mode

x = [x1, . . . , xnm ]T , xi = [xi1 , xi2 ]. (17)

The i-th component, i.e., the i-th mode, has the state representation (Ami
, Bmi

, Cmi
).

We consider the following representation for the blocks of the state space matrices

Ami =

[
0 1
ωi −2ξiωi

]
, Bmi =

[
0
bmi

]
, Cmi =

[
0
cmi

]
. (18)

The i-th state is given by
xi = [qmi , q̇mi ]

T , (19)

where qmi
is the i-th modal displacement and q̇mi

the modal velocity. Each component has a modal
displacement and velocity, which are related to the original one by (4). Note that this leads also to
a special form of the transfer function in modal coordinates which we denote by Hm(s). For more
details we refer to [21].

3 Model order reduction

In practice, we deal with a very large number of degrees of freedom for the structural model required
to obtain a certain modeling accuracy. Moreover, for the design and construction of the large adaptive
mirrors a high number of simulations has to be performed. This makes the direct use of a FE model
infeasible and a reduced order model, which represents well the dynamics of the structure within the
frequency band of interest, has to be used.

For the control of an adaptive mirror it is important that the reduced order model preserve the input-
output behavior. Thus, the quality of the reduced model can be evaluated by comparing its output to
the output of the high order model. This is commonly done by considering the error in the transfer
function. The H2 error of a stable system is defined by

∥Hr −H∥H2
, ∥H∥H2

=

√
1

2π

∫ ∞

−∞
tr{HT (−jω)H(jω)}dω, (20)

where we denote by j the imaginary unit and H and Hr are the transfer functions of the high and
reduced order model, respectively. Attention is also paid to the H∞ error

∥Hr −H∥H∞
, ∥H∥H∞

= supω∈Rσmax(H(jω)), (21)

where σmax(.) is the largest singular value. There exist several algorithms that aim for minimizing the
H2 error, i.e., the so-called first order optimality condition,

∥Hr −H∥H2
→ min, for stable Hr. (22)

In the following we summarize model order reduction approaches based on modal truncation, moment
matching and data-driven interpolation.
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3.1 Modal truncation

The modal displacement method [22] computes a reduced model based on free vibration modes of the
structure. For an acceptable approximation of the dynamics of the mirror a relative small number of
modes may be sufficient. To this end not all nm eigenvectors in (4) are used, but a limited number
r < nm. Usually, one is interested in the response of the system for lower frequencies, as most
structural forcing terms operate at low frequencies. Hence, the first r eigenvectors are kept, which
correspond to the r lowest eigenfrequencies, and the others are truncated. Note that to accurately
control complex mirror deformations a number of modes at least equal to the number of actuators is
required to correctly represent the number of independent degrees of freedom of the control problem.

3.2 Balanced truncation

Balanced truncation [15, 35] is a very popular model order reduction method which allows to reach
the first order optimality condition in (22). The LTI system is transformed into a so-called balanced
realization, in which the states are ordered according to their contribution to the input-output behavior.
To quantify the systems input-output behavior the notions of controllability and observability are
introduced. These system properties are determined via the so-called controllability Wc ∈ Rn×n and
observabilityWo ∈ Rn×n Gramians [35]. We are interested in the stationary or time invariant solution.
In this case the controllability and observability Gramians, see e.g. [43], can be obtained by solving
the Lyapunov equations

AWc +WcA
T +BBT = 0, (23)

ATWo +WoA+ CTC = 0, (24)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. The Hankel singular values γi with i = 1, . . . , n,
used to determine the importance of a certain state for the input-output behavior, are defined as the
square roots of the eigenvalues of the product WcWo. Note that in contrast to Gramians the Hankel
singular values are system invariants. Once the system is transformed into the balanced representation
the states with small influence on the system dynamics, i.e., with small Hankel singular values, are
discarded. The reduced system is again in balanced form, therefore, it preserves the stability property
of the original system [37]. This is a very important point for adaptive mirror control. Moreover, an
upper bound on the error [15,23] is given by

∥Hr(s)−H(s)∥H∞
≤ 2

n∑
i=r+1

γi, (25)

i.e., we obtain a good approximation as long as the truncated Hankel singular values are small.

In balanced truncation the total frequency range is covered, however, for adaptive mirror control
there is a certain frequency range of interest. For the frequency limited balanced truncation, the
controllability and observability Gramians are computed in finite frequency intervals. We refer to [20]
for more details on the computation. Similar extensions exist to, e.g., time-limited balanced truncation
or frequency weighted balanced truncation, e.g. in [28], but are not considered in this paper.

3.2.1 Modal approximation

A huge drawback of balanced truncation is that solving the Lyapunov equations in (23) is computa-
tionally very demanding. Thus, applying balanced truncation in this form would not be feasible for
our large scale system. However, the representation of the state space in modal form (18) leads to
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a special form of the controllability and observability Gramians [21]. Assuming small damping the
Gramians can be approximated via

Wc ≈ diag(wciI), wci =
∥Bmi

∥22
4ξiωi

, (26)

Wo ≈ diag(woiI), woi =
∥Cmi∥

2
2

4ξiωi
, (27)

where wci and woi are called modal controllability and observability factors. The approximate Hankel
singular values in modal coordinates are the geometric means of these two factors

γi ≈
√
wciiwoii . (28)

Equations (26)-(27) can be evaluated very fast. Moreover, the system preserves its original modal
representation.

More recently also a data-driven approach of balanced truncation has been developed in [24] in which
the product of the Gramians is approximated directly through frequency response data up to a desired
accuracy.

3.3 Moment matching methods

Similar to balanced truncation, the goal of moment matching methods is to reduce the system to
one with fewer degrees of freedom, but with similar input-output behavior, i.e., approximating the
transfer function. Typically, those methods are used for large electronic systems, but also for structural
vibrations, e.g., in [32]. The basic approach is to approximate the state space S of x by a low
dimensional subspace S̃ via projection.

For an arbitrary interpolation point s0 ∈ C the transfer function can be written via its moment
expansion

H(s) =

∞∑
i=0

(−1)iMi(s0)(s− s0)
i, (29)

Mi(s0) := CT (s0I −A)−i(sI −A)−1B. (30)

where the Mi are the so-called moments. Note that for Multiple Input Multiple Output (MIMO)
systems the moments are p×m matrices. The idea behind moment matching methods is to truncate
the Taylor series in (29) and thus find a reduced order transfer function Hr, which matches the first
r moments of H at the given expansion point s0. The precision of the moment matching methods
depends not only on the number of moments matched but also highly depends on the chosen expansion
point s0. The reason is that the Taylor series in (29) is only a reasonable approximation within a certain
distance from s0. To increase accuracy methods that use multiple expansion points s1 . . . , sℓ ∈ C are
often used. In the SISO case, the moment matching problem is given by finding an Hr such that

Hr(si) = H(si) for i = 1, . . . , N, (31)

which is also known as rational interpolation. In the MIMO case the moments are matrices and one
commonly interpolates along certain directions, which leads to the so-called tangential interpolation
problem, see e.g. [42]. The aim is to find a rational matrix Hr for given interpolation points λi ∈ C
and µi ∈ C and the corresponding right and left tangential directions ri ∈ Cm and ℓi ∈ Cp such that

Hr(λi)ri = H(λi)ri for i = 1, . . . , k, (32)

ℓTj Hr(µj) = ℓTj H(µj) for j = 1, . . . , q. (33)
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The interpolation points and tangential directions have to be selected in advance to realize certain
model reduction goals.

3.3.1 Rational Krylov subspace methods

A common way to deal with the moment matching problem is rational interpolation by projection.
Here the moments are used to construct the biorthogonal projection matrices V,W ∈ Rn×r, with which
the reduced order model is obtained via Petrov-Galerkin projection

Ar =WTAV, Br =WTB, Cr = CTV, (34)

x ≈ V xr, (35)

where Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈ Rp×r and xr ∈ Rr. The columns of V form an orthonormal basis
of a subspace S̃ ⊂ S of the space of the state vector. Assuming the SISO case with a single expansion
point s0 ∈ C, S̃ is spanned by

range{V } = span{(s0I −A)−1B, (s0I −A)−1(s0I −A)−1B, . . . , (36)

((s0I −A)−1)r−1(s0I −A)−1B}.

For the right projection matrix W a similar property holds

range{W} = span{(s0I −A)−TCT , (s0I −A)−T (s0I −A)−TCT , . . . , (37)

((s0I −A)−T )r−1(s0I −A)−1CT }.

The range of V and the range of W span so-called Krylov subspaces. Note that when multiple
expansion points s1 . . . , sℓ ∈ C are used, the Krylov subspaces get extended. In the SISO case B and
C are vectors, thus, for the construction of V and W rational Krylov subspace algorithms, such as
rational Lanczos or rational Arnoldi, can be used [27]. These methods are very efficient as only matrix
factorization, forward and backward substitution as well as matrix-vector multiplications are involved.
Their complexity is of O(nr2). For adaptive mirror simulations we are dealing with the MIMO case,
where B and C are matrices and the tangential directions need to be included into Krylov subspaces.
Here, block rational Arnoldi or Lanczos methods can be employed.

Recently methods that start from an initial group of interpolation points and iteratively update them
have been developed. One of those methods is the Iterative Rational Krylov Algorithm (IRKA).
Initially this algorithm was developed for SISO systems in [29]. In [42] it was extended to the MIMO
case called the Iterative Tangential Interpolation Algorithm (ITIA). This method creates a reduced
order model that fulfills the first order H2 optimality condition in (22). The updated expansion points
are selected as the negative poles of the transfer function of the reduced model Hr or equivalently as
the negative eigenvalues of the state matrix [42].

In contrast to balanced truncation, moment matching methods, in general, do not preserve the stability
of the system. For systems with special structures there exist approaches where the reduced order
model is guaranteed to be stable, see [36]. In [39] the authors proposed the Iterative SVD Tangential
Interpolation Algorithm (ISTIA), which combines balanced truncation and Krylov subspace based
methods. For one of the projection matrices the observability or controllability Gramian is used,
whereas the other projector is computed using Krylov subspace based methods. The authors show
that due to the usage of a Gramian preserves stability. When frequency limited controllability or
observability Gramians are used, the method is commonly referred to as Frequency Limited Iterative
SVD Tangential Interpolation Algorithm (FISTIA) [39].

An advantage of the Krylov subspace based methods it that their efficiency does not rely on a modal
representation, but only depends on the system size. The more moment vectors are included into
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the subspace, the more accurate the approximation is, however, the reduced order model is enlarged.
In practice, a trade-off between accuracy and the reduction size has to be made. If both projection
matrices are constructed via Krylov subspace methods it is commonly referred to as two sided, whereas
if only one of the projection matrices is constructed in this way it is called one sided. Using the two
sided method results in 2r matched moments, whereas the one sided method matches r moments [7].

3.3.2 Loewner framework

The Loewner framework is a data-driven interpolation method for which the frequency response data,
i.e., samples of the transfer function H at certain frequency points s, is used. In the MIMO case,
where the moments are p ×m matrices, the tangential directions are included into the data set and
the data is split into a right part

M = diag(µ1, . . . , µq) ∈ Cq×q, L = [ℓT1 , . . . , ℓ
T
q ]

T ∈ Cq×p, (38)

V = [vT1 , . . . , v
T
q ]

T = [ℓT1H(µ1), . . . , ℓ
T
q H(µq)]

T ∈ Cq×m,

and a left part

Λ = diag(λ1, . . . , λk) ∈ Ck×k, R = [rT1 , . . . , r
T
k ]

T ∈ Cm×k, (39)

W = [wT
1 , . . . , w

T
k ]

T = [H(λ1)r1, . . . ,H(λq)rk]
T ∈ Cp×k.

The aim is to find a rational function Hr that fulfills the conditions in (32). The data matrices defined
in Equation (38) and Equation (39), as well as the Loewner matrix L and its shifted version Ls defined
via

L :=

(
vTi ri − ℓjwj

µi − λj

)j=1,...,k

i=1,...,q

, Ls :=

(
µiv

T
i ri − λjℓ

T
j wj

µi − λj

)j=1,...,k

i=1,...,q

, (40)

are used to construct the unprocessed Loewner model {W,L,Ls, V }. If the pencil (L,Ls) is regular,
Hr(s) := W (Ls − sL)−1V satisfies the interpolation condition in (32). In many applications the
pencil (L,Ls) is singular and a post-processing step is required. The dominant features of the data
are extracted and redundancies removed. Commonly this is done by applying the singular value
decomposition (SVD) to the augmented Loewner matrix[

L Ls

]
= Y Σ̃X̃H ,

[
L
Ls

]
= Ỹ ΣXH , (41)

with Σ, Σ̃ ∈ Cr×r, Y ∈ Cq×r, Ỹ ∈ C2q×r, X ∈ Ck×r and X̃ ∈ Cr×2k. The truncation index r is chosen
depending on the application and data size. The projected Loewner model is then given by

Ar = −Y TLsX, Br = Y TV, Cr =WX. (42)

The SVD provides optimal low-rank solutions, however, the full SVD has cubic complexity. An al-
ternative way was proposed in [30] and uses the CUR decomposition instead, which is less accurate,
but has a lower asymptotic time complexity. Moreover, it has the benefit that the rows and columns
of the decomposed matrices C and R are interpretable. In our case, this means that the dominant
interpolation points λ and µ are given directly by the columns and rows of C and R.

There exists an iterative extension of the Loewner framework called AAA algorithm [4]. Within this
method the fitted rational approximants are expressed in a numerically stable way using a baricentric
representation. In every iteration the next interpolation points are selected via a greedy method,
i.e. interpolation is enforced at data points where the error was maximal. Recently a version of the
algorithm enforcing real-valued and strictly proper rational approximants was proposed in [25].

10



4 Reduced order high fidelity mirror simulations

In the process of designing a specific adaptive mirror there is the need to perform simulations that
accurately represent the structural dynamics, i.e., realistic operative conditions. The simulations have
to guarantee high fidelity results, but with an affordable computational load. As the size of the models
is very large, model order reduction methods are required.

Figure 2 illustrates the process of performing high fidelity adaptive mirrors simulations with reduced
order models. In a first step the accurate and complex FE models describing the deformable mirror, all
the system supporting structure and in some cases even the full telescope are created. These models
have been provided by the company A.D.S. International5. The FE models are then reduced by modal
truncation to a predefined frequency range of interest for the certain adaptive mirror. As a second step
of model order reduction, methods described in Section 3 are used to reduce the system size further.
The resulting models are then combined with the rest of the system, i.e., fluid dynamics and control
system, and the dynamic analysis of the mirror is performed. Especially, the second step of model
order reduction makes it possible for Microgate to run their many simulations required in the adaptive
mirror’s design process in a feasible time frame.

SimulationModel Order ReductionModelling

FE Model

𝑀𝑔 ሷ𝑢ℎ + 𝐷𝑔 ሶ𝑢ℎ + 𝐾𝑔𝑢ℎ
= 𝐵𝑔(𝑓𝑎

𝑐 + 𝑓𝑎
𝑑)

Modal Truncation

to pre-known frequency range

ሷ𝑞𝑖 + 2𝜉𝑖𝜔𝑖 ሶ𝑞𝑖 + 𝜔𝑖
2𝑞𝑖

= 𝐵𝑔 𝑓𝑚
𝑖

𝑐 + 𝑓𝑚
𝑖

𝑑 , 𝑖 𝜖{1, … ,𝑚}

LTI System

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

Reduced LTI System

ሶ𝑥𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟𝑢
𝑦𝑟 = 𝐶𝑟𝑥𝑟

Adaptive Mirror

Combined Model

- reduced structural dynamics
- fluid dynamics
- control system

in modal coordinates

Figure 2: Graphical illustration of performing high fidelity adaptive mirror simulations with reduced
order models.

In the upcoming sections the model order reduction and system simulations are described in more
detail.

4.1 Creating the reduced order mirror model

The FE model is given in modal form (4). The first step of model reduction is applied by truncation
to a given frequency range of the mirror as described in Section 3.1. Based on the resulting reduced

5https://www.ads-int.com/
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system the LTI state space representation in modal form is set up as shown in Equation (18). A second
step of model order reduction is applied using either balanced truncation, rational Krylov subspace
methods or the Loewner framework. More details on the implementation of the methods is given in
the upcoming sections. Our code is mainly implemented in MATLAB. Computationally demanding
parts are programmed in C. Parts of the C implementation use the Matrix Equation Sparse Solver
(M.E.S.S) library [41] to efficiently deal with matrices, factorization and solving systems of equations.

4.1.1 Balanced truncation

Algorithm 1 shows the steps to perform the model order reduction with balanced truncation. In
order to make the method feasible for the given system size, the modal approximation as shown in
Equation (26) and Equation (27) is used. The modal controllability factor wci and observability factor
woi and the Hankel singular values γi are computed per mode i = 1, . . . , n. The Hankel singular values
are then ordered and all values below a certain threshold removed. As there is a one-to-one mapping
between the Hankel singular values and the modes, the corresponding modes are discarded and in this
way the system dimension reduced.

Algorithm 1 Balanced truncation in modal form

1: function ModalBT(Bm, Cm, ξ, ω, t)
2: for each mode i = 1, . . . , n do
3: Compute the modal controllability factors wci via Equation (26).
4: Compute the modal observability factors woi via Equation (27).
5:

6: Compute the Hankel singular values γi using Equation (28).

7:

8: Order the Hankel singular values γ1 ≤ γ2 · · · ≤ γn.
9: Discard all Hankel singular values below the given threshold t

10: γ1 ≤ γ2 · · · ≤ γj−1 where γj−1 ≤ t < γj .
11:

12: Compute Br
m, C

r
m, ξ

r and ωr from the higher order model by discarding
13: all modes i corresponding to the Hankel singular values γ1, . . . , γj−1.

4.1.2 Rational Krylov subspace methods

Algorithm 2 illustrates the model order reduction procedure with Krylov subspace based methods.
Our studies showed that the quality of these methods depends highly on the chosen interpolation
points and that methods which use multiple expansion points and update them iteratively perform
best. Hence, we consider here ITIA,ISTIA andFISTIA, see Section 3 for more details. In a first step of
the algorithm the initial interpolation points are chosen. The choice of the points is important as the
methods provide only local convergence. The eigenvalues of the state matrix would be a good initial
guess. However, computing them for a large scale system is not feasible. Because our input FE model
is given in modal form, we use their modal approximation, see e.g. [21]. In general, one would choose
the initial interpolation directions b and c as the corresponding left and right eigenvectors. Due to
computational reasons we omit the computation and set b and c to vectors of ones. The projection
matrices V and W are computed and used to obtain the reduced state space system (Ar, Br, Cr). For
details on the computation of the projection matrices we refer to [39, 42]. The interpolation points
for the next iteration are chosen as the eigenvalues of the state matrix λ(Ar) and the interpolation
directions as the corresponding left and right eigenvectors. In this way the interpolation points and
directions are updated in an iterative way until a maximum number of iterations is reached. Although
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the input to the reduced order methods is in modal coordinates, the Krylov subspace based methods
produce a general state space representation. In order to study the system performance in an efficient
way we transform these state space matrices into modal form.

Algorithm 2 Rational Krylov subspace method

1: function RationalKrylov(Am, Bm, Cm,maxIter)
2:

3: for each mode i = 1, . . . , n do
4: Compute the interpolation points si = ξiωi ± jωi

√
1− ξ2i .

5: Set up the interpolation directions bi = [1, . . . , 1], ci = [1, . . . , 1].

6:

7: for i = 1, . . . ,maxIter do
8: Compute the projection matrices V and W .
9: Compute the reduced system via Equation (34).

10: Compute eigenvalues λ and left and right eigenvectors Uℓ, Ur of Ar.
11: Extract the new interpolation points s = −λ.
12: Extract the new interpolation directions b = Uℓ, c = Ur.

13:

14: Verify that the reduced system (Ar, Br, Cr) is stable.
15: Transform (Ar, Br, Cr) into modal coordinates (Ar

m, B
r
m, C

r
m).

4.1.3 Loewner framework

Algorithm 3 shows how to create a reduced order model using the Loewner framework. In a first step N
logarithmically spaced interpolation points are created over the frequency range of interest. The reason
for choosing logarithmically distributed points is that in adaptive mirror control it is more important
to match the lower frequencies. Hence, having a dense sampling grid in the beginning and a more
sparse distribution towards the end of the frequency range is more appropriate for our application. The
initial interpolation directions b and c are chosen as random values. Using the input state space system
in modal coordinates (Am, Bm, Cm), the transfer function Hm(s) is constructed and the right and left
data set is computed as shown in Equation (38) and Equation (39). Note that as the state space
system is given in modal coordinates the evaluation of the transfer function and thus the computation
of the input-output pairs for the data set is much faster. For more details we refer to [20]. The data
set is then used to compute the Loewner matrix L and its shifted version Ls using Equation (40). The
constructed complex representation (W,L,Ls, V ) of an underlying dynamical system is transformed
into a real model (W r,Lr,Lr

s, V
r), see e.g. [30]. To identify dominant subsets of the data on which

interpolation is enforced we apply the SVD to the Loewner matrices using Equation (41). Note that the
CUR decomposition would provide a faster way of achieving this, however, it is only an approximation
and performed worse in our experiments. The reduced order model is then obtained through projection
using Equation (42). Similar as for the Krylov subspace based method we transform the system into
modal coordinates as a last step.

In our experiments we also considered the AAA algorithm [4], which is an adaptive and iterative
extension of the Loewner framework that chooses automatically the reduction size for a given accuracy.
However, for our simulation setting the results have been worse compared to the Loewner framework
and thus we omit more details on this method.
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Algorithm 3 Loewner framework with SVD

1: function LoewnerSVD(Am, Bm, Cm, N)
2: Compute the interpolation points s = logspace(−1, 3, N).
3: Set up interpolation directions b = rand(n) and c = rand(n).
4:

5: Compute the transfer function Hm.
6: Construct the right data set M,L and V using Equation (38).
7: Construct the left data set Λ, R,W via Equation (39).
8:

9: Compute the Loewner pencil (L,Ls) via Equation (40).
10: Transform the complex system into a real system (W r,Lr,Lr

s, V
r).

11:

12: Compute the SVD of the Loewner matrix using Equation (41).
13: Compute the reduced model (Ar, Br, Cr) via Equation (42).
14:

15: Verify that the reduced system (Ar, Br, Cr) is stable.
16: Transform (Ar, Br, Cr) into modal coordinates (Ar

m, B
r
m, C

r
m).

4.2 System simulation

The reduced order model of the system structural dynamics are combined with the remaining system
and exploited to run dynamic analysis. Different numerical tools have been developed for this purpose:

• dynamic simulation to evaluate the system behavior in time, this simulation is mainly focused
on the analysis of the system performance and stability;

• frequency response to have a characterization in the frequency domain, very useful to under-
stand possible critical frequencies in the dynamic response of the system, but also to provide a
measurement of system robustness;

• root locus analysis to obtain a description of the system in the Laplace domain, having a char-
acterization of the system stability and stability sensitivity, i.e. robustness, with respect to some
specific design parameters.

The three numerical tools above mentioned can be used all together to provide a comprehensive
overview of the system behavior in terms of both stability and performance. The accuracy of the
system description provided by these different tools is usually not equivalent and the fidelity level of
each one can be tuned to find the best compromise between accuracy of the results and computational
time and resources necessary to perform the analysis.

In the framework of this paper Microgate’s mirror time simulator has been upgraded to a new version,
based on a multi-threaded parallel C++ implementation. This new code can provide the most reliable
system multiphysics simulation currently available and contains all the features of the previous imple-
mentation written in C language [33,34]. The new simulator has the additional relevant capability to
take into account not only the structural dynamics of the deformable shell, but of the whole system
supporting structure, potentially up to the telescope one. The order of the structural dynamic descrip-
tion must be reduced as much as possible to allow fully exploiting this new feature of the simulator,
in order to prevent that the simulation time and/or the amount of computational resources become a
show stopper for the analysis. The codes computational efficiency has been further improved by using
the blaze6 library, which is an open-source, high-performance, C++ math library for dense and sparse

6https://github.com/parsa/blaze
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arithmetic, and OpenMP7 for parallelization.

5 Numerical analysis

To validate our developments we perform numerical analysis for the model of the P72 prototype of
the GMT adaptive secondary mirror system [18]. The GMT is currently under construction in the
Atacama desert in Chile and will become one of the new ELTs [18]. The prototype has 72 actuators
and a diameter of 354 mm, featuring the four innermost rings of actuators of the on-axis adaptive
secondary mirror segment of the GMT, see Figure 3. The shell is 2 mm thick and made of Zerodur,
the lateral flexures connecting the shell to the Reference Body (RB) are the same of the final unit and
also the VCM actuators are exactly the final ones. The RB is made in Zerodur, while the cold plate,
where the electronics is mounted, is in aluminum. The cooling system is based on the direct expansion
gas cooling concept recently introduced in this application field [38]. All the simulators mentioned
in Section 4.2 exploit the very same FE model, shown in Figure 3, to capture the system structural
behavior, through the use of eigenmodes.

Figure 3: Picture (left) and FE model (right) of the GMT P72 [18].

5.1 Dynamic model order reduction

The FE model of the GMT P72 prototype is given in modal form and we truncate it to the pre-known
frequency range 0− 6kHz. Based on the resulting reduced system we set up the LTI state space model
and compare Balanced Truncation (BT), ITIA,ISTIA and the Loewner Framework (LF). The Higher
Order (HO) model after modal truncation has a state matrix with dimension 1672× 1672. For ISTIA
we use the controllability Gramian as one of the projection matrices. This choice provided slightly
better results than using the observability Gramian.

Figure 4 shows a logarithmic plot of the relative H∞ error of the transfer functions between the HO
and the reduced order models. In plot (a) we show the model reduction error for a reduced state
matrix of dimension 144× 144 and in (b) for a size of 330× 330. The reason for choosing 144 as lower
limit is that the P72 consists of 72 degrees of freedom resulting in a state matrix of 144× 144. Hence,

7https://www.openmp.org/
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this is the lowest order allowed to be able to statically set the mirror deformation over 72 actuation
points. During our studies we obtained the best trade-off between quality and speed with a state
matrix of size 330× 330. We compare here BT marked in blue, ITIA in orange, ISTIA in yellow and
LF in green. Note that for this setting ISTIA and FISTIA performed very similar, hence, we omit
FISTIA. The reason for this might be that the model was already truncated to the desired frequency
range by modal truncation. In Table 1 we list the mean of the relative error over the whole frequency
range. For both simulated cases BT and the Krylov subspace methods performed very similar. With
LF we were not able to produce an appropriate reduced order model with a size of 144× 144, hence,
we do not show it in Figure 4(a). For a reduced system size of 330 × 330 LF yields the highest H∞
error. This might be caused by not optimally chosen interpolation points. For the other methods an
increased reduction size provides a smaller mean relative error.

(a) (b)

Figure 4: Logarithmic plot of the relative H∞ error in dB between the HO and the reduced order
transfer functions with reduced state matrices of dimension 144× 144 (left) and 330× 330 (right) for
BT (blue), ITIA (orange), ISTIA (yellow) and LF (green).

Mean relative H∞ error

Reduction size BT ITIA ISTIA LF

144× 144 0.627 0.768 0.691 −
330× 330 0.158 0.153 0.368 0.556

Table 1: Mean of the relative H∞ error as shown in Figure 4. The mean is calculated over the desired
frequency interval 0−6kHz for BT and the Krylovs subspace based methods ITIA and ISTIA and LF.

Throughout the simulations we observed that the results of the Krylov subspace based methods and
LF highly depend on the choice of the initial interpolation points and directions. Note that for ITIA
and ISTIA we use the modal approximation of the eigenvalues of the HO state matrix. This offers an
easy way of running the algorithms without tuning it by hand. For LF we use 6000 logarithmically
spaced points.
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In terms of run-time BT clearly outperforms the other methods, because computing the modal ap-
proximation of the Hankel singular values is very fast. For the Krylov subspace based methods the
run-time depends mainly on the number of iterations and the reduction size, since in every iteration
the eigenvalues and eigenvectors of the reduced order model have to be computed. In our simulations
we obtained convergence within less than 50 iterations. For the data-driven LF we observed that a
fairly high amount of data points is required to obtain an appropriate reduced order model, which
increases the computational time as well as the memory requirements significantly.

Further analysis showed that all reduced order methods are not able to represent 72 independent
degrees of freedom with a state matrix of 144× 144. Hence, this reduction size is too low to represent
properly the system behavior and we continue our analysis with a reduced order model of size 330×330.
The performance of ISTIA and ITIA is very similar for the P72 mirror, hence, we focus for the upcoming
analysis on ITIA.

5.2 Performance of the system

In this section the reduced order models representing the system structural dynamics are exploited to
simulate the full system behavior and a comparison of the results with the system using the original
full set of eigenmodes is done. The whole system modeling can be summarized by the following list:

• The structural dynamics of the system, including: the deformable mirror, the reference body,
the cold plate and the P72 supporting structure.

• The fluid dynamic modeling of the air trapped between the deformable mirror and the reference
body.

• The inner control loop, controlling the mirror shape, including: the deformable mirror control
law, the voice coil motors dynamics, the capacitive sensors dynamics, the digital and analog
signals modeling.

The optical loop, which is responsible to generate the mirror commands, is not taken into account
within the present analysis, i.e, the mirror is simulated as a stand-alone component of the AO system.

5.2.1 Stability

To analyze the stability of the control system we use root locus plots, i.e., we plot the poles of the
transfer function in the Laplace domain. These plots allow to study the sensitivity of the system
against certain parameters. Here we consider the feedback gain with a varying scaling factor. We use
a circle to indicate a stable system, whereas crosses for unstable systems. In terms of model order
reduction, it is important that the reduced model does not indicate a stable system when the original
model was not stable or vice versa. Figure 5 shows the root locus plots of the higher order model
(black) and of reduced order models of size 330×330, using BT (blue), ITIA (orange) and LF (green).
Note that only the important section around the 0 real axis is plotted, just for one half of the complex
conjugate poles characterized by a positive imaginary part. We observe that all models indicate a
stable system with gain scaling 1 and an unstable system for a scaling of 2. The critical poles, i.e. the
ones having positive real part, slightly change for different methods. Our simulations showed that for
smaller reduction sizes the reduced model may lead to stable systems where the original model was
unstable.

5.2.2 Input-output behavior

To assess the difference in the input-output behavior of the full system, we study the minimum and
maximum singular values of the complementary sensitivity transfer function matrix, defined to have the
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Figure 5: Root locus plot of the HO model in black and the reduced order model with size 330× 330
with BT in blue, ITIA in orange and LF in green. The gain scaling is varied between 1 and 2. We
show only the important section around the real 0 axis (dashed red line). Moreover, we show only
the poles with positive imaginary part and not their conjugate complex counterpart. Circles indicate
stable systems, whereas crosses indicate unstable systems.

deformable mirror commands as inputs and the mirror deformation at the actuation points as output.
The frequency response of the complementary sensitivity is commonly used to asses the tracking
capabilities of the closed-loop system as function of the command frequency content. Figure 6 shows
a logarithmic plot of the minimum (dashed) and maximum (solid) singular values in dB for the HO
system in black and the reduced systems with BT in blue,ITIA in orange and LF in green. We observe
that the reduced order models obtained with BT and ITIA yield very similar maximum and minimum
singular values compared to the original system. In contrast, the singular values produced by LF are
significantly different.

5.3 Mirror simulator step response

The last system analysis uses the reduced order models as input to the C++ mirror simulator and
studies the simulation over time of the control system response to a certain mirror deformation com-
mand. In Figure 7 we show the step response plots to a tilt (a) and trefoil (b) command. We omit
the reduced model produced by LF as it lead to too large forces for the voice coil motor and thus the
simulation was stopped. The plots on the left represent the shell displacement, whereas the ones on
the right show the modal control force. We provide a zoom around the y-axis in order to be able to
see the performance of the reduced order methods BT in blue and ITIA in orange compared to the
HO model in black. We observe that for both mirror commands all methods provide good results.
However, the step response obtained with BT is more in line with that of the original model, especially
for the trefoil command case.
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Figure 6: Logarithmic plot of the minimum (dashed) and maximum (solid) singular values in dB of
the high and reduced order transfer functions in the frequency interval 0 − 6 kHz. We compare the
HO model in black and the reduced order models with BT in blue, ITIA in orange and LF in green.

6 Conclusion

In the design phase of an adaptive mirror, numerical simulations are crucial to evaluate the system
design compliance. The FE models for the adaptive mirrors of ELTs have a high complexity, hence,
model order reduction techniques that facilitate the computationally efficient analysis are required. In
this paper we present a framework for performing high fidelity control system simulations within a
reasonable time frame. In a preprocessing step a reduced order model is created, which is then used to
simulate the full adaptive mirror. We perform a feasibility study of different reduced order methods
exploiting the numerical model of the P72 prototype of the GMT secondary mirrors. Starting with
the FE model in modal coordinates several model order reduction algorithms are applied. The quality
is analyzed by means of the H∞ error of the transfer functions. The reduced order model of the
structural dynamics is combined with the remaining system modeling and its performance is analyzed
regarding accuracy, stability and robustness. BT and ITIA yield both very similar stable and accurate
models when reducing to a state matrix of size 330×330 or larger. In terms of computational load, BT
with modal approximation is significantly faster than the others. The data-driven LF was only able
to produce an appropriate reduced model when considering a larger reduction size. The implemented
framework for performing highly accurate simulation with reduced order models together with the
developed numerical analysis tools allow to improve the design process of adaptive mirrors and the
relevant research and development activity at Microgate. Although the framework was tested here on
a relatively small prototype the developments can be directly applied to larger systems and will allow
simulations within a reasonable computational time.
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(a) Step response for a tilt command. The left plot shows the shell displacement over time, whereas on the
right the modal control force is shown.

(b) Step response for a trefoil command. The left plot shows the shell displacement over time, whereas on the
right the modal control force is shown.

Figure 7: Plot of the step response for a tilt command (a) and a trefoil command (b) for the HO
model in black and the reduced models with BT (BT) in blue and ITIA in orange. In addition, a zoom
around the y-axis is shown.
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