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1 Introduction 
Automaton learning is a domain in which the target system aka System Under 

Learning (SUL) is inferred by the automaton learning algorithm in the form of 

an automaton, by synthesizing a finite number of inputs and their     

corresponding outputs. Automaton learning makes use of a Minimally      

Adequate Teacher (MAT). The learner learns the SUL by posing membership 

queries to the MAT. 

In the early stages, theoretical automaton learning has successful real-

world applications. It goes beyond formal verification and allows to infer 

behavioral model of black-box systems. The improvements in tool support and 

raising competition focuses on the practicality of automaton learning and 

encouraging Learning-based Testing (LBT) techniques, which shows the 

growing interest in the field of research. 

Learning-based testing [10] is an emerging paradigm of software testing. It 

is a heuristic iterative approach which is useful to automate specification based 

black box testing [9][7]. The LBT framework consists of a system under test 

(SUT), a formal specification for SUT and a learned model of SUT. A learning 

base testing algorithm works by executing test case inputs on the SUT. Most of 

the learning algorithms learn in the limit to yield a minimal approximation of 

the target DFA. This concept of learning in the limit for target DFA was f i rst 

introduced by E.M.Gold in 1967 [5] . In his paper, he showed that with the help 

of some inference or learning algorithm, a regular language corresponding to 

some target DFA can be guessed by a f i nite number of wrong hypothesis. With 

respect to learning type, there are three kinds of learning algorithms: complete 

learning algorithms, incremental learning algorithms and sequential learning 

algorithms. 

In complete learning algorithms, initially, the system under learning (SUL) 

is completely learned by giving different inputs and receiving their 

corresponding outputs. After complete learning of the system, a hypothesis H is 
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generated [1]. While in incremental learning algorithms, system is learned in 

incremental form [13]. Initially, a small part (increment) of the system is 

learned by giving the inputs and receiving corresponding outputs after that, 

these input/output pairs are synthesized into a hypothesis Hi by the learning 

algorithm in an incremental fashion. The next step it learns a new increment 

(small part of the system) and rebuilds the hypothesis Hi+1 which contains the 

previously and newly learned information. This process of learning can 

potentially continue till the complete learning of the system. On the other hand, 

sequential learning algorithm similarly works as an incremental learning 

algorithm except that it does not reuse the previously learned information from 

the hypothesis Hs−1 to construct the new hypothesis Hs [8]. 

In automaton learning, there is a learner (learning algorithm) and an adequate 

teacher [2]. The Learner is a learning algorithm which learns the regular set 

from queries and counter-examples. The Learner asks queries to the adequate 

teacher. The adequate teacher answers the questions from the Learner, about the 

unknown regular set. It answers two types of questions: First type is a 
membership query, consisting of a string t ϵ Σ∗. The adequate teacher answers 
as yes or no depending on whether string t is a member of the unknown set or 
not. The second type of question is a conjecture, consisting of a description of 
a regular set S; the answer is yes if S is equal to the unknown language and is 
a string t in the symmetric difference of S and the unknown language otherwise. 
In the second case, the string t is called a counter-example because it serves to 
show that the conjectured set S is incorrect. 

The concept of the adequate teacher was first introduced by Dana Angluin, 

in ID algorithm [1]. After that this concept was used by other researchers. As they 

found that if there is an adequate teacher, the complexity of automaton learning is 

polynomial whereas, in the absence of the adequate teacher automaton learning is 

an NP-hard problem [10]. 

 

2 Automaton Learning Algorithms 

We have briefly studied some automaton learning algorithms with the help of 

examples, which are specifically relevant to table data structure and tree data 

structure. The learning algorithms having table data structure are L* proposed by 

Dana Angluin in 1987 [2], ID proposed by Dana Angluin in 1981 [1], DLIQ and 

BDLIQ proposed by Farah Haneef and Muddassar Azam Sindhu in 2022 and 2023 

respectively in [15, 16], IID proposed by R. Parekh, C. Nichitiu and V. Honavar in 

1998 [13], IDS proposed by K. Meinke and Muddassar Azam Sindhu in 2010 

[11], IDLIQ proposed by Farah Haneef and Muddassar Azam Sindhu in [17] and 

IKL proposed by K. Meinke and Muddassar Azam Sindhu in 2011 [12]. The 

learning algorithms having tree data structure are RPNI proposed by Oncina 

and Garcia in 1992 [3] and RPNII proposed by Pierre Dupont in 1996 [4]. 

 

2.1 L* Algorithm 

The L* is a complete learning algorithm proposed by Dana Angluin in 1987 

[2]. It learns a regular set by asking membership and equivalence queries. A 

membership query tells whether a string α is a member of the language of DFA 

A or not, α ϵ L(A)? An equivalence query determines whether a hypothesis 

DFA is a correct representation of regular set or not i.e. L(H) = L(A)? L* asks 

membership queries and organizes this information in form of a table consisting 
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of a tuple (S, E, T) which is called Observation Table OT. Where s1, s2,. . ., sn 
are row labels belonging to S and e1, e2,. . ., en are column labels belonging to E. 

Whereas T is a transition function (( S ∪ S . Σ) X E). A simple observation 
table (OT) is shown in Table 2.1.1. This table has two parts. Upper part 

consists of set S = {s1, s2} and lower part consists of concatenation of S and Σ 
having s1. a1 and s2. a2 elements, where s1, s2 ϵ S and a1, a2 ϵ Σ and Σ is a 

f i nite set of alphabets. 
Function row(s) is a f i nite function which represents the tuple of entries 

in the observation table OT corresponding to row labeled as s. 
 

T e1 e2 
s1   

s2   

s1.a1   

s2.a2   

Table 2.1.1: Observation Table (OT ) 

This table should meet two basic properties before asking equivalence queries 

to make conjecture. These properties are closure and consistency. The OT is 

called closed if and only if, for each string t in lower part of the table i.e. S.Σ, 

there exist an s in upper part of the table i.e. S such that row(t) = row(s). 
If OT is not closed then rows of the observation table are extended as S with 

prefixes of S. For OT to be consistent, it is necessary that if any two rows of 

upper part of OT are same as row(s1) = row(s2) then for all a ϵ Σ, row (s1. a) 
= row (s2. a). If the observation table is closed but not consistent then column 

of observation table is extended with a symbol a where a ϵ Σ. 

When OT is closed and consistent, a conjecture can be constructed. Distinct 

rows(S) show the different states (states described by concatenation of elements 

of set E) and column T represents the strings t which are used to show the 

transitions from one state to another. The initial state is the row(λ) and the 

final states are the entries in the table under the column λ with value = 1. We 

start from the initial state q0 and check all transitions of input alphabet, existing 

in Column T as δ(row(s), a) = row (s. a). After reading all input symbols from 

each state, a conjecture is represented in the form of a table. Rows represent 

the states as q0, q1, . . ., qn and columns represent input symbols as 0, 1. 

If this conjecture H is language equivalent to the target DFA, A, L(H) = 

L(A) then the adequate teacher answers the equivalence query as Yes otherwise, 

it answer as No and gives the counter example either from L(H) - L(A) or 

L(A) - L(H), which is then accommodated in OT in the form of extension of 

rows. This process continues until OT becomes consistent and closed. 

 

Example 

An example run of the L* algorithm is given below: 

Unknown Regular Set: U = Even number of 0's except the empty string. 

Fixed known Finite Alphabets: Σ = {0, 1} 

The initial observation table is shown in Table 2.1.2. It shows that S = {λ} 

and E = {λ}. The corresponding table entries are called as: λ. λ = λ which 

is not an accepting string so value = 0 is inserted in the corresponding
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cell. 0.λ = 0 which shows odd number of 0's which are not accepted so value = 0, 

and 1.λ = 1 which shows zero number of 0's therefore the corresponding cell value 

= 0. 

 

 

 
 

 
Table 2.1.2: Initial Observation Table 

As in upper part of λ column there is no cell having value 1 therefore this 

table shows that there is no final state in the initial hypothesis DFA. Initial OT 
is closed as row (0) = row (λ) and row (1) = row (λ). This OT is also consistent 

as no two rows in S are same. Now L* makes a conjecture shows that if we read 

0 or 1 from state0 then it will remain to the same state as itself. Conjecture 

H1 and respective automaton is shown in Fig.2.1.1: (a) and (b) 
 

δ 0 1 

q0 q0 q0 

Fig.2.1.1(a): Conjecture H1 

 

Fig.2.1.1(b): Automaton H1 

Above conjecture H1 shows that there is no final state in it which makes its 

language inequivalent to the target DFA, A. Let H1 gives counter-example as 

00 which is an accepting string on target DFA but above automaton does not 

accept it. Therefore, we extend the rows of initial OT T1 as 0, 00 in S and 

01, 001, 000 in S.Σ. The extended observation table T2 is shown below as Table 

2.1.3. 
 

T2 λ 

λ 0 

0 0 

00 1 

1 0 

01 0 

001 1 

000 0 

T1 λ 

λ 0 

0 0 

1 0 
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Table 2.1.3: Observation Table T2 

Table 2.1.3 shows that λ. λ = λ so value = 0, 0.λ = 0 so value = 0, 00.λ = 00 

which has even number of 0's so it is an accepting string and the value against 

it will be 1. Similarly, 1.λ = 1 so value = 0, 01. λ= 01 so value = 0, 000. λ = 

000 so value = 0, 001.λ = 001 having two 0's so this string is also accepted and 

value against it will be 1. T2 has S = {λ, 0, 00} and E = {λ} 

Observation table T2 is closed as for every successor state in S.Σ, there is a 

row in S as row(s) = row(t) not consistent as row (λ) = row (0) but row (0) is not 

equivalent to row (00). Therefore, we have to extend set E with 0. Observation 

table T3 is shown below as Table 4 having S = {λ, 0, 00} and E = {λ, 0} 
 

T3 λ 0 

λ 0 0 

0 0 1 

00 1 0 

1 0 0 

01 0 1 

001 1 0 

000 0 1 

Table 2.1.4: Observation Table T3 

In Table T3 we have called the column 0 as: λ.0 = 0 as number of 0's is 1 so 

value=0, 0.0 = 00 as number of zeros are two so corresponding value = 1, 00.0 

= 000 here number of zeros are three so value = 0 and similarly other values of 

column 0's are calculated for the lower part of the table. 

T3 is closed as well as consistent as row (λ) = row (00) and row (1) = row 
(001) and row (0) = row (000). So, L* makes a conjecture H2 which is shown in 

Fig.2.1.2(a). Rows against column λ and 0 shows the states of automaton as 00 

= q0, 01 = q2, 10 = q2. whereas transitions are as follows. 

If we read strings from column T3 as 0 from the state00 then we reach the 

state01. If we read 1 from state00 will reach the state00 (self-loop). If we read 

the string 0 from the state01 we reach the state10. If we read the string 1 from the 

state01 we reach the state01 (self-loop). Similarly, if we read the string 0 from 

the state10, we reach the state01 and if we read the string 1 from the state10, we 

reach the state10. 
 

δ 0 1 

q0 q1 q0 

q1 q2 q1 
q2 q1 q2 

Fig.2.1.2(a): Conjecture H2 

As H2 accepts all the strings having even number of 0's except the null string 

so the adequate teacher answers as Yes. L* terminates and gives a minimal 
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behaviorally equivalent automaton H2 to the target automaton A shown in 

Fig.2.1.2(b). 
 

 

Fig.2.1.2(b): Automaton H2 
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2.2 ID Algorithm 

The ID algorithm is a complete learning algorithm proposed by Dana Angluin 

in 1981 [1]. It asks membership queries from the adequate teacher to learn the 

regular set.  It uses the concept of live states and dead state.  A state q1ϵ Q 

is called a live state if there exists a string σ1, σ2, . . ., σn ϵ Σ∗ such that δ∗ (q0, 
σ1, σ2, . . ., σn) = qi and qi ϵ F where F is a final state. The set of all live states 

is called live complete set denoted P and states which not live are called dead 

states. In isomorphic automata, there is only one dead state d0. The set having 

live states as well as dead state is denoted as P ′ 
' 

' 

that is P = P ∪ {d0}. The 

ID algorithm partitions the set T into blocks of accepting and non-accepting 
' 

strings, for this purpose it uses the concept of distinguishing strings V. T is a 
set having all live states as well as their concatenation with input alphabet β 

' 

such as T = P ′ ∪ {f (α, β) | (α, β) ∈ P 

′ 

× Σ} where α∈P ′ and β∈Σ. 

The purpose of distinguishing strings is to identify states, having same behavior  
For some particular string, α ∈Σ∗ but have different behavior for a suffix  
σ ∈ Σ. 

                 To f i n d the blocks of accepting and nonaccepting states, the ID constructs a 
table. The first row of table shows the number of iterations, through which the 

' 

set T is partitioned into accepting and nonaccepting blocks. The second row of 
table shows the set of distinguishing strings v1, v2, . . . , vn wherev1, v2, . . . , vn∈ 

' 

V .  First column of table shows the elements of the set T with transition 

function E where Ei(α) = {vj|vj∈ V, 0 ≤j ≤i , αvj ∈L(A) ? } and L(A) is the 

language of target DFA. 
 

 
i 0 1 2 

vi λ a b 

E(d0) φ φ φ 
E(λ)    

E(a)    

E(b)    

E(aa)    

E(ab)    

E(ba)    

E(bb)    

Table 2.2.1: Structure of Table 
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Table 2.2.1 shows that two iterations have been completed to reach f i nal 

partition of blocks and the second row shows that V = { λ, a, b }. From third 

row we can see that any transition from dead state is always dead, Ei(d0) = φ. 

In f i rst iteration E0 when v0 = λ, E(d0) = φ and E0(α) = λ when α ϵ L(A). 
Otherwise E0(α) = φ. 

When rst iteration becomes complete, ID searches for a pair such that 
' 

Ei(α) = Ei(β) but Ei(f (α, σ)) /= Ei ( f (β, σ)) whereas α, β ∈ P and σ ∈ Σ. 

This expression shows that if the ID algorithm nds a pair from set P ′ which 

shows the same behavior i.e. either both Ei(α) and Ei(β) lie in the accepting 

block or both lie in rejecting block and when we concatenate α and β with 

some alphabet σ from the input set Σ then their behavior changes i.e. one lie in 

accepting block and other lie in rejecting block. This can give a potential 

distinguishing string. Then ID chooses some string γ ∈ Ei ( f (α, σ)) ⊕ Ei ( f (β, 

σ)) and a new distinguishing string is defined as σγ. The ID performs next 

iteration i + 1 to further split the blocks, by reading distinguishing string σγ 
∈Σ from all elements of Ei(α). For this, it asks membership queries as αvi+1 ∈ 

L(A) ? , if the adequate teacher answers as Yes then Ei(α) becomes Ei−1(α) 

∪{vi}, and if it answers as No then Ei(α) is set to Ei−1(α). 

If the ID algorithm f i nds no such pair that is Ei(α) = Ei(β) but Ei( f (α, σ)) 

/= Ei ( f (β, σ)) then it constructs the hypothesis DFA, H which is isomorphic 

to the target DFA, A. 
' 

In hypothesis DFA, H, Ei(α) represents the states where α ϵ T. E(λ) is 

initial state and Ei(α) where αϵ T and λ ϵ Ei(α) are f i nal states. The transition 

relation δ is constructed as Ei(α) = φ then self-loop to that state otherwise 

δ( Ei(α) , σ) = Ei(f (α, σ )). 

 

Example 

An example run of the ID algorithm is given below: 

Target DFA: A= Consecutive even number of a's and all b's. (b∗(aa)∗b∗) 

Input alphabet: Σ = {a, b} 

P0 = {λ, a} and P 0′ = {d0, λ, a} and T0 ′ becomes as T0 ′ = {d0, λ, a, b, aa, 

       ab } 

 

 

 

i 0 

vi λ 

E(d0) φ 

E(λ) {λ} 

E(a) φ 
E(b) {λ} 

E(aa) {λ} 

E(ab) φ 

Table 2.2.2: Initial Table 
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Table 2.2.2 shows that distinguishing string set V ={λ}. The ID algorithm 
' 

asks membership queries for all strings belong to T as avi+1 ∈L(A).  The 

adequate teacher answers as Yes for E(λ), E(b), E(aa) as these strings lead 

to the accepting states so Ei(α) becomes {λ} and for all others, those are not 

leading to accepting states, adequate teacher answers as No so they set to φ. 

Table 2.2.2 shows that E(d0) = E(a) but E(d0. α) /= E (a. a) therefore we 

can take a distinguishing string σγ as a” in next iteration. The extended table 

is given in Table 2.2.3 
 

i 0 1 

vi λ a 

E(d0) φ φ 
E(λ) {λ} {λ} 

E(a) φ {a} 

E(b) {λ} {λ} 

E(aa) {λ} {λ} 

E(ab) φ φ 

Table 2.2.3: For Distinguishing String a 

Table 2.2.3 shows that distinguishing string set V = {λ, a}. The ID algorithm 
' 

asks membership queries for all strings belong to T as avi+1 ∈L(A).  The 
adequate teacher answers as Yes for E(λ), E(a), E(b), E(aa) as these strings 

lead to the accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others, 

those are not leading to accepting states, adequate teacher answers as No so 
they set to φ. 

Table 2.2.3 shows that E(λ) = E(a) but E(λ. b) not equal to E (a. b) therefore 

we can take a distinguishing string σγ as b” in next iteration. The extended 

table is given in Table 2.2.4. 

 
 

 

i 0 1 2 

vi λ a b 

E(d0) φ φ φ 
E(λ) {λ} {λ} {λ, b} 

E(a) φ {a} {a} 

E(b) {λ} {λ} {λ, b} 

E(aa) {λ} {λ} {λ, b} 

E(ab) φ φ φ 

Table 2.2.4: For Distinguishing String b 
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Table 2.2.4 shows that distinguishing string set V = {λ, a, b}. The ID algo- 
' 

rithm asks membership queries for all strings belong to T as avi+1 ∈L(A). The 
adequate teacher answers as Yes for E(λ), E(a), E(b), E(aa) as these strings 

lead to the accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others, 

those are not leading to accepting states, adequate teacher answers as No so 
they set to φ. 

Table 2.2.4 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α, 

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. The hypothesis DFA, 
H is given below in Figure 2.2.1. 

 

 

Figure 2.2.1: Hypothesis H 

As we can see that this automaton is behaviorally equivalent to the target 

DFA, A i.e. L(H) = L(A) therefore the ID algorithm terminates. 
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2.3 IID Algorithm 

The IID is an incremental extension of the ID algorithm [13]. It works similar to 

the ID algorithm except that it does not require the availability of live complete set 

at the start of inference procedure. The IID incrementally builds the live state 

set and its corresponding automata to provided labeled examples, those are taken 

as input by this algorithm. A labeled example is a pair (α, label(α)) where 

α∈Σ∗ and label(α) shows that whether an equivalence query α is accepted or 
rejected by the adequate teacher. If α ∈ L(A) then it is called a positive example 

and if α ∈/ L(A) then it is called a negative example. Initial hypothesis DFA, H0 
consists of only one state that is the dead state. When the first positive example 

is seen then H0 is updated and after that for each additional labeled example (α, 

label(α)), it is determined that whether it is consistent with our previous 

hypothesis DFA or we have to update it according to a new labeled example. 

 
Like ID algorithm, IID has a set of live states P that is initially empty. P ′ 

is P ′ = P ∪{d0} where d0 is a dead state. T ′ is a set having all live states 

as well as their concatenation with input alphabets β such that T ′ = P ′ ∪ {f 
(α, β) | (α, β) ∈ P ′ × Σ} whereas α∈P ′ and β∈Σ. IID algorithm splits the 

' 

set T into blocks of accepting and nonaccepting states and for this, it uses the 
concept of distinguishing strings, denoted by V like ID algorithm. The purpose 

of distinguishing strings is to identify states, having same behavior for some 

particular string, α ∈Σ∗ but have dif f erent behavior for a suf f i x σ ∈ Σ. 
Like the ID algorithm, to nd the blocks of accepting and nonaccepting 

  states, the IID also constructs a table. The f i rst row of table shows the 
number 

of iterations, through which the set T is partitioned into accepting and nonac- 
cepting blocks. The second row of table shows the set of distinguishing strings 

v1, v2, . . . ,  vn wherev1, v2, . . . , vn ∈ V . First column of table shows the elements 
' 

of the set T with transition function E where Ei(α) = {vj|vj∈V , 0 ≤j ≤i , αvj 
∈L(A) } and L(A) is the language of target DFA. 
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When the f i rst positive example arrives, the IID algorithm constructs the sets 
' ' 

P, T and corresponding table as in the ID algorithm. In the f i rst iteration, the 

function E0when v0 = λ, E0(d0) = φ and E0(α) = λ when α ∈ L(A), otherwise 
E0(α) = φ. After that IID searches for a pair such that Ei(α) = Ei(β) but Ei( 

' 

f (α, σ)) /= Ei ( f (β, σ)) whereas α, β ∈ P and σ ∈ Σ. This expression shows 

that if IID algorithm f i nds a pair from set P ′ which shows the same behavior 

i.e. either both Ei(α) and Ei(β) lie in the accepting block or both lie in rejecting 

block and when we concatenate α and β with some alphabet σ from the input 

set Σ then their behavior may change i.e. one lie in accepting block and other lie 

in rejecting block. This can give a potential distinguishing string. Then IID 

non-deterministically chooses some string γ ∈ Ei( f (α, σ)) ⊕ Ei ( f (β, σ)) and 

the new distinguishing string is def ined as σγ. IID performs next iteration i + 
1 to further split the blocks, by reading distinguishing string σγ ∈Σ from 

all elements of Ei(α). For this it asks membership queries as αvi+1 ∈L(A), if 
adequate teacher answers as Yes then Ei(α) becomes Ei−1(α) ∪{vi}, and if it 

replies as No then Ei(α) is set to Ei−1(α). If IID finds no such pair that is 

Ei(α) = Ei(β) but Ei( f (α, σ)) /= Ei ( f (β, σ)) then it construct the hypothesis 

DFA, Hm. If Hm becomes behaviorally equal to the target DFA, A then IID 

terminates otherwise, it waits for another positive example and above process 

repeats until hypothesis DFA, H becomes equivalent to the target DFA, A. 

 

Example 

An example run of the IID algorithm is given below: 

Target DFA: A= Consecutive even number of a's and all b's. (b∗(aa)∗b∗) 

Input alphabet: Σ = {a, b} 

Initial null automata H0 is given below in Figure 2.3.1. 

P0 = { } and P0 ′ = { d0 } and T0 ′ becomes as T0 ′ = {d0, λ, a, b} 
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Figure 2.3.1: Null Hypothesis 

Suppose the rst labeled example is (a, —), as it is negative example and is 

consistent with H0 so H0 does not change. 
Suppose next labeled example is (b, + ) as it is a first positive example so 

' ′ 
set P1= {λ, b}, P1= {d0, λ, b} and T1= {d0, λ, a, b, ba, bb} 

Fork = 0 
 

i 0 

vi λ 

E(do) φ 
E(λ) {λ} 

E(a) φ 
E(b) {λ} 

E(ba) φ 
E(bb) {λ} 

Table 2.3.1: For Distinguishing String λ 

Table 2.3.1 shows that distinguishing string set V ={λ}. The IID algorithm 
' 

asks membership queries for all strings belong to T as avi+1 ∈L(A).  The 
adequate teacher answers as Yes for E(λ), E(b), E(bb) as these strings lead 

to the accepting states so Ei(α) becomes {λ} and for all others, those are not 

leading to accepting states, adequate teacher replies as No so they set to φ. 

Table 2.3.1 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α, 

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. The hypothesis DFA, 
H1 for this iteration is given below in Figure 2.3.2. 

 

 

Figure 2.3.2: Hypothesis H1 
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1 

 

 
As automaton H1represented in Figure 2.3.2 is not equal to the target DFA, 

A therefore the IID algorithm learns the target DFA with more labeled example. 

Suppose next input labeled example is (aa, +) 

Now P2 = {λ, a, b, aa} 

P2' = {d0, λ, a, b, aa} 

T ′= {d0, λ, a, b, aa, bb, ab, ba, aaa, aab} 

k = 1 
 

i 0 1 

vi λ a 

E(d0) φ φ 

E(λ) {λ} {λ} 

E(a) φ {a} 

E(b) {λ} {λ} 

E(aa) {λ} {λ} 

E(ab) φ φ 
E(ba) φ {a} 

E(bb) {λ} {λ} 

E(aaa) φ {a} 

E(aab) {λ} {λ} 

Table 2.3.2: For Distinguishing String a 

In Table 2.3.2, the column λ shows that as E (d0) = φ = E(a) but E(d0.a) 
/=E(a. a) so the IID algorithm partitions the accepting and nonaccepting blocks 

by using distinguishing string σγ = a shown in column a of Table 2.3.2. 
Table 2.3.2 shows that distinguishing string set V = {λ, a}. The IID asks 

' 

membership queries for all strings belong to T as avi+1 ∈ L(A). The adequate 

teacher answers as Yes for E(a), E(ba) and E(aaa) as these strings lead to 

the accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others, those 

are not leading to accepting states, adequate teacher replies as No so they set 

to Ei−1(α). 

Table 2.3.2 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f 
(α, σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis 

DFA, H2 is given below in Figure 2.3.3. 
 

 

Figure 2.3.3: Hypothesis H2 

As above hypothesis DFA, H2 is behaviorally equivalent to the target DFA, 
A i.e. L(H2) = L(A) therefore the IID algorithm terminates. 
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2.4 IDS Algorithm 

The IDS algorithm is also an incremental extension of ID algorithm [11]. Like IID 

algorithm, it also does not require the availability of live complete set at the 

start of inference procedure. IDS incrementally build the live state set and 

its corresponding automata regarding to provide input labeled examples. A 

labeled example consists of two parts such as (α, label(α)) whereas α∈Σ∗ and 

label(α) shows that whether an equivalence query α is accepted or rejected by 

the adequate teacher. A label(α) is valued as accepted if α∈L(A) and label(α) is 

valued as rejected if α ∈/ L(A). If α∈ L(A) then it is called positive example and 

if α ∈/ L(A) then it is called negative example. Initial hypothesis DFA, H0 consists 

of only one state (initial state) and all its input alphabet transitions 

β∈Σ . When a first labeled example (either positive or negative) arrives, then 

H0 is updated and after that for each additional labeled example (α, label(α)), 
it is determined that whether it is consistent with our previous hypothesis DFA 
or we have to update it according to new labeled example. 

Like IID algorithm [13], the IDS algorithm has also a set P that is initially as 
' 

P = {λ} and P 
' 

= P ∪{d0}, where d0 is a dead state. T is a set having all states 

' ' 

as well as their concatenation with input alphabet β such that T = P ∪{f (α, 
' 

β) | (α, β) ∈P 
' 

× Σ} where α ∈ P 
' 

and β ∈ Σ (for prefix closed). The IDS 

algorithm partitions the set T into the blocks of accepting and nonaccepting 
states and for this, it uses the concept of distinguishing strings V like the ID 
and IID algorithms. The purpose of distinguishing strings is to identify a string, 

having same behavior for some particular string, α ∈ Σ∗ but have different 

behavior for a suf f i x σ ∈ Σ. 
Like ID and IID algorithms, to f i nd the blocks of accepting and nonaccepting 

  states, the IDS algorithm also constructs a table. The first row of table        
shows 

' 

the number of iterations, through which set T is partitioned into accepting and 
nonaccepting blocks. The second row of table shows the set of distinguishing 

strings v1, v2, . . . , vn where v1, v2, . . . , vn ∈ V . First column of table shows the 
' 

elements of the set T with transition function E where Ei(α) = {vj|vj ∈ V , 0 ≤j 

≤i , αvj ∈L(A)? } and L(A) is the language of target DFA, A. 
' ' 

When IDS receives a first labeled example, it constructs the set P , P , T 
and corresponding table like in ID algorithm. In first iteration E0when v0 = 

λ, E(d0) = φ and E0(α) = λ whenα ∈ L(A). Otherwise E0(α) = φ. After 

that IDS searches for a pair such that Ei(α) = Ei(β) but Ei (f (α, σ)) /= 
' 

Ei (f (β, σ)) whereas α, β ∈P 
' 

and σ ∈ Σ. This expression shows that if IDS 
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0 

0 

 finds a pair from set P which shows the same behavior i.e. either both Ei(α) 

and Ei(β) lie in accepting block or both lie in rejecting block and when we 

concatenate Ei(α) and Ei(β) with some alphabet σ from the input set Σ then their 

behavior changes i.e. one lie in accepting block and other lie in rejecting block. 

Then the IDS algorithm chooses some string γ ∈Ei (f (α, σ)) ⊕ Ei (f (β, σ)) 

and a new distinguishing string is defined as σγ. IDS perform next iteration i + 1 
to further split the blocks, by reading distinguishing string σγ 
∈Σ from all elements of Ei(α). For this, it asks membership queries as αvi +1 

∈L(A)? if the adequate teacher answers as Yes then Ei(α) becomes Ei−1(α) 

∪{vi}, if the adequate teacher answers as No then Ei(α) is set to Ei−1(α). If 

the IDS f i nds no such pair that is Ei(α) = Ei(β) but Ei(f (α, σ)) /= Ei 
( f (β, σ)) then it constructs the hypothesis DFA Hm. If Hm is equivalent to the 

target DFA, A then the IDS algorithm stops its execution otherwise it waits 

for another labeled example. Above process repeats until hypothesis DFA, H 
becomes equivalent to the target DFA, A. 

This algorithm has two versions. One is prefix closed like L*, ID, IID and 

other one is prefix free. The main difference between these two is; in prefix 

free version, set P contains the strings gained from the labeled examples 

without their prefixes whereas, in prefix closed version, set P contains the 

strings gained from labeled examples as well as their prefixes. 

 

Example 

Prefix Closed 

An example run of prefix closed version of IDS algorithm is given below: 

Input alphabet: Σ = {a, b} 

Target DFA: A= Consecutive even number of a's and all b's. (b∗(aa)∗b∗) 

Initially P0= {λ}, P ′ = {d0, λ} 

T ′ = {do, λ, a, b} 

Initial null automata H0 is given below in Figure 2.4.1. 
 

 

Figure 2.4.1: Null Automaton H0 

Suppose the first labeled example is (a, —), as this example shows that tran- 

sition a from initial state λ leads to the dead state so it is not consistent with 

H0. Here P1= {λ, a}, P ′ = {d0, λ, a} and T ′ = {do, λ, a, b, aa, ab} so Table 

1 1 
2.4.1 is given below: 

 

i 0 

Vi λ 

E(d0) φ 
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2 

E(λ) {λ} 

E(a) φ 
E(b) {λ} 

E(aa) φ 
E(ab) φ 

 

Table 2.4.1: For Labeled Example (a, -) 

Table 2.4.1 shows that distinguishing string set V ={λ} and IDS asks mem- 
' 

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher 

answers Yes, for E(λ) and E(b) as these strings lead to the accepting states so 

E0(α) becomes {λ} and for all others, those are not leading to accepting states, 

adequate teacher replies No so they are set to φ. 

Table 2.4.1 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α, 

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis DFA, 
H1 is given below in Figure 2.4.2. 

 

 

Figure 2.4.2: Hypothesis H1 

Suppose next labeled example is (ab,—) so P2 = {λ, a, ab} and P ′ = {d0, 

λ, a, ab} and T ′ becomes as T ′ = {do, λ, a, b, aa, ab, aba, abb} 
2 2 

The corresponding table for this iteration is given below: 
 

i 0 

vi Λ 

E(do) Φ 
E(λ) {λ} 

E(a) Φ 
E(b) {λ} 

E(aa) Φ 
E(ab) Φ 
E(aba) Φ 
E(abb) Φ 

Table 2.4.2: For Labeled Example (ab, -) 

Table 2.4.2 shows that distinguishing string set V ={λ} and IDS asks mem- 
' 

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher 

answers Yes for E(λ) and E(b) as these strings lead to the accepting states so 

E0(α) becomes {λ} and for all others, those are not leading to accepting states, 

adequate teacher replies No so they are set to φ. 



16  

3 

Table 2.4.2 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α, 

σ)) /= Ei ( f (β, σ)) so blocks will not be further refined. Hypothesis DFA, H2 
is given below in Figure 2.4.3 

 

 

Figure 2.4.3: Hypothesis H2 
 
 
 

Suppose next labeled example is (b,+) so P3 = { λ, a, b, ab} and P ′ = { d0, 

λ, a, b, ab } and T ′ becomes as T ′ = {do, λ, a, b, aa, ab, ba, bb, aba, abb} 

3 3 
The corresponding table for the current iteration is given below: 

 

i 0 

vi λ 

E(do) φ 

E(λ) {λ} 

E(a) φ 
E(b) {λ} 

E(aa) φ 
E(ab) φ 
E(ba) φ 
E(bb) {λ} 

E(aba) φ 
E(abb) φ 

Table 2.4.3: For Labeled Example (b, +) 
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4 

Table 2.4.3 shows that distinguishing string set V ={λ} and IDS asks mem- 
' 

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher 
answers Yes for E(λ), E(b) and E(bb) as these strings lead to the accepting states 

so E0(α) becomes {λ} and for all others, those are not leading to accepting states, 

adequate teacher replies No so they are set to φ. 

Table 2.4.3 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α, 

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis DFA, 
H3 is given below in Figure 2.4.4. 

 

Figure 2.4.4: Hypothesis H3 

 
 

Suppose next labeled example is (aa, +) 

Now P4= {λ, a, b, aa, ab} 

P4' = {do, λ, a, b, aa, ab} 

T ′= {d0, λ, a,b, aa, bb, ab, ba, aaa, aab, aba, abb} 

therefore Table 2.4.4 is given below: 
 

i 0 1 

vi λ a 

E(do) φ φ 
E(λ) {λ} {λ} 

E(a) φ {a} 

E(b) {λ} {λ} 

E(aa) {λ} {λ} 

E(ab) φ φ 
E(ba) φ {a} 

E(bb) {λ} {λ} 

E(aaa) φ {a} 

E(aab) {λ} {λ} 

E(aba) φ φ 
E(abb) φ φ 

Table 2.4.4: For Labeled Example (aa, +) 
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In Table 2.4.4, the column λ shows that as E (d0) = φ = E(a) but E(d0.a) 
/=E(a.a) hence the IDS algorithm partitions the accepting and nonaccepting 

blocks by using distinguishing string σγ= a shown in column a of Table 2.4.4. 
Table 2.4.4 shows that distinguishing string set V = {λ, a}.  The IDS asks 

' 

membership queries for all strings belong to T as avi+1 ∈ L(A). The adequate 
teacher answers Yes for E(a), E(ba) and E(aaa) as these strings lead to the 

accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others, those are 

not leading to accepting states, adequate teacher replies No so they are set to 

Ei−1(α). 

Table 2.4.4 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f 
(α, σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis 

DFA, H4 is given below in Figure 2.4.5. 
 

 

Figure 2.4.5: Hypothesis H4 

As the above hypothesis DFA, H4 is behaviorally equivalent to the target 

DFA, A i.e. L(H4) = L(A) therefore the IDS algorithm terminates. 
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Prefix Free 

An example run of prefix free version of IDS algorithm is given below: 

Target DFA: A= Consecutive even number of a's and all b's. (b∗(aa)∗b∗) 

Input alphabet: Σ = {a, b} 

Initially P0= {λ}, P ′ = {d0, λ} 

T ′ = {d0, λ, a, b} 

Initial null automata H0 is given below in Figure 2.4.6. 
 

 

Figure 2.4.6: Null Hypothesis H0 

Suppose the first labeled example is (ab, —) therefore 

P1= {λ, ab}, P ′ = {d0, λ, ab} and T ′ = {do, λ, a, b, ab, aba, abb} so 

corresponding Table 2.4.5 is given below: 
 

i 0 

vi λ 

E(d0) φ 

E(λ) {λ} 

E(a) φ 
E(b) {λ} 

E(ab) φ 
E(aba) φ 
E(abb) φ 

Table 2.4.5: For Labeled Example (ab, -) 

Table 2.4.5 shows that distinguishing string set V ={λ} and IDS asks mem- 
' 

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher 

answers Yes for E(λ) and E(b) as these strings lead to the accepting states so 

E0(α) becomes {λ} and for all others, those are not leading to accepting states, 

adequate teacher replies No so they are set to φ. 

Table 2.4.5 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α, 

σ)) /= Ei ( f (β, σ)) so blocks will not be further partitioned. Hypothesis DFA, 
H1 is given below in Figure 2.4.7. 



1
10 

 

 

 

 

Figure 2.4.7: Hypothesis H1 

Suppose next labeled example is (b, +) so 

P2 = {λ, b, ab} and P2 ′ = {d0, λ, b, ab} and T2 ′ becomes as T2 ′ = {do, λ, a, 
       b, ab, ba, bb, aba, abb} 

The corresponding table for the current iteration is given below: 
 

i 0 

vi λ 

E(do) φ 

E(λ) {λ} 

E(a) φ 
E(b) {λ} 

E(ab) φ 
E(ba) φ 
E(bb) {λ} 

E(aba) φ 
E(abb) φ 

Table 2.4.6: For Labeled Example (b, +) 

Table 2.4.6 shows that distinguishing string set V ={λ} and IDS asks mem- 
' 

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher 

answers Yes for E(λ), E(b) and E(bb) as these strings lead to the accepting states 

so E0(α) becomes {λ} and for all others, those are not leading to accepting states, 

adequate teacher replies No so they are set to φ. 

Table 2.4.6 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α, 

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis DFA, 
H2 is given below in Figure 2.4.8. 

 

Figure 2.4.8: Hypothesis H2 
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Suppose next labeled example is (aa, +) 

Now P3= {λ, b, aa, ab} 

P3' = {d0, λ, b, aa, ab} 

T ′= {d0, λ, a,b, aa, bb, ab, ba, aaa, aab, aba, abb} 

therefore Table 2.4.7 is given below: 
 

i 0 1 

vi λ a 

E(do) φ φ 
E(λ) {λ} {λ} 

E(a) φ {a} 

E(b) {λ} {λ} 

E(aa) {λ} {λ} 

E(ab) φ φ 
E(ba) φ {a} 

E(bb) {λ} {λ} 

E(aaa) φ {a} 

E(aab) {λ} {λ} 

E(aba) φ φ 
E(abb) φ φ 

Table 2.4.7: For Labeled Example (aa, + ) 

In Table 2.4.7, the column λ shows that as E (a) = φ = E(ab) but E(a. a) 
/=E(ab. a) so the IDS algorithm partitions the accepting and nonaccepting blocks 

by using distinguishing string σγ = a shown in column a of table 2.4.7. 
Table 2.4.7 shows that distinguishing string set V = {λ, a}.  The IDS asks 

' 

membership queries for all strings belong to T as avi+1∈ L(A). The adequate 
teacher answers Yes for E(a), E(ba) and E(aaa) as these strings lead to the 

accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others, those are 

not leading to accepting states, adequate teacher replies No so they are set to 

Ei−1(α). 

Table 2.4.7 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f 
(α, σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis 

DFA, H3 is given below in Figure 2.4.9. 
 

 

Figure 2.4.9: Hypothesis H3 

As above hypothesis DFA, H3 is behaviorally equivalent to the target DFA, 
A i.e. L(H3) = L(A) therefore the IDS algorithm terminates. 
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2.5 IKL Algorithm 

IKL is an incremental extension of the ID algorithm like the IDS algorithm but 

the major difference is, the IID algorithm is one bit whereas the IKL is a multibit 

extension [12]. The IKL learns deterministic Kripke structures multi-bit moore 

machine having k-bit outputs. The IKL algorithm uses two basic ideas. One is 

bit-slicing i.e. converting k-bits Kripke structure into k 1-bit Kripke structures 

having 1-bit output which is given below in Figure 2.51. Second concept used 

is of partition refinement which is similar to the consistency maintanence of 

the ID algorithm but difference is, the IKL algorithm uses the concept of lazy 

partition refinement. 

Like IDS algorithm, the IKL algorithm has also a set P that is initially as P0 
= {ε} and P ′ = P0 ∪{d0}, where d0 is a dead state. T ′is a set having all states 

as well as their concatenation with input alphabet β such that Tk = Tk−1 ∪ P ′ 

∪{(α, β) | (α ∈ Pk — Pk−1, β ϵ Σ} for pre x closure.  The IKL algorithm 
partitions the set T ' into the blocks of accepting and nonaccepting states and 

for this, it uses the concept of distinguishing strings V like the ID and IID 
algorithms. The purpose of distinguishing strings is to identify a state, having 

same behavior for some particular string, α ∈Σ∗ but have different behavior 

for a suffix σ ∈ Σ. Like ID and IDS algorithms, to find the blocks of 
accepting and nonaccepting states, the IDS algorithm also constructs a table. 

The rst row of table shows the number of iterations, through which set T ′ is 

partitioned into accepting and nonaccepting blocks. The second row of table 
shows the set of distinguishing strings v1, v2, . . . , vn wherev1, v2, . . . , vn ∈ V . 

First column of table shows the elements of the set T ′ with transition function 

E where Ec (α) = {vj | vj ∈ V , 0 ≤ j ≤i , αvj ∈ L(A)? } 

and L(A) is the language of target DFA, A. 

In the IKL algorithm, the target automaton A is initially converted into k 

1-bit automata i.e. B1, B2... Bn by bit slicing. After that all 1-bit automata 

are incrementally learned and then the IKL algorithm finds the product of all 

1-bit automata B1, B2... Bn to convert all 1-bit Kripke structures into k-bit 

target automata A. 
' ' 

The IKL constructs the set P , P , T and corresponding tables for all 1 bit 

automata B1, B2... Bn like in ID algorithm. In first iteration of all tables E0 

when vo = ε, E(d0) = φ and E0(α) = ε when α ∈ L(A). Otherwise E0(α) = φ. 

After that IKL searches for a pair such that Eic
c (α) = Eic

c (β) but Eic
c ( f (α, σ)) 

/= Eic
c ( f (β, σ)) whereas α, β ∈P ' and σ ∈ Σ . This expression shows that if IKL 

 finds a pair from set P ′ which shows the same behavior i.e. either both Eic
c (α) 

and Eic
c (β) accepted both lie in rejected block and when we concatenate Eic

c (α)  

and Eic
c (β) with some alphabet σ from the input set Σ then their behavior 

changes i.e. one accepted block and other is rejected. Then the IKL algorithm 

chooses some string γ ∈Ec ( f (α, σ)) ⊕ Ec ( f (β, σ)) and a new distinguishing

 

string is defined as σγ . The IKL algorithm performs next iteration i + 1 to 

further partition the blocks, by reading distinguishing string σγ ∈Σ from all 

elements of Ec (α). For this, it asks membership queries as αvi +1 ∈L(A)? 
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If the adequate teacher answers as Yes then Ec (α) becomes Ec(α) ∪{vi }, 
ic i

c−1 
c

 

if the adequate teacher answers as No then Ec (α) is set to Ec (α).  The 
ic ic−1 

IKL repeats the above process until all tables corresponding to B1,B2... Bn 
become consistent. After that it constructs the product automata Hm. If Hm 
is behaviorally equivalent to the target automata A and input string set S is 

empty then the IKL algorithm stops its execution. 
 

c

 

Example 

An example run of the IKL algorithm is given below: 

Kripke structure = 3 bits 

Σ = {a, b} 

File S contain = a, ba 
Target automata A = Odd number of a's 

 

 

Figure 2.5.1: Target Automata 

In the first step, the IKL algorithm finds the bit slicing of the target automata 

A in form of B1, B2, B3 which are given below in Figure 2.5.2. 

 

 

 

Figure 2.5.2: B1,B2, B3 

c = 1 → 3 

i1= 0 
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i2= 0 

i3= 0 

V1= ε 
V2= ε 
V3= ε 
k = 0, t = 0 

P0 = {ε} 

P ′= P0∪ {d0} = {ε, d0} 

T0= P0∪ Σ = {ε, a, b} 
E1(d0) = φ 
E2 (d0) = φ 
E3(d0) = φ 
Now suppose the IKL algorithm reads the input string a then: 

k = 1, t = 1 

P1= P0∪Pref (α) = {ε, a} 
T1= T0∪Pref (α) ∪ {α.b} = {ε, a, b} ∪{ε} ∪ {a, aa, ab} = {ε, a, b, aa, ab} 

' 

T1 = {d0 , ε, a, b, aa, ab } 
 

     Table 2.5.1: For B1     Table 2.5.2: For B2    Table 2.5.3: For B3 

 
Table 2.5.1 shows that E1 (ε) = E1(a) but E1(ε. a) /= E1(a. a) so a is 

0 0 0 0 

a distinguishing string for Table 2.5.1. Table 2.5.2 shows that E1 ( ε) = E1(d0) 
0 0 

but E1  ( ε. a ) /= E1 (d0. a) so a is a distinguishing string for Table 2.5.2. 
0 0 

'
 

Whereas in Table 2.5.3, the corresponding values for all strings belonging to T 
are φ so it shows that it is consistent and having only one state that is φ denoted 

as q0 for the Table 2.5.3. 

Now IKL maintain the consistency of Table 2.5.1 and Table 2.5.2 by updating 

these table with distinguishing string a. 

Updated Table 2.5.1 denoted as Table 2.5.1(a) and updated Table 2.5.2 

denoted as Table 2.5.2(a) are given below: 

i1 0 

v1 ε 

E1(d0) φ 

E1(ε) φ 
E1(a) φ 
E1(b) {ε} 

E1(aa) {ε} 

E1(ab) φ 

 

i2 0 

v2 ε 

E2(d0) φ 

E2(ε) φ 
E2(a) {ε} 

E2(b) φ 
E2(aa) φ 
E2(ab) {ε} 

 

i3 0 

v3 ε 

E3(d0) φ 
E3(ε) φ 
E3(a) φ 
E3(b) φ 

E3(aa) φ 
E3(ab) φ 

 



24  

 

 

  

Table 2.5.1(a): For B1     Table 2.5.2(a): For B2 
 

Table 2.5.1(a) shows that E1(ε) = E1(d0) but E1(ε. b) /= E1(d0. b) so 
0 0 0 0 

 b is a distinguishing string for Table 2.5.1(a). Table 2.5.2(a) is now consistent 

as it f i nds no such pair that is Ei(α) = Ei(β) but Ei(f (α, σ)) /= Ei ( f (β, σ)). 

Updated Table 2.5.1(a) denoted as Table 2.5.1(a') is given below: 
 

i1 0 1 2 

v1 ε A b 

E1(d0) φ Φ φ 
E1(ε) φ Φ {b} 

E1(a) φ {a} {a} 

E1(b) {ε} {ε} {ε, b} 

E1(aa) {ε} {ε} {ε, b} 

E1(ab) Φ {a} {a} 

Table 2.5.1(a'): For B1 

Table 2.5.1(a') is now consistent as it finds no such pair that is Ei(α) = 

Ei(β) but Ei(f (α, σ)) /= Ei ( f (β, σ)). So, it constructs the hypothesis DFA 

Hm by taking product of B1, B2, B3. For this, the IKL algorithm constructs the 
' ' ' 

1 bit automata B1, B2, B3 for each corresponding table which are given below 
in Figure 2.5.3. 

 

 

 

Figure 2.5.3: B1, B2, B3

i1 0 1 

v1 ε a 

E1(d0) φ φ 
E1(ε) φ φ 
E1(a) φ {a} 

E1(b) {ε} {ε} 

E1(aa) {ε} {ε} 

E1(ab) φ {a} 

 

i2 0 1 

v2 ε a 

E2(d0) φ φ 
E2(ε) φ {a} 

E2(a) {ε} {ε} 

E2(b) φ {a} 

E2(aa) φ {a} 

E2(ab) {ε} {ε} 
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' ' ' 

 
' ' ' 

Product of all bit slice automata'sB1, B2, B3 is given below in Figure 2.5.4. 

 

 

Figure 2.5.4: Product Automata Hm 

We can see that product automaton Hm is behaviorally equivalent to the 

target automata A. 

Now suppose the IKL algorithm reads the input string ba as it is consistent 

with Hm so Hm+1 = Hm ≡A. As the le S is now empty so the IKL algorithm 

stops its execution. 
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2.6 RPNI Algorithm 

The RPNI algorithm is a passive learning algorithm proposed by Jose Oncina 
and Pedro Garcia in 1992 [3]. It uses a tree structure instead of table and does 
not maintain consistency. It takes the input as set of positive examples and set 

of negative examples S+ and S− respectively. It first writes the elements of 

S+ and its prefixes in lexicographical order then from set of positive examples 

and their prefixes, it constructs the prefix tree PT(S+). After that it 

recursively partitions the branches of the tree into blocks. The partition is 
represented as π and the target automata is represented as A. At f i rst step 

each element of PT(S+) belongs to its self-containing block. The RPNI 

algorithm recursively applies joint operation on these blocks so that they can 
be merged into two final blocks. One is accepting state block and second is 
non-accepting state block. 

Let π be a partition over PT(S+) and blocks Bi, Bj ϵ π then joint operation 

over any two blocks Bi, Bj is J ( π, Bi, Bj ) = { B ϵ π | B /= Bi, B /= Bj } ∪{ 

Bi ∪ Bj }. Initial automaton A0 Tproduced by PT(S+) = π0= { u0, u1,. . . , ur} 

and πn = J ( πn−1,B, un ) i  S− L( A0 / J ( πn−1, B, un)) = φ otherwise πn 
= πn−1. Detailed explanation of the RPNI algorithm is given below with the 
help of example. 

 

Example 

An example run of the RPNI algorithm is given below: 

Target Automaton A: Odd number of a's 

S+ = { a, ab, bab, abaa } 

S− = { b, baba, baa } 
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                 The lexicographical order of pre xes of S+ is:         

                   ⟨ λ,a, b, ab, ba, bab, aba, abaa⟩ 
Initial automaton A0 = PT(S+) is given in Figure 2.6.1. 

 

 

Figure 2.6.1: Initial Automata A0 / π0 

To obtain π1 where u1= ”a” , the RPNI algorithm perform operation J ( 
π0, λ , a ) which is given in Figure 2.6.2. 

 

 

Figure 2.6.2: A0 / J ( π0, λ, a ) 

In Figure 2.6.2, we can see that S− T
 
L( A0 / J ( π0, λ, a)) /= φ as above 

automaton accepts the string baa which belongs to the set S−. As there are no 

more states to try to merge with u1 = ”a” therefore π1 = π0 
To obtain π2 where u2= “b” , the RPNI algorithm performs operation J ( 

π1, λ, b ) which is given in Figure 2.6.3. 
 

 

Figure 2.6.3: A0 /J ( π1, λ, b ) 
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In Figure 2.6.3, we can see that S− T
 
L( A0 / J ( π1, λ, b)) =φ as above 

automata accepts all strings belonging to the set S+ and rejects all negative 

data belonging to the set S−. So π2 = J ( π1, λ, b). 

To obtain π3 where u3 = “ab” , the RPNI algorithm performs operation J ( 
π2, a, ab ) which is given in Figure 2.6.4. 

 

 

Figure 2.6.4: A0 /J ( π2, a, ab ) 

In Figure 2.6.4, we can see that S− T
 
L( A0 / J ( π2, a, ab)) =φ as above 

automaton accepts all strings belonging to the set S+ and rejects all negative 

data belonging to the set S−. Therefore π3 = J ( π2, a, ab). 

To obtain π4 where u4= “ba” , the RPNI algorithm performs operation J ( 
π3, a, ba ) which is given in Figure 2.6.5. 

 

 

Figure 2.6.5: A0 / J ( π3, a, ba ) 

In Figure 2.6.5, we can see that S−T
 
L( A0 / J ( π3, a, ba)) =φ as above 

automaton accepts all strings belonging to the set S+ and rejects all negative 

data belonging to the set S−. Therefore π4 = J ( π3, a, ba). 

To obtain π5 where u5 = “bab”, the RPNI algorithm performs operation J 
( π4, a, bab ) which is given in Figure 2.6.6. 
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Figure 2.6.6: A0 / J ( π4, a, bab ) 

In Figure 2.6.6, we can see that S−T
 
L( A0 / J ( π4, a, bab)) =φ as above 

automaton accepts all strings belonging to the set S+ and rejects all negative 

data belonging to the set S−. Therefore π5 = J ( π4, a, bab). 

To obtain π6 where u6= “aba” , the RPNI algorithm performs operation J 
( π5, λ, aba ) which is given in Figure 2.6.7. 

 

 

Figure 2.6.7 : A0 /J ( π5, λ, aba ) 

In Figure 2.6.7, we can see that S−T
 
L( A0 / J ( π5, λ, aba)) = φ as above 

automaton accepts all strings belonging to the set S+ and rejects all negative 

data belonging to the set S−. Therefore π6 = J ( π5, λ, aba). 

To obtain π7 where u7 = “abaa” , the RPNI algorithm performs operation J 
( π6, a, abaa ) which is given in Figure 2.6.8. 

 

 

Figure 2.6.8 : A0 / J ( π6, a, abaa ) 

In Figure 2.6.8, we can see that S−T
 
L( A0 / J ( π6, λ, abaa)) =φ as above 

automaton accepts all strings belonging to the set S+ and rejects all negative 

data belonging to the set S−. Therefore π7 = J ( π6, a, abaa). 

As there are total eight elements in lexicographical order in the pre xes 

of S+ set so after seven recursive partitions π7 the RPNI algorithm stops its 

execution and we can see that this partition is behaviorally equivalent to the 

target automaton A. 
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2.7 RPNII Algorithm 

The RPNII algorithm is an incremental extension of the RPNI algorithm [3]. 

The RPNI algorithm takes the positive and negative examples as a whole and 

can’t accommodate new labeled example unless it may start its whole execution 

from the scratch. The RPNII algorithm reduces this discrepancy as it has the 

ability to accommodate a new labeled example easily [4]. 

The RPNII algorithm initially takes the set of positive and negative 

examples, S+, S− respectively. It also takes the prefix tree acceptor PTA(S+), 

deterministic quotient automaton (DQA) and a new labeled example x. 

If the new labeled example consistent with deterministic quotient automaton 

(DQA) then initial deterministic quotient automaton will be the final solution. 

Otherwise, the RPNII algorithm accommodates new labeled example by recursive 

splitting process in form of depth first search (in reverse lexicographical order). 

This process continuous until the quotient automaton becomes deterministic. 

After that when the quotient automaton becomes deterministic as well as 

consistant with S+ and S− then the RPNII algorithm applies the RPNI algorithm 

on it. Which we have brie y explained in the previous section. 

 

Example 

An example run of the RPNII algorithm is described below: 

Let S+= { λ, ab, bab, babb } 

S−= { a, baa } 

The lexico-graphical order = ⟨ λ, a, b, ab, ba, bab, babb ⟩ 
PTA(S+): 

 

 

Figure 2.7.1: PTA(S+) 

DQA: 
 

Figure 2.7.2: Initial Deterministic Quotient Automaton
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let x = ( b, —) 

As initial DQA shows that b is accepting string while new labeled example 

x shows that string b belongs to S− therefore the RPNII algorithm 

modifies the initial DQA to make it consistent with the sets S+ and S−. For 

this purpose, the RPNII algorithm starts from the string babb and splits the 

initial deterministic quotient automaton which is given below in Figure 2.7.3. 

 

 

Figure 2.7.3: Splitting for the string babb 

 

 

Figure 2.7.3 shows that due to splitting of initial DQA for the string babb, 

the initial automaton became non-deterministic as the initial state has two 

transitions for input symbol b. Therefore, to make it deterministic, the RPNII 

algorithm again splits this automaton on the basis of the string bab which is 

given below in Figure 2.7.4. 

 

 

 

 

Figure 2.7.4: Splitting for the string bab 
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Figure 2.7.4 shows that splitting at the string bab also creates non-determination 

at the initial state, as this state has two transitions for input symbol b. There- 

fore, the RPNII algorithm again splits this automaton on the basis of the string 

ba. New quotient automaton is described below in Figure 2.7.5. 
 

 

Figure 2.7.5: Splitting for the string ba 

 
 

Figure 2.7.5 shows that splitting at the string ba also create non-determination 

at the initial state, as this state has two transitions for input symbol b . There- 

fore the RPNII algorithm again splits this automaton on the basis of the string 

b. New quotient automaton is described below in Figure 2.7.6. 
 

 

Figure 2.7.6: Splitting for the string b 
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As we can see that Figure 2.7.6 shows the quotient automaton A0 which 

is now deterministic and consistent with the sets, S+ and S−. Therefore, the 

RPNII algorithm stops its recursive splitting process. 

Here the RPNII algorithm applies the RPNI algorithm on deterministic quo- 

tient automaton which is given below. 

The lexicographical order of automaton A0 is ⟨ λ, a, b, ba, bab, babb ⟩ 
u1 = a 
J ( π0, λ, a ) 

 

 

Figure 2.7.7: A0/ J ( π0, λ, a ) 

Figure 2.7.7 shows that L( A0/J ( π0, λ, a )) ∩ S−/=φ  as strings a and b are 

accepting here, according to Figure 2.7.7 but these belong to S−. Therefore π1 
= π0 

Now u2 = b 
J ( π1, λ, b ) 

 

 

Figure 2.7.8: A0/ J ( π1, λ, b ) 
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Figure 2.7.8 shows that L( A0/J ( π1, λ, b )) ∩ S−/=φ  as string b is accepting 

in Figure 2.7.8 but this is belonging to S−. Therefore π2 = π1 
Now u3 = ba 
J ( π2, b, ba ) 

 

 

Figure 2.7.9: A0 / J ( π2, b, ba ) 

Figure 2.7.9 shows that L( A0/J ( π2, b, ba )) ∩ S−=φ therefore we can say 

that it rejects all negative strings. So π3 = J ( π2, b, ba ) 

Now u4 = bab 
J ( π2, ba, bab ) 
This operation is not suitable as if we will merge the strings ba and bab then in 

the next step, string b will be accepted but as it belongs to S− so it should not 

be accepted. 

Now u4 = babb 
J ( π2, bab, babb ) 

 

 

Figure 2.7.10: A0 / J ( π2, bab, babb ) 

Figure 2.7.10 shows that this automaton H = A0/J(π2, bab, babb) is 
behaviorally equivalent to the target automaton A as well as it is also consistent 

with the S+ and S− sets. Therefore, RPNII algorithm stops its execution and 

returns the automaton H as an output. 
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2.8 Analysis 

2.8.1 Time Complexities of Learning Algorithms 

 

Algorithm Learning Type Complexity Learned Automata 

L* Complete O (|Σ|.N 2M ) Moore 

ID Complete O (|Σ|.|P |. N ) Moore 

IID Incremental O (|Σ|.|Pl|. N ) Moore 

IDS Incremental O (|Σ|.|Pk|. N ) Moore 

IKL Incremental O (|Σ|.|P |. Nl ) Moore 

RPNI Complete O ((|Ip| + |In|) . |Ip|2) Moore 

RPNII Incremental O ((|Ip| + |In|) . |Ip|2) Moore 

Table 2.8.1: Complexities of Learning Algorithms 

Above Table 2.8.1 shows that size of the input alphabet |Σ|, number of nodes 

N in the target DFA A and the number of queries; M for L*, |P | for the ID and 

IKL algorithms, |Pl| for IID algorithm, |Pk| for IDS algorithm, |Ip| (pos- itive 

sample) and |In| (negative sample) for the RPNI and RPNII algorithms, 

contribute in the complexities of learning algorithms. If we analyze, we can see 

that number of queries have major contribution in the complexities of above 

mentioned algorithms as the size of input alphabet |Σ| and number of nodes N 
in the target DFA are nearly static factors. 

 

2.8.2 Query-Wise Analysis of Learning Algorithms 
 

Algorithm 
Membership Book-keeping Lexicographical 

Queries Queries Order 
L* Yes No No 

ID Yes No No 

IID Yes Yes No 

IDS Yes Yes No 

IKL Yes Yes No 

RPNI No No Yes 

RPNII No No Yes 

Table 2.8.2: Query wise Analysis of Learning Algorithms 
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