
1

Review of Automaton Learning Algorithms with

Polynomial Complexity - Completely Solved

Examples

Dr. Farah Haneef

Computer Science Department

Quaid-e-Azam University, Islamabad, Pakistan

1 Introduction
Automaton learning is a domain in which the target system aka System Under

Learning (SUL) is inferred by the automaton learning algorithm in the form of

an automaton, by synthesizing a finite number of inputs and their

corresponding outputs. Automaton learning makes use of a Minimally

Adequate Teacher (MAT). The learner learns the SUL by posing membership

queries to the MAT.

In the early stages, theoretical automaton learning has successful real-

world applications. It goes beyond formal verification and allows to infer

behavioral model of black-box systems. The improvements in tool support and

raising competition focuses on the practicality of automaton learning and

encouraging Learning-based Testing (LBT) techniques, which shows the

growing interest in the field of research.

Learning-based testing [10] is an emerging paradigm of software testing. It

is a heuristic iterative approach which is useful to automate specification based

black box testing [9][7]. The LBT framework consists of a system under test

(SUT), a formal specification for SUT and a learned model of SUT. A learning

base testing algorithm works by executing test case inputs on the SUT. Most of

the learning algorithms learn in the limit to yield a minimal approximation of

the target DFA. This concept of learning in the limit for target DFA was f i rst

introduced by E.M.Gold in 1967 [5] . In his paper, he showed that with the help

of some inference or learning algorithm, a regular language corresponding to

some target DFA can be guessed by a f i nite number of wrong hypothesis. With

respect to learning type, there are three kinds of learning algorithms: complete

learning algorithms, incremental learning algorithms and sequential learning

algorithms.

In complete learning algorithms, initially, the system under learning (SUL)

is completely learned by giving different inputs and receiving their

corresponding outputs. After complete learning of the system, a hypothesis H is

mailto:farah@qau.edu.pk

2

generated [1]. While in incremental learning algorithms, system is learned in

incremental form [13]. Initially, a small part (increment) of the system is

learned by giving the inputs and receiving corresponding outputs after that,

these input/output pairs are synthesized into a hypothesis Hi by the learning

algorithm in an incremental fashion. The next step it learns a new increment

(small part of the system) and rebuilds the hypothesis Hi+1 which contains the

previously and newly learned information. This process of learning can

potentially continue till the complete learning of the system. On the other hand,

sequential learning algorithm similarly works as an incremental learning

algorithm except that it does not reuse the previously learned information from

the hypothesis Hs−1 to construct the new hypothesis Hs [8].

In automaton learning, there is a learner (learning algorithm) and an adequate

teacher [2]. The Learner is a learning algorithm which learns the regular set

from queries and counter-examples. The Learner asks queries to the adequate

teacher. The adequate teacher answers the questions from the Learner, about the

unknown regular set. It answers two types of questions: First type is a
membership query, consisting of a string t ϵ Σ∗. The adequate teacher answers
as yes or no depending on whether string t is a member of the unknown set or
not. The second type of question is a conjecture, consisting of a description of
a regular set S; the answer is yes if S is equal to the unknown language and is
a string t in the symmetric difference of S and the unknown language otherwise.
In the second case, the string t is called a counter-example because it serves to
show that the conjectured set S is incorrect.

The concept of the adequate teacher was first introduced by Dana Angluin,

in ID algorithm [1]. After that this concept was used by other researchers. As they

found that if there is an adequate teacher, the complexity of automaton learning is

polynomial whereas, in the absence of the adequate teacher automaton learning is

an NP-hard problem [10].

2 Automaton Learning Algorithms

We have briefly studied some automaton learning algorithms with the help of

examples, which are specifically relevant to table data structure and tree data

structure. The learning algorithms having table data structure are L* proposed by

Dana Angluin in 1987 [2], ID proposed by Dana Angluin in 1981 [1], DLIQ and

BDLIQ proposed by Farah Haneef and Muddassar Azam Sindhu in 2022 and 2023

respectively in [15, 16], IID proposed by R. Parekh, C. Nichitiu and V. Honavar in

1998 [13], IDS proposed by K. Meinke and Muddassar Azam Sindhu in 2010

[11], IDLIQ proposed by Farah Haneef and Muddassar Azam Sindhu in [17] and

IKL proposed by K. Meinke and Muddassar Azam Sindhu in 2011 [12]. The

learning algorithms having tree data structure are RPNI proposed by Oncina

and Garcia in 1992 [3] and RPNII proposed by Pierre Dupont in 1996 [4].

2.1 L* Algorithm

The L* is a complete learning algorithm proposed by Dana Angluin in 1987

[2]. It learns a regular set by asking membership and equivalence queries. A

membership query tells whether a string α is a member of the language of DFA

A or not, α ϵ L(A)? An equivalence query determines whether a hypothesis

DFA is a correct representation of regular set or not i.e. L(H) = L(A)? L* asks

membership queries and organizes this information in form of a table consisting

3

of a tuple (S, E, T) which is called Observation Table OT. Where s1, s2,. . ., sn
are row labels belonging to S and e1, e2,. . ., en are column labels belonging to E.

Whereas T is a transition function ((S ∪ S . Σ) X E). A simple observation
table (OT) is shown in Table 2.1.1. This table has two parts. Upper part

consists of set S = {s1, s2} and lower part consists of concatenation of S and Σ
having s1. a1 and s2. a2 elements, where s1, s2 ϵ S and a1, a2 ϵ Σ and Σ is a

f i nite set of alphabets.
Function row(s) is a f i nite function which represents the tuple of entries

in the observation table OT corresponding to row labeled as s.

T e1 e2
s1

s2

s1.a1

s2.a2

Table 2.1.1: Observation Table (OT)

This table should meet two basic properties before asking equivalence queries

to make conjecture. These properties are closure and consistency. The OT is

called closed if and only if, for each string t in lower part of the table i.e. S.Σ,

there exist an s in upper part of the table i.e. S such that row(t) = row(s).
If OT is not closed then rows of the observation table are extended as S with

prefixes of S. For OT to be consistent, it is necessary that if any two rows of

upper part of OT are same as row(s1) = row(s2) then for all a ϵ Σ, row (s1. a)
= row (s2. a). If the observation table is closed but not consistent then column

of observation table is extended with a symbol a where a ϵ Σ.

When OT is closed and consistent, a conjecture can be constructed. Distinct

rows(S) show the different states (states described by concatenation of elements

of set E) and column T represents the strings t which are used to show the

transitions from one state to another. The initial state is the row(λ) and the

final states are the entries in the table under the column λ with value = 1. We

start from the initial state q0 and check all transitions of input alphabet, existing

in Column T as δ(row(s), a) = row (s. a). After reading all input symbols from

each state, a conjecture is represented in the form of a table. Rows represent

the states as q0, q1, . . ., qn and columns represent input symbols as 0, 1.

If this conjecture H is language equivalent to the target DFA, A, L(H) =

L(A) then the adequate teacher answers the equivalence query as Yes otherwise,

it answer as No and gives the counter example either from L(H) - L(A) or

L(A) - L(H), which is then accommodated in OT in the form of extension of

rows. This process continues until OT becomes consistent and closed.

Example

An example run of the L* algorithm is given below:

Unknown Regular Set: U = Even number of 0's except the empty string.

Fixed known Finite Alphabets: Σ = {0, 1}

The initial observation table is shown in Table 2.1.2. It shows that S = {λ}

and E = {λ}. The corresponding table entries are called as: λ. λ = λ which

is not an accepting string so value = 0 is inserted in the corresponding

4

cell. 0.λ = 0 which shows odd number of 0's which are not accepted so value = 0,

and 1.λ = 1 which shows zero number of 0's therefore the corresponding cell value

= 0.

Table 2.1.2: Initial Observation Table

As in upper part of λ column there is no cell having value 1 therefore this

table shows that there is no final state in the initial hypothesis DFA. Initial OT
is closed as row (0) = row (λ) and row (1) = row (λ). This OT is also consistent

as no two rows in S are same. Now L* makes a conjecture shows that if we read

0 or 1 from state0 then it will remain to the same state as itself. Conjecture

H1 and respective automaton is shown in Fig.2.1.1: (a) and (b)

δ 0 1

q0 q0 q0

Fig.2.1.1(a): Conjecture H1

Fig.2.1.1(b): Automaton H1

Above conjecture H1 shows that there is no final state in it which makes its

language inequivalent to the target DFA, A. Let H1 gives counter-example as

00 which is an accepting string on target DFA but above automaton does not

accept it. Therefore, we extend the rows of initial OT T1 as 0, 00 in S and

01, 001, 000 in S.Σ. The extended observation table T2 is shown below as Table

2.1.3.

T2 λ

λ 0

0 0

00 1

1 0

01 0

001 1

000 0

T1 λ

λ 0

0 0

1 0

5

Table 2.1.3: Observation Table T2

Table 2.1.3 shows that λ. λ = λ so value = 0, 0.λ = 0 so value = 0, 00.λ = 00

which has even number of 0's so it is an accepting string and the value against

it will be 1. Similarly, 1.λ = 1 so value = 0, 01. λ= 01 so value = 0, 000. λ =

000 so value = 0, 001.λ = 001 having two 0's so this string is also accepted and

value against it will be 1. T2 has S = {λ, 0, 00} and E = {λ}

Observation table T2 is closed as for every successor state in S.Σ, there is a

row in S as row(s) = row(t) not consistent as row (λ) = row (0) but row (0) is not

equivalent to row (00). Therefore, we have to extend set E with 0. Observation

table T3 is shown below as Table 4 having S = {λ, 0, 00} and E = {λ, 0}

T3 λ 0

λ 0 0

0 0 1

00 1 0

1 0 0

01 0 1

001 1 0

000 0 1

Table 2.1.4: Observation Table T3

In Table T3 we have called the column 0 as: λ.0 = 0 as number of 0's is 1 so

value=0, 0.0 = 00 as number of zeros are two so corresponding value = 1, 00.0

= 000 here number of zeros are three so value = 0 and similarly other values of

column 0's are calculated for the lower part of the table.

T3 is closed as well as consistent as row (λ) = row (00) and row (1) = row
(001) and row (0) = row (000). So, L* makes a conjecture H2 which is shown in

Fig.2.1.2(a). Rows against column λ and 0 shows the states of automaton as 00

= q0, 01 = q2, 10 = q2. whereas transitions are as follows.

If we read strings from column T3 as 0 from the state00 then we reach the

state01. If we read 1 from state00 will reach the state00 (self-loop). If we read

the string 0 from the state01 we reach the state10. If we read the string 1 from the

state01 we reach the state01 (self-loop). Similarly, if we read the string 0 from

the state10, we reach the state01 and if we read the string 1 from the state10, we

reach the state10.

δ 0 1

q0 q1 q0

q1 q2 q1
q2 q1 q2

Fig.2.1.2(a): Conjecture H2

As H2 accepts all the strings having even number of 0's except the null string

so the adequate teacher answers as Yes. L* terminates and gives a minimal

6

behaviorally equivalent automaton H2 to the target automaton A shown in

Fig.2.1.2(b).

Fig.2.1.2(b): Automaton H2

7

2.2 ID Algorithm

The ID algorithm is a complete learning algorithm proposed by Dana Angluin

in 1981 [1]. It asks membership queries from the adequate teacher to learn the

regular set. It uses the concept of live states and dead state. A state q1ϵ Q

is called a live state if there exists a string σ1, σ2, . . ., σn ϵ Σ∗ such that δ∗ (q0,
σ1, σ2, . . ., σn) = qi and qi ϵ F where F is a final state. The set of all live states

is called live complete set denoted P and states which not live are called dead

states. In isomorphic automata, there is only one dead state d0. The set having

live states as well as dead state is denoted as P ′
'

'

that is P = P ∪ {d0}. The

ID algorithm partitions the set T into blocks of accepting and non-accepting
'

strings, for this purpose it uses the concept of distinguishing strings V. T is a
set having all live states as well as their concatenation with input alphabet β

'

such as T = P ′ ∪ {f (α, β) | (α, β) ∈ P

′

× Σ} where α∈P ′ and β∈Σ.

The purpose of distinguishing strings is to identify states, having same behavior
For some particular string, α ∈Σ∗ but have different behavior for a suffix
σ ∈ Σ.

 To f i n d the blocks of accepting and nonaccepting states, the ID constructs a
table. The first row of table shows the number of iterations, through which the

'

set T is partitioned into accepting and nonaccepting blocks. The second row of
table shows the set of distinguishing strings v1, v2, . . . , vn wherev1, v2, . . . , vn∈

'

V . First column of table shows the elements of the set T with transition

function E where Ei(α) = {vj|vj∈ V, 0 ≤j ≤i , αvj ∈L(A) ? } and L(A) is the

language of target DFA.

i 0 1 2

vi λ a b

E(d0) φ φ φ
E(λ)

E(a)

E(b)

E(aa)

E(ab)

E(ba)

E(bb)

Table 2.2.1: Structure of Table

8

Table 2.2.1 shows that two iterations have been completed to reach f i nal

partition of blocks and the second row shows that V = { λ, a, b }. From third

row we can see that any transition from dead state is always dead, Ei(d0) = φ.

In f i rst iteration E0 when v0 = λ, E(d0) = φ and E0(α) = λ when α ϵ L(A).
Otherwise E0(α) = φ.

When rst iteration becomes complete, ID searches for a pair such that
'

Ei(α) = Ei(β) but Ei(f (α, σ)) /= Ei (f (β, σ)) whereas α, β ∈ P and σ ∈ Σ.

This expression shows that if the ID algorithm nds a pair from set P ′ which

shows the same behavior i.e. either both Ei(α) and Ei(β) lie in the accepting

block or both lie in rejecting block and when we concatenate α and β with

some alphabet σ from the input set Σ then their behavior changes i.e. one lie in

accepting block and other lie in rejecting block. This can give a potential

distinguishing string. Then ID chooses some string γ ∈ Ei (f (α, σ)) ⊕ Ei (f (β,

σ)) and a new distinguishing string is defined as σγ. The ID performs next

iteration i + 1 to further split the blocks, by reading distinguishing string σγ
∈Σ from all elements of Ei(α). For this, it asks membership queries as αvi+1 ∈

L(A) ? , if the adequate teacher answers as Yes then Ei(α) becomes Ei−1(α)

∪{vi}, and if it answers as No then Ei(α) is set to Ei−1(α).

If the ID algorithm f i nds no such pair that is Ei(α) = Ei(β) but Ei(f (α, σ))

/= Ei (f (β, σ)) then it constructs the hypothesis DFA, H which is isomorphic

to the target DFA, A.
'

In hypothesis DFA, H, Ei(α) represents the states where α ϵ T. E(λ) is

initial state and Ei(α) where αϵ T and λ ϵ Ei(α) are f i nal states. The transition

relation δ is constructed as Ei(α) = φ then self-loop to that state otherwise

δ(Ei(α) , σ) = Ei(f (α, σ)).

Example

An example run of the ID algorithm is given below:

Target DFA: A= Consecutive even number of a's and all b's. (b∗(aa)∗b∗)

Input alphabet: Σ = {a, b}

P0 = {λ, a} and P 0′ = {d0, λ, a} and T0 ′ becomes as T0 ′ = {d0, λ, a, b, aa,

 ab }

i 0

vi λ

E(d0) φ

E(λ) {λ}

E(a) φ
E(b) {λ}

E(aa) {λ}

E(ab) φ

Table 2.2.2: Initial Table

9

Table 2.2.2 shows that distinguishing string set V ={λ}. The ID algorithm
'

asks membership queries for all strings belong to T as avi+1 ∈L(A). The

adequate teacher answers as Yes for E(λ), E(b), E(aa) as these strings lead

to the accepting states so Ei(α) becomes {λ} and for all others, those are not

leading to accepting states, adequate teacher answers as No so they set to φ.

Table 2.2.2 shows that E(d0) = E(a) but E(d0. α) /= E (a. a) therefore we

can take a distinguishing string σγ as a” in next iteration. The extended table

is given in Table 2.2.3

i 0 1

vi λ a

E(d0) φ φ
E(λ) {λ} {λ}

E(a) φ {a}

E(b) {λ} {λ}

E(aa) {λ} {λ}

E(ab) φ φ

Table 2.2.3: For Distinguishing String a

Table 2.2.3 shows that distinguishing string set V = {λ, a}. The ID algorithm
'

asks membership queries for all strings belong to T as avi+1 ∈L(A). The
adequate teacher answers as Yes for E(λ), E(a), E(b), E(aa) as these strings

lead to the accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others,

those are not leading to accepting states, adequate teacher answers as No so
they set to φ.

Table 2.2.3 shows that E(λ) = E(a) but E(λ. b) not equal to E (a. b) therefore

we can take a distinguishing string σγ as b” in next iteration. The extended

table is given in Table 2.2.4.

i 0 1 2

vi λ a b

E(d0) φ φ φ
E(λ) {λ} {λ} {λ, b}

E(a) φ {a} {a}

E(b) {λ} {λ} {λ, b}

E(aa) {λ} {λ} {λ, b}

E(ab) φ φ φ

Table 2.2.4: For Distinguishing String b

10

Table 2.2.4 shows that distinguishing string set V = {λ, a, b}. The ID algo-
'

rithm asks membership queries for all strings belong to T as avi+1 ∈L(A). The
adequate teacher answers as Yes for E(λ), E(a), E(b), E(aa) as these strings

lead to the accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others,

those are not leading to accepting states, adequate teacher answers as No so
they set to φ.

Table 2.2.4 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α,

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. The hypothesis DFA,
H is given below in Figure 2.2.1.

Figure 2.2.1: Hypothesis H

As we can see that this automaton is behaviorally equivalent to the target

DFA, A i.e. L(H) = L(A) therefore the ID algorithm terminates.

11

2.3 IID Algorithm

The IID is an incremental extension of the ID algorithm [13]. It works similar to

the ID algorithm except that it does not require the availability of live complete set

at the start of inference procedure. The IID incrementally builds the live state

set and its corresponding automata to provided labeled examples, those are taken

as input by this algorithm. A labeled example is a pair (α, label(α)) where

α∈Σ∗ and label(α) shows that whether an equivalence query α is accepted or
rejected by the adequate teacher. If α ∈ L(A) then it is called a positive example

and if α ∈/ L(A) then it is called a negative example. Initial hypothesis DFA, H0
consists of only one state that is the dead state. When the first positive example

is seen then H0 is updated and after that for each additional labeled example (α,

label(α)), it is determined that whether it is consistent with our previous

hypothesis DFA or we have to update it according to a new labeled example.

Like ID algorithm, IID has a set of live states P that is initially empty. P ′

is P ′ = P ∪{d0} where d0 is a dead state. T ′ is a set having all live states

as well as their concatenation with input alphabets β such that T ′ = P ′ ∪ {f
(α, β) | (α, β) ∈ P ′ × Σ} whereas α∈P ′ and β∈Σ. IID algorithm splits the

'

set T into blocks of accepting and nonaccepting states and for this, it uses the
concept of distinguishing strings, denoted by V like ID algorithm. The purpose

of distinguishing strings is to identify states, having same behavior for some

particular string, α ∈Σ∗ but have dif f erent behavior for a suf f i x σ ∈ Σ.
Like the ID algorithm, to nd the blocks of accepting and nonaccepting

 states, the IID also constructs a table. The f i rst row of table shows the
number

of iterations, through which the set T is partitioned into accepting and nonac-
cepting blocks. The second row of table shows the set of distinguishing strings

v1, v2, . . . , vn wherev1, v2, . . . , vn ∈ V . First column of table shows the elements
'

of the set T with transition function E where Ei(α) = {vj|vj∈V , 0 ≤j ≤i , αvj
∈L(A) } and L(A) is the language of target DFA.

10

When the f i rst positive example arrives, the IID algorithm constructs the sets
' '

P, T and corresponding table as in the ID algorithm. In the f i rst iteration, the

function E0when v0 = λ, E0(d0) = φ and E0(α) = λ when α ∈ L(A), otherwise
E0(α) = φ. After that IID searches for a pair such that Ei(α) = Ei(β) but Ei(

'

f (α, σ)) /= Ei (f (β, σ)) whereas α, β ∈ P and σ ∈ Σ. This expression shows

that if IID algorithm f i nds a pair from set P ′ which shows the same behavior

i.e. either both Ei(α) and Ei(β) lie in the accepting block or both lie in rejecting

block and when we concatenate α and β with some alphabet σ from the input

set Σ then their behavior may change i.e. one lie in accepting block and other lie

in rejecting block. This can give a potential distinguishing string. Then IID

non-deterministically chooses some string γ ∈ Ei(f (α, σ)) ⊕ Ei (f (β, σ)) and

the new distinguishing string is def ined as σγ. IID performs next iteration i +
1 to further split the blocks, by reading distinguishing string σγ ∈Σ from

all elements of Ei(α). For this it asks membership queries as αvi+1 ∈L(A), if
adequate teacher answers as Yes then Ei(α) becomes Ei−1(α) ∪{vi}, and if it

replies as No then Ei(α) is set to Ei−1(α). If IID finds no such pair that is

Ei(α) = Ei(β) but Ei(f (α, σ)) /= Ei (f (β, σ)) then it construct the hypothesis

DFA, Hm. If Hm becomes behaviorally equal to the target DFA, A then IID

terminates otherwise, it waits for another positive example and above process

repeats until hypothesis DFA, H becomes equivalent to the target DFA, A.

Example

An example run of the IID algorithm is given below:

Target DFA: A= Consecutive even number of a's and all b's. (b∗(aa)∗b∗)

Input alphabet: Σ = {a, b}

Initial null automata H0 is given below in Figure 2.3.1.

P0 = { } and P0 ′ = { d0 } and T0 ′ becomes as T0 ′ = {d0, λ, a, b}

11

Figure 2.3.1: Null Hypothesis

Suppose the rst labeled example is (a, —), as it is negative example and is

consistent with H0 so H0 does not change.
Suppose next labeled example is (b, +) as it is a first positive example so

' ′
set P1= {λ, b}, P1= {d0, λ, b} and T1= {d0, λ, a, b, ba, bb}

Fork = 0

i 0

vi λ

E(do) φ
E(λ) {λ}

E(a) φ
E(b) {λ}

E(ba) φ
E(bb) {λ}

Table 2.3.1: For Distinguishing String λ

Table 2.3.1 shows that distinguishing string set V ={λ}. The IID algorithm
'

asks membership queries for all strings belong to T as avi+1 ∈L(A). The
adequate teacher answers as Yes for E(λ), E(b), E(bb) as these strings lead

to the accepting states so Ei(α) becomes {λ} and for all others, those are not

leading to accepting states, adequate teacher replies as No so they set to φ.

Table 2.3.1 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α,

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. The hypothesis DFA,
H1 for this iteration is given below in Figure 2.3.2.

Figure 2.3.2: Hypothesis H1

12

1

As automaton H1represented in Figure 2.3.2 is not equal to the target DFA,

A therefore the IID algorithm learns the target DFA with more labeled example.

Suppose next input labeled example is (aa, +)

Now P2 = {λ, a, b, aa}

P2' = {d0, λ, a, b, aa}

T ′= {d0, λ, a, b, aa, bb, ab, ba, aaa, aab}

k = 1

i 0 1

vi λ a

E(d0) φ φ

E(λ) {λ} {λ}

E(a) φ {a}

E(b) {λ} {λ}

E(aa) {λ} {λ}

E(ab) φ φ
E(ba) φ {a}

E(bb) {λ} {λ}

E(aaa) φ {a}

E(aab) {λ} {λ}

Table 2.3.2: For Distinguishing String a

In Table 2.3.2, the column λ shows that as E (d0) = φ = E(a) but E(d0.a)
/=E(a. a) so the IID algorithm partitions the accepting and nonaccepting blocks

by using distinguishing string σγ = a shown in column a of Table 2.3.2.
Table 2.3.2 shows that distinguishing string set V = {λ, a}. The IID asks

'

membership queries for all strings belong to T as avi+1 ∈ L(A). The adequate

teacher answers as Yes for E(a), E(ba) and E(aaa) as these strings lead to

the accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others, those

are not leading to accepting states, adequate teacher replies as No so they set

to Ei−1(α).

Table 2.3.2 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f
(α, σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis

DFA, H2 is given below in Figure 2.3.3.

Figure 2.3.3: Hypothesis H2

As above hypothesis DFA, H2 is behaviorally equivalent to the target DFA,
A i.e. L(H2) = L(A) therefore the IID algorithm terminates.

13

2.4 IDS Algorithm

The IDS algorithm is also an incremental extension of ID algorithm [11]. Like IID

algorithm, it also does not require the availability of live complete set at the

start of inference procedure. IDS incrementally build the live state set and

its corresponding automata regarding to provide input labeled examples. A

labeled example consists of two parts such as (α, label(α)) whereas α∈Σ∗ and

label(α) shows that whether an equivalence query α is accepted or rejected by

the adequate teacher. A label(α) is valued as accepted if α∈L(A) and label(α) is

valued as rejected if α ∈/ L(A). If α∈ L(A) then it is called positive example and

if α ∈/ L(A) then it is called negative example. Initial hypothesis DFA, H0 consists

of only one state (initial state) and all its input alphabet transitions

β∈Σ . When a first labeled example (either positive or negative) arrives, then

H0 is updated and after that for each additional labeled example (α, label(α)),
it is determined that whether it is consistent with our previous hypothesis DFA
or we have to update it according to new labeled example.

Like IID algorithm [13], the IDS algorithm has also a set P that is initially as
'

P = {λ} and P
'

= P ∪{d0}, where d0 is a dead state. T is a set having all states

' '

as well as their concatenation with input alphabet β such that T = P ∪{f (α,
'

β) | (α, β) ∈P
'

× Σ} where α ∈ P
'

and β ∈ Σ (for prefix closed). The IDS

algorithm partitions the set T into the blocks of accepting and nonaccepting
states and for this, it uses the concept of distinguishing strings V like the ID
and IID algorithms. The purpose of distinguishing strings is to identify a string,

having same behavior for some particular string, α ∈ Σ∗ but have different

behavior for a suf f i x σ ∈ Σ.
Like ID and IID algorithms, to f i nd the blocks of accepting and nonaccepting

 states, the IDS algorithm also constructs a table. The first row of table
shows

'

the number of iterations, through which set T is partitioned into accepting and
nonaccepting blocks. The second row of table shows the set of distinguishing

strings v1, v2, . . . , vn where v1, v2, . . . , vn ∈ V . First column of table shows the
'

elements of the set T with transition function E where Ei(α) = {vj|vj ∈ V , 0 ≤j

≤i , αvj ∈L(A)? } and L(A) is the language of target DFA, A.
' '

When IDS receives a first labeled example, it constructs the set P , P , T
and corresponding table like in ID algorithm. In first iteration E0when v0 =

λ, E(d0) = φ and E0(α) = λ whenα ∈ L(A). Otherwise E0(α) = φ. After

that IDS searches for a pair such that Ei(α) = Ei(β) but Ei (f (α, σ)) /=
'

Ei (f (β, σ)) whereas α, β ∈P
'

and σ ∈ Σ. This expression shows that if IDS

14

0

0

 finds a pair from set P which shows the same behavior i.e. either both Ei(α)

and Ei(β) lie in accepting block or both lie in rejecting block and when we

concatenate Ei(α) and Ei(β) with some alphabet σ from the input set Σ then their

behavior changes i.e. one lie in accepting block and other lie in rejecting block.

Then the IDS algorithm chooses some string γ ∈Ei (f (α, σ)) ⊕ Ei (f (β, σ))

and a new distinguishing string is defined as σγ. IDS perform next iteration i + 1
to further split the blocks, by reading distinguishing string σγ
∈Σ from all elements of Ei(α). For this, it asks membership queries as αvi +1

∈L(A)? if the adequate teacher answers as Yes then Ei(α) becomes Ei−1(α)

∪{vi}, if the adequate teacher answers as No then Ei(α) is set to Ei−1(α). If

the IDS f i nds no such pair that is Ei(α) = Ei(β) but Ei(f (α, σ)) /= Ei
(f (β, σ)) then it constructs the hypothesis DFA Hm. If Hm is equivalent to the

target DFA, A then the IDS algorithm stops its execution otherwise it waits

for another labeled example. Above process repeats until hypothesis DFA, H
becomes equivalent to the target DFA, A.

This algorithm has two versions. One is prefix closed like L*, ID, IID and

other one is prefix free. The main difference between these two is; in prefix

free version, set P contains the strings gained from the labeled examples

without their prefixes whereas, in prefix closed version, set P contains the

strings gained from labeled examples as well as their prefixes.

Example

Prefix Closed

An example run of prefix closed version of IDS algorithm is given below:

Input alphabet: Σ = {a, b}

Target DFA: A= Consecutive even number of a's and all b's. (b∗(aa)∗b∗)

Initially P0= {λ}, P ′ = {d0, λ}

T ′ = {do, λ, a, b}

Initial null automata H0 is given below in Figure 2.4.1.

Figure 2.4.1: Null Automaton H0

Suppose the first labeled example is (a, —), as this example shows that tran-

sition a from initial state λ leads to the dead state so it is not consistent with

H0. Here P1= {λ, a}, P ′ = {d0, λ, a} and T ′ = {do, λ, a, b, aa, ab} so Table

1 1
2.4.1 is given below:

i 0

Vi λ

E(d0) φ

15

2

E(λ) {λ}

E(a) φ
E(b) {λ}

E(aa) φ
E(ab) φ

Table 2.4.1: For Labeled Example (a, -)

Table 2.4.1 shows that distinguishing string set V ={λ} and IDS asks mem-
'

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher

answers Yes, for E(λ) and E(b) as these strings lead to the accepting states so

E0(α) becomes {λ} and for all others, those are not leading to accepting states,

adequate teacher replies No so they are set to φ.

Table 2.4.1 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α,

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis DFA,
H1 is given below in Figure 2.4.2.

Figure 2.4.2: Hypothesis H1

Suppose next labeled example is (ab,—) so P2 = {λ, a, ab} and P ′ = {d0,

λ, a, ab} and T ′ becomes as T ′ = {do, λ, a, b, aa, ab, aba, abb}
2 2

The corresponding table for this iteration is given below:

i 0

vi Λ

E(do) Φ
E(λ) {λ}

E(a) Φ
E(b) {λ}

E(aa) Φ
E(ab) Φ
E(aba) Φ
E(abb) Φ

Table 2.4.2: For Labeled Example (ab, -)

Table 2.4.2 shows that distinguishing string set V ={λ} and IDS asks mem-
'

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher

answers Yes for E(λ) and E(b) as these strings lead to the accepting states so

E0(α) becomes {λ} and for all others, those are not leading to accepting states,

adequate teacher replies No so they are set to φ.

16

3

Table 2.4.2 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α,

σ)) /= Ei (f (β, σ)) so blocks will not be further refined. Hypothesis DFA, H2
is given below in Figure 2.4.3

Figure 2.4.3: Hypothesis H2

Suppose next labeled example is (b,+) so P3 = { λ, a, b, ab} and P ′ = { d0,

λ, a, b, ab } and T ′ becomes as T ′ = {do, λ, a, b, aa, ab, ba, bb, aba, abb}

3 3
The corresponding table for the current iteration is given below:

i 0

vi λ

E(do) φ

E(λ) {λ}

E(a) φ
E(b) {λ}

E(aa) φ
E(ab) φ
E(ba) φ
E(bb) {λ}

E(aba) φ
E(abb) φ

Table 2.4.3: For Labeled Example (b, +)

17

4

Table 2.4.3 shows that distinguishing string set V ={λ} and IDS asks mem-
'

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher
answers Yes for E(λ), E(b) and E(bb) as these strings lead to the accepting states

so E0(α) becomes {λ} and for all others, those are not leading to accepting states,

adequate teacher replies No so they are set to φ.

Table 2.4.3 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α,

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis DFA,
H3 is given below in Figure 2.4.4.

Figure 2.4.4: Hypothesis H3

Suppose next labeled example is (aa, +)

Now P4= {λ, a, b, aa, ab}

P4' = {do, λ, a, b, aa, ab}

T ′= {d0, λ, a,b, aa, bb, ab, ba, aaa, aab, aba, abb}

therefore Table 2.4.4 is given below:

i 0 1

vi λ a

E(do) φ φ
E(λ) {λ} {λ}

E(a) φ {a}

E(b) {λ} {λ}

E(aa) {λ} {λ}

E(ab) φ φ
E(ba) φ {a}

E(bb) {λ} {λ}

E(aaa) φ {a}

E(aab) {λ} {λ}

E(aba) φ φ
E(abb) φ φ

Table 2.4.4: For Labeled Example (aa, +)

18

In Table 2.4.4, the column λ shows that as E (d0) = φ = E(a) but E(d0.a)
/=E(a.a) hence the IDS algorithm partitions the accepting and nonaccepting

blocks by using distinguishing string σγ= a shown in column a of Table 2.4.4.
Table 2.4.4 shows that distinguishing string set V = {λ, a}. The IDS asks

'

membership queries for all strings belong to T as avi+1 ∈ L(A). The adequate
teacher answers Yes for E(a), E(ba) and E(aaa) as these strings lead to the

accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others, those are

not leading to accepting states, adequate teacher replies No so they are set to

Ei−1(α).

Table 2.4.4 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f
(α, σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis

DFA, H4 is given below in Figure 2.4.5.

Figure 2.4.5: Hypothesis H4

As the above hypothesis DFA, H4 is behaviorally equivalent to the target

DFA, A i.e. L(H4) = L(A) therefore the IDS algorithm terminates.

19

0

0

1 1

Prefix Free

An example run of prefix free version of IDS algorithm is given below:

Target DFA: A= Consecutive even number of a's and all b's. (b∗(aa)∗b∗)

Input alphabet: Σ = {a, b}

Initially P0= {λ}, P ′ = {d0, λ}

T ′ = {d0, λ, a, b}

Initial null automata H0 is given below in Figure 2.4.6.

Figure 2.4.6: Null Hypothesis H0

Suppose the first labeled example is (ab, —) therefore

P1= {λ, ab}, P ′ = {d0, λ, ab} and T ′ = {do, λ, a, b, ab, aba, abb} so

corresponding Table 2.4.5 is given below:

i 0

vi λ

E(d0) φ

E(λ) {λ}

E(a) φ
E(b) {λ}

E(ab) φ
E(aba) φ
E(abb) φ

Table 2.4.5: For Labeled Example (ab, -)

Table 2.4.5 shows that distinguishing string set V ={λ} and IDS asks mem-
'

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher

answers Yes for E(λ) and E(b) as these strings lead to the accepting states so

E0(α) becomes {λ} and for all others, those are not leading to accepting states,

adequate teacher replies No so they are set to φ.

Table 2.4.5 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α,

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis DFA,
H1 is given below in Figure 2.4.7.

1
10

Figure 2.4.7: Hypothesis H1

Suppose next labeled example is (b, +) so

P2 = {λ, b, ab} and P2 ′ = {d0, λ, b, ab} and T2 ′ becomes as T2 ′ = {do, λ, a,
 b, ab, ba, bb, aba, abb}

The corresponding table for the current iteration is given below:

i 0

vi λ

E(do) φ

E(λ) {λ}

E(a) φ
E(b) {λ}

E(ab) φ
E(ba) φ
E(bb) {λ}

E(aba) φ
E(abb) φ

Table 2.4.6: For Labeled Example (b, +)

Table 2.4.6 shows that distinguishing string set V ={λ} and IDS asks mem-
'

bership queries for all strings belong to T as avi+1∈L(A). The adequate teacher

answers Yes for E(λ), E(b) and E(bb) as these strings lead to the accepting states

so E0(α) becomes {λ} and for all others, those are not leading to accepting states,

adequate teacher replies No so they are set to φ.

Table 2.4.6 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f (α,

σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis DFA,
H2 is given below in Figure 2.4.8.

Figure 2.4.8: Hypothesis H2

20

3

Suppose next labeled example is (aa, +)

Now P3= {λ, b, aa, ab}

P3' = {d0, λ, b, aa, ab}

T ′= {d0, λ, a,b, aa, bb, ab, ba, aaa, aab, aba, abb}

therefore Table 2.4.7 is given below:

i 0 1

vi λ a

E(do) φ φ
E(λ) {λ} {λ}

E(a) φ {a}

E(b) {λ} {λ}

E(aa) {λ} {λ}

E(ab) φ φ
E(ba) φ {a}

E(bb) {λ} {λ}

E(aaa) φ {a}

E(aab) {λ} {λ}

E(aba) φ φ
E(abb) φ φ

Table 2.4.7: For Labeled Example (aa, +)

In Table 2.4.7, the column λ shows that as E (a) = φ = E(ab) but E(a. a)
/=E(ab. a) so the IDS algorithm partitions the accepting and nonaccepting blocks

by using distinguishing string σγ = a shown in column a of table 2.4.7.
Table 2.4.7 shows that distinguishing string set V = {λ, a}. The IDS asks

'

membership queries for all strings belong to T as avi+1∈ L(A). The adequate
teacher answers Yes for E(a), E(ba) and E(aaa) as these strings lead to the

accepting states so Ei(α) becomes Ei−1(α) ∪ {vi} and for all others, those are

not leading to accepting states, adequate teacher replies No so they are set to

Ei−1(α).

Table 2.4.7 shows that there is no pair such that Ei(α) = Ei(β) but Ei(f
(α, σ)) /= Ei (f (β, σ)) so blocks will not be further partitioned. Hypothesis

DFA, H3 is given below in Figure 2.4.9.

Figure 2.4.9: Hypothesis H3

As above hypothesis DFA, H3 is behaviorally equivalent to the target DFA,
A i.e. L(H3) = L(A) therefore the IDS algorithm terminates.

21

0

ic

i

i

i

i

2.5 IKL Algorithm

IKL is an incremental extension of the ID algorithm like the IDS algorithm but

the major difference is, the IID algorithm is one bit whereas the IKL is a multibit

extension [12]. The IKL learns deterministic Kripke structures multi-bit moore

machine having k-bit outputs. The IKL algorithm uses two basic ideas. One is

bit-slicing i.e. converting k-bits Kripke structure into k 1-bit Kripke structures

having 1-bit output which is given below in Figure 2.51. Second concept used

is of partition refinement which is similar to the consistency maintanence of

the ID algorithm but difference is, the IKL algorithm uses the concept of lazy

partition refinement.

Like IDS algorithm, the IKL algorithm has also a set P that is initially as P0
= {ε} and P ′ = P0 ∪{d0}, where d0 is a dead state. T ′is a set having all states

as well as their concatenation with input alphabet β such that Tk = Tk−1 ∪ P ′

∪{(α, β) | (α ∈ Pk — Pk−1, β ϵ Σ} for pre x closure. The IKL algorithm
partitions the set T ' into the blocks of accepting and nonaccepting states and

for this, it uses the concept of distinguishing strings V like the ID and IID
algorithms. The purpose of distinguishing strings is to identify a state, having

same behavior for some particular string, α ∈Σ∗ but have different behavior

for a suffix σ ∈ Σ. Like ID and IDS algorithms, to find the blocks of
accepting and nonaccepting states, the IDS algorithm also constructs a table.

The rst row of table shows the number of iterations, through which set T ′ is

partitioned into accepting and nonaccepting blocks. The second row of table
shows the set of distinguishing strings v1, v2, . . . , vn wherev1, v2, . . . , vn ∈ V .

First column of table shows the elements of the set T ′ with transition function

E where Ec (α) = {vj | vj ∈ V , 0 ≤ j ≤i , αvj ∈ L(A)? }

and L(A) is the language of target DFA, A.

In the IKL algorithm, the target automaton A is initially converted into k

1-bit automata i.e. B1, B2... Bn by bit slicing. After that all 1-bit automata

are incrementally learned and then the IKL algorithm finds the product of all

1-bit automata B1, B2... Bn to convert all 1-bit Kripke structures into k-bit

target automata A.
' '

The IKL constructs the set P , P , T and corresponding tables for all 1 bit

automata B1, B2... Bn like in ID algorithm. In first iteration of all tables E0

when vo = ε, E(d0) = φ and E0(α) = ε when α ∈ L(A). Otherwise E0(α) = φ.

After that IKL searches for a pair such that Eic
c (α) = Eic

c (β) but Eic
c (f (α, σ))

/= Eic
c (f (β, σ)) whereas α, β ∈P ' and σ ∈ Σ . This expression shows that if IKL

 finds a pair from set P ′ which shows the same behavior i.e. either both Eic
c (α)

and Eic
c (β) accepted both lie in rejected block and when we concatenate Eic

c (α)

and Eic
c (β) with some alphabet σ from the input set Σ then their behavior

changes i.e. one accepted block and other is rejected. Then the IKL algorithm

chooses some string γ ∈Ec (f (α, σ)) ⊕ Ec (f (β, σ)) and a new distinguishing

string is defined as σγ . The IKL algorithm performs next iteration i + 1 to

further partition the blocks, by reading distinguishing string σγ ∈Σ from all

elements of Ec (α). For this, it asks membership queries as αvi +1 ∈L(A)?

22

If the adequate teacher answers as Yes then Ec (α) becomes Ec(α) ∪{vi },
ic i

c−1
c

if the adequate teacher answers as No then Ec (α) is set to Ec (α). The
ic ic−1

IKL repeats the above process until all tables corresponding to B1,B2... Bn
become consistent. After that it constructs the product automata Hm. If Hm
is behaviorally equivalent to the target automata A and input string set S is

empty then the IKL algorithm stops its execution.

c

Example

An example run of the IKL algorithm is given below:

Kripke structure = 3 bits

Σ = {a, b}

File S contain = a, ba
Target automata A = Odd number of a's

Figure 2.5.1: Target Automata

In the first step, the IKL algorithm finds the bit slicing of the target automata

A in form of B1, B2, B3 which are given below in Figure 2.5.2.

Figure 2.5.2: B1,B2, B3

c = 1 → 3

i1= 0

23

0

0

0

0

i2= 0

i3= 0

V1= ε
V2= ε
V3= ε
k = 0, t = 0

P0 = {ε}

P ′= P0∪ {d0} = {ε, d0}

T0= P0∪ Σ = {ε, a, b}
E1(d0) = φ
E2 (d0) = φ
E3(d0) = φ
Now suppose the IKL algorithm reads the input string a then:

k = 1, t = 1

P1= P0∪Pref (α) = {ε, a}
T1= T0∪Pref (α) ∪ {α.b} = {ε, a, b} ∪{ε} ∪ {a, aa, ab} = {ε, a, b, aa, ab}

'

T1 = {d0 , ε, a, b, aa, ab }

 Table 2.5.1: For B1 Table 2.5.2: For B2 Table 2.5.3: For B3

Table 2.5.1 shows that E1 (ε) = E1(a) but E1(ε. a) /= E1(a. a) so a is

0 0 0 0

a distinguishing string for Table 2.5.1. Table 2.5.2 shows that E1 (ε) = E1(d0)
0 0

but E1 (ε. a) /= E1 (d0. a) so a is a distinguishing string for Table 2.5.2.
0 0

'

Whereas in Table 2.5.3, the corresponding values for all strings belonging to T
are φ so it shows that it is consistent and having only one state that is φ denoted

as q0 for the Table 2.5.3.

Now IKL maintain the consistency of Table 2.5.1 and Table 2.5.2 by updating

these table with distinguishing string a.

Updated Table 2.5.1 denoted as Table 2.5.1(a) and updated Table 2.5.2

denoted as Table 2.5.2(a) are given below:

i1 0

v1 ε

E1(d0) φ

E1(ε) φ
E1(a) φ
E1(b) {ε}

E1(aa) {ε}

E1(ab) φ

i2 0

v2 ε

E2(d0) φ

E2(ε) φ
E2(a) {ε}

E2(b) φ
E2(aa) φ
E2(ab) {ε}

i3 0

v3 ε

E3(d0) φ
E3(ε) φ
E3(a) φ
E3(b) φ

E3(aa) φ
E3(ab) φ

24

Table 2.5.1(a): For B1 Table 2.5.2(a): For B2

Table 2.5.1(a) shows that E1(ε) = E1(d0) but E1(ε. b) /= E1(d0. b) so
0 0 0 0

 b is a distinguishing string for Table 2.5.1(a). Table 2.5.2(a) is now consistent

as it f i nds no such pair that is Ei(α) = Ei(β) but Ei(f (α, σ)) /= Ei (f (β, σ)).

Updated Table 2.5.1(a) denoted as Table 2.5.1(a') is given below:

i1 0 1 2

v1 ε A b

E1(d0) φ Φ φ
E1(ε) φ Φ {b}

E1(a) φ {a} {a}

E1(b) {ε} {ε} {ε, b}

E1(aa) {ε} {ε} {ε, b}

E1(ab) Φ {a} {a}

Table 2.5.1(a'): For B1

Table 2.5.1(a') is now consistent as it finds no such pair that is Ei(α) =

Ei(β) but Ei(f (α, σ)) /= Ei (f (β, σ)). So, it constructs the hypothesis DFA

Hm by taking product of B1, B2, B3. For this, the IKL algorithm constructs the
' ' '

1 bit automata B1, B2, B3 for each corresponding table which are given below
in Figure 2.5.3.

Figure 2.5.3: B1, B2, B3

i1 0 1

v1 ε a

E1(d0) φ φ
E1(ε) φ φ
E1(a) φ {a}

E1(b) {ε} {ε}

E1(aa) {ε} {ε}

E1(ab) φ {a}

i2 0 1

v2 ε a

E2(d0) φ φ
E2(ε) φ {a}

E2(a) {ε} {ε}

E2(b) φ {a}

E2(aa) φ {a}

E2(ab) {ε} {ε}

25

' ' '

' ' '

Product of all bit slice automata'sB1, B2, B3 is given below in Figure 2.5.4.

Figure 2.5.4: Product Automata Hm

We can see that product automaton Hm is behaviorally equivalent to the

target automata A.

Now suppose the IKL algorithm reads the input string ba as it is consistent

with Hm so Hm+1 = Hm ≡A. As the le S is now empty so the IKL algorithm

stops its execution.

26

2.6 RPNI Algorithm

The RPNI algorithm is a passive learning algorithm proposed by Jose Oncina
and Pedro Garcia in 1992 [3]. It uses a tree structure instead of table and does
not maintain consistency. It takes the input as set of positive examples and set

of negative examples S+ and S− respectively. It first writes the elements of

S+ and its prefixes in lexicographical order then from set of positive examples

and their prefixes, it constructs the prefix tree PT(S+). After that it

recursively partitions the branches of the tree into blocks. The partition is
represented as π and the target automata is represented as A. At f i rst step

each element of PT(S+) belongs to its self-containing block. The RPNI

algorithm recursively applies joint operation on these blocks so that they can
be merged into two final blocks. One is accepting state block and second is
non-accepting state block.

Let π be a partition over PT(S+) and blocks Bi, Bj ϵ π then joint operation

over any two blocks Bi, Bj is J (π, Bi, Bj) = { B ϵ π | B /= Bi, B /= Bj } ∪{

Bi ∪ Bj }. Initial automaton A0 Tproduced by PT(S+) = π0= { u0, u1,. . . , ur}

and πn = J (πn−1,B, un) i S− L(A0 / J (πn−1, B, un)) = φ otherwise πn
= πn−1. Detailed explanation of the RPNI algorithm is given below with the
help of example.

Example

An example run of the RPNI algorithm is given below:

Target Automaton A: Odd number of a's

S+ = { a, ab, bab, abaa }

S− = { b, baba, baa }

27

 The lexicographical order of pre xes of S+ is:

 ⟨ λ,a, b, ab, ba, bab, aba, abaa⟩
Initial automaton A0 = PT(S+) is given in Figure 2.6.1.

Figure 2.6.1: Initial Automata A0 / π0

To obtain π1 where u1= ”a” , the RPNI algorithm perform operation J (
π0, λ , a) which is given in Figure 2.6.2.

Figure 2.6.2: A0 / J (π0, λ, a)

In Figure 2.6.2, we can see that S− T

L(A0 / J (π0, λ, a)) /= φ as above

automaton accepts the string baa which belongs to the set S−. As there are no

more states to try to merge with u1 = ”a” therefore π1 = π0
To obtain π2 where u2= “b” , the RPNI algorithm performs operation J (

π1, λ, b) which is given in Figure 2.6.3.

Figure 2.6.3: A0 /J (π1, λ, b)

28

In Figure 2.6.3, we can see that S− T

L(A0 / J (π1, λ, b)) =φ as above

automata accepts all strings belonging to the set S+ and rejects all negative

data belonging to the set S−. So π2 = J (π1, λ, b).

To obtain π3 where u3 = “ab” , the RPNI algorithm performs operation J (
π2, a, ab) which is given in Figure 2.6.4.

Figure 2.6.4: A0 /J (π2, a, ab)

In Figure 2.6.4, we can see that S− T

L(A0 / J (π2, a, ab)) =φ as above

automaton accepts all strings belonging to the set S+ and rejects all negative

data belonging to the set S−. Therefore π3 = J (π2, a, ab).

To obtain π4 where u4= “ba” , the RPNI algorithm performs operation J (
π3, a, ba) which is given in Figure 2.6.5.

Figure 2.6.5: A0 / J (π3, a, ba)

In Figure 2.6.5, we can see that S−T

L(A0 / J (π3, a, ba)) =φ as above

automaton accepts all strings belonging to the set S+ and rejects all negative

data belonging to the set S−. Therefore π4 = J (π3, a, ba).

To obtain π5 where u5 = “bab”, the RPNI algorithm performs operation J
(π4, a, bab) which is given in Figure 2.6.6.

29

Figure 2.6.6: A0 / J (π4, a, bab)

In Figure 2.6.6, we can see that S−T

L(A0 / J (π4, a, bab)) =φ as above

automaton accepts all strings belonging to the set S+ and rejects all negative

data belonging to the set S−. Therefore π5 = J (π4, a, bab).

To obtain π6 where u6= “aba” , the RPNI algorithm performs operation J
(π5, λ, aba) which is given in Figure 2.6.7.

Figure 2.6.7 : A0 /J (π5, λ, aba)

In Figure 2.6.7, we can see that S−T

L(A0 / J (π5, λ, aba)) = φ as above

automaton accepts all strings belonging to the set S+ and rejects all negative

data belonging to the set S−. Therefore π6 = J (π5, λ, aba).

To obtain π7 where u7 = “abaa” , the RPNI algorithm performs operation J
(π6, a, abaa) which is given in Figure 2.6.8.

Figure 2.6.8 : A0 / J (π6, a, abaa)

In Figure 2.6.8, we can see that S−T

L(A0 / J (π6, λ, abaa)) =φ as above

automaton accepts all strings belonging to the set S+ and rejects all negative

data belonging to the set S−. Therefore π7 = J (π6, a, abaa).

As there are total eight elements in lexicographical order in the pre xes

of S+ set so after seven recursive partitions π7 the RPNI algorithm stops its

execution and we can see that this partition is behaviorally equivalent to the

target automaton A.

2
10

2.7 RPNII Algorithm

The RPNII algorithm is an incremental extension of the RPNI algorithm [3].

The RPNI algorithm takes the positive and negative examples as a whole and

can’t accommodate new labeled example unless it may start its whole execution

from the scratch. The RPNII algorithm reduces this discrepancy as it has the

ability to accommodate a new labeled example easily [4].

The RPNII algorithm initially takes the set of positive and negative

examples, S+, S− respectively. It also takes the prefix tree acceptor PTA(S+),

deterministic quotient automaton (DQA) and a new labeled example x.

If the new labeled example consistent with deterministic quotient automaton

(DQA) then initial deterministic quotient automaton will be the final solution.

Otherwise, the RPNII algorithm accommodates new labeled example by recursive

splitting process in form of depth first search (in reverse lexicographical order).

This process continuous until the quotient automaton becomes deterministic.

After that when the quotient automaton becomes deterministic as well as

consistant with S+ and S− then the RPNII algorithm applies the RPNI algorithm

on it. Which we have brie y explained in the previous section.

Example

An example run of the RPNII algorithm is described below:

Let S+= { λ, ab, bab, babb }

S−= { a, baa }

The lexico-graphical order = ⟨ λ, a, b, ab, ba, bab, babb ⟩
PTA(S+):

Figure 2.7.1: PTA(S+)

DQA:

Figure 2.7.2: Initial Deterministic Quotient Automaton

2
11

let x = (b, —)

As initial DQA shows that b is accepting string while new labeled example

x shows that string b belongs to S− therefore the RPNII algorithm

modifies the initial DQA to make it consistent with the sets S+ and S−. For

this purpose, the RPNII algorithm starts from the string babb and splits the

initial deterministic quotient automaton which is given below in Figure 2.7.3.

Figure 2.7.3: Splitting for the string babb

Figure 2.7.3 shows that due to splitting of initial DQA for the string babb,

the initial automaton became non-deterministic as the initial state has two

transitions for input symbol b. Therefore, to make it deterministic, the RPNII

algorithm again splits this automaton on the basis of the string bab which is

given below in Figure 2.7.4.

Figure 2.7.4: Splitting for the string bab

30

Figure 2.7.4 shows that splitting at the string bab also creates non-determination

at the initial state, as this state has two transitions for input symbol b. There-

fore, the RPNII algorithm again splits this automaton on the basis of the string

ba. New quotient automaton is described below in Figure 2.7.5.

Figure 2.7.5: Splitting for the string ba

Figure 2.7.5 shows that splitting at the string ba also create non-determination

at the initial state, as this state has two transitions for input symbol b . There-

fore the RPNII algorithm again splits this automaton on the basis of the string

b. New quotient automaton is described below in Figure 2.7.6.

Figure 2.7.6: Splitting for the string b

31

As we can see that Figure 2.7.6 shows the quotient automaton A0 which

is now deterministic and consistent with the sets, S+ and S−. Therefore, the

RPNII algorithm stops its recursive splitting process.

Here the RPNII algorithm applies the RPNI algorithm on deterministic quo-

tient automaton which is given below.

The lexicographical order of automaton A0 is ⟨ λ, a, b, ba, bab, babb ⟩
u1 = a
J (π0, λ, a)

Figure 2.7.7: A0/ J (π0, λ, a)

Figure 2.7.7 shows that L(A0/J (π0, λ, a)) ∩ S−/=φ as strings a and b are

accepting here, according to Figure 2.7.7 but these belong to S−. Therefore π1
= π0

Now u2 = b
J (π1, λ, b)

Figure 2.7.8: A0/ J (π1, λ, b)

32

Figure 2.7.8 shows that L(A0/J (π1, λ, b)) ∩ S−/=φ as string b is accepting

in Figure 2.7.8 but this is belonging to S−. Therefore π2 = π1
Now u3 = ba
J (π2, b, ba)

Figure 2.7.9: A0 / J (π2, b, ba)

Figure 2.7.9 shows that L(A0/J (π2, b, ba)) ∩ S−=φ therefore we can say

that it rejects all negative strings. So π3 = J (π2, b, ba)

Now u4 = bab
J (π2, ba, bab)
This operation is not suitable as if we will merge the strings ba and bab then in

the next step, string b will be accepted but as it belongs to S− so it should not

be accepted.

Now u4 = babb
J (π2, bab, babb)

Figure 2.7.10: A0 / J (π2, bab, babb)

Figure 2.7.10 shows that this automaton H = A0/J(π2, bab, babb) is
behaviorally equivalent to the target automaton A as well as it is also consistent

with the S+ and S− sets. Therefore, RPNII algorithm stops its execution and

returns the automaton H as an output.

33

2.8 Analysis

2.8.1 Time Complexities of Learning Algorithms

Algorithm Learning Type Complexity Learned Automata

L* Complete O (|Σ|.N 2M) Moore

ID Complete O (|Σ|.|P |. N) Moore

IID Incremental O (|Σ|.|Pl|. N) Moore

IDS Incremental O (|Σ|.|Pk|. N) Moore

IKL Incremental O (|Σ|.|P |. Nl) Moore

RPNI Complete O ((|Ip| + |In|) . |Ip|2) Moore

RPNII Incremental O ((|Ip| + |In|) . |Ip|2) Moore

Table 2.8.1: Complexities of Learning Algorithms

Above Table 2.8.1 shows that size of the input alphabet |Σ|, number of nodes

N in the target DFA A and the number of queries; M for L*, |P | for the ID and

IKL algorithms, |Pl| for IID algorithm, |Pk| for IDS algorithm, |Ip| (pos- itive

sample) and |In| (negative sample) for the RPNI and RPNII algorithms,

contribute in the complexities of learning algorithms. If we analyze, we can see

that number of queries have major contribution in the complexities of above

mentioned algorithms as the size of input alphabet |Σ| and number of nodes N
in the target DFA are nearly static factors.

2.8.2 Query-Wise Analysis of Learning Algorithms

Algorithm
Membership Book-keeping Lexicographical

Queries Queries Order
L* Yes No No

ID Yes No No

IID Yes Yes No

IDS Yes Yes No

IKL Yes Yes No

RPNI No No Yes

RPNII No No Yes

Table 2.8.2: Query wise Analysis of Learning Algorithms

34

References

[1] D. Angluin. A note on the number of queries needed to identify regular

languages. Information and Control, 51(1):76 87, October 1981.

[2] D. Angluin. Learning regular sets from queries and counterexamples. In-

formation and Computation, 75(1):87 106, November 1987.

[3] Jos Ncina Departarnento and Pedro Garcia. Identifying regular languages

in polynomial. In Advances in Structural and Syntactic Pattern Recogni-

tion, volume 5 of Series in Machine Perception and Arti cial Intelligence,

pages 99 108. World Scienti c, 1992.

[4] P. Dupont. Incremental regular inference. In Proceedings of the Third ICGI-

96, number 1147 in LNAI, 1996.

[5] E. M. Gold. Language identi cation in the limit. Information and Control,

10:447 474, 1967.

[6] J. E Hopcroft. An n log n algorithm for minimizing states in a nite automaton.

In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations,

pages 189 196. Academic Press, 1971.

[7] K. Meinke. Automated black-box testing of functional correctness using

function approximation. In ISSTA '04: Proceedings of the 2004 ACM SIG-

SOFT international symposium on Software testing and analysis, pages

143 153, New York, NY, USA, 2004. ACM.

[8] K. Meinke. CGE: A sequential learning algorithm for Mealy automata. In

Proc. Tenth Int. Colloq. on Grammatical Inference (ICGI 2010), number

6339 in LNAI, pages 148 162. Springer, 2010.

[9] K. Meinke and F. Niu. A learning-based approach to unit testing of nu-

merical software. In Proc. Twenty Second IFIP Int. Conf. on Testing Soft-

ware and Systems (ICTSS 2010), number 6435 in LNCS, pages 221 235.

Springer, 2010.

[10] K. Meinke, F. Niu, and Muddassar A. Sindhu. Learning-based software

testing: a tutorial. In Proc. Fourth Int. ISoLA workshop on Machine

Learning for Software Construction, number 336 in CCIS, pages 200 219.

Springer, 2012.

35

[11] K. Meinke and Muddassar. A. Sindhu. Correctness and performance of

an incremental learning algorithm for Kripke structures. Technical report,

School of Computer Science and Communication, Royal Institute of Tech-

nology, Stockholm, 2010.

[12] K. Meinke and Muddassar. A. Sindhu. Incremental learning-based testing

for reactive systems. In Martin Gogolla and Burkhart Wol , editors, Tests

and Proofs, volume 6706 of Lecture Notes in Computer Science, pages 134

151. Springer, 2011.

[13] R.G. Parekh, C. Nichitiu, and V.G. Honavar. A polynomial time incremen-

tal algorithm for regular grammar inference. In Proc. Fourth Int. Colloq.

on Grammatical Inference (ICGI 98), LNAI. Springer, 1998.

[14] Ian Sommerville. Software Engineering. Addison-Wesley, Harlow, England,

9th edition, 2010.

[15] Haneef, Farah, and Muddassar A. Sindhu. "DLIQ: A deterministic finite

automaton learning algorithm through inverse queries." Information Technology

and Control 51.4 (2022): 611-624.

[16] Haneef, Farah, and Muddassar Azam Sindhu. "A Reinforcement Learning Based

Grammatical Inference Algorithm Using Block-Based Delta Inverse

Strategy." IEEE Access 11 (2023): 12525-12535.

[17] Haneef, Farah, and Muddassar A. Sindhu. "IDLIQ: An Incremental Deterministic

Finite Automaton Learning Algorithm Through Inverse Queries for Regular

Grammar Inference." Big Data (2023).

