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Abstract. To overcome the limitations and challenges of current au-
tomatic table data annotation methods and random table data synthe-
sis approaches, we propose a novel method for synthesizing annotation
data specifically designed for table recognition. This method utilizes the
structure and content of existing complex tables, facilitating the efficient
creation of tables that closely replicate the authentic styles found in the
target domain. By leveraging the actual structure and content of tables
from Chinese financial announcements, we have developed the first ex-
tensive table annotation dataset in this domain. We used this dataset
to train several recent deep learning-based end-to-end table recognition
models. Additionally, we have established the inaugural benchmark for
real-world complex tables in the Chinese financial announcement do-
main, using it to assess the performance of models trained on our syn-
thetic data, thereby effectively validating our method’s practicality and
effectiveness. Furthermore, we applied our synthesis method to augment
the FinTabNet dataset, extracted from English financial announcements,
by increasing the proportion of tables with multiple spanning cells to in-
troduce greater complexity. Our experiments show that models trained
on this augmented dataset achieve comprehensive improvements in per-
formance, especially in the recognition of tables with multiple spanning
cells.

Keywords: Table Data Synthesis · Data Augmentation · Table Recog-
nition

1 Introduction

Tables, serving as a vital carrier of data, are prevalent across a wide range of
digital documents. They efficiently store and display data in a compact and lu-
cid format, encapsulating an immense volume of valuable information. However,
recognizing the structures of tables within digital documents, such as PDF and
images, and subsequently extracting structured data, present significant chal-
lenges due to the complexity and diversity of their structure and style [1]. In re-
cent years, with the advancement of deep learning, new methodologies have sur-
faced, leading to significant progress in table recognition [21,19,18,24,16]. Deep

ar
X

iv
:2

40
4.

11
10

0v
1 

 [
cs

.C
V

] 
 1

7 
A

pr
 2

02
4



2 Q. Hou et al.

learning-based methods are adept at managing complex table structures and di-
verse styles more effectively. However, their reliance on large-scale, high-quality
annotated table datasets for model training is pronounced [16,1]. The scarcity
of comprehensive and intricately detailed, publicly accessible datasets emerges
as a substantial barrier, impeding the further advancement of table structure
recognition.

To create large-scale datasets for table recognition, some researchers have
initially started by utilizing specific repositories of scientific papers or financial
reports. Each document in these repositories contains tables that correspond to
some form of structured source codes (such as LaTeX, XML, HTML). They facil-
itate large-scale annotation of table recognition data by automatically mapping
the displayed tables to their corresponding structured source codes. The exist-
ing large-scale, real-world table annotation datasets [20,27,26,12,2,3] are few but
have all been constructed using similar methodologies. However, the applica-
bility of these methods for creating table annotation data is notably limited,
as only a select number of fields have access to document repositories where
structured source codes correspond to rendered tables. Given the substantial
variations in table structures and styles across different domains and languages,
the table styles featured in these datasets tend to exhibit similarities. This sim-
ilarity poses challenges when attempting to apply these datasets to a broader
range of domains [16,1]. These automatically annotated datasets frequently con-
tain a significant number of annotation errors. For instance, in our sampling of
over 10,000 tables from the FinTabNet dataset, we found that approximately
9% had obvious annotation errors. Furthermore, the annotation information re-
quired varies among different table recognition methods, and some of these table
datasets do not completely fulfill the annotation requirements of several preva-
lent table recognition models [20].

To adapt more efficiently to a wider range of application domains, some re-
searchers are exploring methods for synthesizing annotated data for table recog-
nition. These methods largely depend on predefined structural templates and
randomly selected text to generate table structures and fill in content. More-
over, they employ a web browser engine to render the synthesized tables and
add annotations, following predefined style templates. However, tables rendered
with HTML and CSS offer limited visual fidelity and often fall short of replicating
the complex or unique appearances of tables in documents like PDFs. Conse-
quently, they lack the richness and complexity required to accurately simulate
the intricate table structures encountered in real-world scenarios.

After careful analysis of real-world tables, we discovered that generating ap-
propriate templates for tables with complex structures, such as those found in
the financial sector, is not easily achieved through random methods. The struc-
tures produced randomly often differ significantly from real complex tables, and
the text randomly inserted into these tables usually deviates greatly from the
context and semantics of actual tables. We have also observed that in specific
application domains, such as finance, the primary challenge in table recognition
stems from the fact that many tables, despite having similar structures and con-
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tent, display significantly varied presentation styles. To address this issue, we
propose a method that utilizes the structure and content of existing complex
tables to generate high-quality, realistic synthetic datasets tailored to the target
application domain. Firstly, in many scenarios, we can relatively easily access
the structure and content of numerous existing tables. Taking the financial do-
main as an example, tables in U.S. financial disclosures are available in HTML
format, allowing direct access to the table structure and the text content within
the cells. Although Chinese financial announcements in PDF format do not have
corresponding HTML files, they contain a large number of bordered tables. Using
PDF parsing tools to extract and analyze the lines within these bordered tables,
it is relatively easy to deduce the table structure and the text content in each
cell. Secondly, reflecting the actual distribution of tables in the target applica-
tion domain, tables can be categorized and summarized. This involves extracting
and documenting the various attributes associated with the presentation styles
of each table within every category. These attributes are then stored in a profile
and incorporated into the candidate style set for that category. For a source table
whose structure and content have been obtained, its corresponding table cate-
gory can first be identified based on its content. From this category’s candidate
set, a profile is selected, and a small degree of randomness is introduced to the
attributes of the selected profile to set the profile for the target table. This results
in the transformation into a new table that is completely different in style from
the original, yet still possesses a very realistic appearance. For example, Fig. 1
shows the transformation of an original bordered table into two borderless tables
and one bordered table with different style, all of which have the same structure
and content. Additionally, our method, based on image rendering techniques for
synthesizing tables, is not constrained by the limitations of browser rendering.
It can draw or paste real table appearance components from various documents,
enabling the creation of more realistic complex table styles.

This paper makes the following contributions:

• A novel method for synthesizing annotation data specifically designed for
table recognition has been proposed, which utilizes the structure and content
of existing complex tables. This approach enables the straightforward synthesis
of tables that closely resemble the actual table styles prevalent in the target
domain, accompanied by comprehensive and complete annotation data.

• Utilizing the actual structure and content of tables from Chinese financial
announcements, we synthesized the first large-scale table annotation dataset in
the domain of Chinese financial announcements. On this basis, we trained several
recent deep learning-based end-to-end table recognition models. Furthermore, we
created the first benchmark for real-world complex tables in the Chinese financial
announcement domain, which was used to evaluate the performance of models
trained on synthetic data, thereby validating the practicality and effectiveness
of the method proposed in this paper.

•Additionally, the method proposed in this paper was used to augment the
table dataset extracted from English financial announcements, known as FinTab-
Net, by synthesizing and increasing the proportion of more complex tables with
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Source Table Extracted structure 
and content

Target Tables 

Fig. 1. The transformation of an original bordered table into two borderless tables and
one bordered table with different style

multiple spanning cells. Experiments demonstrate that table recognition models
trained on this enhanced dataset exhibit comprehensive improvements in per-
formance, particularly in recognizing more complex tables that contain multiple
spanning cells.

2 Related Work

2.1 Large-Scale Table Recognition Datasets

The current large-scale table recognition datasets are automatically annotated
by utilizing a few document repositories, where the tables displayed in the doc-
uments can be associated with corresponding structured source codes.

TABLE2LATEX-450K [2], TableBank [12], and TabLeX [3] are datasets de-
rived from articles in the Arxiv repository, where tables in PDF documents cor-
respond to LaTeX source codes. Additionally, TableBank [12] has crawled some
Word documents from the internet, linking tables in these documents to Office
XML codes. PubTabNet [27] and PubTables-1M [20] were sourced from scientific
papers in the PubMed Central Open Access (PMCOA) database, with tables in
the PDF files paired with corresponding XML codes. Meanwhile, FinTabNet [26]
compiled annual reports from S&P 500 companies, featuring tables in the PDF
documents that can be associated with corresponding HTML codes. The datasets
mentioned above are confined to scientific papers or financial reports, and models
trained on them may not perform well in other domains.



Synthesizing Realistic Data for Table Recognition 5

As mentioned before, these automatically annotated datasets often contain
a considerable number of annotation errors. These issues encompass a variety
of problems, including inaccuracies in localizing table regions, omissions of ta-
ble content in annotations, structural errors in annotating headers or table con-
tent, and inconsistencies in annotations for identical structures or content within
tables, among others. Except for PubTables-1M, the annotations in the other
datasets do not fully cover the annotation requirements needed by several com-
mon table recognition models [20]. Specifically, both PubTabNet and FinTabNet
lack annotations for the coordinates of cell bounding boxes [27,26]. Additionally,
TableBank and TabLeX provide only the overarching structure of the table,
without annotations for the content and coordinates of text blocks within each
cell [12,3].

2.2 Randomly Synthesized Data for Table Recognition

Another series of efforts to address the scarcity of large-scale table recognition
datasets involves constructing table annotation datasets through the synthesis
of HTML tables.

Qasim et al. [17] initially employed four types of table templates to create a
synthetic table dataset based on HTML. TableGeneration [28] further expanded
the method, maintaining support for four table templates while introducing a
broader range of configurable parameters, which include cell type, the number
of rows and columns in a table, the quantity of merged cells, and the provi-
sion for colored cells. WikiTableSet [14] constructed a Wikipedia table extractor
to harvest tables (in HTML code format) from the Wikipedia dump, and then
normalized these HTML tables to align with the PubTabNet format, which in-
volved separating table headers from data and stripping CSS and style tags.
SynthTabNet [16] took a parameter-driven approach to initially generate the
table structure, detailing the total number of rows and columns, header row
count, types of spans (including header-only, row-only, column-only, and both
row and column spans), maximum span size, and the proportion of table area
covered by spans. Appropriate content templates are then selected and combined
with purely random text to produce synthetic content. A collection of styling
templates is manually curated, and a style is randomly selected to determine
the appearance of the synthesized table. In a similar vein, the ComplexTable
dataset [1] is synthetically generated using an auto HTML table creator, which
produces table images alongside corresponding structured HTML code. Notably,
ComplexTable features a significantly higher frequency of complex tables com-
pared to SynthTabNet, and it showcases a more diverse range of table styles
within the dataset.

The aforementioned methods employ HTML for table synthesis and CSS to
define table styles, followed by the use of a Web Browser engine to render the
table images. However, this approach has its limitations. Often, it falls short in
replicating the complex or distinctive visual effects that tables in documents,
such as PDFs, typically present.
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2.3 Table Augmentation

Data augmentation is also a common method for acquiring table data. TabAug [11]
introduced a novel data augmentation technique that primarily relies on two fun-
damental operations: Replication and Deletion, applied to rows and columns.
Umer et al. [22] developed augmentation techniques that encompass cluster-
ing, fusion, and patching of table images. Ichikawa [10] introduced novel label-
invariant table augmentation techniques focused on the edge-based region, demon-
strating their substantial impact, particularly when training with limited datasets.
Liu et al. [13] enhanced existing datasets by employing two types of image dis-
tortion algorithms, aiming to simulate distractors introduced by the capture
device.

This paper is mainly concerned with the acquisition of large-scale table anno-
tation data encompassing diverse styles. The data augmentation methods men-
tioned do not significantly alter table styles, hence they differ somewhat from
the core issue addressed in this paper.

3 Our Approach for Synthesizing Annotated Tables

If we aim to transform tables from documents into structured data for storage
in databases or knowledge graphs within a specific domain, enabling further in-
depth analysis and applications, it becomes essential to parse the structure of
these tables to grasp their semantics. In many application domains, although the
content of some tables across different documents may be very similar, the styles
of these tables with similar content often exhibit significant differences. Fig. 2
shows six real examples of tables from the Financial Statements, specifically the
“Accounts Receivable - Disclosed by Provision Method” category. These tables,
belonging to the same category, have similar content but vastly different visual
styles. Inspired by this observation, we propose synthesizing new target tables by
leveraging the structure and content of existing complex tables, while applying
completely different yet realistically plausible styles to these target tables. This
approach ensures that the synthesized complex tables more closely resemble real-
world scenarios than those produced by methods relying on randomly generated
structures and content.

Fig. 3 illustrates the overall structure of the table annotation data synthesis
method proposed in this paper, which involves extensive handling of text and
lines within tables. For tables generated via PDF coding, PDF parsing tools, such
as pdfplumber, offer a direct and efficient means to extract texts and lines. In
contrast, for scanned tables, OCR can be used to detect and recognize text, and
conventional methods such as the Hough Transform [4,15] or LSD [5], as well as
deep learning-based line detection techniques [7,29,25,8,6,23], can be employed
to identify lines within the tables.

3.1 Analysis of the Real Table Distribution in the Target Domain

To synthesize table annotation data that closely match the target application
domain, a detailed investigation and analysis of the real table data’s distribution
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Fig. 2. Real examples of tables that have similar content but display vastly different
visual styles.
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within that domain are essential. In the document repository collected from the
target domain, layout analysis and table detection are utilized to detect all in-
cluded tables. OCR or PDF parsing tools are then used to detect and recognize
the text content within these tables. Following this, tables are clustered based on
their text content, grouping together those with similar content. Subsequently,
manual inspection and adjustment are performed. This approach significantly
facilitates the convenient and efficient identification of various critical table
types within the application domain. Through clustering analysis and adjust-
ment within the Chinese financial announcement document repository, we have
identified a comprehensive array of tables. These include financial statements
(such as balance sheets, income statements, cash flow statements, statements of
shareholders’ equity, and supplementary cash flow statements), notes to financial
statements (covering accounts receivable, monetary funds, fair value disclosures,
and payroll payable), as well as tables detailing directors, supervisors, senior
management members, employee statistics, company profiles (encompassing ba-
sic information, contact details, principal accounting data, and financial ratios),
shareholder information, and glossaries, among others.

We can extract style-related attributes from each table in the repository.
These attributes include font information for each text line, line spacing, and
alignment within text blocks contained in each cell. Additionally, we consider
the alignment of text blocks within cells across rows or columns, the padding
between aligned text blocks and their cell bounding boxes, the cells’ background
color, and the display mode, style, and color of the borders, both external and
internal. For detailed illustrations, refer to the Appendix 6.1 and 6.2. These
style-related attributes will be stored in the table’s style profile, with specific
examples provided in the Appendix 6.3.

3.2 Transformation of Table Style

For certain datasets, such as FinTabNet, which already contain table structures
and content data in HTML format, we can directly use this HTML data as source
material to synthesize new tables through style transformation. In the case of
other datasets, like those found in Chinese financial announcement document
repositories, although the tables lack directly accessible structure and content
information, many are bordered. This characteristic makes it relatively straight-
forward to deduce the tables’ structure by identifying the lines within them and
recognizing the text content in each cell. Consequently, these tables can likewise
serve as source data for synthesizing tables with new styles.

Based on the content of the current source table, it is possible to match it
to a corresponding category. This matching process can be achieved either by
training a conventional text classifier or through the application of specific rules,
depending on the context. Subsequently, one or more profiles are selected from
the Style Profile Candidate Set of the matched category. Minor random adjust-
ments are then made to certain attribute values within the selected profiles,
which are ultimately defined as the style profiles for the target tables.
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3.3 Synthesis and Rendering of Target Tables

Based on the style profile of the target table, coordinates are calculated for
regular non-merged cells using a bottom-up approach (text line → text block →
aligned text block bounding box → cell). For illustrations of table elements at
various granularities and their corresponding attributes, see Appendices 6.1 and
6.2. Based on the text line attributes defined in the style profile, calculate the
height and width of all text lines. If a cell contains multiple text lines, the total
height of the text block can be calculated based on the defined line spacing,
along with the vertical relative coordinates of the top-left corner of each text
line within the text block. Then, by considering the horizontal alignment of the
text lines, calculate the total width of the text block and the horizontal relative
coordinates of the top-left corner of each text line within the entire text block.
Scan each row of the table to identify the tallest text block among all regular
non-merged cells and cells merged only in the horizontal direction in the current
row. Use this height as the height for the aligned text block bounding box of that
row. Calculate the vertical relative coordinates of the text block’s top-left corner
within the aligned text block bounding box, based on the text block’s vertical
alignment settings. Then, based on the cell’s padding-top and padding-bottom
attributes, calculate both the cell’s height and the vertical relative coordinates of
the aligned text block bounding box within the cell. Similarly, scan each column
of the table to identify the widest text block among all regular non-merged cells
and cells merged only in the vertical direction in the current column. Use this
width as the width for the aligned text block bounding box of that column.
Calculate the horizontal relative coordinates of the top-left corner of the text
block within the aligned text block bounding box, according to the text block’s
horizontal alignment settings. Then, using the cell’s padding-left and padding-
right attributes, determine the cell’s width and the horizontal relative positioning
of the aligned text block bounding box within the cell.

However, for merged cells or spanning cells, the calculation process is re-
versed, proceeding from top to bottom (cell → aligned text block bounding box
→ text block → text line) to compute coordinates. Once the heights of all regular
non-merged cells are determined, the height of vertically merged cells can also
be obtained. Subsequently, based on the padding-top and padding-bottom at-
tributes, the height of the aligned text block bounding box within this vertically
merged cell can be determined. This allows for the calculation of the vertical
relative coordinates of the aligned text block bounding box contained in the cell,
with the vertical relative coordinates of the text block’s top-left corner being
calculated based on the text block’s vertical alignment settings. Similarly, once
the widths of all regular non-merged cells are established, the width of horizon-
tally merged cells can be obtained. Based on the padding-left and padding-right
attributes, the width of the aligned text block bounding box within this hor-
izontally merged cell is determined, enabling the calculation of the horizontal
relative coordinates of the aligned text block bounding box contained in the cell.
The horizontal relative coordinates of the text block’s top-left corner within the
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aligned text block bounding box are calculated according to the text block’s
horizontal alignment settings.

Based on the cell sizes calculated in previous steps, the overall size of the
table formed by stacking all cells can be determined. By connecting the border
lines of cells in the same row and column, the absolute coordinates of the row
and column dividers, i.e., the collection of horizontal and vertical lines of the
table, are obtained. Calculating the absolute coordinates of the stacked cells,
and then based on the relative coordinates of the aligned text block bounding
box within the corresponding cell, the relative coordinates of the text block
within the aligned text block bounding box, and the relative coordinates of the
text lines within the corresponding text block, the absolute coordinates of the
text lines within the table can ultimately be calculated.

Based on the table size calculated previously, create a blank canvas of the
same dimensions. Then, using each cell’s coordinates and background color, draw
the table’s background color. Next, render the corresponding text lines on the
image canvas based on the coordinates, color, and font of each text line. Finally,
draw the border lines using drawing tools based on the coordinates, mode, line
type, and color of the borders. At the same time, output the annotation data in
formats required by various table recognition models.

4 Experiments

To verify the practicality and effectiveness of the method proposed in this paper,
we conducted experiments with tables from the financial announcement domain.
This choice was made because financial announcements contain a large number
of complex tables with varying styles. Recognizing these tables not only presents
a significant technical challenge but also holds substantial real-world significance
for various financial analysis applications.

Financial announcements in the United States have corresponding HTML
format documents for their PDF files, and there already exists a large-scale
English table annotation dataset like FinTabNet generated through automatic
matching. However, Chinese financial announcements in PDF format do not
have corresponding structured documents like HTML, and currently, there is
no large-scale table annotation dataset available for them. In response to this
situation, we have utilized the method proposed in this paper, leveraging the
actual structure and content of tables within Chinese financial announcements,
to generate the first large-scale table annotation dataset in the domain.

We collected a total of 5049 annual reports from Chinese listed companies
in 2022, from which nearly 1.5 million tables were detected and extracted. The
majority of these tables are bordered, with a minority being borderless. For com-
parison purposes, we sampled approximately the same magnitude of tables from
these nearly 1.5 million tables as the English financial announcement dataset
FinTabNet, totaling 105,600 bordered tables, to serve as the data source for
table synthesis. To better recognize more complex tables with a greater num-
ber of merged cells, we increased the proportion of challenging complex tables
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with multiple merged or spanning cells during the sampling process, as shown
in Table 1.

Table 1. The data distribution of the 105,600 bordered tables sampled as the data
source.

Spanning cell statistics Number Percentage

no spanning cell 52208 49.44%
1 spanning cell 4272 4.04%
2 spanning cells 13973 13.23%
3 spanning cells 15582 14.76%
4 spanning cells or more 19565 18.53%

After conducting clustering analysis and manual inspection of the content
of these 105,600 bordered tables, they were categorized into 14 categories. Our
examination revealed that these source tables already encompass a very broad
range of styles found in bordered tables within financial announcements. There-
fore, when using these 105,600 bordered tables as the source for synthesizing new
tables, 50% of the tables were directly retained as part of the final synthesized ta-
ble collection as bordered tables, without converting them into different styles of
bordered tables. Annotating borderless tables is more challenging than annotat-
ing bordered tables. In the synthesized dataset, there is a greater need to enhance
support for recognizing borderless tables. Therefore, we transformed the other
50% of the sampled 105,600 bordered tables into borderless tables. The bordered
tables serving as source tables can be relatively easily processed by identifying
their border lines to extract the table’s structure and content. Based on this con-
tent, the corresponding category is identified, and then a borderless style profile
is selected from the Style Profile Candidate Set of that category. Subsequently,
random adjustments of up to 10% are made to certain style attribute values to
generate the Style Profile for the synthesized target table. Finally, the target
table image is synthesized and rendered, and annotation data is generated.

With the synthesized table annotation dataset available, we can train models
for recognizing tables in financial announcements based on it. Here, we repro-
duced two recent deep learning-based end-to-end models, TableMaster [24] and
TableFormer [16], both of which are based on an encoder-decoder architecture,
particularly utilizing transformer-based decoders, hence both exhibit strong ta-
ble recognition performance. Compared to the implementations described in the
original papers of TableMaster and TableFormer, we increased the maximum
dimension of the input images to 640 pixels to accommodate the recognition
of more complex tables. TableMaster and TableFormer have very similar un-
derlying architectures. In TableFormer, the Transformer has fewer layers and
heads, and it also employs adaptive pooling to reduce the size of the feature
map output by the CNN Backbone. Consequently, TableMaster has a higher
number of parameters and, correspondingly, a higher computational complex-
ity. Our experiments also show that TableMaster’s overall performance is better
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than that of TableFormer. Given that the experimental results and conclusions
of both models are consistent, and in the interest of conserving space and pre-
senting the information more concisely, we only report the experimental results
of TableMaster in the subsequent sections.

We employ the Tree-Edit-Distance-based Similarity (TEDS) [27], a metric
commonly used in table structure recognition literature, to evaluate the perfor-
mance of table structure recognition. TEDS assesses the similarity between the
tree structures of tables. To utilize the TEDS metric, tables must be represented
as tree structures in HTML format. Considering that accounting for errors in
the text content of tables could result in unfair comparisons due to the varied
text extraction methods or OCR models employed by different table recogni-
tion methods, we utilize a modified version of TEDS, named TEDS-Struct. This
version focuses on the accuracy of table structure recognition, explicitly disre-
garding the outcomes from text extraction or OCR processes. We also investigate
the performance of text block detection (AP50, MS COCO AP at IoU=.50) [9],
which is crucial for the precise matching of each cell to its corresponding text
content.

We sampled 2,290 real tables from Chinese financial announcements, ensuring
no overlap with the 105,600 tables previously sampled as sources for synthesizing
table structures and content. Among these, 1,000 are bordered tables, and 1,290
are borderless tables, aiming to increase focus on borderless tables. Additionally,
the selection of tables also prioritized more challenging tables that include mul-
tiple merged or spanning cells; for specifics, please refer to Table 2. Using table
recognition models trained on synthesized data, we conducted recognition and
automatic annotation on these 2,290 tables, followed by manual verification to
create the first benchmark for complex tables in the Chinese financial announce-
ment domain. This benchmark can be used to evaluate the table recognition
performance of models trained on synthesized data, thereby demonstrating the
quality of the synthesized data.

Table 2. The data distribution of real-world table benchmark in the Chinese financial
announcement domain.

Spanning cell statistics
All Bordered Borderless

Number Percentage Number Percentage Number Percentage

No spanning cell 1045 45.63% 442 44.20% 603 46.74%
1 spanning cell 82 3.58% 59 5.90% 23 1.78%
2 spanning cells 268 11.70% 145 14.50% 123 9.53%
3 spanning cells 373 16.29% 100 10.00% 273 21.16%
4 spanning cells or more 522 22.79% 254 25.40% 268 20.78%

The FinTabNet table dataset, extracted from English financial announce-
ments, was annotated through automatic matching between PDF and HTML,
resulting in a considerable number of errors. The FinTabNet training set in-
cludes a large number of tables, and due to time constraints, corrections were
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not conducted. However, for the FinTabNet test set, which contains 10,635 ta-
bles, we manually reviewed and used automated scripts to correct 3,733 tables
with inconsistent annotations of leader dots. Additionally, we removed 954 ta-
bles that had errors in table positioning, structural annotations, or in text box
annotations or shifts. The presence of these errors, resulting from automatic an-
notation, does not imply that the tables are structurally more complex; thus,
removing these tables did not decrease the overall difficulty of the FinTabNet
table recognition evaluation task. After our review, the corrected FinTabNet test
set now comprises 9,681 tables.

Table 3 presents the evaluation results of TableMaster, trained on the synthe-
sized dataset, on our Chinese financial announcement table benchmark dataset.
In comparison to the results listed in Table 4—where TableMaster were trained
on the FinTabNet training set and evaluated on the corrected FinTabNet test
set—the performance is relatively lower. This discrepancy is attributed to the
tables extracted from Chinese financial announcements generally being more
complex than those from the FinTabNet dataset, which extracts tables from
English financial announcements. For instance, tables from Chinese announce-
ments often contain more cells with multi-line text blocks, cells with very long
texts, or a higher density of cells. These tables frequently feature structurally
complex spanning cells, significant horizontal alignment deviations of text blocks
within the same column, among other factors, all of which significantly increase
the difficulty of table recognition in Chinese financial announcements. Further-
more, there is still room for improvement in predicting the positions of text
block bounding boxes, which could further enhance the accuracy in matching
the recognized table structure with the text content [9].

Table 3. The evaluation results for TableMaster, after being trained on the synthesized
dataset, on the Chinese financial announcement table benchmark dataset.

Spanning Cell Statistics TEDS TEDS-Struct AP-50

all tables 0.9091 0.9579 0.482

no spanning cell 0.9216 0.9632 0.501
1 spanning cell 0.9131 0.9503 0.568
2 spanning cells 0.9375 0.9696 0.592
3 spanning cells 0.8785 0.9449 0.505
4 spanning cells or more 0.8908 0.9515 0.458

merged on rows & columns 0.8906 0.9500 0.497

To further validate the practicality of our method, we applied the data syn-
thesis method proposed in this paper to augment the training data for FinTab-
Net. The original FinTabNet training dataset contains relatively few tables with
multiple spanning cells. In augmenting the dataset while keeping the total num-
ber of tables roughly the same, a portion of the augmented dataset was obtained
directly by sampling from the original FinTabNet training dataset, and another
portion was synthesized using the method described in this paper. The aug-
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Table 4. The evaluation results for TableMaster, after being trained on the FinTabNet
training set, on the corrected FinTabNet test set.

Spanning cell statistics TEDS TEDS-Struct AP-50

all tables 0.9758 0.9856 0.619

no spanning cell 0.9727 0.9829 0.631
1 spanning cell 0.9830 0.9922 0.654
2 spanning cells 0.9818 0.9896 0.630
3 spanning cells 0.9657 0.9783 0.557
4 spanning cells or more 0.9342 0.9552 0.511

merged on rows & columns 0.9503 0.9620 0.574

mented dataset increases the proportion of tables containing multiple spanning
cells, with specific distribution information of the tables available in Table 5. Ta-
ble 6 presents the experimental results on the corrected FinTabNet test dataset
of models trained using the augmented FinTabNet training data. Compared
with Table 4, it shows that data augmentation using the method proposed in
this paper can comprehensively improve the performance of FinTabNet table
recognition, especially in recognizing more complex tables with multiple span-
ning cells. This demonstrates the effectiveness of our table synthesis method for
practical application scenarios.

Table 5. The data distribution of Augmented FinTabNet training dataset.

Table Type FinTabNet
Augmented dataset

Sampled Synthesized Sum

no spanning cell 44k+ 10000 10000 20000
1 spanning cell 22k+ 7500 7500 15000
2 spanning cells 14k+ 14439 561 15000
3 spanning cells 4k+ 4824 10176 15000
4 spanning cells or more 5k+ 5026 14711 19737

merged on rows & columns 2k+ 263 7954 8217

5 Conclusion and Future Work

Unlike previous methods that rely on automatic matching between PDFs and
structured source codes or on random synthesis of table structures and content,
this paper introduces a novel approach for synthesizing high-quality tables and
annotated data. This method leverages the structure and content of existing real
tables to replicate authentic table styles of the target domain. We applied this
approach within the financial sector, producing the first extensive table annota-
tion dataset for the Chinese financial announcement domain and enhancing the
English financial table dataset, FinTabNet. Our experiments demonstrate the
real-world applicability and effectiveness of this table synthesis method.
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Table 6. The evaluation results for TableMaster, after being trained on the Augmented
FinTabNet training set, on the corrected FinTabNet test set.

Spanning cell statistics TEDS TEDS-Struct AP-50

all tables 0.9847 0.9971 0.789

no spanning cell 0.9805 0.9971 0.746
1 spanning cell 0.9895 0.9982 0.813
2 spanning cells 0.9912 0.9979 0.827
3 spanning cells 0.9794 0.9906 0.809
4 spanning cells or more 0.9740 0.9906 0.747

merged on rows & columns 0.9684 0.9794 0.841

The experiments utilized end-to-end table recognition methods such as Table-
Master, chosen for their relatively simple data preparation process and proven
excellence in performance across previous studies. However, these methods en-
counter considerable challenges when recognizing the structurally complex tables
common in Chinese financial announcements. Future work will explore additional
methods, particularly those based on segmentation and merging [21], which are
anticipated to yield improved results for tables with intricate spanning cell struc-
tures. Employing a diverse range of table recognition methods will enable a more
thorough assessment of the synthesized data’s quality.

Furthermore, we aim to broaden the diversity of table styles by incorporating
tables from audit reports, to publicly release our extensive synthesized dataset
for the Chinese financial announcement domain, and to enlarge and publicly
unveil the benchmark for real complex tables within the same domain.
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6 Appendix

6.1 Table Elements at various granularities

Cells In Fig 4, each area filled with a different color represents a cell. Only
tables with complete border lines have definite cell coordinates.

Text Lines In Fig. 5, the areas filled with color represent text lines. Text lines
within the same cell share the same color, and a single cell often contains multiple
text lines.

Text Blocks In Fig. 6, each area filled with a different color represents a text
block, and the bounding box of a text block covers all text lines within the same
cell.

https://github.com/WenmuZhou/TableGeneration
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Fig. 4. Illustration of table cells.

Fig. 5. Illustration of text lines.
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Fig. 6. Illustration of text blocks.

Aligned Text Block Bounding Boxes In Fig. 7, each area filled with a
different color is an aligned text block bounding box. Identify the highest upper
bound and the lowest lower bound from all text blocks among all regular non-
merged cells and cells merged only in the horizontal direction in the current
row to calculate the height, and use this height as the height of the aligned
text block bounding box for that row. Identify the leftmost boundary and the
rightmost boundary from all text blocks among all regular non-merged cells and
cells merged only in the vertical direction in the current column to calculate the
width, and use this width as the width of the aligned text block bounding box for
that column. The width of the aligned text block bounding box for a horizontally
merged cell is determined by the left boundary of the aligned text block bounding
box of the leftmost column involved in the merge and the right boundary of the
aligned text block bounding box of the rightmost column involved in the merge.
The height of the aligned text block bounding box for a vertically merged cell
is determined by the upper boundary of the aligned text block bounding box of
the topmost row involved in the merge and the lower boundary of the aligned
text block bounding box of the bottommost row involved in the merge.

6.2 Attributes of Table Elements

Attributes of Text Lines and Text Blocks The attributes of text lines
include the font, size, and color of the text, all of which can be set at various
granularities such as table, row, column, or cell. The attributes of text blocks
include the line spacing between the contained text lines and the alignment
of text lines within the text block (centered/left-aligned/right-aligned/specified
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Fig. 7. Illustration of Aligned Text Block Bounding Boxes.

indent distance), all of which can be set at various granularities such as table,
row, column, or cell. Fig. 8 shows an illustration of the attributes of a text block
and the text lines contained within it, extracted from Fig. 6.

Text Block

Line spacing

Line spacing

Alignment

Text Lines
Font and 
size

Fig. 8. Illustration of Attributes of text lines and text blocks.

Attributes of Cells and corresponding Aligned Text Block Bounding
Boxes The attributes of an aligned text block bounding box mainly involve
the alignment of the contained text block, including horizontal alignment (left-
aligned, right-aligned, centered, indented by a specified distance to the left or
right) and vertical alignment (top-aligned, bottom-aligned, centered, indented
by a specified distance from the top or bottom). All of these can be set at
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various granularities such as table, row, column, or cell. The attributes of a cell
include the padding, defined as the distance between the cell bounding box and
the aligned text block bounding box, as well as the cell’s background color. All
of these can be set at various granularities such as table, row, column, or cell.
Fig. 9 displays a cell and its corresponding aligned text block bounding box, as
extracted from Fig. 7.

padding-top

padding-bottom

padding-left

Horizontal alignment

Vertical 
alignment

padding-right

Fig. 9. Illustration of Attributes of Cells and corresponding Aligned Text Block Bound-
ing Boxes.

Attributes of borders In tables, borders are categorized into outer and inner
borders. The attributes of outer borders apply to the table as a whole, while
inner border attributes can be adjusted at various levels of granularity, such as
by table, row, column, or cell. Outer border modes can be fully visible, absent
on the sides, absent on the top and bottom, or completely absent. Inner border
options encompass fully visible, absent horizontal lines, absent vertical lines,
completely absent, partially absent horizontal lines, and partially absent vertical
lines. Outer border line types include options like single solid lines and double
solid lines, along with specifications for their thickness. Inner border line types
feature solid lines, dashed lines, and details regarding line thickness and the
spacing in dashed lines. Furthermore, colors can be specified for both outer and
inner borders.

6.3 Table Style Profile

Fig. 10 shows an example of the format of a Table Style Profile.
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<config> format

text_block:
text_line_attributes: 

font_type: ……
font_size: ……
text_color: ……

text_line_relationship: 
line_spacing: …… 
alignment: 

horizontal: ……
cell:

aligned_text_block_attributes: 
alignment: 

horizontal: ……
vertical: ……

cell_attributes :
padding:

left: ……
top: ……
right: ……
bottom: ……

background_color: ……
border:

mode:
left: ……
top: ……
right: ……
bottom: ……

type:
left: ……
top: ……
right: ……
bottom: ……

color:
left: ……
top: ……
right: ……
bottom: ……

Style profile format

table: # Setting at the granularity of the table
- config: <config>

row: # Setting at the granularity of the row
- pattern: <match_condition>

config: <config>
- ...

column: # Setting at the granularity of the column
- pattern: <match_condition>

config: <config>
- ...

cell: # Setting at the granularity of the cell
- pattern: <match_condition>

config: <config>
- ...

<match_condition> format

- index: index_regex
- html_tag: html_tag_regex
- text: text_regex

Fig. 10. Illustration of an example of the format of a Table Style Profile.
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