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Lianyu Hu, Wei Feng†, Member, IEEE, Liqing Gao, Zekang Liu, Liang Wan†, Member, IEEE

Abstract—In sign language, the conveyance of human body
trajectories predominantly relies upon the coordinated move-
ments of hands and facial expressions across successive frames.
Despite the recent impressive advancements of sign language
understanding methods, they often solely focus on individual
frames, inevitably overlooking the inter-frame correlations that
are essential for effectively modeling human body trajectories. To
address this limitation, this paper introduces a spatial-temporal
correlation network, denoted as CorrNet+, which explicitly iden-
tifies and captures body trajectories across multiple frames. In
specific, CorrNet+ employs two parallel modules to build human
body trajectories: a correlation module and an identification
module. The former captures the cross-spacetime correlations
in local spatial-temporal neighborhoods, while the latter dy-
namically constructs human body trajectories by distinguishing
informative spatial regions. Afterwards, a temporal attention
module is followed to adaptively evaluate the contributions of
different frames in the whole video. The resultant features offer
a holistic perspective on human body movements, facilitating
a deeper understanding of sign language. As a unified model,
CorrNet+ achieves new state-of-the-art performance on two ex-
tensive sign language understanding tasks, including continuous
sign language recognition (CSLR) and sign language transla-
tion (SLT). Especially, CorrNet+ surpasses previous methods
equipped with resource-intensive pose-estimation networks or
pre-extracted heatmaps for hand and facial feature extraction.
Compared with CorrNet, CorrNet+ achieves a significant perfor-
mance boost across all benchmarks while halving the computa-
tional overhead, achieving a better computation-accuracy trade-
off. A comprehensive comparison with previous spatial-temporal
reasoning methods verifies the superiority of CorrNet+. Code is
available at https://github.com/hulianyuyy/CorrNet Plus.

Index Terms—Continuous sign language recognition, Sign lan-
guage translation, Spatial-temporal correlation, Model efficiency.

I. INTRODUCTION

Sign language is one of the most widely-used commu-
nication tools for the deaf community in their daily life,
which mainly conveys its meaning by facial expressions,
head movements, hand gestures and body postures [1], [2].
However, mastering this language remains an overwhelming
challenge for the hearing people, thus hindering direct in-
teractions between two distinct groups. To alleviate this bar-
rier, recent strides in automatic sign language understanding
techniques [3], [4] have emerged, broadly categorized into
three distinct domains: (1) isolated sign language recognition
(ISLR), which aims to classify a video segment into an
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independent gloss1; (2) continuous sign language recognition
(CSLR), which progresses by classifying the input sign videos
into a series of glosses to express sentences, instead of recog-
nizing a single gloss only; (3) sign language translation (SLT),
which directly translating the input sign videos into spoken
texts that can be naturally understood by the hearing people.
The difference of these tasks is illustrated in Fig. 1(a). To
hopefully bridge the communication gaps between two groups,
this paper focuses on CSLR and SLT, as they hold greater
promise for real-life applications in sign language systems.

Evidently, human body trajectories serve as prominent cues
for understanding actions in human-centric video comprehen-
sion, which have gained substantial attention across various
tasks [5]–[10]. In sign language, these trajectories are mainly
conveyed by both manual components (hand/arm gestures),
and non-manual components (facial expressions, head move-
ments, and body postures) [1], [2]. Especially, the coordinated
horizontal and vertical movements of human face and both
hands, coupled with adjoint actions like finger twisting and
facial expressions, play a major role in expressing sign lan-
guage. Tracking and leveraging the trajectories of these crucial
body parts is of great benefit to understanding sign language.

However, current sign language methods [12]–[21] usually
treat each frame equally, overlooking their cross-frame inter-
actions and thereby failing to leverage human body trajec-
tories. Especially, they usually adopt a shared 2D CNN to
independently extract spatial features for each frame [12],
[15], [18], [20], [21]. Consequently, frames are processed
individually without considering their interactions, thus in-
hibited to harness the potential of cross-frame trajectories
for sign comprehension. Some methods propose to use a
3D or (2+1)D CNN [13], [22] to capture the local cross-
spacetime features. However, their fixed design and limited
spatial-temporal receptive fields hinder the establishment of
spatial relationships across distant regions. Moreover, these
methods incur substantial computational costs compared to
their 2D counterparts. Alternative temporal techniques, such
as temporal shift [23] or temporal convolutions [24], could
address short-term temporal dynamics. However, it’s hard for
them to aggregate information from distant spatial regions due
to the limited spatial-temporal receptive field. Besides, they
may fail to dynamically model human body movements for
different samples with a fixed structure during inference. With
the above considerations, it’s necessary to develop an effective
and efficient method for capturing human body trajectories to
advance sign language comprehension.

1Gloss is the atomic lexical unit to annotate sign languages.
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01August_2011_Monday_heute_default-6   t 47; 01August_2011_Monday_heute_default-6   t 157; 

DANN STARK SCHNEE SCHNEIEN KOMMEN

am tag breiten sich die teilweise kräftigen schneefälle weiter aus

请
(please)

问
(ask)

行李
(baggage)

什么
(where)

拿
(take)

请 问 在 哪 里 取 行 李 箱 ？

ISLR

(Could you please tell me where to take my baggage?)

CSLR

SLT

(a) (b)

𝑥𝑥𝑡𝑡
Generated 

heatmap for 𝑥𝑥𝑡𝑡−1
Generated 

heatmap for 𝑥𝑥𝑡𝑡−2

Segment ①

······

Segment ②

······

Generated 
heatmap for 𝑥𝑥𝑡𝑡+1

Generated 
heatmap for 𝑥𝑥𝑡𝑡+2

Fig. 1. (a) Illustration for the difference among the isolated sign language recognition (ISLR) task, continuous sign language recognition (CSLR) task and sign
language translation (SLT) task. (b) Visualization of correlation maps with Grad-CAM [11] between the current frame and two adjacent frames in the left/right
side. It’s observed that without extra supervision, our method well attends to informative regions in adjacent frames to identify human body trajectories.

To address these challenges, we introduce CorrNet+, a
novel framework explicitly designed to model human body
trajectories across adjacent frames. As depicted in Figure
1(b), our approach dynamically attends to the movements
of informative regions across wide spatial distances. Unlike
certain prior methods [16], [22], [25], [26] that rely on expen-
sive supervision such as pose estimation techniques or body
heatmaps, our method alleviates the need for such resource-
intensive guidance and can be trained in a self-motivated
manner. Notably, our approach achieves superior performance
compared to previous methods while significantly reducing the
required computational demands.

CorrNet+ employs two parallel modules to build human
body trajectories: a correlation module and an identification
module. The former computes correlation maps within a local
spatial-temporal region to identify human body trajectories.
The latter dynamically emphasizes the informative regions
that convey critical information. Besides these two com-
ponents, considering human body trajectories are unevenly
distributed in the video, a temporal attention module is then
introduced to highlight the critical human body movements.
The generated features provide a comprehensive perspective
on human body movements, thereby enhancing the compre-
hension of sign language. Remarkably, CorrNet+ achieves
new state-of-the-art performance on three large-scale CSLR
benchmarks (PHOENIX2014 [27], PHOENIX2014-T [28]
and CSL-Daily [29]), and two widely-used SLT benchmarks
(PHOENIX2014-T [28] and CSL-Daily [29]). Especially, Cor-
rNet+ largely outperforms previous methods equipped with
resource-intensive pose-estimation networks or pre-extracted
heatmaps for hand and facial feature extraction [16], [22], [25],
[26]. Compared with CorrNet [30], CorrNet+ brings notable
performance gain across all benchmarks and drastically re-
duces the consumed computations by half, achieving a better
computation-accuracy trade-off. A comprehensive comparison
with other spatial-temporal reasoning methods demonstrates
the superiority of CorrNet+. Visualizations hopefully verify the
efficacy of CorrNet+ on emphasizing human body trajectories
across adjacent frames. Abundant ablations demonstrate the
effects of each component within CorrNet+.

This paper is a substantial extension from a preliminary
conference version [30] with a number of major changes. First,
we reformulate the design of the correlation module in Section
3.2 to make it more lightweight and powerful, which is a key
component for effectively modeling human body trajectories.
Second, a new temporal attention module is introduced to
dynamically emphasize the critical body trajectories in Section
3.4. Finally, we incorporate new results on the SLT bench-
marks, and significantly extend the experimental results on
the CSLR benchmarks in Section 4. We additionally append
new visualizations to clearly show the effects of our proposed
method. The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 elaborates the
proposed method. Section 4 reports the experimental results,
followed by a brief conclusion in Section 5.

II. RELATED WORK

A. Continuous Sign Language Recognition

Continuous sign language recognition tries to translate im-
age frames into corresponding glosses in a weakly-supervised
way: only sentence-level label is provided. Earlier meth-
ods [31], [32] in CSLR always employ hand-crafted features
or HMM-based systems [27], [33]–[35] to perform temporal
modeling and translate sentences step by step. Hand-crafted
features [31], [32] are carefully selected to provide better
visual information. HMM-based systems [27], [33]–[35] first
employ a feature extractor to capture visual features and then
adopt an HMM to perform long-term temporal modeling.

The recent success of convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) brings huge
progress for CSLR. The widely used CTC loss [36] in recent
CSLR methods [12]–[15], [37], [38] enables training deep
networks in an end-to-end manner by sequentially aligning
target sentences with input frames. These CTC-based methods
first rely on a feature extractor, i.e., 3D or 2D&1D CNN
hybrids, to extract frame-wise features, and then adopt a
LSTM for capturing long-term temporal dependencies. How-
ever, several methods [13], [37] found in such conditions
the feature extractor is not well-trained and then present an
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iterative training strategy to relieve this problem, but consume
much more computations. Some recent studies [12], [15], [17],
[39] try to directly enhance the feature extractor by adding
alignment losses [15], [17], [39] or adopt pseudo labels [12] in
a lightweight way, alleviating the heavy computational burden.
TLP [40] proposes to enhance the temporal information extrac-
tion process by designing advanced temporal pooling methods.
SEN [18] tries to locate the informative spatial regions in sign
videos in a self-supervised way. CVT-SLR [21] employs a
contrastive visual-textual transformation to tackle the insuffi-
cient training problem existed in CSLR. CTCA [20] designs
a cross-temporal context aggregation module to enhance local
temporal context and global temporal context.

Our method is designed to explicitly incorporate body
trajectories to identify a sign, especially those from hands and
face. Some previous methods have also explicitly leveraged
the hand and face features for better recognition. For exam-
ple, CNN-LSTM-HMM [26] employs a multi-stream HMM
(including hands and face) to integrate multiple visual inputs
to improve recognition accuracy. STMC [25] first utilizes a
pose-estimation network to estimate human body keypoints
and then sends cropped appearance regions (including hands
and face) for information integration. C2SLR [16] leverages
the pre-extracted pose keypoints as supervision to guide the
model to explicitly focus on hand and face regions. TwoStream
Network [22] builds two branches consisting of a visual
branch and a pose branch to fuse beneficial information
from complementary modalities. Our method doesn’t rely on
additional cues like heavy pose estimation networks [16], [22],
[25] or multiple streams [26] which consume much more
computations to leverage hand and face information. Instead,
our model could be end-to-end trained to dynamically attend
to body trajectories in a self-motivated and lightweight way.

B. Sign Language Translation

Camgoz et al. [28] pioneer the neural SLT task and publish
the neural dataset PHOENIX2014-T [28] which regards the
SLT as a sequence-to-sequence problem. They implement the
neural SLT system using the encoder-decoder paradigm [41].
This paradigm is adopted by subsequent studies which focus
on addressing the challenges of data scarcity and domain
gap. Then, SLRT [42] first introduces a Transformer-based
encoder-decoder framework to perform end-to-end SLT, with
a Connectionist Temporal Classification (CTC) loss [36] to
soft-match sign representations and gloss sequences. STMC-
T [25] improves sign language translation by introducing
multiple cues aimed by a pose estimation network. Sign-
Back [29] tries to handle the insufficient training data problem
by introducing back-translation techniques to generate new
pseudo samples. Motivated by the progress of neural machine
translation (NMT), several methods attempt to introduce these
advanced techniques into SLT. For example, Chen et al. [22],
[43] made the first attempt to introduce large language mod-
els into SLT with carefully designed pretraining strategies.
XmDA [44] presents two new data augmentation methods,
namely, cross-modality mix-up and cross-modality knowledge
distillation to expand the training samples. Zhu el al. [45]

testifies the effectiveness of several NMT techniques including
data augmentation, transfer learning and multilingual NMT on
SLT. Most existing methods adopt gloss representations as an
intermediate state to promote translation accuracy. Some meth-
ods [19], [46] propose to eliminate the need of label-laboring
glosses and design gloss-free SLT methods. GloFE [46]
presents an end-to-end sign language translation framework
by exploiting the shared underlying semantics of signs and the
corresponding spoken translation. GFSLT-VLP [19] improves
SLT by inheriting language-oriented prior knowledge from
pretrained models, without any gloss annotation assistance.

C. Applications of Correlation Operation

Correlation operation has been widely used in various
domains, especially optical flow estimation and video action
recognition. Rocco et al. [47] used it to estimate the geometric
transformation between two images, and Feichtenhofer et
al. [48] applied it to capture object co-occurrences across time
in tracking. For optical flow estimation, Deep matching [49]
computes the correlation maps between image patches to
find their dense correspondences. CNN-based methods like
FlowNet [50] and PWC-Net [51] design a correlation layer
to help perform multiplicative patch comparisons between
two feature maps. More recently, VideoFlow [52] proposes
to propagate motion correlations between adjacent frames
for multi-frame optical flow estimation. FlowFormer++ [53]
introduces a masked autoencoding pretraining strategy and
encodes the cross-frame correlations to help optical flow
estimation. For video action recognition, Zhao et al. [54]
firstly employ a correlation layer to compute a cost volume
to estimate the motion information. STCNet [55] considers
spatial correlations and temporal correlations, respectively,
inspired by SENet [56]. MFNet [57] explicitly estimates the
approximation of optical flow based on fixed motion filters.
Wang et al. [58] design a learnable correlation filter and
replace 3D convolutions with the proposed filter to capture
spatial-temporal information. PCD [59] presents to minimize
the distribution of correlation information in videos for domain
adaptation. Different from these methods that explicitly or
implicitly estimate optical flow, the correlation operator in
our method is used in combination with other operations to
identify and track body trajectories across frames.

III. METHOD

A. Overview

As shown in Fig. 2, our model comprises a foundational
base model, followed by different task-specific heads to sup-
port various sign language understanding tasks. Given a sign
video with T input frames x = {x0

t}Tt=1 ∈ RT×3×H0×W0

with spatial size of H0 × W0, the base model first uses a
feature extractor instantiated as a 2D CNN2 to extract spatial-
wise features v = {vt}Tt=1 ∈ RT×d with d representing the
number of channels. It further incorporates a 1D CNN and a

2Here we only consider the feature extractor based on 2D CNN, because
recent findings [3], [16] show 3D CNN can not provide as precise gloss
boundaries as 2D CNN, and lead to lower accuracy.
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Stage ST-Correlation

×𝑁𝑁

1DCNN

Feature extractor (2D CNN)

Bi-LSTM

Base Model

Classifier

CSLR task

VL-Mapper

SLT task

Translation
Network

Inputs
×x

Correlation
Module 𝑧𝑧

Temporal 
Attention
Module

+
[T,C,H,W] [T,C,H,W]y

[T,C,H,W]

E
[T,C,1,1]

M
[T,C,H,W] ×𝛼𝛼

Identification
Module

Fig. 2. An overview for our CorrNet+, which can support both the CSLR task and the SLT task with a common base model. In this base model, it first
employs a feature extractor (2D CNN) to capture frame-wise features, and then adopts a 1D CNN and a BiLSTM to perform short-term and long-term
temporal modeling, respectively. For the CSLR task, we attach a classifier instantiated as a fully connected layer to perform classification. For the SLT task,
we attach a VL-mapper instantiated as a MLP and a translation network to predict sentences. The feature extractor is consisted of multiple stages to extract
spatial-wise features for each frame independently. After each stage of the feature extractor, we insert a correlation stage to capture cross-frame interactions.
An identification module and a correlation module are first concurrently placed to identify body trajectories across adjacent frames, whose outputs are then
element-wisely multiplied and fed into the temporal attention module to dynamically emphasize the key human body trajectories in the whole video.

BiLSTM to perform short-term and long-term temporal mod-
eling, respectively. Various task-specific heads are attached
to support different sign language understanding tasks. For
the CSLR task, we attach a classifier instantiated as a fully
connected layer to recognize the input video into a series
of glosses g = {gi}Ni=1. Here, N denotes the length of the
label sequence. This process is supervised by the widely-
used CTC loss [36] LCTC to align input video frames with
target gloss sequences. For the SLT task, we attach a visual-
language (VL) mapper instantiated as a MLP and a translation
network to translate the gloss-wise features v into spoken
texts s = {si}Hi=1. Here, H denotes the length of the output
text sequence. This procedure is supervised by the standard
sequence-to-sequence cross-entropy loss [60] LCE.

Despite the recent advancements in sign language under-
standing methods, they usually treat each frame equally by
using a common 2D CNN to extract spatial-wise features
and thus fail to capture cross-frame interactions. While some
methods propose to model local spatial-temporal information
with spatial-temporal reasoning methods like 3D CNN [13],
[22] and temporal convolutions, they suffer from excessive
computations and limited spatial-temporal receptive fields.
Consequently, they struggle to effectively capture human body
movements across a broader spatial-temporal region. To ad-
dress these limitations, we design a spatial-temporal correla-
tion network (CorrNet+) as shown in Fig. 2. We seamlessly
insert a spatial-temporal correlation network (ST-correlation)
after each stage in the feature extractor to capture the local
spatial-temporal correlations for each frame. Specifically, We
simultaneously deploy two critical components including a
correlation module and an identification module to capture
the cross-frame interactions and identify informative spatial
regions. The outputs E and M from both modules are
element-wisely multiplied and then added via a residual input
connection, yielding intermediate representations y. We then
feed y into a temporal attention module to dynamically
evaluate the contributions of different frames in the whole
video to emphasize keyframes and suppress meaningless ones.
We next introduce each component in detail.

B. Correlation Module

As a rich and expressive communication protocol, sign
language is mainly conveyed by both manual components
(hand/arm gestures), and non-manual components (facial ex-
pressions, head movements, and body postures) [1], [2]. How-
ever, these informative body parts, e.g., hands and face, often
exhibit misalignment across adjacent frames. To address this
spatial discrepancy and establish connections between distant
spatial regions, we propose a novel approach by computing
correlation maps between neighboring frames to identify and
track human body trajectories. We first briefly recap the
solution of CorrNet [30] and naturally introduce our solution
to overcome its inherent limitations.

Formally, each frame could be represented as a 3D tensor
xt ∈ RC×H×W , where C represents the number of channels
and H×W denotes spatial size. In CorrNet [30], we compute
the affinities between all patches in the current frame xt and
patches in adjacent frames to model human body trajectories.
Taking a feature patch pt(i, j) with the spatial location (i, j)
in the current frame xt as an example, its affinity A(i, j, i′, j′)
with another patch pt+1(i

′, j′) in xt+1 is computed in a dot-
product way as:

A(i, j, i′, j′) =
1

C

C∑
c=1

pc
t(i, j)× pc

t+1(i
′, j′). (1)

Fig. 3(a) illustrates this process. However, the computed
correlation maps yield a tensor of size H × W × H × W ,
resulting in an overall computation complexity of O(H2W 2)
quadratic to the number of patches. Though this operation
can effectively build cross-frame interactions to handle the
spatial misalignment, it imposes a substantial computational
burden. Moreover, the high computational costs restrict the
spatial-temporal interactions to neighboring frames, hindering
our ability to consecutively capture human body trajectories
across a broader temporal context.

To handle these limitations, we reformulate the correlation
module to make it more lightweight and powerful, whose
framework is shown in fig. 4. Specifically, we compress all
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AvgPool
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+

···
···

······
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···

···

···
AttPool

Fig. 3. Illustration for the difference between the correlation operator in CorrNet [30] and CorrNet+. (a) CorrNet [30]. It computes correlation maps between
a spatial patch pt(i, j) in xt and all other patches in adjacent frame xt+1 and xt−1. The overall computation complexity is O(H2W 2), quadratic to the
number of spatial patches in each frame, which incurs heavy extra computations. (b) To reduce computations, we condense the features of xt into several
compact representations, which are then used to compute correlation maps with adjacent frames on behalf of xt. In this case, as the number of selected
patches is reduced from H × W to O(1) for xt, the computation complexity is drastically decreased from O(H2W 2) to O(HW ). It also enables us to
compute correlation maps with neighbors in a larger temporal duration to more effectively capture the whole human body movements in expressing a sign.

MaxPool

x: [T, C, H, W]

Convolution

Activation 
function

Constant

Math operator

AvgPool
key value

Multi-head attention

Multi-layer perception

+
× 𝛾𝛾1

× 𝛾𝛾2
× 𝛾𝛾3

𝑥𝑥avg:
[T, C, 1, 1]

𝑥𝑥max:
[T, C, 1, 1]

𝑥𝑥att:
[T, C , 1, 1]

𝑥𝑥𝑝𝑝: [T, C, 1, 1]

Sample 𝐿𝐿
neighboring frames 

for each frame

𝑥𝑥𝐿𝐿 : [T, C, L, H, W]

𝐴𝐴𝐿𝐿 : [T, L, H, W]

×

sigmoid

− 0.5
𝐴̂𝐴𝐿𝐿 : [T, L, H, W]

×

query

Sum along C dim

𝛽𝛽: [1, 1, 𝐿𝐿, 1, 1]

𝐸𝐸: [T, C, 1, 1]

AttPool

×

Sum along L, H, W dims

Recover the last dim

Fig. 4. An framework overview for our proposed correlation module. It
first condenses each frame into a compact representation, and then uses it
to compute correlation maps with adjacent frames within a predefined range
of L to model human body trajectories.

patches in xt into a compact tensor to compute the correla-
tion maps with significantly reduced computational overhead.
We further extend the spatial-temporal neighborhood of the
correlation operator to capture the trajectories of the signer in
a large temporal duration.

In specific, we use three different ways to compress the
features of each frame from various views. For simplicity, we
choose the average aggregation, maximum aggregation and
attention aggregation functions as our protocols.

For average aggregation, given the input feature x ∈
RT×C×H×W , we perform average pooling along the spa-
tial dimension to transform it into a representation xavg ∈
RT×C×1×1 as:

xavg = AvgPool(x). (2)

For maximum aggregation, we perform max pooling to
compress x into a representation xmax ∈ RT×C×1×1 as:

xmax = MaxPool(x). (3)

For attention aggregation, we randomly initialize a ten-
sor q ∈ R1×C×1×1 acting as a query. It is then used to
compute affinities A ∈ RT×1×H×W with patches in each
frame following the multi-head attention (MHA) [60] process,
whose features are fed into a Multi-Layer Perception (MLP)
module [60] to obtain the output xatt ∈ RT×C×1×1 as:

xatt = MLP(MHA(query = q, key = x, value = x)). (4)

In this procedure, the number of heads is set as 1 for the
MHA process, and the dimension expansion factor is 1 for the
MLP module to minimize computations.

After obtaining the condensed features xavg, xmax and
xatt, we combine them into a compact representation. Prac-
tically, we multiply these features with a learnable coefficient
γ ∈ R3 to control their importance for fusion to obtain
xp ∈ RT×C×1×1 as:

xp = xavg × γ1 + xmax × γ2 + xatt × γ3. (5)

Here, γ is initialized as a tensor filled with values of 1
3 , and

then updated via gradient-based backward propagation in the
training process. Especially, as only one compact representa-
tion is used on behalf of the current frame, the computation
complexity of calculating correlation maps between adjacent
frames can be drastically reduced to only O(HW ), in contrast
to O(H2W 2) in CorrNet [30]. In practice, the computations
are notably decreased from 3.64 GFLOPs3 to 0.01 GFLOPs,
bringing only quite a few extra computations.

Considering sign language is mainly conveyed by consec-
utive human body motion like hand and arm movements,
it’s necessary to identify and track the body trajectories
in a large temporal neighborhood to understand signs. We
strategically enlarge the temporal receptive field of the cor-
relation module to achieve this goal. Specifically, for an
input video x ∈ RT×C×H×W , we sample L neighboring
frames for each frame to formulate a neighboring frame set
xL ∈ RT×C×L×H×W . We then recover the last dimension
of xp as xp ∈ RT×C×1×1×1 and use it to compute affinities

3FLOPs denotes the number of multiply-add operations and GFLOPs
denotes measuring FLOPs by giga.
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Fig. 5. Illustration for our identification module. To avoid heavy computa-
tions in identifying informative spatial regions when modeling local spatial-
temporal information, we decompose the spatial-temporal modeling structure
along the spatial and temporal dimensions simultaneously to form a multiscale
architecture, enlarging the model capacity.

with xL to obtain the local spatial-temporal correlation maps
AL ∈ RT×L×H×W as:

AL =

C∑
i=0

xp
:i × xL

:i (6)

where : denotes taking all elements in the corresponding
dimension. L can be set as various values in different network
stages to capture information of different temporal scales.

Given the spatial-temporal correlation maps AL, we con-
strain values in AL into the range of (0,1) by passing it
through a sigmoid function. We further subtract 0.5 from the
results to emphasize informative regions with positive values
and suppress redundant areas with negative values as:

ÂL = sigmoid(AL)− 0.5. (7)

After identifying the correlations between adjacent frames,
we incorporate them back into each frame to reason about
the local human body movements. Specifically, we recover
the second dimension of the cross-frame correlations ÂL and
repeat it for C times to obtain ÂL ∈ RT×C×L×H×W . We
then use ÂL to multiply with the features of the neighboring
frame set xL to obtain the local human body trajectories E ∈
RT×C×1×1 as:

E =

L∑
l=1

∑
i′,j′

ÂL
::l(i

′, j′)× xL
::l(i

′, j′)× β::l (8)

where a learnable coefficient β ∈ R1×1×L×1×1 is attached to
measure the importance of different neighboring frames. β is
initialized as a tensor filled with values of 1

L , and updated via
gradient-based backward propagation in the training process.
This correlation calculation is repeated for each frame in a
video to track body trajectories in videos.

C. Identification Module

The correlation module computes correlation maps among
spatial-temporal neighboring patches to model cross-frame
interactions. However, not all regions play an equal role in sign
expression. Therefore, it’s critical to selectively emphasize
informative regions that carry essential body trajectories within
the current frame xt and suppress background noise and non-
critical elements. To achieve this goal, we present an identi-
fication module to dynamically emphasize these informative
spatial regions. Specifically, as informative regions like hand
and face are misaligned in adjacent frames, the identification
module leverages the closely correlated local spatial-temporal
features to tackle the misalignment and locate informative
spatial regions.

As shown in Fig. 5, the identification module first projects
input features x ∈ RT×C×H×W into xr ∈ RT×C/r×H×W

with a 1 × 1 × 1 convolution to decrease the computations,
with a channel reduction factor r as 16 by default.

As the informative regions, e.g., hands and face, are not
exactly aligned in adjacent frames, it’s necessary to consider a
large spatial-temporal neighborhood to identify these features.
Instead of directly employing a large 3D spatial-temporal
kernel, we present a multi-scale paradigm by decomposing
it into parallel branches of progressive dilation rates to reduce
required computations and increase the model capacity.

Specifically, as shown in Fig. 5, with a same small base
convolution kernel of Kt × Ks × Ks, we employ multiple
convolutions with their dilation rates increasing along spa-
tial and temporal dimensions concurrently. The spatial and
temporal dilation rates range within (1, Ns) and (1, Nt),
respectively, resulting in total Ns × Nt branches. Group-
wise convolutions are employed for each branch to reduce
parameters and computations. Features from different branches
are multiplied with learnable coefficients {σ1, . . . ,σNs×Nt

}
to control their importance, and then added to mix information
from branches of various spatial-temporal receptive fields as:

xm =

Ns∑
i=1

Nt∑
j=1

σij × convsij(xr) (9)

where the group-wise convolution convsi,j of different
branches receives features of different spatial-temporal neigh-
borhoods, with dilation rate (j, i, i).

After receiving features from a large spatial-temporal neigh-
borhood, xm passes through a convolution with kernel size of
1 to project the features into xb ∈ RT×C×H×W to recover
the channels from C/r to C. We then pass xb through a sig-
moid function to generate attention maps with values ranging
within (0,1), which are further subtracted from 0.5 to obtain
M ∈ RT×C×H×W to emphasize informative regions with
positive values and suppress redundant areas with negative
values as:

M = sigmoid(conv1×1×1(xm))− 0.5. (10)

Given the attention maps M to identify informative regions,
it’s multiplied with the cross-frame interactions E computed
by the correlation module to emphasize critical spatial regions
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Fig. 6. Illustration for our temporal attention module. We employ a temporal
multiscale architecture to aggregate local temporal information to dynamically
evaluate the contributions of each frame in a lightweight manner.

that convey body trajectories and suppress others like back-
ground or noise. This refined trajectory information is finally
incorporated into original spatial features x via a residual
connection as:

y = x+αE ×M . (11)

Here, α is initialized as zero to keep the original spatial
features and makes the model keep original behaviors.

D. Temporal Attention Module

The above modules effectively identify the critical cross-
frame interactions within informative spatial regions. However,
across the entire video, not all frames are equally important in
expressing sign language. Some frames carry crucial informa-
tion while others merely convey idle meanings. To address this,
we introduce a temporal attention module. Drawing inspiration
from the design principles of the identification module, we
dynamically consider the importance of different frames to
adaptively emphasize the keyframes and suppress others.

Fig. 6 gives the overview of the temporal attention module.
Given the input features y ∈ RT×C×H×W generated by
the correlation module and identification module, we first
perform spatial pooling to eliminate the spatial dimensions,
and then project the features into yr ∈ RT×C/r×H×W with a
convolution kernel size of 1 to decrease the computations.

To sufficiently evaluate the contributions of different frames,
we propose a multiscale architecture to leverage the local
information in a large temporal neighborhood. In specific,
as shown in Fig. 6, with a same small temporal kernel of
Pt, multiple parallel depth-wise convolutions are concurrently
employed with different dilation rates ranging from 1 to
Mt to model information from various temporal receptive
fields. Features from different branches are multiplied with
learnable coefficients {δ1, . . . , δPt

} to adjust their importance

and added to fuse complementary information from different
temporal ranges as:

ym =

Pt∑
i=1

δi × convti(yr) (12)

where convti denotes the group-wise convolution of i-th branch
with dilation rate i.

After receiving the closely correlated spatial-temporal infor-
mation, ym passes through a convolution with kernel size of
1 to project the features into yb ∈ RT×C×H×W to recover
the channels from C/r to C. We then pass yb through a
sigmoid function to generate temporal attention maps with
values ranging within [0,1], which are further subtracted from
0.5 to obtain U ∈ RT×C to emphasize keyframes with
positive values and suppress others with negative values as:

U = sigmoid(conv1(ym))− 0.5. (13)

We then recover the spatial dimensions of U to obtain
U ∈ RT×C×H×W , and multiply it with input features y
to dynamically adjust the weights of input frames according
to their contributions. These augmented representations are
further incorporated into the input features y via a residual
connection as:

z = y + λy ×U . (14)

Here, λ is initialized as zero during training to avoid hurting
the original temporal features.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets.: PHOENIX2014 [27] is recorded from a
German weather forecast broadcast with nine actors before a
clean background with a resolution of 210 × 260. It contains
6841 sentences with a vocabulary of 1295 signs, divided into
5672 training samples, 540 development (Dev) samples and
629 testing (Test) samples.

PHOENIX2014-T [28] is available for both CSLR and
sign language translation tasks. It contains 8247 sentences
with a vocabulary of 1085 signs, split into 7096 training
instances, 519 development (Dev) instances and 642 testing
(Test) instances. It can be used for both CSLR and SLT tasks.

CSL-Daily [29] revolves the daily life, recorded indoor at
30fps by 10 signers. It contains 20654 sentences, divided into
18401 training samples, 1077 development (Dev) samples and
1176 testing (Test) samples. It can be used for both CSLR and
SLT tasks.

CSL [61] is collected in the laboratory by fifty signers with
a vocabulary size of 178 with 100 sentences. It contains 25000
videos, divided into training and testing sets by a ratio of 8:2.

2) Training details.: For fair comparisons, we follow the
same setting as state-of-the-art methods [15], [16] to prepare
our model. We adopt ResNet18 [62] as the 2D CNN backbone
with ImageNet [63] pretrained weights. The 1D CNN of state-
of-the-art methods is set as a sequence of {K5, P2, K5, P2}
layers where Kθ and Pθ denotes a 1D convolutional layer
and a pooling layer with kernel size of θ, respectively. A two-
layer BiLSTM with hidden size 1024 is attached for long-term
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TABLE I
ABLATIONS FOR THE EFFECTIVENESS OF THE PROPOSED CORRELATION

MODULE, IDENTIFICATION MODULE AND TEMPORAL ATTENTION MODULE
ON THE PHOENIX2014 DATASET.

Correlation Identification Temporal
Weighting Dev(%) Test(%)

✘ ✘ ✘ 20.2 21.0
! ✘ ✘ 19.2 19.7
✘ ! ✘ 19.5 20.1
✘ ✘ ! 19.6 20.2

! ! ✘ 18.4 18.7
! ✘ ! 18.8 19.2
✘ ! ! 19.0 19.3
! ! ! 18.0 18.2

temporal modeling, followed by a fully connected layer for
sentence prediction. We train our models for 80 epochs with
initial learning rate 0.001 which is divided by 5 at epoch 40
and 60. Adam [64] optimizer is adopted as default with weight
decay 0.0001 and batch size 2. All input frames are first resized
to 256×256, and then randomly cropped to 224×224 with
50% horizontal flipping and 20% temporal rescaling during
training. During inference, a 224×224 center crop is simply
adopted. Following VAC [15], we employ the VE loss and
VA loss for visual supervision, with weights 1.0 and 25.0,
respectively. We adopt the TLP loss [40] to extract more
powerful representations. Our model is trained and evaluated
upon a 3090 graphical card. For the SLT task, the translation
network is instantiated as a mBART model [65]. In practice,
we found that the gloss labels are beneficial for SLT. Thus
we let the translation process additionally supervised with the
recognition loss LCTC, whose final losses can be expressed
as: LT = LCTC + LCE. We set the learning rate of the
visual mapper and translation network as 0.0002 and 1e-6,
respectively. We train our models for 40 epochs with learning
rates divided by 5 at epoch 20 and 30.

3) Evaluation Metric.: For the CSLR task, we use Word
Error Rate (WER) as the evaluation metric, which is defined
as the minimal summation of the substitution, insertion, and
deletion operations to convert the predicted sentence to the
reference sentence, as:

WER =
#sub +#ins + #del

#reference
. (15)

Note that the lower WER, the better accuracy.
For the SLT task, following previous studies [22], [29], we

use commonly-used metrics in machine translation, including
tokenized BLEU [66] with ngrams from 1 to 4 (BLEU@1-
BLEU@4) and Rouge-L F1 (Rouge) [67] to evaluate the
performance of SLT. The higher value, the better performance.

B. Ablation Study

We report ablative results on both development (Dev) and
testing (Test) sets of PHOENIX2014 dataset to test the effec-
tiveness of each component in our CorrNet+.

Effectiveness of the proposed modules. Tab. I provides a
comprehensive analysis of the effectiveness of the proposed

TABLE II
ABLATIONS FOR THE LOCATIONS OF CORRNET+ ON THE PHOENIX2014

DATASET.

Stage 2 Stage 3 Stage 4 Dev(%) Test(%)

✘ ✘ ✘ 20.2 21.0
! ✘ ✘ 19.3 19.9
✘ ! ✘ 19.2 19.7
✘ ✘ ! 19.0 19.5

! ! ✘ 18.5 18.8
! ! ! 18.0 18.2

TABLE III
ABLATIONS FOR THE EFFECTIVENESS OF CORRELATION MODULE ON THE

PHOENIX2014 DATASET.

Configurations Dev(%) Test(%) Extra GFLOPs/
Original GFLOPs

CorrNet [30] 18.8 19.4 3.600 / 3.640
CorrNet+ 18.0 18.2 0.010 / 3.640

- 20.2 21.0 -
L=[2,2,2] 19.0 19.0 0.007 / 3.640
L=[6,6,6] 18.5 18.8 0.010 / 3.640
L=[10,10,10] 18.4 18.7 0.012 / 3.640
L=[2,6,10] 18.0 18.2 0.010 / 3.640
L=[10,6,2] 18.6 18.8 0.012 / 3.640
L=[6,10,14] 18.3 18.4 0.012 / 3.640

modules. We notice that using any of the proposed three
modules yields a notable accuracy boost, with 19.2% & 19.7%,
19.5% & 20.1% accuracy and 19.6 & 20.2% WER on the Dev
and Test Sets, respectively. Notably, the correlation module
offers the most substantial accuracy improvement. Combining
any two modules further activates the effectiveness with 18.4%
& 18.7%, 18.8% & 19.2% and 19.0% & 19.3% WER on
the Dev and Test Sets, respectively. We notice that combining
the correlation module and the identification module gives the
most performance promotion. When employing all proposed
modules, the accuracy reaches the peak with absolute 18.0%
& 18.2% WER, giving +2.2% & +2.8% accuracy boost.

Effects of locations for CorrNet+. Tab II ablates the
locations of our proposed modules in Stage 2, 3 or 4. We
observe that choosing any one of these locations brings a
notable accuracy boost, with 19.3% & 19.9%, 19.2% & 19.7%
and 19.0% & 19.5% WER. When combining two or more
locations, a larger accuracy gain is witnessed. The accuracy
reaches the peak when proposed modules are placed after
Stage 2, 3 and 4, with 18.0% & 18.2% accuracy, which is
adopted by default.

Study of the effectiveness of correlation module. In the
upper part of Tab. III, we first verify the effectiveness of
CorrNet+ by comparing it to the CorrNet [30]. By com-
puting correlation maps between all spatial patches among
consecutive frames, CorrNet promotes the WER to 18.8%
& 19.4% on the Dev and Test sets, respectively. However,
it raises substantial computational overhead (3.60 GFLOPs),
nearly equivalent to the entire model’s computation (3.64
GFLOPs). Instead, by compressing the features of each frame,
CorrNet+ notably decreases the incurred computations from
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TABLE IV
ABLATIONS FOR THE EFFECTIVENESS OF THE AGGREGATION FUNCTIONS

IN CORRELATION MODULE ON THE PHOENIX2014 DATASET.

Aggregation function Dev(%) Test(%)

AvgPool 18.5 18.8
AvgPool & MaxPool 18.3 18.5

AvgPool & MaxPool & AttPool 18.0 18.2

TABLE V
ABLATIONS FOR THE MULTI-SCALE ARCHITECTURE OF IDENTIFICATION

MODULE ON THE PHOENIX14 DATASET.

Configuration Dev(%) Test(%)
- 20.2 21.0

Nt=4, Ns=1 18.8 18.9
Nt=4, Ns=2 18.4 18.6
Nt=4, Ns=3 18.0 18.2
Nt=4, Ns=4 18.3 18.5
Nt=2, Ns=3 18.6 18.7
Nt=3, Ns=3 18.3 18.5
Nt=4, Ns=3 18.0 18.2
Nt=5, Ns=3 18.5 18.6
Kt=9, Ks=7 19.1 19.2

3.60 GFLOPs to 0.01 GFLOPs and brings +0.8% & +1.2%
accuracy boost, achieving a better accuracy-computation trade-
off. In the lower part of Tab. III, we investigate the effects of
the temporal receptive filed L = {L1, L2, L3} across three
network stages for the correlation module. When disabling
L, the model degenerates into our baseline. We observe
that when setting L = [2, 2, 2] (focusing solely on adjacent
frames) CorrNet+ outperforms the baseline by 1.2% & 2.0%
on the Dev and Test sets, respectively. Gradually increasing L
from [1,1,1] to [5,5,5] consistently improves accuracy with
similar computational costs. We then investigate different
configurations for the temporal receptive fields as network
stages progress. We notice that L = [2, 6, 10] yields the
peak accuracy, and either reversing the order of L of further
increasing L would degrade the performance.

Study on the effectiveness of aggregation functions
in correlation module. We verify the effectiveness of the
aggregation functions for the correlation module in Tab. IV.
It’s observed that by solely using the average aggregation
function, CorrNet+ already achieve better results (18.5% &
18.8%) than CorrNet (18.8% & 19.2%). When incorporating
both the maximum and attention aggregation functions, the
performance is further promoted to 18.3% & 18.5% and 18.0%
& 18.2%, underscoring the complementarity of the proposed
aggregation functions.

Study on the multi-scale architecture of identification
module. In Tab. V, without identification module, our baseline
achieves 20.2% and 21.0% WER on the Dev and Test Set,
respectively. The base kernel size is set as 3 × 3 × 3 for
Kt×Ks×Ks. When fixing Nt=4 and varying spatial dilation
rates to expand spatial receptive fields, a larger Ns consistently
brings better accuracy. When Ns reaches 3, it brings no more
accuracy gain. Consequently, we set Ns as 3 by default and
investigate the impact of Nt. Notably, increasing Nt to 5 or
decreasing Nt to 2 and 3 achieves worse accuracy. We thus
adopt Nt as 4 by default. We also compare our proposed

TABLE VI
ABLATIONS FOR THE CONFIGURATIONS OF TEMPORAL ATTENTION

MODULE ON THE PHOENIX2014 DATASET.

Configuration Dev(%) Test(%)

- 20.2 21.0

Mt=1 18.6 18.7
Mt=2 18.3 18.5
Mt=3 18.0 18.2
Mt=4 18.2 18.4
Mt=5 18.3 18.5
Pt=5 19.1 19.2

U ⊙ y 21.2 22.1
U ⊙ y + y 19.6 20.3

(U − 0.5)⊙ y 18.5 18.8
(U − 0.5)⊙ y + y 18.0 18.2

TABLE VII
ABLATIONS FOR THE GENERALIZABILITY OF CORRNET OVER MULTIPLE

BACKBONES ON THE PHOENIX2014 DATASET.

Configuration Dev(%) Test(%)

SqueezeNet [56] 22.2 22.6
w/ CorrNet+ 19.4 19.6

ShuffleNet V2 [68] 21.7 22.2
w/ CorrNet+ 19.1 19.5

GoogleNet [69] 21.4 21.5
w/ CorrNet+ 18.9 19.0

RegNetX-800mf [70] 20.4 21.2
w/ CorrNet+ 18.3 18.4

RegNetY-800mf [70] 20.1 20.8
w/ CorrNet+ 17.8 18.0

multi-scale architecture with a normal implementation of more
parameters. The receptive field of the identification module
with Nt=4, Ns=3 is identical to a normal convolution with
Kt=9 and Ks=7. As shown in the bottom of Tab. V, although
a normal convolution owns more parameters and computations
than ours, it performs worse than our method which verifies
the effectiveness of our proposed architecture.

Study on the configurations of temporal attention mod-
ule. In the upper part of Tab. VI, we investigate the effects
for the number of branches Mt in the temporal attention
module. We notice that as Mt increases, the performance
consistently rises until it reaches 3, and a larger Mt can’t
bring more performance gain. We thus set Mt = 3 by
default. We then investigate the efficacy of the multiscale
architecture by comparing it against a large convolution with
kernel size Pt of 5, which has the same temporal receptive
field. We observe that our design outperforms it by a large
margin with lower computational costs. In the lower part
of Tab. VI, we explore the implementations of the temporal
attention module to augment original features. Initially, a direct
multiplication of the attention maps U with input features y
severely degrades performance due to the disruption of input
feature distributions. However, when implemented residually
by adding y, the expression U ⊙ y + y notably mitigates this
phenomenon, resulting in performance gains of +0.6% and
+0.7% on the Dev and Test Sets, respectively. We further
subtract 0.5 from the attention maps U to emphasize or
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TABLE VIII
COMPARISON WITH OTHER METHODS OF SPATIAL-TEMPORAL ATTENTION

OR TEMPORAL REASONING ON THE PHOENIX2014 DATASET.

Method Dev(%) Test(%)

- 20.2 21.0
w/ SENet [56] 19.8 20.4
w/ CBAM [71] 19.7 20.2
w/ NLNet [72] - -

I3D [5] 22.6 22.9
R(2+1)D [73] 22.4 22.3
TSM [23] 19.9 20.5

CorrNet+ 18.0 18.2

TABLE IX
COMPARISON WITH OTHER METHODS THAT EXPLICITLY EXPLOIT HAND

AND FACE FEATURES ON THE PHOENIX2014 DATASET.

Method Dev(%) Test(%)

CNN+HMM+LSTM [26] 26.0 26.0
DNF [13] 23.1 22.9
STMC [25] 21.1 20.7
C2SLR [16] 20.5 20.4

CorrNet+ 18.0 18.2

suppress certain positions, and then element-wisely multiply
it with y. This refined implementation brings +1.1% & +1.5%
performance boost. Finally, we update this implementation in
a residual way by adding input features y as (U−0.5)⊙y+y,
achieving a notable performance boost by +2.2% & +2.8%.

Generalizability of CorrNet+. We deploy CorrNet+ upon
multiple backbones, including SqueezeNet [56], ShuffleNet
V2 [68], GoogLeNet [69], RegNetX-800mf [70] and RegNetY-
800mf [70] to validate its generalizability in Tab. VII. It’s ob-
served that our proposed model generalizes well upon different
backbones, bringing +2.8% & +3.0%, +2.6% & +2.7%, +2.5%
& +2.5%, +2.1% & +2.8% and +2.3% & +2.8% accuracy
boost on the Dev and Test Sets, respectively.

Comparisons with other spatial-temporal reasoning
methods. Tab. VIII compares our approach with other meth-
ods of spatial-temporal reasoning ability. SENet [56] and
CBAM [71] perform channel attention to emphasize key in-
formation. NLNet [72] employs non-local means to aggregate
spatial-temporal information from other frames. I3D [5] and
R(2+1)D [73] deploys 3D or 2D+1D convolutions to capture
spatial-temporal features. TSM [23] adopts temporal shift
operation to obtain features from adjacent frames. In the upper
part of Tab. VIII, one can see CorrNet+ largely outperforms
other attention-based methods, i.e., SENet, CBAM and NLNet,
for its superior ability to identify and aggregate body trajec-
tories. NLNet is out of memory due to its quadratic computa-
tional complexity with spatial-temporal size. In the bottom part
of Tab. VIII, we observed that I3D and R(2+1)D demonstrate
degraded accuracy, which may be attributed to their limited
spatial-temporal receptive fields and increased training com-
plexity. TSM slightly brings 0.3% & 0.3% accuracy boost. Our
proposed approach significantly outperforms these methods,
affirming its efficacy in aggregating salient spatial-temporal
information from even distant spatial neighbors.

TABLE X
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE

PHOENIX2014 AND PHOENIX2014-T DATASETS OVER THE CSLR
SETTING. ∗ INDICATES EXTRA CLUES SUCH AS FACE OR HAND FEATURES

ARE INCLUDED BY ADDITIONAL NETWORKS OR PRE-EXTRACTED
HEATMAPS.

Method
PHOENIX2014 PHOENIX2014-T

Dev(%) Test(%) Dev(%) Test(%)del/ins WER del/ins WER

SFL [14] 7.9/6.5 26.2 7.5/6.3 26.8 25.1 26.1
FCN [12] - 23.7 - 23.9 23.3 25.1
CMA [38] 7.3/2.7 21.3 7.3/2.4 21.9 - -
VAC [15] 7.9/2.5 21.2 8.4/2.6 22.3 - -
SMKD [17] 6.8/2.5 20.8 6.3/2.3 21.0 20.8 22.4
CVT-SLR [21] 6.4/2.6 19.8 6.1/2.3 20.1 19.4 20.3
TLP [40] 6.3/2.8 19.7 6.1/2.9 20.8 19.4 21.2
CoSign-2s [74] - 19.7 - 20.1 19.5 20.1
AdaSize [75] 7.0/2.6 19.7 7.2/3.1 20.9 19.7 21.2
AdaBrowse+ [76] 6.0/2.5 19.6 5.9/2.6 20.7 19.5 20.6
SEN [18] 5.8/2.6 19.5 7.3/4.0 21.0 19.3 20.7
CTCA [20] 6.2/2.9 19.5 6.1/2.6 20.1 19.3 20.3
RadialCTC [39] 6.5/2.7 19.4 6.1/2.6 20.2 - -

SLT∗ [28] - - - - 24.5 24.6
C+L+H∗ [26] - 26.0 - 26.0 22.1 24.1
DNF∗ [13] 7.3/3.3 23.1 6.7/3.3 22.9 - -
STMC∗ [25] 7.7/3.4 21.1 7.4/2.6 20.7 19.6 21.0
C2SLR∗ [16] - 20.5 - 20.4 20.2 20.4

CorrNet+ 5.3/2.7 18.0 5.6/2.4 18.2 17.2 19.1

TABLE XI
COMPARISON WITH

STATE-OF-THE-ART METHODS ON THE
CSL-DAILY DATASET [29] OVER THE

CSLR SETTING.

Method Dev(%) Test(%)

BN-TIN [29] 33.6 33.1
FCN [12] 33.2 32.5
Joint-SLRT [42] 33.1 32.0
TIN-Iterative [13] 32.8 32.4
CTCA [20] 31.3 29.4
AdaSize [75] 31.3 30.9
AdaBrowse+ [76] 31.2 30.7
SEN [18] 31.1 30.7

CorrNet+ 28.6 28.2

TABLE XII
COMPARISON WITH

STATE-OF-THE-ART METHODS
ON THE CSL DATASET [61]
OVER THE CSLR SETTING.

Method WER(%)

LS-HAN [61] 17.3
SubUNet [77] 11.0
SF-Net [78] 3.8
FCN [12] 3.0
STMC [25] 2.1
VAC [15] 1.6
C2SLR [16] 0.9
SEN [18] 0.8

CorrNet+ 0.7

Comparisons with previous methods equipped with hand
or face features. Many previous CSLR methods explicitly
leverage hand and face features for better recognition by
employing multiple input streams [26], human body key-
points [16], [25] and pre-extracted hand patches [13]. They
require extra resource-intensive pose-estimation networks like
HRNet [79] or additional multiple training stages. Our ap-
proach doesn’t rely on extra supervision and could be end-
to-end trained to dynamically attend to body trajectories like
hand and face actions in a self-motivated way. Tab. IX shows
that our method could outperform these methods by a large
margin with much fewer computations.

C. Comparison with State-of-the-Art Methods

We verify the effectiveness of our proposed method upon
two sign language understanding tasks, i.e., continuous sign
language recognition (CSLR) and sign language translation
(SLT). We next introduce the results of our method upon both
settings, respectively.
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TABLE XIII
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE PHOENIX2014-T DATASET [28] AND CSL-DAILY DATASET [29] OVER THE SLT SETTING.

PHOENIX2014-T

Method Dev Test
Rouge BLEU1 BLEU2 BLEU3 BLEU4 Rouge BLEU1 BLEU2 BLEU3 BLEU4

Sign2Gloss2Text

SL-Luong [28] 44.14 42.88 30.30 23.02 18.40 43.80 43.29 30.39 22.82 18.13
SignBT [29] 49.53 49.33 36.43 28.66 23.51 49.35 48.55 36.13 28.47 23.51
STMC-Transf [80] 46.31 48.27 35.20 27.47 22.47 46.77 48.73 36.53 29.03 24.00
MMTLB [43] 50.23 50.36 37.50 29.69 24.63 49.59 49.94 37.28 29.67 24.60
TwoStream-SLT [22] 52.01 52.35 39.76 31.85 26.47 51.59 52.11 39.81 32.00 26.71
SLTUNET [81] 49.61 - - - 25.36 49.98 50.42 39.24 31.41 26.00

Sign2Text

SL-Luong [28] 31.80 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58
Joint-SLRT [42] - 47.26 34.40 27.05 22.38 - 46.61 33.73 26.19 21.32
STMC-T [82] 48.24 47.60 36.43 29.18 24.09 46.65 46.98 36.09 28.70 23.65
SignBT [29] 50.29 51.11 37.90 29.80 24.45 49.54 50.80 37.75 29.72 24.32
MMTLB [43] 53.10 53.95 41.12 33.14 27.61 52.65 53.97 41.75 33.84 28.39
SLTUNET [81] 52.23 - - - 27.87 52.11 52.92 41.76 33.99 28.47
TwoStream-SLT [22] 54.08 54.32 41.99 34.15 28.66 53.48 54.90 42.43 34.46 28.95
CorrNet+ 54.54 54.56 42.31 34.48 29.13 53.76 55.32 42.74 34.86 29.42

CSL-Daily

Method Dev Test
Rouge BLEU1 BLEU2 BLEU3 BLEU4 Rouge BLEU1 BLEU2 BLEU3 BLEU4

Sign2Gloss2Text

SL-Luong [28] 40.18 41.46 25.71 16.57 11.06 40.05 41.55 2573 16.54 11.03
SignBT [29] 48.38 50.97 36.16 26.26 19.53 48.21 50.68 36.00 26.20 19.67
MMTLB [43] 51.35 50.89 37.96 28.53 21.88 51.43 50.33 37.44 28.08 21.46
SLTUNET [81] 52.89 - - - 22.95 53.10 54.39 40.28 30.52 23.76
TwoStream-SLT [22] 53.91 53.58 40.49 30.67 23.71 54.92 54.08 41.02 31.18 24.13

Sign2Text

SL-Luong [28] 34.28 34.22 19.72 12.24 7.96 34.54 34.16 19.57 11.84 7.56
SignBT [29] 49.49 51.46 37.23 27.51 20.80 49.31 51.42 37.26 27.76 21.34
MMTLB [43] 53.38 53.81 40.84 31.29 24.42 53.25 53.31 40.41 30.87 23.92
SLTUNET [81] 53.58 - - - 23.99 54.08 54.98 41.44 31.84 25.01
TwoStream-SLT [22] 55.10 55.21 42.31 32.71 25.76 55.72 55.44 42.59 32.87 25.79
CorrNet+ 55.52 55.64 42.78 33.13 26.14 55.84 55.82 42.96 33.26 26.14

Raw

Raw

Heatmap

Heatmap

Fig. 7. Visualizations of heatmaps by Grad-CAM [11]. Top: raw frames; Bottom: heatmaps of identification module. Our identification module could generally
focus on the human body (light yellow areas) and especially pays attention to informative regions like hands and face (dark red areas) to track body trajectories.

1) Continuous sign language recognition: PHOENIX2014
and PHOENIX2014-T. Tab. VII shows a comprehensive
comparison between our CorrNet+ and other state-of-the-art
methods. The entries notated with ∗ indicate these methods
utilize additional factors like face or hand features for better
accuracy. We notice that CorrNet+ outperforms other state-
of-the-art methods by a large margin upon both datasets,
thanks to its special attention on body trajectories. Especially,

CorrNet+ outperforms previous CSLR methods [13], [16],
[25], [26] equipped with hand and faces acquired by heavy
pose-estimation networks or pre-extracted heatmaps (notated
with *), without additional expensive supervision.

CSL-Daily. CSL-Daily is a recently released large-
scale dataset with the largest vocabulary size (2k) among
commonly-used CSLR datasets, with a wide content covering
family life, social contact and so on. Tab. VIII shows that
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01April_2010_Thursday_heute_default-1     t 129;    01April_2010_Thursday_heute_default-1     t
01December_2011_Thursday_heute_default-3  t 40; 01December_2011_Thursday_heute_default-3  t 115
31October_2009_Saturday_tagesschau_default-8, t 79; 31October_2009_Saturday_tagesschau_default-8, t 64

01August_2011_Monday_heute_default-6   t 47; 01August_2011_Monday_heute_default-6   t 157; 

Fig. 8. Visualizations of correlation maps for correlation module. Based on correlation operators, each frame could especially attend to informative regions
in adjacent left/right frames like hands and face (dark red areas).

heute nacht nord

blank heuteLabel

Label

Fig. 9. Visualizations of temporal attention maps for temporal attention module. It’s observed that it tends to emphasize frames with rapid movements and
suppress those frames with static contents.

our CorrNet+ achieves new state-of-the-art accuracy upon this
challenging dataset with notable progress, which generalizes
well upon real-world scenarios.

CSL. As shown in Tab. IX, our CorrNet+ could achieve
extremely superior accuracy (0.7% WER) upon this well-
examined dataset, outperforming existing CSLR methods.

2) Sign language translation: We compare our method with
recent methods upon two widely-used SLT datasets, Phoenix-
2014T and CSL-Daily, in Tab. XIII. These methods are

roughly divided into two categories, Sign2Gloss2Text which
first transforms input videos into intermediate gloss represen-
tations and then performs translation, and Sign2Text which
directly conducts end-to-end translation from input videos.
We observe that our method outperforms previous methods
across both datasets, demonstrating its effectiveness in sign
language comprehension. Especially, the powerful TwoStream-
SLT [22] adopts both RGB videos and skeleton data as
inputs to fuse beneficial information from both modalities,
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which requires more expensive supervision and heavy compu-
tations. In contrast, our method achieves better performance by
only inputting RGB videos, demonstrating a better accuracy-
computation trade-off.

D. Visualizations
Visualizations for identification module. Fig. 7 shows

the heatmaps generated by our identification module. Our
identification module pays special attention to the human body
(light yellow areas), especially informative regions of hands
and face (dark red areas) to capture human body trajectories.
These results verify the effectiveness of our identification mod-
ule in dynamically emphasizing critical areas in expressing
sign language and suppressing other background regions to
overlook noisy information.

Visualizations for correlation module. Fig. 8 illustrates the
correlation maps generated by our correlation module, which
shows the computed spatial-temporal correlations between
the current frame and temporal neighboring frames. Three
adjacent frames are shown to visualize the correlation maps.
We observe that our correlation module pays major attention
to informative regions in adjacent frames like hands or the
face to enable precise tracking of body trajectories during sign
expression. Especially, it learns to focus on the moving body
parts that play a major role in expressing signs to enhance sign
language comprehension. For example, in the 3rd and 4th row,
the correlation module consistently pays major attention to the
quickly moving right hands to capture sign information while
overlooking the redundant information in the background.

Visualizations for temporal attention module. Fig. 9
visualizes the temporal attention maps generated by our tem-
poral attention module over some selected frames. The darker
color, the higher value. We observe that our temporal attention
module tends to allocate higher weights for frames with rapid
movements (e.g., the latter several frames in the first line; the
frontal frames in the second line). It learns to assign lower
weights for static frames with few body movements. This
observation is consistent with the habits of our human beings,
as our humans always pay more attention to those moving
objects in the visual field to capture key movements. These
observations clearly reveal the effectiveness of our temporal
attention module in emphasizing the critical segments in the
whole sign video.

V. CONCLUSION

Recent methods on sign language understanding usually
solely focus on each frame to extract their spatial features and
overlook their cross-frame interactions, thus failing to capture
the key human body movements. To handle this problem,
this paper introduces an enhanced correlation network (Corr-
Net+) to capture human body trajectories, which comprises a
correlation module, an identification module and a temporal
attention module. The effectiveness of CorrNet+ is verified
on two sign language understanding tasks including contin-
uous sign language recognition (CSLR) and sign language
translation (SLT) with new state-of-the-art performance com-
pared to previous methods. Especially, by only inputting RGB

videos on both tasks, CorrNet+ outperforms previous methods
equipped with resource-intensive pose estimation networks or
pre-extracted heatmaps with much fewer computations for
hand and facial feature extraction. Compared to CorrNet [30],
CorrNet+ achieves a significant performance boost across
multiple benchmarks with drastically reduced computational
costs, demonstrating a better accuracy-computation trade-off.
Plentiful visualizations further verify the effectiveness of Cor-
rNet+ in intelligently emphasizing human body trajectories
across adjacent frames in a self-motivated way.
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