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Abstract
Face recognition (FR) has seen significant advance-
ments due to the utilization of large-scale datasets.
Training deep FR models on large-scale datasets
with multiple GPUs is now a common practice.
In fact, computing power has evolved into a foun-
dational and indispensable resource in the area of
deep learning. It is nearly impossible to train a
deep FR model without holding adequate hardware
resources. Recognizing this challenge, some FR
approaches have started exploring ways to reduce
the time complexity of the fully-connected layer in
FR models. Unlike other approaches, this paper
introduces a simple yet highly effective approach,
Moving Haar Learning Rate (MHLR) scheduler,
for scheduling the learning rate promptly and ac-
curately in the training process. MHLR supports
large-scale FR training with only one GPU, which
is able to accelerate the model to 1/4 of its origi-
nal training time without sacrificing more than 1%
accuracy. More specifically, MHLR only needs 30
hours to train the model ResNet100 on the dataset
WebFace12M containing more than 12M face im-
ages with 0.6M identities. Extensive experiments
validate the efficiency and effectiveness of MHLR.

1 Introduction
Face recognition (FR) plays an important role in real-life ap-
plications. In recent years, the scale of FR training datasets
have grown from 0.5M (Million) images with 0.01M IDs
(Identities) in CASIA Webface [Yi et al., 2014] to 42M im-
ages with 2M IDs in WebFace42M [Zhu et al., 2021], which
indicates the training of deep FR models have entered the
large-scale datasets era, called large-scale FR training.

Deep FR models have been greatly advanced because
of large-scale training datasets, such as MegaFace [Shliz-
erman et al., 2016], MS1M [Guo et al., 2016], and Web-
Face42M [Zhu et al., 2021]. Yet, the basic requirement
for training a deep FR model gradually grows from 1 node
(Personal computer or server) with 4×GPUs to 1 node with

(a) The loss curve (b) The loss curve with MHLR

Figure 1: The loss curve of training ResNet100 on MS1MV3. All
curves are normalized to [0, 1] for putting in one figure. With
MHLR, the loss after training 2e5 steps is close to that after train-
ing 8e5 steps without MHLR. Thus, only 1/4 of its original training
time is required and we can train models with 1×GPU.

8×GPUs. The state-of-the-art FR approach, Partial FC
(PFC) [An et al., 2022], even employs at most 8 nodes with
8×GPUs for training a FR model, which is 64×GPUs in to-
tal. That shuts many researchers out the door of large-scale
FR training. In fact, computing power has become a funda-
mental and critical resource in the deep learning area. It is
nearly impossible to train a deep FR model without holding
enough hardware resources, which can provide massive com-
puting power.

Indeed, many cutting-edge FR approaches, e.g. PFC [An
et al., 2022], Faster Face Classification (F2C) [Wang et al.,
2022], Dynamic Class Queue (DCQ) [Li et al., 2021a], and
Virtual Fully-connected (Virtual FC) [Li et al., 2021b], have
already started to consider the problem of large-scale FR
training. Nevertheless, those researches concentrate on the
space and time complexity of the fully-connected layer in
the model, which means large-scale FR training with mul-
tiple GPUs is still a basic requirement, in order to guarantee
the feasible training time. Interestingly, the majority of re-
searchers have rarely considered large-scale FR training on
1 node with only 1×GPU. Therefore, we would like to find
out if it is possible to do large-scale FR training with 1×GPU
while assuring its training time and accuracy.

Till now, the common practice of large-scale FR train-
ing is to train models for more than 20 epochs with at least
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4×GPUs. In addition, a learning rate (LR) scheduler is
employed for stabilizing the convergence of models. How-
ever, we identified that the loss curve would be shaped like a
staircase while doing multiple step LR scheduling, as shown
in Fig. 1(a). This phenomenon indicates that manual LR
scheduling is vulnerable to training time waste, since many
subsequences in the loss curve keep stationary. It is safe
to schedule the LR early once the loss curve goes station-
ary. Thus, the intuition is to eliminate those stationary subse-
quences of the loss curve efficiently and effectively, as shown
in Fig. 1(b). In this way, the deep FR model can converge
faster without sacrificing much accuracy.

In this paper, we propose a simple yet effective ap-
proach, Moving Haar Learning Rate (MHLR) scheduler,
which schedules the learning rate promptly and accurately.
MHLR is able to guarantee the loss curve does not contain
long stationary subsequences, in order to reduce the training
time of the model. Thus, the required time for large-scale FR
training with 1×GPU can be similar to 8×GPUs. The contri-
bution of this paper can be summarized as follows:

• Efficient. MHLR is able to train the model for 5 epochs
on 1×GPU, which costs 1/4 of its original training time.
To be specific, on WebFace12M, MHLR requires 30H
(hours) compared to the model trained for 20 epochs on
8×GPUs, which requires around 24H.

• Effective. MHLR sacrifices negligible accuracy for re-
ducing training epochs from 20 to 5. Specifically, for
ResNet100 trained on WebFace12M, the accuracy of
MHLR on the dataset IJB-C is 97.20 while PFC-0.3 is
97.58. For ResNet100 trained on WebFace42M, the ac-
curacy of PFC-0.3 on IJB-C is 97.82. Thus, we conclude
the accuracy loss of MHLR is less than 1%.

• Impactful. MHLR proves that large-scale FR train-
ing with 1×GPU is not a mission impossible. It gives
the possibility for many researchers to enter the door
of large-scale FR training without massive hardware re-
sources.

2 Related Work
In this section, we mainly reviewed the FR approaches relat-
ing to PFC [An et al., 2022], since it is one of the state-of-
the-art approaches aiming at large-scale FR training.

Back in 2017, SphereFace [Liu et al., 2017] had already
started to train FR models with 4×GPUs. It first introduced
mapping the face image onto a hyper-sphere in the feature
space. CosFace [Wang et al., 2018b] proposed to normalize
both the feature vector and the class vector in order to sta-
bilize the training process. It adopted 8×GPUs to train FR
models. UniformFace [Duan et al., 2019] introduced to learn
equidistributed feature vectors in order to maximize the uti-
lization of the feature space. It employed 4×GPUs to train
FR models. ArcFace [Deng et al., 2019a] proposed additive
angular margin in order to maximize the inter-class separa-
tion and the intra-class compactness. It trained FR models
with 4×GPUs. CurricularFace [Huang et al., 2020] embed-
ded the idea of curriculum learning into the loss function,
in order to address easy samples in the early training stage

and hard ones in the later stage. It utilized 4×GPUs in the
FR model training. MagFace [Meng et al., 2021] suggested
building a connection between the quality of images and the
magnitude of their corresponding feature vectors, in order to
improve the generalization ability of the model. It leveraged
8×GPUs in the FR model training. ElasticFace [Boutros
et al., 2022] proposed to allow flexibility in the push for
inter-class separability, in order to give the decision bound-
ary chances to extract and retract to allow space for flexible
class separability learning. It used 4×GPUs to train FR mod-
els. Also, there are some papers in which we failed to find
the hardware information, such as Large-Margin Softmax (L-
Softmax) loss [Liu et al., 2016], Additive Margin Softmax
(AM-Softmax) loss [Wang et al., 2018a], Circle loss [Sun et
al., 2020], and AdaFace [Kim et al., 2022]. To sum up, all
FR approaches employ multiple GPUs for training FR mod-
els, except the hardware information of some approaches is
not given. Therefore, we can conclude that training FR mod-
els with multiple GPUs is a common practice in this area.

Recently, some FR approaches have already started to
consider large-scale FR training. Dynamic Class Queue
(DCQ) [Li et al., 2021a] proposed to dynamically select and
generate class vectors instead of using them all in the train-
ing process. It adopted 8×GPUs to train FR models. Similar
to DCQ, Faster Face Classification (F2C) [Wang et al., 2022]
introduced Dynamic Class Pool (DCP) to store and update
class vectors dynamically. It employed 8×GPUs for the FR
model training. Instead of maintaining a queue or a pool, Par-
tial Fully-Connected (PFC) [An et al., 2022] suggested ran-
domly selecting negative class vectors. It leveraged at least
8×GPUs for the FR model training. Virtual Fully-connected
(Virtual FC) [Li et al., 2021b] has a similar goal to our ap-
proach, which is doing large-scale FR training with 1×GPU.
Virtual FC focuses on reducing the space and time complex-
ity of the FC layer, yet we focus on training epochs, which are
different and have no conflict. In summary, all the mentioned
approaches above concentrate on the FC layer. Yet in this pa-
per, we aim at training epochs, which means our approach is
compatible with the other approaches.

3 Problem Statement
In this section, we first revisit the large-scale FR training. Af-
ter that, the problem in this paper is discussed.

A face image is defined as x ∈ RN×N×C , where N is the
size of the image and C is the channel of it. Thus, a deep
FR model is defined as f = F(x), where f ∈ RD is the fea-
ture vector extracted from x. In order to train the model, the
equation of combined margin loss function used in ArcFace
and Partial FC is reviewed as follows:

L = − 1

B

B∑
i=1

log
esM(θyi,i)

esM(θyi,i) +
∑C

j=1,j /∈yi
es cos θj,i

M(θyi,i) = cos(m1θyi,i +m2)−m3

(1)

where B denotes the batch size, C is the number of classes,
M means the marginal function, m1 stands for the multi-
plicative angular margin, m2 represents the additive angu-
lar margin, m3 denotes the additive cosine margin, s is the



scale factor controlling the radius of the hyper-sphere in fea-
ture space, θj,i represents the angle between the class vector
wj and the feature vector fi, wj ∈ RD stands for the j-th
class vector, and fi denotes the feature vector of the i-th im-
age belonging to the yi-th class. Thus, θyi,i can be calcu-
lated by the equation θyi,i = arccos(wyifi/∥wyi∥∥fi∥), and
M(θyi,i) can be computed afterwards. Yet, since the time
complexity of arccos(·) is pretty high, the variant in Eq. (2)
is a better option. Note that m1 will change the frequency of
the cos function and destroy its monotonicity. Thus, we set
m1 as 1 in this paper and thus it is treated as a constant.

M(θyi,i)

= cos(θyi,i +m2)−m3

= sinm2 cos θyi,i − cosm2

√
1− cos2 θyi,i −m3

(2)

where m1 = 1, sinm2, cosm2 and m3 are constants
which can be pre-computed and stored, and cos θyi,i =
wyi

fi/∥wyi
∥∥fi∥.

To this end, we are able to train the model F . Specifi-
cally, F is trained with E epochs, where each epoch con-
tains U training iterations. Thus, F is updated T = E · U
times in total, where the model and the loss after t-th up-
dating are denoted Ft and Lt respectively. Formally, all Ft

forms a sequence (time-series) F = {F0,F1, . . . ,FT }. Sim-
ilarly, all Lt forms another sequence L = {L0,L1, . . . ,LT }.
Hence, we wish to identify a sequence of the learning rate
Γ = {γ0, γ1, . . . , γT }, in order to minimize the final loss LT

with as less T as possible.
In practice, the learning rate (LR) λ is scheduled manually

in the training process, which means the scheduling strategy
is a hyper-parameter. The majority of FR approaches select
Multiple Step LR (MultiStepLR) scheduler, where λt is re-
duced by a decay factor δ after certain training iterations. The
new LR λt+1 can be calculated by λt+1 = λt/δ. However,
we discovered that MultiStepLR will always create many sta-
tionary subsequences in the loss curve, as already shown in
Fig. 1(a). It represents that large-scale FR training suffers
from training time waste, which indicates it is safe to sched-
ule the LR early once the loss curve goes stationary. There-
fore, we propose an easy yet effective LR scheduler, namely
Moving Haar LR (MHLR) scheduler, in order to accelerate
the model convergence.

4 The Proposed Approach
In this section, Moving Haar Learning Rate (MHLR) sched-
uler is introduced from three subsections. The first subsec-
tion presents the moving average part of MHLR. The second
subsection demonstrates the Haar kernel part of MHLR. The
third subsection summarizes the whole algorithm of MHLR.

4.1 Exponential Moving Average
Given a loss sequence L = {L0,L1, . . . ,LT }, it is hard to
detect the inside stationary subsequences as it contains too
many noises, which are caused by the optimization algorithm,
Mini-batch Gradient Descent. More specifically, Batch Gra-
dient Descent can generate a more smoothed loss sequence

(a) The loss curve L before
smoothing

(b) The loss curve LEMA after
smoothing

Figure 2: Smoothing the loss curve by EMA. As shown in (a), the
original loss curve is hard to be analyzed since it contains too much
noise. Thus, as shown in (b), we adopt EMA to smooth it. Note all
curves are normalized

L, since it considers all samples (face images) in every iter-
ation. Thus, the loss function L remains unchanged. On the
contrary, Mini-batch Gradient Descent considers distinct B
samples in every iteration. Accordingly, the loss function L
will always change in each iteration. This leads to the result
that the generated loss sequence L is quite unstable, which
contains too many noises, as shown in Fig. 2(a). Therefore,
the first process in MHLR is smoothing the loss sequence L,
which filters noises in order to help the detection of station-
ary subsequences. The expected L after smoothing is shown
in Fig. 2(b).

In this paper, we select Exponential Moving Average
(EMA) to smooth L. There are two reasons why we adopt
EMA: 1) The loss sequence L is generated on-the-fly in the
training process. EMA supports real-time updating, which is
just compatible with our problem; 2) The time complexity of
EMA in each iteration is only O(1), which indicates that it
occupies negligible computations. The equation of EMA is
given in Eq. (3).

LEMA
t =

{
Lt, t = 0

αLt + (1− α)LEMA
t−1 , t > 0

(3)

where α ∈ [0, 1] indicates the importance of the current loss
Lt compared to the average of previous losses LEMA

t−1 , and
t ∈ {0, 1, . . . , T}. Initially, when t = 0, LEMA

0 = L0 di-
rectly. After that, LEMA

t is calculated by the current loss Lt

and the average of previous losses LEMA
t−1 . In this paper, we

α is set as 0.001.
Overall, EMA generates a smoothed loss sequence

LEMA = {LEMA
0 ,LEMA

1 , . . . ,LEMA
T } on-the-fly while

generating the loss sequence L, in order to support the de-
tection of stationary subsequences.

4.2 Haar Convolutional Kernel
With EMA calculating LEMA on-the-fly, we are able
to detect stationary subsequences on it in real-time.
Formally, given a smoothed loss sequence LEMA =
{LEMA

0 ,LEMA
1 , . . . ,LEMA

T }, we wish to identify if the sub-
sequence of LEMA starting from S and ending at T , denoted
LEMA
S,T = {LEMA

S ,LEMA
S+1 , . . . ,LEMA

T }, keeps stationary
statistically, where 0 ≤ S < T . Note LEMA

T is always



the last value in LEMA and it increases continuously, since
LEMA is updating in real-time.

In this paper, we adopt a simple Haar Convolutional Kernel
(HCK) in the Haar-like Feature Descriptors to detect station-
ary subsequences. HCK is defined asH2s, where s represents
the half size of it, the first half values of H2s from 1 to s are
−1, the second half values ofH2s from s+1 to 2s are 1. For
example,H4 = {−1,−1, 1, 1}. Thus, performing a convolu-
tional operation on LEMA usingH2s, denotedH2s ∗LEMA,
indicates calculating the difference between the sum of the
first half values in LEMA

S,T and the sum of the second half val-
ues in LEMA

S,T , where the size of LEMA
S,T is 2s. In this way,

a stationary LEMA
S,T will get a small difference value, while

a LEMA
S,T with a decreasing trend will get a relatively larger

difference value. Hence, we are now able to distinguish the
decreasing curve and the stationary curve. Nevertheless, a
large 2s will cause two drawbacks:

1. The time complex of computing a single step convolu-
tion between H2s and LEMA

S,T is O(2s). It is inefficient
to compute a long H2s in every training iteration. For
example, if s = 5000, a 10K times multiplication and a
10K times summation are needed in each iteration. In
large-scale FR training, the total iterations T is com-
monly more than 500K, which results in an extra 10B
(Billion) times computations in total.

2. A long H2s requires a delay in detection. For instance,
if s = 5000, then we have to wait until LEMA accu-
mulates 10K values before starting the detection, since
the convolutional operation requires the size of LEMA

to be longer than H2s. However, we wish the stationary
subsequence detection could start as soon as possible.

Thus, s is set to 1 in this paper, since it requires negligible
computations and the shortest delay. Moreover, when s =
1, this convolutional operation degrades into calculating the
difference Dt of LEMA

t−1 and LEMA
t . We denote the sequence

of Dt as D = {D1,D2, . . . ,DT } which can be calculated
on-the-fly. The equation of it is given below:

Dt = LEMA
t−1 − LEMA

t (4)
where t ∈ {1, 2, . . . , T} here. Nonetheless, considering only
two values in each step leads to a result that D is sensitive
to noises. As shown in Fig. 3(a), it looks like a meaningless
sequence, which is hard to use.

Therefore, we leverage EMA the second time, which aims
at smoothing D. The smoothed D is denoted as DEMA =
{DEMA

1 ,DEMA
2 , . . . ,DEMA

T }. The equation of calculating
DEMA is shown as follows:

DEMA
t =

{
Dt, t = 1

βDt + (1− β)DEMA
t−1 , t > 1

(5)

where β ∈ [0, 1] indicates the importance of the current dif-
ference Dt compared to the average of previous differences
DEMA

t−1 . In this paper, β is set as 0.001.
Consequently, DEMA is able to help us identify stationary

subsequences, as shown in Fig. 3(b). In detail, we are able to
observe a spike on DEMA every time when there is a decline

(a) The curve of D (b) The curve of DEMA

Figure 3: Examples of D and DEMA. As shown in (a), it is hard
to find a relationship between L and D. By contrast, as shown in
(b), D is smoothed by EMA and denoted as DEMA. It is clear to
observe a spike on DEMA every time when there is a decline on L.
Note all curves are normalized

on L, which indicates a rapid drop in the loss curve. Thus,
the subsequence with small values before the spike in DEMA

represents the stationary part in L. We conclude that MHLR
can schedule Lt once identifying a consecutive subsequence
of small DEMA

t .

4.3 Moving Haar Learning Rate Scheduler
To this end, we propose to combine EMA (Eq. (3)) and HCK
(Eq. (4)) together. Thus, the calculation and storage for
LEMA are omitted. The combined approach is called Mov-
ing Haar Learning Rate (MHLR) scheduler. MHLR is able
to detect the stationary subsequences on-the-fly in the train-
ing process. Its time and space complexity is O(1) in each
iteration.

First, with Eq. (4) and Eq. (3), we are able to get a variant
of the equation for calculating Dt, as given in Eq. (6).

Dt = LEMA
t−1 − LEMA

t

= LEMA
t−1 − αLt − (1− α)LEMA

t−1

= αLEMA
t−1 − αLt

(6)

Next, it is easy to have Dt−1 = αLEMA
t−2 − αLt−1 from

Eq. (6), whereDt−1 just means one iteration beforeDt. After
performing Dt−1 −Dt, we have:

Dt−1 −Dt = αLEMA
t−2 − αLt−1 − αLEMA

t−1 + αLt

= α(LEMA
t−2 − LEMA

t−1 ) + α(Lt − Lt−1)

= αDt−1 + α(Lt − Lt−1)

(7)

From Eq. (6), we knowD1 = αLEMA
0 −αL1. Then, since

LEMA
0 = L0 in Eq. (3), we have D1 = α(L0 − L1). At last,

we are able to get the final equation ofDt from Eq. (7), which
is shown as follows:

Dt =

{
α(Lt−1 − Lt), t = 1

(1− α)Dt−1 + α(Lt−1 − Lt), t > 1
(8)

To this end, calculating Dt by Eq. (8) does not include
LEMA
t anymore. In addition, it has three advantages: 1) Dt

can be calculated on-the-fly. It requires only 1 step delay, i.e.
when t = 0; 2) Its time complexity is O(1) in each iteration;



Algorithm 1 The algorithm of MHLR
Input: Previous learning rate γt−1, current loss Lt, and pre-
vious loss Lt−1

Parameter: The threshold λ, tolerance τ , α = 0.001, and
β = 0.001
Output: Current learning rate γt
Initialization: Iterations count t = 1, tolerance count c = 0,
Dt−1 = 0, and DEMA

t−1 = 0

1: if t = 1 then
2: Dt ← α(Lt−1 − Lt) ▷ Eq. (8)
3: DEMA

t ← Dt ▷ Eq. (5)
4: else
5: Dt ← (1− α)Dt−1 + α(Lt−1 − Lt) ▷ Eq. (8)
6: DEMA

t ← βDt + (1− β)DEMA
t−1 ▷ Eq. (5)

7: end if
8: if DEMA

t < λ then
9: if c < τ then

10: γt ← γt−1

11: c← c+ 1
12: else
13: γt ← γt−1/2
14: c← 0
15: end if
16: end if
17: Dt−1 ← Dt

18: DEMA
t−1 ← DEMA

t
19: t← t+ 1
20: return γt

3) Its space complexity is also O(1), since it only needs to
store the T -th and (T − 1)-th values in sequences D and L,
instead of the whole sequences.

After calculatingDt by Eq. (8) and thenDEMA
t by Eq. (5),

we set a threshold λ in order to determine if DEMA
t is small

enough, which indicates the loss sequence L keeps stationary.
In addition, a tolerance τ is defined in case that MHLR is too
sensitive to λ. Specifically, MHLR will reduce the learning
rate γt if DEMA

t keeps lower than λ, i.e. DEMA
t < λ, for

τ iterations. After extensive experiments, we empirically set
λ = 5e − 5 and τ = 0.05T . The algorithm of MHLR is
shown in Alg. 1.

5 Experiments
5.1 Implementation Details
Datasets. In this paper, we separately employ
MS1MV2 [Deng et al., 2019a], MS1MV3 [Deng et al.,
2019b], WebFace4M, WebFace8M, and WebFace12M [Zhu
et al., 2021] as the training sets. MS1MV2 is also called
MS1M-ArcFace, which has more than 5.8M images
with 0.085M identities. MS1MV3 is also called MS1M-
RetinaFace, which contains more than 5M images with
0.09M IDs. WebFace42M [Zhu et al., 2021] contains 42M
images with 2M IDs. Afterwards, we randomly select 10%,
20%, and 30% samples from WebFace42M as WebFace4M,
WebFace8M, and WebFace12M respectively. Hence, Web-
Face12M can have more than 12M images with 0.6M IDs in
total. Note that the reason we do not employ WebFace42M

as our training set is that we have not applied PFC [An et
al., 2022] yet. Large-scale FR training without PFC will lead
to a huge fully-connected layer, which is infeasible to have
enough memory and time to train it on a single GPU.

Many public test sets are adopted to evaluate the perfor-
mance of MHLR, including LFW [Huang et al., 2007], CFP-
FP [Sengupta et al., 2016], AgeDB-30 [Moschoglou et al.,
2017], IJB-B [Whitelam et al., 2017], and IJB-C [Maze et
al., 2018].
Experimental Settings. The experiments in the paper are
implemented on a computer equipped with an Intel Core i9-
13900K 3.00 GHz, 32 GB memory, and an NVIDIA GeForce
RTX 4090 GPU. The operating system is Windows 11. In
addition, the development environment is Anaconda 23.7.2
with Python 3.11.4 and Pytorch 2.0.1. Following the settings
in recent papers [An et al., 2022; Deng et al., 2019a], input
images are cropped and centered to the size of 112×112×3.
Each pixel in the image is normalized by subtracting 127.5
and then being divided by 128, which is mapped from [0, 255]
to [−1, 1]. Images are randomly flipped for data augmenta-
tion. Customized ResNet50 and ResNet100 [An et al., 2022;
He et al., 2016] are employed as the backbones. The ResNet
model outputs the feature vector of dimension 512. After that,
feature vectors are input into the combined margin loss. For
training set MS1MV3, m1 = 1, m2 = 0.5 and m3 = 0. For
training sets WebFace4M, WebFace8M, and WebFace12M,
m1 = 1, m2 = 0 and m3 = 0.4. The scale factor s is set
as 64. In addition, the ResNet model is trained for 5 epochs
on different training sets with only one single GeForce RTX
4090 GPU. The batch size is set as 128 samples in each up-
dating. Stochastic Gradient Descent (SGD) with momentum
0.9 and weight decay 5e− 4 is selected as the optimizer. The
learning rate is set as 0.2, the decay factor δ = 2, and it is
automatically scheduled by MHLR. For EMA, α and β are
both set as 0.001. The hyper-parameters in MHLR are set as
λ = 1e− 5 and τ = 0.05.

For testing, two feature vectors extracted from the original
image and its horizontal-flipped one are summed together as
the final feature vector. In addition, True Accept Rate (TAR)
@ False Positive Rate (FAR) = 1e − 4 is reported on IJB-B
and IJB-C, denoted TAR@FAR= 1e− 4.

5.2 Ablation Study
Different FR approaches with/without MHLR. In Tab. 1,
we re-implement CosFace and ArcFace. After that, we
train ResNet100 by them on different datasets with/without
MHLR. The CosFace and ArcFace with MHLR are denoted
as Cos+MHLR and Arc+MHLR. All approaches are trained
on 1×GPU. Without MHLR, ArcFace and CosFace need
to train models for 20 epochs in common practice, which
takes 36H (Hours) on MS1MV3 and 108H on WebFace12M.
That represents a high time cost for researchers training a
FR model. On the contrary, MHLR trains models for only
5 epochs, which takes 9H on MS1MV3 and 30H on Web-
Face12M. That is nearly 1/4 of the training time required by
ArcFace and CosFace. Moreover, on MS1MV3, the accuracy
of ArcFace is 96.83 while that of Arc+MHLR is 96.41. On
WebFace12M, the accuracy of CosFace is 97.55 while that
of Cos+MHLR is 97.20. It means that the accuracy drop of



Method Dataset Epoch Time IJB-B IJB-C
ArcFace MS1MV3 20 36H 95.03 96.73
ArcFace WebFace4M 20 32H 94.91 96.75
ArcFace WebFace12M 20 107H 95.22 97.31
CosFace MS1MV3 20 36H 95.02 96.54
CosFace WebFace4M 20 32H 94.60 96.68
CosFace WebFace12M 20 108H 95.41 97.55

Arc+MHLR MS1MV3 5 9H 94.98 96.21
Arc+MHLR WebFace4M 5 8H 94.85 96.17
Arc+MHLR WebFace12M 5 30H 95.37 96.99
Cos+MHLR MS1MV3 5 9H 94.91 96.11
Cos+MHLR WebFace4M 5 8H 94.16 96.04
Cos+MHLR WebFace12M 5 30H 95.46 97.08

Table 1: The performance of ArcFace and CosFace with/without
MHLR. ResNet100 is selected as the model and trained with
1×GPU. TAR@FAR= 1e − 4 is reported as the accuracy (%) on
IJB-B and IJB-C

MHLR is tiny, which is less than 1%. Here, we would like to
propose a question if it is worth to chase the small accuracy
increasing while shutting the door of large-scale FR training
for the majority of researchers. In summary, MHLR gives a
competitive result with only 1/4 of the original training time.
Note we have not re-implemented PFC yet, and thus it is in-
feasible to train models on WebFace42M with 1×GPU since
the limitation of the GPU memory.

MHLR across different ResNet models In Tab. 2, we
train different models on MS1MV3 and WebFace12M. All
models are trained for 5 epochs on 1×GPU. Note the train-
ing on MV1MV3 is ArcFace+MHLR while that on Web-
Face12M is CosFace+MHLR. We witness a time increasing
from ResNet18 all the way to ResNet200. More specifically,
on MS1MV3, the training time and throughput are from 4H
and 1876 images/s to 16H and 450 images/s respectively. On
WebFace12M, the training time and the throughput are from
18H and 1015 images/s to 30H and 590 images/s respectively.
Note we are not training ResNet200 on WebFace12M, since
it is more than a NVIDIA Geforce RTX 4090 can handle. In
addition, we observe a more significant training time increas-
ing for ResNet50 and ResNet100. It indicates the computa-
tional bottleneck is not on the model for ResNet18, ResNet34,
and ResNet50. By contrast, the computational time required
by ResNet50 and ResNet100 overwhelms the computational
time required by others. For instance, on MS1MV3, the train-
ing time of ResNet18 and ResNet34 do not have much differ-
ence if we do not arrange more threads in reading images,
since the bottleneck is the speed of data loading. We can also
observe that the throughput on WebFace12M is lower than
that on MS1MV3. The reason is that the number of identi-
ties in WebFace12M is more than that in MS1MV3. Thus,
it requires more computational time for the FC layer in the
model. For accuracy, it is observed an increasing trend from
ResNet 18 to ResNet200.

5.3 Hyperparameter Study
Initial learning rate γ0 and decay factor δ In Fig. 4, we
grid search the initial learning rate γ0 and decay factor δ. All
results are reported based on ResNet100 trained for 5 epochs

Model Dataset images/s Time IJB-B IJB-C
ResNet18 MS1MV3 1876 4H 91.51 93.62
ResNet34 MS1MV3 1423 5H 93.63 95.31
ResNet50 MS1MV3 1203 6H 94.69 96.12
ResNet100 MS1MV3 786 9H 95.03 96.41
ResNet200 MS1MV3 450 16H 95.16 96.65

ResNet18 WebFace12M 1015 18H 92.13 94.43
ResNet34 WebFace12M 878 20H 94.12 95.87
ResNet50 WebFace12M 783 23H 95.25 96.85
ResNet100 WebFace12M 590 30H 95.68 97.20

Table 2: The performance of MHLR training different models. All
models are trained for 5 epochs with 1×GPU. TAR@FAR= 1e− 4
is reported as the accuracy (%) on IJB-B and IJB-C

(a) The heatmap of γ0 and δ (b) The impact of decay factor δ

Figure 4: Grid searching for the initial learning rate γ0 and de-
cay factor δ. In (a), it shows the heatmap of γ0 and δ, where
TAR@FAR= 1e − 4 on IJB-C is reported as the accuracy (%). In
(b), it illustrates the impact of the decay factor δ, where δ = 8 for
Γ1 and δ = 2 for Γ2. Thus, Γ1 declines fast and LEMA

1 goes sta-
tionary early

(a) The heatmap of λ and τ (b) Relationship of λ and DEMA
t

Figure 5: Grid searching for the threshold λ and tolerance τ in
MHLR. In (a), it shows the heatmap of TAR@FAR= 1e − 4 on
IJB-C is reported as the accuracy (%). In (b), it illustrates the rela-
tionship of different λ and DEMA

t . The curve of DEMA
t under λ

will be treated as the signal to schedule the learning rate

on MS1MV3 with 1×GPU, while the test set is IJB-C. We
observe an accuracy drop while δ is increasing, where a large
δ represents the learning rate γt will decrease fast in the train-
ing process. That indicates a large δ is harmful for large-scale
FR training, since the model will stop learning if γt becomes
tiny in a very short time, as shown in Fig. 4(b). We also wit-
ness that γ0 = 0.02 achieves the highest accuracy, since a
small γt makes the learning stop while a big γt makes the
learning unstable. In summary, we set γ0 = 0.02 and δ = 2
in this paper.



Method Dataset Model #GPUs Epoch LFW CFP-FP AgeDB-30 IJB-B IJB-C
1 : 1 Verification Accuracy TAR@FAR=1e-4

CosFace [Wang et al., 2018b] Private 64-layer CNN 8 21 99.81 98.12 98.11 94.80 96.37
ArcFace [Deng et al., 2019a] MS1MV2 ResNet100 4 16 99.83 98.27 98.28 94.25 96.03
CurricularFace [Huang et al., 2020] MS1MV2 ResNet100 4 24 99.80 98.37 98.32 94.80 96.10
Sub-center [Deng et al., 2020] MS1MV3 ResNet100 8 24 99.80 98.80 98.31 94.94 96.28
MagFace [Meng et al., 2021] MS1MV2 ResNet100 8 25 99.83 98.46 98.17 94.08 95.97
ElasticFace [Boutros et al., 2022] MS1MV2 ResNet100 4 26 99.80 98.73 98.28 95.43 96.65
VPL [Deng et al., 2021b] Cleaned MS1M ResNet100 8 20 99.83 99.11 98.60 95.56 96.76
F2C [Wang et al., 2022] MS1MV2 ResNet50 8 20 99.50 98.46 97.83 - 94.91
F2C [Wang et al., 2022] WebFace42M ResNet100 8 20 99.83 99.33 98.33 - 97.31
Virtual FC [Li et al., 2021b] Cleaned MS1M ResNet100 1 16 99.38 95.55 - 61.44 71.47
PFC-0.3 [An et al., 2022] WebFace4M ResNet100 8 20 99.85 99.23 98.01 95.64 96.80
PFC-0.3 [An et al., 2022] WebFace12M ResNet100 8 20 99.83 99.40 98.53 96.31 97.58
PFC-0.3 [An et al., 2022] WebFace42M ResNet100 32 20 99.85 99.40 98.60 96.47 97.82

MHLR MS1MV2 ResNet100 1 5 99.80 98.39 98.11 94.98 96.33
MHLR MS1MV3 ResNet100 1 5 99.80 98.53 98.12 95.03 96.41
MHLR WebFace4M ResNet100 1 5 99.65 98.63 97.57 94.36 96.18
MHLR WebFace8M ResNet100 1 5 99.85 99.24 97.90 95.58 97.09
MHLR WebFace12M ResNet50 1 5 99.80 99.09 97.92 95.25 96.85
MHLR WebFace12M ResNet100 1 5 99.83 99.17 98.02 95.68 97.20

Table 3: Performance comparisons between MHLR and other state-of-the-art FR methods on various benchmarks. For LFW, CFP-FP, and
AgeDB-30, 1:1 verification accuracy (%) is reported. For IJB-B and IJB-C, TAR@FAR= 1e− 4 is reported as the accuracy (%).

The threshold λ and tolerance τ in MHLR In Fig. 5, we
grid search the threshold λ and tolerance τ in MHLR. All re-
sults are reported based on ResNet100 trained for 5 epochs
on MS1MV3 with 1×GPU, while the test set is IJB-C. We
witness an accuracy decline while τ is decreasing, which in-
dicates a small τ is too sensitive and hurried to schedule the
learning rate. To the opposite, a big τ is slow in stationary
subsequence detection. We also observe that λ = 5e− 5 has
the highest accuracy. The reason is, as shown in Fig. 5(b), a
small λ will filter the majority ofDEMA

t while a big λ consid-
ers too many DEMA

t as the signal of scheduling the learning
rate. In summary, we set λ = 5e − 5 and τ = 0.05 in this
paper.

5.4 Comparison with SOTA methods
In Tab. 3, we compared MHLR with other state-of-the-art
(SOTA) methods. Other methods employ at least ×4 GPUs
and averagely 20 epochs, while MHLR only uses x1 GPU and
5 epochs. Thus, it requires only 1/4 of the training time com-
pared to other methods. For example, it only requires 30H to
train ResNet100 on WebFace12M with MHLR, as shown in
Tab. 2. Comparing the accuracy of MHLR with other meth-
ods, its performance is competitive. For instance, on Web-
Face12M, the accuracy of MHLR is 97.20 while that of PFC-
0.3 is 97.58. Yet, PFC-0.3 needs to be trained with 8×GPUs
for 20 epochs, which is around 24 hours for training. Thus,
we can conclude that it is meaningful doing large-scale train-
ing with 1×GPU.

In addition, PFC-0.3 and F2C also train ResNet100 on
WebFace42M, which contains 42M images with 2M identi-
ties. The accuracy of PFC-0.3 and F2C on IJB-C are 97.82
and 97.31 respectively. In order to reach such a high per-
formance, their training cost, including time and hardware
resources, is huge. To be specific, it takes PFC nearly 25H
to train ResNet100 on WebFace42M with 32×GPUs, and

it takes F2C days to train it on WebFace42M with only
8×GPUs. Nonetheless, MHLR is able to train ResNet100
on WebFace12M, not Webface42M, to get 97.20 on IJB-C by
30H with only 1×GPU. The accuracy gap is in 1%. There-
fore, we conclude that large-scale FR training now faces the
law of diminishing marginal utility, which means the cost in-
crease rapidly in order to improve a small amount of the per-
formance for FR models.

Please note Virtual FC also tries to train ResNet100 on
self-cleaned MS1M with 1×GPU. Yet, it trains the model for
16 epochs, which requires more training time compared to
MHLR for only 5 epochs. Besides, its accuracy on IJB-B and
IJB-C has a large gap compared to other methods as reported
in [An et al., 2022]. By contrast, on MS1MV2 and MS1MV3,
MHLR is competitive with other methods.

6 Conclusion
In this paper, we propose Moving Haar Learning Rate
(MHLR) scheduler for large-scale face recognition training.
MHLR schedules the learning rate promptly and accurately
in order to reduce the converging time of FR models. As a re-
sult, MHLR is able to train the model with 1/4 of its original
training time on 1×GPU by sacrificing less than 1% accuracy.
We conclude that large-scale face recognition training now
faces the law of diminishing marginal utility, which means
the cost increase rapidly in order to improve a small amount
of the performance for FR models.

Limitations. We have not implemented PFC yet, and thus
training models on WebFace42M is still infeasible with
1×GPU. In the future, we will implement PFC+MHLR to
validate the performance of trained models on WebFace42M
with only 1×GPU. Afterwards, we will also conduct experi-
ments on Masked Face Recognition (MFR) challenge [Deng
et al., 2021a].



Potential Societal Impacts. MHLR opens the gate of
large-scale face recognition training to many researchers who
do not have massive computing power, which is caused by
lacking of expensive hardware sources. By attracting more
researchers, this research direction will become thriving.
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