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ABSTRACT
The remarkable performance of Multimodal Large Language Mod-
els (MLLMs) has unequivocally demonstrated their proficient un-
derstanding capabilities in handling a wide array of visual tasks.
Nevertheless, the opaque nature of their black-box reasoning pro-
cesses persists as an enigma, rendering them uninterpretable and
struggling with hallucination. Their ability to execute intricate
compositional reasoning tasks is also constrained, culminating in a
stagnation of learning progression for these models. In this work,
we introduce Fact, a novel paradigm designed to generate mul-
timodal rationales that are faithful, concise, and transferable for
teaching MLLMs. This paradigm utilizes verifiable visual program-
ming to generate executable code guaranteeing faithfulness and
precision. Subsequently, through a series of operations including
pruning, merging, and bridging, the rationale enhances its concise-
ness. Furthermore, we filter rationales that can be transferred to
end-to-end paradigms from programming paradigms to guarantee
transferability. Empirical evidence from experiments demonstrates
the superiority of our method across models of varying parameter
sizes, significantly enhancing their compositional reasoning and
generalization ability. Our approach also reduces hallucinations
owing to its high correlation between images and text.

1 INTRODUCTION
Multimodal Large Language Models (MLLMs) [5, 7, 19, 21, 44, 45]
enhance the natural and sophisticated interaction between humans
and machines, offering distinct advantages in solving visual tasks
such as image grounding [23], Visual Question Answering (VQA)

†The corresponding author.

Query：
Is the surfboard on right both long and blue?

MiniGPT4

MiniGPT4
Fact

1. Faithful Program Generation 2. Concise CoT Conversion

Execute trace
Ⅲ. BridgeⅡ. MergeⅠ. Prune

3. Transferable Verification

Yes , it is long and blue.

4. Distillation Step-by-Step

- -

- -Filter utility score >= 0 L = Lrationale + Llabel

There are two surfboards in picture.
While the right one is long 
but not blue.
Thus, the answer is no.

def execute_command(image):
        image_patch = ImagePatch(image)
        surfboards = image_patch.find("surfboard")
        for surfboard in surfboards:
                if surfboard.center > image_patch.center:
                        return  surfboard.verify_property("surfboard", "long") and

     surfboard.verify_property("surfboard", "blue")

Program Example

Fact:

Figure 1: MLLMs exhibit limited proficiency in combinatorial
reasoning and spatial understanding. While Fact can signifi-
cantly enhance their capabilities in performing visual tasks.

[16, 29], and scene graph generation [43]. However, these end-to-
end large models exhibit an almost black-box level of interpretabil-
ity: their reasoning processes remain inexplicable, merely lever-
aging their formidable representational capabilities to fit spurious
correlations [30], thus increasing the risk of hallucinations. Fur-
thermore, the compositional reasoning ability of these models is
limited [4, 8, 27] (Figure 1). Even the most advanced state-of-the-art
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(SOTA) proprietary MLLM, such as GPT-4V [32], also struggles to
perform well in tasks involving counting [1], spatial reasoning [24]
and intricate VQA tasks [16, 29].

In this paper, our objective is to enhance the explicit interme-
diate reasoning capabilities of MLLMs by distilling interpretable
rationales. An ideal rationale should embody three properties: 1)
Faithfulness. Faithfulness necessitates that the rationale’s reason-
ing process remains staunchly aligned with the model’s conclusions.
This alignment is paramount as it ensures the integrity and reliabil-
ity of the reasoning process, ultimately leading to conclusions that
are both logical and accurate. However, verifying the faithfulness
of a rationale poses significant challenges. It is not uncommon for
rationales to resemble logical reasoning superficially [33], yet upon
closer inspection, they may lack a direct correlation to the intended
conclusion [40], undermining the model’s effectiveness and trust-
worthiness. 2) Conciseness. The principle of conciseness stresses
the importance of eliminating superfluous in-context information
that does not contribute to the reasoning process. The presence of ir-
relevant information can obfuscate the model’s reasoning pathway,
leading to reduced decision-making accuracy [17, 36]. Extracting a
concise and clear rationale is still a process fraught with difficulty,
yet such brevity aids in efficiency. 3) Transferability. Transfer-
ability refers to the ability of a rationale to encapsulate the model’s
explicit inductive understanding of knowledge in a manner that is
applicable across various models, paradigms, and scales. A transfer-
able rationale enhances the generalizability of the model’s learned
reasoning [28], facilitating the sharing of insights and improve-
ments across different models. However, achieving a high degree of
transferability is challenging due to the diverse architectures and
learning mechanisms employed by different models.

However, obtaining rationales that satisfy the aforementioned
properties is a challenging endeavor. Firstly, the high costs and low
efficiency of manually annotating rationales make this approach
impractical for large-scale applications. Furthermore, relying on
templated rationales [20, 30, 46], while beneficial for specific tasks,
severely limits adaptability and scalability. Their rigid structure pre-
cludes the possibility of nuanced adaptation, confining their utility
to narrowly defined scenarios. Moreover, the use of scene graphs
[13] and neural symbols[33, 42], although innovative, demands a
level of understanding and utilizing external tools that not all mod-
els possess. This approach is hindered by its poor transferability.
Given these limitations, there is an urgent need to improve the
quality of rationale to meet its diverse requirements effectively.

In this work, we explore a different novel method: Fact, as il-
lustrated in Figure 1, leveraging the powerful symbolic reasoning
capabilities of code-pretrained models to construct a faithful, con-
cise, and transferable natural language rationale, which is then
applied in teaching MLLMs. Specifically, 1) we generate faith-
ful code by employing a code generation model [31] to utilize
its compositional capabilities of various tools for the visual task.
Then we record the execute trace as a draft chain-of-thought (CoT),
retaining only those snippets that compile successfully and yield
correct outcomes. 2) We define three operations on the rationales:
pruning, merging, and bridging, to simplify code execute trace
into natural language by pruning irrelevance in abstract syntax tree
(AST), merging duplicates in symbolic traces, and bridging logical
gaps to form coherent CoT. A language model [31] is then utilized

to seamlessly bridge these gaps and refine the narrative. 3) We filter
transferable rationales that successfully transfer programmatic
reasonings to end-to-end models [3, 47] and 4) distillate the ra-
tionale step-by-step [14, 34], aiming to enhance the quality and
applicability of distilled knowledge across various domains.

In our paradigm, we first ensure that the rationales are cor-
rect and rigorous: Given that programs can accurately guide the
derivation of answers, the rationales based on these programs can
also faithfully represent both the reasoning process and its out-
comes [37]. Secondly, our rationales are concise and brief: the
unexecuted branches within programs are pruned, the repetitive
assignments in loops are merged, the repeated uses of tool combi-
nations are inductively summarized, and the gaps in the reasoning
process are bridged. Thirdly, our rationales are transferable and
consistent: the CoT rationales derived from generated from pro-
gramming execution traces are selectively retained, only empha-
sizing those that aid end-to-end models in achieving the correct
answers through logical reasoning.

Our experiments demonstrate that CoT rationales, characterized
by faithfulness, conciseness, and transferability, generally enhance
MLLM performance on downstream tasks [1, 16, 23, 29]. Trained
with these rationales, MLLMs not only show robust capabilities in
counting and compositional reasoning tasks but also guide large
vision models to comprehend and reason more logically. The direct-
ness of the rationales, devoid of extraneous irrelevance, effectively
reduces the occurrence of hallucinations. Ablation studies within
our research framework further substantiate the indispensability
of these three attributes, affirming the superiority of our method
from multiple perspectives.

Accordingly, the contributions are delineated as follows:

• We introduce an innovative paradigm, Fact, to distill code-
pretrained models’ logic into a faithful, concise, and transfer-
able rationale for teaching MLLMs, enabling them to harness
advanced reasoning capabilities.

• We refine CoT rationales through controllable editing oper-
ations—pruning, merging, and bridging—to enhance their
quality and coherence. Furthermore, we have also trained
a compact model to identify logical gaps. These operations
effectively address challenges in maintaining relevance in
distilled knowledge.

• We validate that the CoT rationale generated through a
programming-based approach is applicable for distillation
into end-to-end models. It underscores the practicality of
our CoT rationales generation paradigm, showcasing its ver-
satility and effectiveness in enhancing model learning.

• Highlighting the versatility and transferability of our ap-
proach, we demonstrate its capability to enhance the rea-
soning abilities of MLLMs across various sizes. Our evalua-
tion on tasks like GQA [16], OKVQA [29], TallyQA [1], and
COCO [23] reveals significant performance improvements
in MLLMs, and effectively reduces hallucinations by being
devoid of extraneous irrelevance.
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1.Faithful Program 
Generation 

2.Concise CoT 
Conversion 

4.Distillation 

Query:
 How many people are 

   wearing the hat?

def execute_command(image):
 image_patch = ImagePatch(image)
 person_patches = image_patch.find("person")[1]
 hat_patch = image_patch.find("hat")[0]
 person_in_hat = 0
 for person_patch in person_patches:
 if hat_patch.overlaps_with(person_patch):[2]
   person_in_hat += 1

 return person_in_hat

Prune:

Merge:

Bridge:

.overlaps_with(  )

.overlaps_with(  )

{person_in_hat : 0} 
{person_in_hat : 1}

Two persons (22,57,80,150) 
(83,58,140,148) in the picture. <no-gap>
One hat (96,112,119,148)
in the picture. <no-gap>
The person (83,58,140,148) is overlap with
the hat (96,112,119,148). <no-gap>
The number of person in hat is 1.

Query
Image

Query
Image

3.Transferable Rationale
Verification

Rationale:

2 1 Useful

1 1 Unsure

2 Non-Useful

Gold Answer = 1
2

L = Lrationale + Llabel

False

True

 + Rationale

There are two people at
(22,57,80,150)  (83,58,140,148) 
and one hat at (96,112,119,148).
Upon detection, the person at 
(83,58,140,148) is wearing the hat 
(96,112,119,148).
Thus, the number of people 
wearing a hat is 1.

Image:

[1] The word “people” will be replaced by “person” in the
find function for higher accuracy.
[2] The expression should be overlaps_with(patch.left,
patch.lower, patch.right, patch.upper).

Input:

Output:

Query
Image

+
Rationale

Query
Image

+
Label

1
There are ...
Upon ...
Thus, ...

Output:

Step-by-Step 
Rationale fine-tuning:

MLLM-Fact

MLLM

End-to-End
Models

reassignCode Pre-trained Model:

Figure 2: The pipeline of Fact: 1) Generate executable code from an image and query using a code generation engine and retain
code that correctly reasons against expected answers. 2) Simplify code into natural language by pruning irrelevant AST nodes,
merging duplicates in symbolic traces, and filling logical gaps to form coherent CoT. 3) Evaluate and filter CoTs for end-to-end
model feasibility. 4) Distill refined, accurate CoTs into MLLMs for enhanced adaptability.

2 RELATEDWORK
2.1 Visual Program Distillation
Visual programming is a burgeoning field that employs neural
symbols [12] or Python modules [38] for task synthesis and exe-
cution. While it offers enhanced performance and interpretability
through precise image manipulation via code, its dependency on
multiple models and prolonged inference times necessitates sub-
stantial computational resources. In contrast, our approach and
Visual Program Distillation (VPD) [15] diverge significantly in han-
dling program-based methods. VPD simplifies multimodal learning
by distilling tool use and programmatic reasoning into smaller mod-
els but retains unnecessary execution traces, lacks precise spatial
task execution, and overlooks the verification of transferability.
Our method addresses these limitations through Efficient Rationale
Editing: Unlike VPD, we implement controllable editing to refine
programs into concise rationales; Enhanced Spatial Task Execu-
tion: Our approach exhibits superior spatial reasoning capabilities,
enabling more accurate completion of spatial tasks compared to
VPD; Verified Transferability: We also emphasize and validate the
transferability of program-based rationales to end-to-end models
which VPD simply ignored it. These distinctions underscore our
contribution to integrating complex reasoning within MLLMs.

2.2 Rationale Distillation
Deploying LLMs in practical applications is challenging due to their
substantial memory and computational demands. A feasible ap-
proach to mitigate these challenges is training smaller, task-specific
models via fine-tuning or distillation with labels generated by LLMs.
While effective, these strategies often necessitate extensive training
data to match the performance with LLMs [25, 26]. As a solution,

Distillation Step-by-Step [14] emerges, enabling smaller models to
potentially surpass LLMs with less training data. However, exist-
ing efforts rarely account for the quality of distillation data and
its transferability between large and small models. This neglect
can result in the distillation process incorporating irrelevant in-
formation, which diverts the smaller model and detracts from its
performance. Our approach emphasizes the quality and relevance
of distilled information, tackling the common pitfalls of distillation.
Furthermore, our method stands out by offering verifiability and
transferability. This ensures that the distilled knowledge is not only
accurate and relevant but also adaptable across different models
and tasks. The ability to verify the correctness and applicability of
our CoT rationales sets our work apart, underscoring its novelty
and effectiveness in the context of distillation methodologies.

3 METHOD
To furnishMLLMswith faithful, concise, and transferable rationales,
we introduce Fact, a comprehensive, model-agnostic paradigm for
generating, editing, and filtering precise CoT rationale framework,
as depicted in Figure 2. Given an image and a corresponding query,
we first generate executable code and derive an output, comparing
it against the expected answer and retaining the code that leads to
correct reasoning (Section 3.1). To transfer the programming lan-
guage and its embedded knowledge toMLLMs in the form of natural
language, we undertake a series of operations: pruning irrelevant
nodes from the AST, merging the duplicate items in symbolic traces,
and bridging language expressions with logical gaps, thereby gener-
ating linguistically and logical coherent CoT rationales (Section 3.2).
To ensure that the CoTs generated via the programming-based par-
adigm are feasible for training end-to-end models, we evaluate
them by end-to-end models for effective filtration and verification
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Assign
targets = list
value=List(1,2)

assign   list : { 1 , 2 } 

return   count : 1

assign        count : 0 
item            2 
condition   item > 1
assign   count : 1       plus_one

def function():

  list = [1,2]

  count = 0

  for item in list:

    if item > 1:

      count = plus_one(count)

 return count

Assign
targets = count
value= Constant(0)

For
target = item(1)
iter = list

For
target = item(2)
iter = list

If
test = Gt(item(1),1)
iter = list

orelse
None

If
test = Gt(item(2),1)
iter = list

orelse
None

Return
value = 1

: AST Node*

: Executed Node

: Unexecuted Node

: Prune

Program . Prune

Assign
targets = count
value = plus_one(0)

Assign
targets = count
value = plus_one(0)

(Being replaced by new one)

. Merge

Start with the list {1, 2}. <gap>
Identify that 2 is greater than 1. <no-gap>
Increment count to 1.<no-gap>
The count of numbers in the list bigger than one is 1.

For each item, check if it's greater than 1.

   . Bridge

LLM

1

2

3

4

5

6

7

8

1
2
5
6
7
8

: Execution order1
* Our method only uses the nodes of the Abstract Syntax Tree (AST) to edit the CoT during execution. For simplicity, we do not draw the AST structure and node in detail.

Ⅰ Ⅱ

Ⅲ

Figure 3: We use a Python program to explain our editing operation: I) Parse executed code lines into corresponding AST
nodes and prune unused loops and conditions, organizing output into a symbolic trace. II) Merge iterated outputs and update
variables, converting the symbolic trace to natural language using an LLM. III) Train a small model to identify gaps between
statements, filling it with an LLM to complete the logic of the CoT rationale for clarity and coherence.

(Section 3.3). Ultimately, we can get accurate, non-redundant CoT
rationales that are adaptable to various end-to-end models, and
ready to be distilled into MLLMs (Section 3.4).

3.1 Faithful Program Generation
The reason for utilizing the execution trace of visual programming
as the initial CoT rationale lies in the fact that the execution trace
faithfully leads to its own answer. A generated program itself em-
bodies a distilled manifestation of a large language model’s capacity
to amalgamate and apply knowledge. Furthermore, the adherence
of code output to established syntactical rules allows for the veri-
fiability of the program’s authenticity. Thus, programming-based
rationale that accurately produces the correct answer guarantees
the fidelity of its reasoning process.

More specifically, for a given image 𝑥 and a corresponding query
𝑞, we employ a program generator 𝜋 (GPT-3.5-turbo [31]) to gener-
ate code 𝑧 = 𝜋 (𝑥, 𝑞), the necessary APIs and tool models involved
during this process we followed the same configuration with the
practices established by ViperGPT [38]. However, distinct from
these methodologies, we have re-engineered a new interpreter 𝜙 ,
which dynamically edits the code during execution to manage the
trace 𝑡 = 𝜙 (𝑧, 𝑥). We expound on these operations in Section 3.2.
Due to Python’s extensive array of built-in functions and logical
statements, the execution of a program mirrors the process of solv-
ing a problem, thereby ensuring the relevance and accuracy of the
context, leading to the correct outcome. By comparing the pro-
gram’s output against expected answers, we identify and preserve
the correct instances as candidate solutions for further analysis.

Our approach emphasizes fidelity by integrating the interpreter’s
logical capabilities with the perceptual strengths of pre-trained
models. This synergy ensures that the generated CoTs are not only
interpretable but faithful to the represented logic, mirroring the
reliability of their conclusions. Thus, Fact can guarantee that CoTs

reflect a true and faithful rationale, maintaining the integrity and
authenticity of the underlying reasoning process.

3.2 Concise CoT Conversion
Directly utilizing code for distillation learning is not advantageous
due to redundancies within the code, like unmet conditionals in if
statements, and repetitive outputs from for loops. Previous work
[17, 36] demonstrated that models are prone to distraction by irrel-
evance. Moreover, for models not trained on code corpora, under-
standing programming becomes significantly challenging. In light
of this, we propose three operations to transform program traces
into concise CoT rationales: dynamic pruning, symbolic merging,
and logical bridging. These operations aim to refine the generated
CoTs by removing irrelevance, combining repetition for concise-
ness, and bridging gaps in logicen for coherence, thereby enhancing
the quality and relevance of the distilled content for MLLMs.

Dynamic Pruning: The reason for taking the pruning operation
is that the rationale should explain why it is, rather than why it
is not. To this end, we initially construct the code 𝑧 into an AST,
denoted 𝑡 = {𝑉 , 𝐸}, where 𝑉 = {𝑣1, ..., 𝑣𝑛} represents the vertices
and 𝐸 = {𝑒1, ..., 𝑒𝑚} represents the edges. The AST facilitates more
granular modifications via node editing compared to direct manipu-
lations of the code text alone. Given a specific image, corresponding
query, and the generated program, the final output answer will be
unique. Thus, variables and code statements that are not used in
the execution process should be discarded. For example, within
conditional statements (if ), if the condition is not met, we should
not record this condition as false, since the program does not enter
the scope of the if statement. By doing this, we can remove content
that is irrelevant to the context of the reasoning process.

Symbolic Merging: The rationale we envisage should exhibit
inductive capabilities rather than merely iterative repetitions. Un-
fortunately, programs are inherently adept at executing loops but
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What is the lady doing? def execute_command(image):
        image_patch = ImagePatch(image)
        lady_patches = image_patch.find("lady")
        lady_patch = lady_patches[0]
        action = lady_patch.simple_query("What is the lady doing?")
        return action

assign  image_patch : ImagePatch(0,0,224,224)                ImagePatch 
assign  lady_patches  : [ImagePatch(118,0,224,178)]             find 
assign  lady_patch : ImagePatch(118,0,224,178)   
assign  action : cooking                simple_query 
return value : cooking 

The entire image is represented by 0,0,224,224.
A lady is identified within the image, represented by 118,0,224,178. 
To determine what is the lady doing, we check by simple_query and get action cooking. 
Therefore, we deduce that "the lady is cooking."

Interpretable
Program

Symbolic
Trace

CoT
Rationale

def execute_command(image):
        window_patches = ImagePatch(image).find("window")
        window_patch = window_patches[0]
        is_closed = window_patch.verify_property("window", "closed")
        return bool_to_yesno(is_closed)

We identify the window_patch at 104,140,173,217 within the image.
We check window_patch has the property 'is_closed' by verify_property.
The window_patch has the property 'closed', indicating that the window is closed.

assign  window_patches : [ImagePatch(104,140,173,217)]      find 
assign  window_patch : ImagePatch(104,140,173,217)   
assign  is_closed : True            verify_property 
return  value : yes 

Does the white window look closed?Interpretable
Program

Symbolic
Trace

CoT
Rationale

Figure 4: We show several examples of the process that generates CoT rationale for distillation.

typically lack the capacity for induction. To mitigate this, we edit
each node preserved through the pruning process, encoding the
output as a symbolic trace based on a defined schema:

• Operation: The attributes of different operation nodes in AST
represent their corresponding operations, such as assign,
function, loop, and condition. We can modify them through
the “generic_visit” functions or “visit_If ” etc.

• Arguments: We use a dictionary to store the variables and
their names involved in the operation process.

• Invocation: If there is a function or Python tool utilized
within an operation, it is noted under invocation, which is
an optional component.

For instance, a code line like “num = len(patches)” would be recorded
after execution as "assigned num:8 len". This approach allows for
the effective tracking and overlaying of repeated variables after pro-
gram execution, retaining only the last symbolic trace of a variable.
Such a method significantly curtails redundancy by eschewing the
retention of all outputs, thereby streamlining the CoT trace into a
more coherent and concise CoT rationale.

Logical Bridging: After the processes of pruning and merging,
we cannot guarantee that all the retained logical relationships re-
main intact. Consequently, directly using text CoT transfer from
symbolic trace by language models as distilled data is impractical.
To address this, we have specially trained a lightweight network
to determine whether a gap exists between sentences. This was
achieved by fine-tuning a T5 [6] model, leveraging articles from
the DROP dataset [9], renowned for its logical reasoning relational
content, as positive instances. In contrast, articles with their sen-
tence order arbitrarily shuffled served as negative instances. If it is

the relationship between the preceding and following sentences,
a <no-gap> tag is inserted between them; otherwise, a <gap> tag
is used to indicate the logical discontinuity. It is important to note
that we do not employ any other manually annotated labels or
additional tags from the DROP [9] dataset, thus avoiding the risk
of data leakage.

Ultimately, we employ a language model to not only fill in the
gaps within sentences but also to significantly enhance the underly-
ing reasoning process. This refined the original content, culminating
in the development of a concise and coherent CoT.

3.3 CoT Transferability Verification
Previous research [18] has investigated whether rationales gener-
ated by machines remain applicable to humans, yet there has been
no exploration into whether the reasoning paradigms of visual pro-
gramming succeed in transferring knowledge to end-to-end vision
models. We define the improvement that rationales brought to un-
trained models as their utility score, which serves as a measure
for evaluating the transferability of CoT rationales, especially for
those rationales generated by visual programming transferring to
end-to-end models. Historically, the process of directly distilling
CoTs into end-to-end downstream models proceeded without con-
sidering whether it was appropriate for the student model. Our
research aims to address this oversight by ensuring that distilled
rationales not only remain pertinent but also significantly boost
the capabilities of MLLMs.

We adopt the same categorization as GEN-U [18], namely Useful,
Non-Useful, and Unsure. Specifically, for end-to-end models like
OpenFlamingo [3] MiniGPT4 [47] and mPlug-Owl [44] if they pre-
viously failed to solve a task correctly and after the introduction of
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Table 1: Compare Fact with per-train MLLMs and corresponding instruct model on zero-shot benchmarks.

Language Model COCO Flickr 30K VQAv2 GQA OK-VQA TallyQA
Simple Complex

CosMo (2B) [41] OPT-IML-1.8B 79.9 51.3 46.7 - 28.3 - -
Flamingo (3B) [2] Chinchilla-1.4B 73.0 60.6 49.2 - 41.2 - -
OpenFlamingo (3B) [3] MPT-1B 74.9 52.3 44.6 30.1 28.2 64.4 59.3

OpenFlamingo-Instruct (3B) generalist MPT-1B 79.7 53.8 45.9 30.9 30.3 65.9 61.8
OpenFlamingo-Fact (3B) generalist MPT-1B 85.3 56.6 49.2 32.4 31.8 70.1 65.7

OpenFlamingo-Instruct (3B) specialist MPT-1B - - 47.7 32.6 31.7 70.1 66.5
OpenFlamingo-Fact (3B) specialist MPT-1B - - 51.0 35.5 35.7 77.6 68.0

VL-GPT (7B) [48] LLaMA-7B 116.4 - 51.7 34.6 35.8 - -
BLIP-2 (7B) [21] Vicuna-7B - 74.9 65.0 41.0 45.9 - -
MiniGPT4 (7B) [47] Vicuna-7B 99.6 76.3 46.9 34.5 35.1 69.5 60.5

MiniGPT4-Instruct (7B) generalist Vicuna-7B 105.5 78.5 48.2 34.9 36.9 71.3 63.8
MiniGPT4-Fact (7B) generalist Vicuna-7B 116.8 83.7 50.8 36.6 38.3 74.4 66.9

MiniGPT4-Instruct (7B) specialist Vicuna-7B - - 51.1 37.2 40.6 75.2 67.2
MiniGPT4-Fact (7B) specialist Vicuna-7B - - 54.2 39.8 42.0 80.7 71.3

a rationale corrects their answers, then the rationale is deemed Use-
ful (+1 score). Conversely, if the models continue to solve the task
incorrectly even after the rationales have been presented, this indi-
cates that the rationale is Non-Useful (-1 score). Furthermore, if the
models correctly solve the task both before and after the rationale
is demonstrated, we cannot definitively determine the role of the
rationale in aiding task resolution. We refer to these rationales as
Unsure (+0 score). Ultimately, we will provide programming-based
rationales for these end-to-end models and retain the rationales
whose score is greater than or equal to 0 as the final knowledge
taught to the MLLMs.

This approach ensures a focus on rationales that potentially en-
hance the performance of student models in machine learning by
evaluating their usefulness thereby improving knowledge transfer-
ability between models.

3.4 Distillation Step-by-Step
In our approach, instead of using rationales as additional model
inputs, we frame learning with rationales as a multi-task problem,
we adopt the same loss function as Distillation Step-by-Step [14]
to train the model with both label and rationale as input. In other
words, the 𝑓 (𝑥, 𝑞) → 𝑦 and 𝑓 (𝑥, 𝑞) → 𝑟 are trained with:

𝐿𝑙𝑎𝑏𝑒𝑙 =
1
𝑁

𝑁∑︁
𝑖=1

𝑙 (𝑓 (𝑥𝑖 , 𝑞𝑖 ), 𝑦𝑖 )

𝐿𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

𝑙 (𝑓 (𝑥𝑖 , 𝑞𝑖 ), 𝑟𝑖 )

, where 𝑟 represents the Cot rationales corresponding to picture
𝑥 and question 𝑞, and 𝑦 represents the labeled answer of the data
set. This formula enables it not only to predict the task labels but
also to generate the corresponding rationales given the text inputs.
Thus, the loss function is formulated as :

𝐿 = 𝐿𝑙𝑎𝑏𝑒𝑙 + 𝜆𝐿𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑒

How many Coca Cola bottles are empty? 

There are two bottles of Coca Cola at 8,10,58,212
and 55,9,106,214, and 55,9,106,214 is empty. 
Thus, 1 Coca Cola bottle is empty.

Is there a plane above another one?

There is are two planes at 22,33,188,143
and 91,119,162,166, and their height 
center are 88 and 142.5
Therefore 91,119,162,166 
is above 22,33,188,143

MiniGPT4
Fact

MiniGPT4
Fact

Figure 5: Example outputs of MiniGPT4 trained with Fact.

We set 𝜆 to 1 to ensure that both the prediction of labels and
the generation of rationales are equally prioritized. This balanced
approach underscores our commitment to fostering a model that
is proficient in both accurate prediction and the articulation of
coherent, logical rationales.

In the training of multimodal models, ensuring a precise align-
ment between textual outputs and specific image regions has pre-
sented challenges across existing methodologies. The crux of the
issue lies in two main factors: 1) Images are commonly resized to
a uniform dimension of 224x224 pixels during training, and 2) No
predefined regions or IDs are available to assist in the object local-
ization process before training. Addressing these challenges, our
approach simplifies the task by resizing all images to 224x224 pixels
prior to processing. This standardization reduces the complexity
associated with variable image sizes, allowing the model to focus
solely on enhancing its alignment capabilities without the need for
additional external information. By adopting this method, we effec-
tively overcome pixel displacement issues that occur with scaling
and normalization, thus achieving a more accurate correspondence
between text descriptions and image regions.
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4 EXPERIMENT
Fact is a model-agnostic paradigm capable of generating faithful,
concise, and transferable rationales, thereby teaching MLLMs effec-
tively. In this section, we outline our experimental setup (Section
4.1). Then, we conduct experiments on various zero-shot compre-
hension tasks. (Section 4.2). We are also curious about whether the
rationale output by the specialist model can help the general large
model excavate the details, and explore the mutual reinforcement
performance of this process between large and small models (Sec-
tion 4.3). Extensive ablation studies were also undertaken to further
examine the contributions of different components of our approach
(Section 4.4). This comprehensive experimental framework is de-
signed to thoroughly assess the efficacy and versatility of the Fact
paradigm in improving the performance of MLLMs.

4.1 Experimental Setup
Model Setup. We compare Fact against two models with different
parameter sizes as backbones: MiniGPT4 with Vicuna 7B [47] and
OpenFlamingo 3B [3]. In generating rationale, we utilize GPT-3.5-
turbo [31] as our code generation model. In visual programming,
we adopt the same configuration and APIs as used in ViperGPT
[38]. LLama2-70B [39] serves as the bridge language model, and we
fine-tune a T5 [6] model to identify logical gaps.

Training Settings. We trained two versions of the backbone
and a control model respectively:

• The generalist model employs multi-task training with ratio-
nale distillation to demonstrate the general utility of Fact.

• The specialist model further training on specific task to
demonstrate Fact’s adaptation to the task.

• We also employ a control model using the same data and
parameter for fair comparison called Instruct.

For the generalist model, we employ multi-task training to fine-
tune a pre-trained model. This fine-tuning process encompasses a
broad array of subsets from both image captioning, including COCO
[23] and Flickr [35] captions, and VQA tasks. The latter includes
general VQA (VQAv2 [11]), compositional questions and reasoning
(GQA [16]), counting (TallyQA [1]), and VQA that requires external
knowledge (OK-VQA [29]). These tasks present a textual input
alongside an expected label output. Utilizing the Fact pipeline, we
synthesize CoT rationales for these labels, subsequently fine-tuning
the backbone model based on the loss described in Section 3.4.
For half of VQAv2 data and image captioning tasks that do not
necessitate the generation of a program for captioning, we set the
𝐿𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑒 to 0, maintaining only 𝐿𝑙𝑎𝑏𝑒𝑙 .

The specialist model undergoes a training process identical to
that of the generalist model, with the key distinction being the re-
placement of the general training dataset with the specific training
set corresponding to the task at hand. This substitution aims to
enhance the model’s performance on particular tasks. The training
code for both models is provided in the supplementary material for
further reference.

For the instruct models, we exclude the CoT rationale from our
data mixture using identical parameters and procedures for both

Table 2: Comparison of MME and POPE benchmark.

MME POPE
Random Popular Adversarial

OpenFlamingo [3] 668.2 52.6 67.2 56.0
w/ Instruct generalist 847.3 69.5 73.1 68.4
w/ Fact generalist 912.2 73.0 75.6 71.5

MiniGPT4 [47] 581.7 43.3 50.8 47.9
w/ Instruct generalist 864.9 68.3 74.4 71.2
w/ Fact generalist 1034.7 78.7 83.7 79.1

Table 3: Use the model’s output as a rationale prompt for a
large vision model and test at GQA task.

mPlug-Owl (13B) pre-trained GQA OK-VQA

+ in-context prompt 56.5 57.6

+ CoT (OpenFlamingo-Fact) 62.7 62.6
+ CoT (MiniGPT4-Fact) 63.2 63.0

generalist and specialist models. This experimental setup was de-
signed to clarify any misconceptions regarding the efficacy of in-
struct tuning alone, thereby demonstrating that the observed im-
provements in model performance are specifically attributable to
the enhanced composite reasoning and spatial understanding capa-
bilities provided by high-quality CoT rationales.

In the process of generating CoT rationales, we implemented fil-
tering twice, focusing on faithful selection within the programming
portion and transferability selection for the CoT rationales. The
total number of samples is detailed in Appendix A for reference.

Baselines. The paper also lists results from other multimodal
models like CosMo 2B [41], Flamingo 3B [2], VL-GPT 7B [48] and
BLIP-2 7B [21] for comparison.

Benchmark. Our models are rigorously evaluated on a com-
prehensive suite of zero-shot benchmarks to ascertain their per-
formance across various tasks. Specifically, for image captioning,
we utilized datasets from COCO [23] and Flickr 30K [35], with the
model’s performance assessed using the CIDEr scoring metric. For
VQA, we employed the VQAv2 [11] dataset, evaluating the model
on the test-dev split. The GQA [16] benchmark was assessed on its
test-dev set, while the OK-VQA [29] was evaluated on the val split.
For counting tasks, we used the TallyQA [1] benchmark, assessing
our model on the test set. In addition to these primary benchmarks,
we extended our evaluation to include additional benchmarks such
as the MME [10] score and POPE [22] F1-score, which are designed
to further test the model’s capabilities in multi-modal understand-
ing and predictive object positioning, respectively. We present the
prompts required for evaluating downstream tasks in Appendix B.

4.2 Quantitative Results
In this section, we evaluate the performance of two distinct models
characterized by varying parameter magnitudes: MiniGPT4 [47],
equipped with Vicuna 7B, and OpenFlamingo 3B [3], after under-
going rationale training and compare them with other pre-train
models in Table 1. Examination of the generalist model reveals
that post CoT rationale distillation, there is an observable enhance-
ment in general performance, substantiating the hypothesis that
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Table 4: Ablation results (%) of individual components.

GQA OK-VQA
0 Backbone 30.1 28.2
1 + faithfulness 30.8 29.7
2 + conciseness 31.9 31.5
3 + transferability 32.4 31.8

MLLMs can indeed derive substantial benefits from such distillation
processes. For specialist models, in tasks requiring compositional
reasoning, such as GQA [16], and counting tasks, such as TallyQA
[1], Fact outperformed instruct by 2.6%, 5.5%, and 4.1%, respectively.
These results indicate a significant enhancement in the model’s un-
derstanding of counting and mastery of logic. Such capabilities are
largely attributed to the spatial understanding and tool integration
abilities provided by high-quality rationales.

Our additional benchmarks, as presented in Table 2, demon-
strate that Fact enhances the perception and cognition capabilities
of MLLMs and reduces hallucinations by refining rationales to
include only objects relevant to the question. This rationale signifi-
cantly improves the relevance between text and images, showcasing
Fact’s capacity to direct MLLMs’ focus towards pertinent details
and thereby increase accuracy. This enhanced focus not only opti-
mizes model performance but also underscores the critical role of
tailored rationale design in achieving precise model responses.

4.3 Migrating to Large Models
We posit that CoT rationales generated by the student model could
mutually benefit the teacher model as well. To test this theory, we
devised an experimental framework that applied two specific types
of contextual prompts to the mPlug-Owl 13B [44] model in the GQA
and OK-VQA context: 1) a direct question followed by its answer,
and 2) a question accompanied by CoTs produced by task-specific
models, plus the answer, with a consistent presentation of three
prompts. The outcomes observed on both tasks on test sets are
compiled in Table 2. These findings corroborate our assertion that
CoTs do indeed bolster the inferential precision of teacher models.
Interestingly, variations in performance enhancements attributed
to CoTs sourced from MiniGPT4 and OpenFlamingo were minimal
when applied to the larger model. This phenomenon likely stems
from the extensive comprehension capabilities inherent to larger
models, enabling them to effectively leverage the supplied CoTs for
detailed and accurate deductions. This not only validates the utility
of CoTs across model scales but also highlights the adaptability of
larger models to assimilate and refine input from smaller counter-
parts, further emphasizing the symbiotic potential between models
of differing capacities.

4.4 Ablation Experiment
Qualitative Analysis. We begin by presenting several qualitative
examples in Figure 4 to illustrate our process from visual program-
ming to symbolic trace, and subsequently to multimodal CoT ratio-
nales. Throughout progression, we continually refine the capabili-
ties of large models into more comprehensible language, ultimately
distilling this knowledge into MLLMs. This approach demonstrates
the efficacy of our method in harnessing the sophisticated reasoning

Table 5: Ablation results (%) of CoT rationale edition.

CoT rationale edition Accuracy

prune merge bridge GQA OK-VQA

0 Backbone 30.9 29.9

1 + prune ✓ 31.7 31.4
2 + merge ✓ 31.1 30.6
3 + bridge ✓ 31.1 30.4

4 + prune + merge ✓ ✓ 32.2 31.7
5 + prune + bridge ✓ ✓ 32.0 31.5
6 + merge + bridge ✓ ✓ 31.4 31.0

7 OpenFlamingo-Fact ✓ ✓ ✓ 32.4 31.8

abilities of teacher models and making them accessible to MLLMs
through a distilled, understandable format.

Analysis on Fact. For the three properties of CoT proposed
in our paper, we conducted sequential ablation experiments using
OpenFlamingo (3B) as the backbone, with results on the GQA doc-
umented in Table 4: 1) Backbone: Merely use a language model
to convert the entire execution trace into CoTs for distillation. 2)
Backbone + faithfulness: Here, we filter the program and retain
pieces of code that produce the correct answers, thereby ensuring
faithfulness. 3) Backbone + faithfulness + conciseness: At this stage,
operations such as pruning, merging, and bridging are performed
during execution to enhance conciseness, eliminating redundancy.
4) Backbone + faithfulness + conciseness + transferability: Finally,
we focus on transferability, selecting rationales that are most suit-
able for distillation. The results demonstrate that each of the three
properties significantly contributes to performance enhancement.
Faithful CoTs enable the model to infer correct outcomes, concise-
ness helps the model focus more on reasoning logic, and trans-
ferability effectively filters data suited for distillation, achieving a
more suitable knowledge representation for smaller models.

Analysis on CoT edition. We also evaluated the three CoT
rationale editing operations on OpenFlamingo 3B. This particu-
lar part of our experiment retained the comprehensive method of
faithfulness and transferability, with the only difference in the CoT
editing aspect. The outcomes of this detailed analysis are presented
in Table 5. Among the editing strategies, pruning exhibited the most
profound effect on enhancing model performance, with merging
and bridging following in order of impact. Our analysis suggests
that pruning effectively removes extraneous information that could
detract from the model’s focus, thus facilitating the most substan-
tial gains in performance. Merging, aimed at simplifying CoTs by
integrating repeated variables based on predefined criteria, yielded
marginal improvements. Its impact is less prominent attributed
to the nature of certain tasks within our experiment, which did
not necessitate the amalgamation of variables. Bridging, engaged
towards the end of the editing process, fine-tunes the CoTs for
better linguistic flow and logical sequencing, albeit making only
slight contributions to the overall efficacy of the CoTs. This sequen-
tial refinement underscores the importance of targeted editing in
optimizing CoTs for both clarity and efficiency in reasoning.

Human EvaluationWemanually chose 100 responses from the
GQA dataset and manually undertook a detailed error analysis. The



Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales Conference’17, July 2017, Washington, DC, USA

16%

15%

13%
14%

42%

MiniGPT4
7%

16%

15%

9%

53%

MiniGPT4 + Fact

Logical errors
Factual errors
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Localization errors

Correct

Figure 6: Sources of error in GQA task.

errors identified were classified into four main categories: Logical,
Factual, Format, and Localization errors. We will detail the types
of errors in Appendix C. For MiniGPT4, we utilized the prompt,
"Answer the following VQA questions step by step." Subsequently,
we juxtaposed these outcomes with those derived from using Fact,
illustrating the comparative analysis in a graphically represented
figure 6. A noteworthy observation is a pronounced decrease in
both Logical errors and Localization errors. This is consistent with
our expectation that Fact can improve the reasoning and spatial
capabilities of MLLMs. However, we conjecture that constraints
inherent to the model parameters contributed to the persistence of
Format errors across both methodologies. This suggests that while
our approach significantly mitigates certain types of errors, the
challenge of completely eliminating format-related inaccuracies
remains, indicating a potential area for further refinement in model
training and prompt engineering strategies.

5 CONCLUSION
This study presents Fact for generating, refining, and distilling CoT
rationales to enhance multimodal models’ reasoning capabilities.
Through targeted CoT editing operations such as pruning, merg-
ing, and bridging, we efficiently remove irrelevant information and
improve the coherence of CoTs. By teaching these high-quality
rationales to MLLMs, we significantly boost model performance
across various tasks. Our experimental results underscore the impor-
tance of precise CoT rationale refinement, demonstrating marked
performance enhancements in both teacher and student models.
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