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Abstract

Since infectious pathogens start spreading into a susceptible population, mathemat-
ical models can provide policy makers with reliable forecasts and scenario analyses,
which can be concretely implemented or solely consulted. In these complex epidemi-
ological scenarios, machine learning architectures can play an important role, since
they directly reconstruct data-driven models circumventing the specific modelling
choices and the parameter calibration, typical of classical compartmental models.
In this work, we discuss the efficacy of Kernel Operator Learning (KOL) to recon-
struct population dynamics during epidemic outbreaks, where the transmission rate
is ruled by an input strategy. In particular, we introduce two surrogate models,
named KOL-m and KOL-∂, which reconstruct in two different ways the evolution of
the epidemics. Moreover, we evaluate the generalization performances of the two ap-
proaches with different kernels, including the Neural Tangent Kernels, and compare
them with a classical neural network model learning method. Employing synthetic
but semi-realistic data, we show how the two introduced approaches are suitable for
realizing fast and robust forecasts and scenario analyses, and how these approaches
are competitive for determining optimal intervention strategies with respect to spe-
cific performance measures.

Keywords: epidemiology; operator learning; scenario analysis; optimal epidemic
control; kernel regression;

Highlights:

• We formalize the novel Kernel Operator Learning (KOL) framework in the
context of epidemic problems;

• We build two KOL strategies for estimating susceptible, infectious and recovered
individuals given an input level of reduction of transmission rate;
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• We numerically test the two approaches on synthetic data for assessing their
reliability in making scenario-analyses;

• We compare the solutions of two optimal control problems on standard com-
partmental models with respect to the solutions retrieved with KOL approaches.

1. Introduction

The recent global SARS-CoV-2 pandemic has underlined the paramount impor-
tance of developing mathematical models and numerical schemes for predictions and
forecasts of epidemic illnesses: from the perspective of policy-makers, it is often use-
ful to dispose of qualitative and quantitative results for making scenario analyses and
forecasts; from the social point of view sharing information about possible outcomes
can be beneficial in order to increase social awareness and public knowledge on the
illness current spreading and its future evolutions. A typical approach relies on tra-
ditional compartmental mathematical frameworks, where specific modelling choices
and parameters embody the different features that characterize the epidemic spread-
ing, the virological effects of the illness and the impact of different pharmaceutical
interventions. However, in presence of new epidemic outbreaks many key-features
could still be unknown or difficult to isolate in clinical trials, and consequently the
illness itself could be difficult to be completely described by the classical compart-
mental models. Indeed, clinical symptoms of different illnesses are multifaceted and
strictly depend on the origin of the pathogenic microbial agent responsible of the
disease, which can be bacterial, parasitic, fungal, viral or originated by prions, i.e.
other kinds of toxic proteins, and on the pathway through which the illness naturally
diffuses [1, 2]. Moreover, in order to accurately describe the disease through com-
partmental models, it is fundamental to account for possible DNA or RNA mutations
from the wildtype strain in long-term outbreaks, as well as for possible preventive
measures and control, including vaccination, treatments, prophylaxis, quarantine,
isolation or other measures minimizing social activities (like the use of face-masks,
compulsory home-schooling, different levels of lockdowns). In these highly complex
and rapidly changing scenarios, the efficacy of compartmental models for making
fast scenario-analyses may be severely limited by the delicate and sometimes ad-hoc
parameter calibration process that becomes even harder if one aims at embodying
age-dependency or other geographical features, see, e.g., [3, 4, 5].

Alongside with scenario analysis, recent upcoming epidemic events have shown the
importance of disposing of computational tools measuring the impact of pharmaceu-
tical resources [6] and other Non-Pharmaceutical Interventions (NPIs) [7] so to guide
policy-makers in choosing how to intervene limiting the social and economic burden.
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From the mathematical perspective, we can leverage on the versatility of optimal
control theory in order to derive useful quantitative and qualitative guidelines for
minimizing the amount of infectious or deceased individuals [8, 9], the total incidence
of the spreading disease [10], or the amount of contacts and, consequently, of cases
[11]. Other problems which have been further investigated, analytically and numer-
ically, are more delicate from the mathematical viewpoint such as the minimization
of epidemic peaks [12] or the minimization of the eradication time [13].

In view of the above discussion, it is of paramount importance to provide the
society with mathematical tools able to output computationally cheap and reliable
scenario analyses, so to compare different prevention measures and solve optimal
control problems. Among recently developed mathematical frameworks, a prominent
position is covered by Operator Learning, which, roughly speaking, deal with the de-
velopment and application of algorithms designed to build approximation of operators
starting from a given set of input/output pairs. In the family of Operator Learning
tools, an increasing attention has been devoted to the so called Deep Operator Net-
works (DeepONets) introduced in [14]. Since then, other ML algorithms exploiting
deep neural networks have been developed, such as PINNDeepONets [15] and Fourier
Neural Operators [16]. More recently, in [17] Kernel Operator Learning (KOL) has
been proposed as a competitive alternative to the previous approaches in terms of
cost-accuracy trade-off and the capability of matching (sometimes outperforming) in
several benchmark problems the generalization properties of learning methods based
on neural networks. Moreover, the simple closed formula of the learnt kernel operator
makes KOL very attractive.

In this work we propose two different numerical approaches based on Kernel Oper-
ator Learning (KOL) [17], that starting from epidemic data provide surrogate models
describing the dependency of different stages of the illness on a given control function
representing NPIs. To the best of our knowledge, these approaches are new in the
epidemic context. Moreover, the numerical experiments contained in the sequel of the
paper show that the presented approaches can be efficiently employed for making fast
scenario analyses and solving optimization tasks, since they can be rapidly trained
directly from data, circumventing delicate calibration phases. For the sake of sim-
plicity and to present the main features of our approaches, we work with synthetic
data generated by standard epidemic differential models governed by control func-
tions modelling NPIs (or any other effect reducing the transmissibility of the illness),
which we assume to be given.

As pointed out in [17], the performance of KOL depends on the choice of the kernel
employed to perform the regression tasks, see also [18]. Very recently, Neural Tangent
Kernels (NTKs) have been introduced in a series of pioneering works (cf. [19, 20, 21])
that opened the door to a very intensive research activity. Loosely speaking, NTK
arise from the connection with infinite-width neural networks and, within the infinite-
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Fig 1. Kernel Operator Learning (KOL) diagram. Operating among RKHS justifies the reduc-
tion of the problem to learning the behaviour of the vector-value function f†, operating between
input/output observations (cf. Appendix B).

width limit, the generalization properties of the neural network could be described by
the generalization properties of the associated NTK. In view of this connection and
encouraged by the results presented in [19, 22], in this paper we employ NTKs in the
construction of our kernel operator approaches and we validate its efficacy through a
wide campaign of numerical tests.

The paper is organized as follows. In Section 2, we synthetically illustrate and
derive the mathematical formulation of our KOL approaches and we briefly recall the
compartmental models that we adopt for generating the numerical data to test the
methods. In Section 3 we present and discuss different numerical tests for assessing the
generalization properties of our approached together with their efficacy in providing
solutions to optimization tasks.

2. Materials and Methods

This section is organized in three parts: Section 2.1 is devoted to introducing
Kernel Operator Learning in the epidemic context, whilst Section 2.2 briefly recalls
the standard compartmental epidemic models that will be employed to produce the
synthetic data feeding the KOL. In Section 2.3 we gather some preliminary consider-
ations about the numerical technicalities for retrieving both KOL regressors.

2.1. KOL and epidemic modelling: Basic principles

We briefly summarize some of the principal results on Kernel Operator Learning
(KOL) contained in [17], that will be instrumental to build surrogate epidemic models
and to solve optimal control problems.
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To this aim, let us consider two possibly infinite-dimensional Hilbert spaces U ,V
and assume there exists an unknown operator mapping between the two spaces, i.e.

G : U → V . (1)

Roughly speaking, the goal of operator learning is to approximate G based on pairs
of input/output that are accessible through finite dimensional linear measurements,
as formalized by the following:

Problem. Let {ui, vi}Ni=1 be N samples in U × V, i.e.

G(ui) = vi, with i = 1, 2 . . . N. (2)

Moreover, define the (bounded and linear) observation operators ϕ : U → Rn and
φ : V → Rm acting on the input and the target functions, respectively. The goal
of operator learning is the approximation of the operator G based on the observation
input/output pairs {ϕ(ui), φ(vi)}Ni=1.

In the rest of the section, to ease the reading, we restrict the presentation to the
scalar case, while the extension to the vector-valued case, relevant for the numerical
examples in the following sections, can be straightforwardly obtained from the scalar
one by resorting to the theory of vector-valued Reproducing Kernel Hilbert Spaces
(RKHS) in [23]. Therefore, let us consider U and V as functional spaces made of scalar
functions, where the dependant variable is named t and it is assumed to vary in the
interval D ⊂ R. In this scenario, a standard choice for the observation operators ϕ
and φ consists in considering the pointwise evaluation at specific collocation points
{tk}mk=1 and {t̃k}nk=1 respectively, which in general can be different (see Figure 1).
However, for simplicity, in this work we consider the same collocation points, i.e.

ϕ : u→ U := (u(t1), u(t2) . . . u(tn))
T ∈ Rn,

φ : v → V := (v(t1), v(t2) . . . v(tn))
T ∈ Rn.

(3)

Then, assuming we are given the training dataset {Uj, Vj}Nj=1 where, consistently with
our notation, Uj := (uj(t1), uj(t2) . . . uj(tn))

T ∈ Rn and Vj := (vj(t1), vj(t2) . . . vj(tn))
T ∈

Rn, we aim at constructing an approximation Ḡ of G. More specifically, following [17],
endowing U and V with a RKHS structure and using kernel regression to identify the
maps ψ and χ (cf. Figure 1 and see Appendix B for more details), the approximated
operator can be written explicitly in closed form as

Ḡ(u)(t) = K(t, T )K(T, T )−1

(
N∑
j=1

S(ϕ(u), Uj)αj

)
, (4)
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where K is the kernel function induced by the RKHS structure of V , the vector T =
[t1, t2 . . . tn]

T ∈ Rn contains the collocation points, and S : Rn×Rn → R is a properly
chosen vector-valued kernel. Moreover, K(·, T ) : D → Rn is a row vector such that
K(t, T )i = K(t, ti), and K(T, T ) is an n× n matrix such that K(T, T )ij = K(ti, tj).
Parameters {αj}Nj=1 ∈ Rn are the kernel regression parameters over the input/output
training pairs. Since we consider pointwise observation operators, K(t, T ) is the
composite linear interpolant of nodes in T evaluated at the desired time t. We refer
to [17] for a complete discussion of the convergence properties of this approach and for
the formal derivation of the learnt operator in a more general functional framework.

Although the above framework is quite general and can be applied to a variety
of problems, here, given the goal of the paper, we embody it in the context of recon-
structing processes ruled by dynamical systems steered by control variables. More
precisely, we consider the following general scalar dynamical system ruled by the
control function u {

v̇(t) = F (v(t), u(t)), ∀t ∈ (0, t∗]

v(0) = v0
(5)

where F : R × R → R is assumed to be sufficiently smooth to guarantee the well-
posedness of the problem [24]. Clearly, we can associate to (5) the mapping G that
given the control u returns the solution v. This mathematical framework fits a typical
epidemic context, where it is often necessary to take into account the impact of
different NPIs acting in reducing the contact rate among vulnerable people, such as,
for instance, partial or total lockdowns, the mandatory use of face-masks in public
spaces or the isolation of people showing mild symptoms which could be linked to the
illness of concern.

Now, we are ready to introduce our strategies. The first strategy, named KOL-m,
consists in directly determining an approximation of the solution map G from u(t) to
v(t), as described in the following.

KOL-m. Let U = {u ∈ L2(0, t∗)} and V = C0([0, t∗]). Given the input-output data
trajectories {(ûk, v̂k)}Nk=1, where each ûk ∈ U is a control function and each v̂k ∈ V
is the associated (known) state vector function, the Kernel Operator Learning Map
method (KOL-m) builds Ḡm : U → V according to (4).

Hence, the quantity Ḡm (u∗) (t) represents an approximation to the solution v(t)
of (5) with control variable u∗(t).

Let us now describe the second approach, namely KOL-∂, which approximates
the operator that given the prescribed control returns the derivative of the solution
to (5).

KOL-∂. Let U = {u ∈ L2(0, t∗)} and V̂ = L1(0, t∗). Given the input-output data
trajectories {(ûk, ˙̂vk)}Nk=1, where each ûk ∈ U is a control function and each ˙̂vk ∈ V̂
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is the associated (known) derivative of the state vector function, the Kernel Operator
Learning Derivative method (KOL-∂) builds Ḡ∂ : U → V̂ according to (4).

Therefore, the quantity Ḡ∂ (u
∗) (t) represents an approximation to v̇(t), i.e. the

derivative of the solution to (5) with control variable u∗(t). Specifically, we have

v(t) = v0 +

∫ t

0

Ḡ∂(u)(τ)dτ ∈ V where Ḡ∂ : U → V̂ satisfies (4), (6)

or alternatively

v̇(t) = K(t, T )K(T, T )−1

(
N∑
j=1

S(ϕ(u), Uj)αj

)

= K(t, T )K(T, T )−1


N∑
j=1

S(ϕ(u), Uj)


[S(U,U)−1V̂·,1]j

[S(U,U)−1V̂·,2]j
...

[S(U,U)−1V̂·,n]j


 ∀t ∈ (0, t∗]

v(0) = v0,

(7)
where V̂·,k = [[φ( ˙̂v1)]k, [φ( ˙̂v2)]k . . . [φ( ˙̂vN)]k]

T , ∀k = 1, 2 . . . n is the vector of the
evaluations at the k-th point of each output, U is a vector collecting all the {Uj}Nj
and S(U,U) ∈ RN×N can be defined as [S(U,U)]ij = S(Ui, Uj) (cf. Appendix B). In
this case we assume that an accurate approximation of the derivative of each state
({vi}Ni=1) is observable, hence the sequence {φ(vi)}Ni=1 is available (cf. Figure 1).

We conclude this section with a methodological remark on the application of the
KOL-m approach to the reconstruction of compartments when dealing with epidemic
problems or other problems where the reconstructed operator has to preserve positiv-
ity. This modified version of KOL-m will be employed to derive the numerical results
presented in the subsequent sections.

Remark (On the positivity preserving property of KOL-m). The solutions to the
epidemic differential problems are intrinsically positive, since they represent positive
fractions of the population corresponding to different states with respect to the illness
spreading. However, there is no reason why KOL-m should preserve the positivity of
the prediction, even in presence of positive data {x̂k}. For this reason, in order to
enforce the positivity of the prediction of the learnt operator Ḡm, we proceed as follows:
given {(ûk, x̂k)}k≤N , with positive x̂k, we apply KOL-m to the modified input-output

dataset {(ûk,
√
x̂k)}k≤N so to obtain the intermediate operator G̃m. Then, we set

Ḡm = G̃2
m. The efficiency of this approach is showed in Section 3.
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2.2. Overview of compartmental models

In order to test KOL-m and KOL-∂ we generate synthetic data employing classical
compartmental models and use the latter to validate the accuracy of the surrogate
models. More precisely, for simplicity and without loss of generality, we restrict our
attention to the four classical compartmental models reported in Figure 2, where the
control variable u represents the instantaneous reduction of the basic transmission
rate β dictated by the virological and transmissibility properties of the illness by
reducing the contact rate. We assume that ulb ≤ u(t) ≤ uub, ∀ t ∈ [0, t∗], where the
upper bound value of the control function uub = 1 models total lockdown, instead
the lower bound ulb = 0 stands for null NPIs. For suitable choices of the function
F : Rd × R → Rd, all those models (and other high dimensional disease-specific
compartmental models, e.g. [25, 26, 5]) can be written in the following general form:{

ẋ(t) = F(x(t), u(t)), ∀t ∈ (0, t∗]

x(0) = x0.
(8)

Clearly, the solution of (8) can be written in terms of the operator G, that given the
input control u(t) : [0, t∗] → R returns the state x(t) : [0, t∗] → Rd. For each model,
∀ t ∈ [0, t∗] the evolution function F is sufficiently smooth in order to guarantee
existence and uniqueness of the solution of Cauchy problem (8) when u admits at most
a countable amount of jump discontinuities (see, e.g. [27]). For a more comprehensive
review on epidemiological models, we refer, e.g., to [1, 2].

2.3. Numerical aspects of KOL-m and KOL-∂

In this section we collect some useful information on the computational aspects
involved in the training process of KOLs. For the purpose of this work we assume that
the space of our discrete counterpart of the control functions and the corresponding
discrete vectors coming from the evaluation of the solution are of the same dimension,
i.e. m = n in Figure 1. It is worth to remark that, in the epidemic context, it
is natural to consider, as observation operators for the state and the control, the
pointwise evaluation, which is coherent with the way open access datasets for epidemic
events are often organized and real-time forecasts are delivered (see, e.g. [28]).

For what concerns the generation of synthetic data, we employ N different control
functions to be observed via the observation operators, together with the N associated
compartmental trajectories (vector in Rd) obtained by numerically solving one of the
differential systems in Figure 2 using Explicit Euler with time step dt.

From the computational perspective, once the scalar kernel S(·, ·) between the two
discrete vector spaces has been chosen, we need to solve n linear systems of dimension
N ×N where the matrix is S(U,U) (cf. Appendix A). For this purpose, we compute
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Ṡ = −β(1− u)SI

İ = β(1− u)SI − γI

Ṙ = γI

∀t ∈ (0, t∗]

{

Ṡ = −β(1− u)SI + γI

İ = β(1− u)SI − γI
∀ t ∈ (0, t∗]

[S(0), I(0), R(0)]T = [S0, I0, R0]
T [S(0), I(0)]T = [S0, I0]

T



















Ṡ = −β(1− u)SI + δR

İ = β(1− u)SI − (γ + ε)I

Ṙ = γI − δR

Ḋ = εI

∀ t ∈ (0, t∗]































Ṡ = −β(1− u)SI + δR

Ė = β(1− u)SI − φE

İ = φE − (γ + ε)I

Ṙ = γI − δR

Ḋ = εI

∀ t ∈ (0, t∗]

[S(0), E(0), I(0), R(0), D(0)]T = [S0, E0, I0, R0, D0]
T[S(0), I(0), R(0), D(0)]T = [S0, I0, R0, D0]

T

SIR model

SIRD model

SIS model

SEIRD model

R0 =
β

γ
Ru =

β(1− u)

γ
R0 =

β

γ
Ru =

β(1− u)

γ

R0 =
β

γ + ε
Ru =

β(1− u)

γ + ε
R0 =

β

γ + ε+ φ
Ru =

β(1− u)

γ + ε+ φ

Fig 2. SIR, SIS, SIRD and SEIRD compartmental models. Each model is provided with its
respective basic reproduction number (R0) and the reproduction number depending on the control
(Ru).

the Cholesky Factorization of the matrix and solve the systems with the standard
substitution methods (cf. [29] for more advanced strategies). Finally, in solving the
regression problem we add a regularization term, with penalty parameter equal to
1e− 10.

3. Results and Discussion

In this section we present a wide campaign of numerical tests with the aim of:
(a) understanding the impact of the choice of different kernels in KOL-m and KOL-∂
(cf. Section 3.1); (b) comparing our KOL methods with a popular neural-network
based model learning method (cf. Section 3.2); (c) assessing the robustness of the
introduced approaches for solving two optimization tasks (cf. Section 3.3).

3.1. On the choice of the Kernel

One crucial ingredient, driving the approximation and generalization properties of
the corresponding KOL method, is the choice of the scalar kernel S in (B.8). Which
kernel function is optimal for kernel regression is still an open debate and depends on
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the specific application. For instance, there exists some innovative approaches which
learn the kernels by simulating data driven dynamical systems enabling scalability of
Kernel Regression [30]. Here, we consider the following popular choices for S.

• Linear Kernel: S(U1, U2) = UT
1 U2. This kernel evaluates the alignment in the

n-dimensional space between input vectors;

• Matérn Kernel: S(U1, U2) =
21−ν

Γ(ν)

(√
2ν

∥U1 − U2∥2
ρ

)ν

Kν

(√
2ν

∥U1 − U2∥2
ρ

)
,

where ν > 0 controls the smoothness of the kernel function, ρ is a characteris-
tic length scale, Γ is the Gamma function and Kν is the modified second kind
Bessel function of order ν. This family of kernels is stationary and isotropic,
given the Euclidean distance between input points. If ν → ∞ one obtains the
Gaussian kernel. It is often used for image analysis [31] and other machine
learning regression tasks [32];

• RBF kernel: S(U1, U2) = e−
∥U1−U2∥

2
2

2σ2 , known also as Gaussian kernel. It has the
interpretation of a similarity measure since it is bounded in [0, 1] and decreases
as long as the distance between points increases;

• Rational Quadratic kernel: S(U1, U2) =

(
1 +

∥U1 − U2∥22
2αl2

)−α

, with l, α >

0. It can be regarded as the infinite sum of different RBF kernels with different
length scales;

• Neural Tangent Kernel (NTK): Given a neural network regressor f(x; θ)
of depth dnn, width lnn and activation function σnn, with θ denoting the vector
collecting all weights and biases, we define the family of finite-width Neural
Tangent Kernels {S}τ>0 : Rn × Rn → R (cf. A) as

Sτ (xi, xj) := ⟨∂θf(xj; θ(τ)), ∂θf(xi; θ(τ))⟩, (9)

where τ represents a fictitious iteration time. It has been proven that, if the
initialization of the weights follows the so-called NTK initialization [20], in
the infinite-width limit each element in {Sτ}τ converges in probability to a
stationary kernel independently on τ , i.e.

Sτ (xi, xj) →
P
S(xi, xj), ∀ τ > 0, ∀xi, xj. (10)

Hence, the family of NTKs strictly depends on two parameters: activation
function and depth of the associated neural network.
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In this paper, with NTK we refer to the infinite-width limit kernel function. We
rely on the library presented in [33] for an efficient and user-friendly computation
of the considered NTKs. In practice, given the network hyperparameters, we
compute the scalar NTK S : Rd × Rd → R and then evaluate it at desired
couples of points. More details about the derivation of NTKs associated to
neural networks can be found in Appendix A.

For each of the above kernels, we evaluate the generalization properties of KOL-m
and KOL-∂ trained on the epidemic SIS, SIR and SEIRD trajectories generated
by control functions chosen among the following families (see Figure 3) which are
representative of possible interventions that policy makers can implement.

For training and testing KOL-m and KOL-∂, we define a mixed dataset constituted
by functions belonging to four distinct functional families (see Figure 3):

1. Linear Pulse (Figure 3a):

u(t) =



u0, t ≤ t0,

3(u1 − u0)

∆t
(t− t0) + u0 t0 < t ≤ t0 +

∆t
3
,

u1 t0 +
∆t
3
< t ≤ t0 +

4∆t
3
,

3(u0 − u1)

∆t
(t− t0 − 4∆t

3
) + u1 t0 +

4∆t
3
< t ≤ t0 +

5∆t
3
,

u0 t > t0 +
5∆t
3
,

(11)

depending on 4 degrees of freedom (dof): u0, u1 ∈ [0, 1], t0 ∈ [0, t∗] and ∆t ∈
[0, t

∗

3
];

2. Step function (Figure 3b):

u(t) =

{
u0 t ≤ t0,

u1 t > t0,
(12)

with 3 dofs: u0, u1 ∈ [0, 1], t0 ∈ [0, t∗];

3. Continuous Seasonality (Figure 3c):

u(t) =
u0
2

(
1 +

1

2
cos

(
2πt

t∗
+

∆t

t∗
π

2

))
, (13)

with 2 dofs: u0 ∈ [0, 1] and ∆t ∈ [0, t
∗

3
];
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4. Double step (Figure 3d):

u(t) =


u0 t ≤ t0,

u1 t0 < t ≤ t0 +
∆t
2
,

u0 t0 +
∆t
2
< t ≤ t0 +∆t,

u1 t > t0 +∆t,

(14)

with 3 dofs: u0, u1 ∈ [0, 1], t0 ∈ [0, t∗].

To test the generalization properties we proceed as follows. For each given input
control function {un}n, n = 1, 2, . . . , Np with Np number of test points, we generate
the output data {xi,n}i,n, i = 1, 2, . . . , Nc with Nc the number of compartments, by
numerically solving the specific systems of ODEs (SIS, SIR, SIRD and SEIRD) up
to a final time t∗ = 100, with a discretization step dt = 1. The pairs control/output
data form the training dataset. We define the prediction relative error as

perr =
1

N

N∑
n=1

Nc∑
i=1

∥xi,n
p − xi,n∥2
∥xi,n∥2

, (15)

where {xi,n
p } are the predictions generated by the KOL methods. Clearly, the predic-

tion samples belong to a different batch with respect to the training input data.
In all cases, the value of the basic reproduction number is set at R0 = 4, and

the recovery rate γ = 0.05. The epidemic event starts with 1% of infected (or,
respectively, exposed) individuals in all cases. The rest of the population is assumed
to be susceptible to the disease at the initial time. For the SEIRD model, the
remaining parameters have been chosen as δ = 0.4, ε = ϕ = 0.05. The transmission
rate β without control is, therefore, computed starting from the definition of R0 of
each model in Figure 2.

For the comparison of the different generalization properties of the KOL acting on
different kernels, the training dataset is built employing 500 control functions equally
distributed among the above 4 classes of control functions, where the dofs are ran-
domly sampled following a uniform distribution in the respective interval of definition
of each parameter. As for the prediction samples, we test the KOL approaches over
a dataset built employing 100 samples equally distributed among the same families
of control functions, but with different values for the dofs.

12
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Fig 3. Examples of control functions employed to generate the training-testing dataset for the KOL
methods.

Results in Figures 4-6 show the prediction relative error of the different approaches.
In particular, for each kernel we trained each KOL-m and KOL-∂ with 20 different
training datasets of size 500 as detailed above and we represented the results in
the boxplot form. We perform the same error analysis for different compartmental
models: SIS (Figure 4), SIR (Figure 5) and SEIRD (Figure 6). The boxplots cor-
responding to the blue median lines are the one referring to the KOL-∂ approach,
whilst the red ones correspond to the KOL-m approach. For those kernels depend-
ing on parameters to be tuned, such as RBF, Matérn and Rational Quadratic, we
underdid a sensitivity analysis showing similar results exploring the space of pa-
rameters (Matérn: ν ∈ [0, 0.1], ρ ∈ [0.1, 1], RBF: σ ∈ [0, 0.1], Rational Quadratic:
α ∈ [0.01, 0.1], l ∈ [0.01, 1]). For what concerns the NTKs, which depend on the
choice of the depth dnn and on the activation function σnn of the associated neural
network, we perform the same sensitivity analysis considering both Neural Tangent
Kernels with Rectified Linear Unit (ReLu) and Sigmoidal activation functions for
different depths (dnn ∈ {2, 3, 4}). In the boxplots in Figures 4-6 we reported the re-
sults of the NTKs corresponding to two-layer networks, which showed to be a suitable
trade-off between computational complexity and generalization properties.

We notice that for the SIS and the SIR model, the prediction errors are higher
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when compared to the one obtained for the SEIRD model. This seems to indicate
that KOL methods generalize with lower errors for growing complexity. For the SIS
model, the operator approximated via the Linear Kernel does not succeed in surro-
gating the epidemic dynamics. On the other hand, median errors of KOL methods
with ReLu-based NTK achieve the lower results, granting errors always lower than
2% across the test samples. Instead, for the SEIRD and SIR model, all the KOLs
with the different kernels seem to be good proxies in terms of generalization proper-
ties. Specifically, the KOL-∂ methods have better approximation properties, with a
particular mention to the NTK-Relu based. With the 5 dimensional model SEIRD,
among the KOL-m approaches the lowest median error with less IQR is attained by
the NTK-sigmoidal one.

In virtue of these results, from now on, we select the NTK-sigmoidal kernel for
the KOL-m method, and NTK-ReLu kernel for the KOL-∂ method.
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Fig 4. (SIS model) Comparison of the prediction errors over 100 control functions with KOL
methods trained on 20 batches of size 500, where the control functions are chosen in the mixed
training dataset. Bullet points represent outliers whose prediction error is outside the 1.5 IQR
(length of the whiskers) of the set of simulations.
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Fig 5. (SIR model) Comparison of the prediction errors over 100 control functions with KOL
methods trained on 20 batches of size 500, where the control functions are chosen in the mixed
training dataset. Bullet points represent outliers whose prediction error is outside the 1.5 IQR
(length of the whiskers) of the set of simulations.
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Fig 6. (SEIRD model) Comparison of the prediction errors over 100 control functions with KOL
methods trained on 20 batches of size 500, where the control functions are chosen in the mixed
training dataset. Bullet points represent outliers whose prediction error is outside the 1.5 IQR
(length of the whiskers) of the set of simulations.
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3.2. Comparison between KOL and a Model Learning based on neural networks

In this section, we enlight some important features of our KOL approaches that
make them reliable and competitive tools for model learning. To this aim, we compare
KOL-m and KOL-∂ with a popular and paradigmatic machine learning approach
based on neural networks, namely the approach described in [34], in the sequel called
NN-ModL, and shortly described in what follows.

Let F = {fnn : Rd × R → Rd} be the space of feed-forward neural network
functions. The NN-ModL problem reads as follows:

Problem 1 (NN-ModL ). Solve the constrained optimization problem

min
fnn ∈F

1

2

N∑
j=1

∫ t∗

0

|xj(t)− xnn,j(t)|2dt, (16)

s.t. {
ẋnn,j(t) = fnn(xnn,j(t), uj(t)) t ∈ (0, t∗], j = 1, 2 . . . N,

xnn,j(0) = x0,
(17)

where fnn ∈ F and N is the size of the training set.

Hence, NN-ModL reconstructs the map from the control u(t) to the state xnn(t).
The problem is recast as a discrete optimization problem where the optimizing vari-
ables are weights and biases associated to fnn. NN-ModL has shown valuable perfor-
mances for building reduced models of cardiac electromechanics [35], or for deriving a
data-driven model for active force generation in cardiomyocites [36]. As illustrated in
[34], the discretized finite-dimensional version of Problem 1 is equivalent to a nonlin-
ear least-square problem, which can been solved employing the Levenberg-Marquardt
iterative method [37].

In the sequel, we compare our KOL approaches with NN-ModL in the epidemic
context, in terms of: (a) the wall-clock time employed for training the operator learn-
ing; (b) the generalization error in the testing phase. The comparison has been drawn
by accounting for progressively larger training set sizes for both KOL approaches and
NN-ModL in order to approximate the population dynamics generated synthetically
by SIR, SIRD and SEIRD models. In particular, we trained NN-ModL with dif-
ferent training sizes and different number of maximum iterations. We performed a
sensitivity analysis on the choice of the number of neurons per layers in the NN-ModL
case, and concluded, following the Occam’s razor principle of parsimony, to go for a
shallow neural network of 6 neurons.

All the results have been obtained by executing the code in parallel on a 8-core
machine Intel i7. In Table 1 we summarize the outputs of the comparison between
the NN-ModL and the two KOL approaches, where in each case we considered dt =

16



0.05, t∗ = 5, R0 = 2, γ = 0.05, δ = 0.4 and ε = ϕ = 0.05. The initial conditions
correspond to those of Section 3.1. The comparison has been done by considering
50, 100 or 200 iterations of the optimization scheme for the NN-ModL, trained with
25, 50 and 100 elements uniformly sampled in the mixed training dataset. Both
KOL approaches have also been trained on larger datasets constituted by 200, 500,
800, 1000, 2000, 5000, and 10000 elements. The prediction error has been evaluated
according to (15) over the same test set of 100 samples constituted by four batches
of dimension 25, each belonging to the four functional families in the mixed dataset.
The wall-clock time of the running processes has been measured in seconds.

For each epidemic model, the wall-clock time taken for the training stage of NN-
ModL is of orders of magnitude higher than the one needed for KOL approaches, even
when considering solely 50 iterations. The NN-ModL approach ends with a prediction
error close to 10−2 in the three cases after a total wall-clock time ranging from 102

(best scenario) and 103 seconds (worst scenario). Instead, for all models in less than
8 seconds the KOL-m approach trained with 500 samples reaches a generalization
error which is always lower than the corresponding ones reached by NN-ModL. In
addition, for all three models, up to 2000-sample training sets, both KOL approaches
still employ less wall-clock time than NN-ModL. In particular, in the case of SEIRD
model, the prediction error is 3 orders of magnitude lower than the one of NN-ModL.
The gain in terms of wall-clock time is more evident for SEIRD model with size 5000
against NN-ModL with size 100.

As expected, further increasing the amount of training samples makes the predic-
tion errors continuously decrease though with a slower rate with respect to the training
size. For what concerns the KOL-∂ schemes, they achieve lower prediction errors with
respect to the other approaches even with the baseline size of 100 input functions,
except for SIRD. Moreover, we deduce that in both KOL-m and KOL-∂ approaches,
the prediction errors are not affected by the increasing in dimensions of the differen-
tial problem going from the 3 dimensional SIR to the 5 dimensional SEIRD. Even
the computational times surprisingly do not undergo significant changes across the
different models.

In conclusion, both KOL approaches return more accurate predictions in a lower
computational time with respect to the NN-ModL, trained for different number of
iterations. Between the two KOL approaches, KOL-∂ is preferable in terms of accu-
racy across different epidemic differential models. In general, the KOL approaches
turn out to possess a desirable property, i.e. the ability of returning reliable predic-
tions in a fast way, which is extremely useful in the epidemic context, for instance
when scenario analyses or optimization tasks are required. For the sake of fairness
it should be mentioned that, regarding NN-ModL , it is theoretically possible to find
a neural-network function able to build an approximation of the target state with
any desired accuracy. However, the proof of the existence of such architecture is not
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constructive.

SIR SIRD SEIRD
Iterations Size Error Time [s] Error Time [s] Error Time [s]

NN-ModL 50 25 1.5× 10−2 279 1.0× 10−2 380 1.1× 10−2 383
100 25 1.5× 10−2 478 1.0× 10−2 615 1.1× 10−2 755
200 25 1.5× 10−2 1186 1.0× 10−2 1139 1.1× 10−2 1673
50 50 1.2× 10−2 576 1.1× 10−2 559 1.1× 10−2 875
100 50 1.2× 10−2 1363 1.1× 10−2 1456 1.1× 10−2 1476
200 50 1.2× 10−2 3448 1.1× 10−2 2116 1.1× 10−2 3046
50 100 8.8× 10−3 893 9.2× 10−3 1394 9.5× 10−3 1364
100 100 8.8× 10−3 1672 9.2× 10−3 2801 9.5× 10−3 3262
200 100 8.8× 10−3 1725 9.2× 10−3 4511 9.4× 10−3 6668

KOL-m 25 8.3× 10−2 0.425 8.2× 10−2 0.385 7.5× 10−2 0.209
50 5.4× 10−2 0.521 5.5× 10−2 0.486 4.8× 10−2 0.479
100 1.6× 10−2 0.725 1.5× 10−2 0.731 4.9× 10−3 0.755
200 1.2× 10−2 1.47 1.1× 10−2 1.492 2.6× 10−3 1.46
500 5.6× 10−3 7.60 5.4× 10−3 7.09 9.1× 10−5 6.85
800 5.5× 10−3 17.8 5.3× 10−3 18.8 7.0× 10−5 20.7
1000 4.7× 10−3 32.5 4.5× 10−3 25.7 6.4× 10−5 29.4
2000 3.0× 10−3 116 2.9× 10−3 94.5 3.4× 10−5 95.8
5000 2.3× 10−3 572 2.2× 10−3 568 1.3× 10−5 559
10000 1.5× 10−3 2269 1.4× 10−3 2265 8.4× 10−6 2288

KOL-∂ 25 7.0× 10−3 0.420 1.2× 10−2 1.27 2.6× 10−3 0.501
50 4.2× 10−3 0.524 8.6× 10−3 0.872 1.2× 10−3 0.856
100 2.5× 10−3 0.744 4.9× 10−3 1.17 3.6× 10−4 1.11
200 1.5× 10−3 1.54 3.5× 10−3 2.14 2.3× 10−4 2.05
500 8.0× 10−4 6.32 1.9× 10−3 7.85 9.7× 10−5 8.26
800 5.9× 10−4 19.3 2.0× 10−3 18.9 6.2× 10−5 18.1
1000 5.8× 10−4 27.3 1.8× 10−3 25.3 5.2× 10−5 26.4
2000 1.2× 10−4 93.8 1.5× 10−3 90.5 3.9× 10−5 94.7
5000 1.2× 10−4 877 1.1× 10−3 546 1.9× 10−5 888
10000 1.2× 10−4 2206 8.5× 10−4 2156 1.3× 10−5 3315

Table 1: Wall-clock time comparison for the SIR, SIRD and SEIRD models.

3.3. KOL and epidemic control
In this section we exploit KOL-m and KOL-∂ for the solution of paradigmatic

optimal control problems, which are meaningful for making fast and reliable scenario-
analyses in the context of epidemic control. More precisely, in Section 3.3.1 we are
interested in the minimization of the eradication time prescribed a given epidemic
threshold, while in Section 3.3.2 we tackle the minimization of the total amount of
infected.

3.3.1. Optimal control for estimating the minimum eradication time

In the sequel, we focus on the minimization of the eradication time prescribed
a given epidemic, building upon the theoretical results given in [13]. The presence

18



of rigorous mathematical results on the existence of an optimal solution, makes the
eradication problem a desirable and mathematically solid benchmark to study the
reliability of our KOL-based approach. We formulate the problem by considering the
standard deterministic SIR model.

Problem 2 (Minimum eradication time). Let U = {0 ≤ u(t) ≤ umax ∀ t ∈ [0, t∗]} be
the space of admissible controls. Solve

min
u∈U

Jte(u) =

∫ te(u)

0

1 dt,

subject to the state problem 
Ṡ = −β(1− u)SI,

İ = β(1− u)SI − γI,

Ṙ = γI,

∀t ∈ (0, t∗] given [S(0), I(0), R(0)]T = [S0, I0, R0]
T , where te(u) is the eradication

time associated to the control u.

Given a threshold η > 0 of infected individuals, the eradication time is defined as
the first time when infectious individuals are below the given threshold value, i.e.

te ∈ (0, t∗] s.t. I(t) > η ∀ 0 < t < te, I(te) = η. (18)

It has been proven in [13] that the space of admissible optimal controls can be re-
stricted to

A = {u : [0, t∗] → {0, umax}, u(t) = umaxH(t− τ)}, (19)

where τ is the starting intervention time depending on the maximum level of inter-
vention umax, and H(·) is the Heaviside step function. Defining the maximum control
reproduction number as

Rumax =
β(1− umax)

γ
, (20)

it is possible to find an optimal solution with non-trivial switching time, i.e. τ > 0,
when considering Rumax < 1.

First, we numerically reproduced the results of [13], by considering R0 = 2, γ = 5,
dt = 1, t∗ = 100, and umax ∈ [0, 0.7] and solving the above minimization problem
constrained by the SIR differential model. In order to match the initial conditions of
[13], we consider S0 = 2000/2001 and I0 = 1/2001. We retrieved the same behaviours
of the paper of the switching time τ , the eradication time te and of the suscepti-
bles evaluated at the eradication time (see Figure 7). We solve the optimal control
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problem by direct evaluations and comparison of the values of the cost functional
associated to the different control strategies in A, that are explored in an exhaustive
way by sampling τ in a fine grid of step ∆t = 0.01. This brute force strategy is not
always feasible, but in the present context is motivated by the presence of the above
mentioned analytical optimal solutions.

Then, building upon the results of Section 3, that show that our KOL approaches
can be used as proxy models for a variety of epidemic differential model, we can
rewrite Problem 2 by replacing the deterministic SIR state problem with the surro-
gate KOL-m or KOL-∂ approach. Also in this case, the optimal solution is obtained
by subsequent evaluations of control functions over the same fine grid of τ . In this
way the optimal solutions obtained with our KOL approaches can be easily compared
with the benchmark scenarios, thus obtaining a direct measure of the reliability of
the KOL methods.

The KOL approaches have been trained on a specific dataset constituted by 10000
Step functions of different heights, sampled uniformly in [0, 0.8] (see Figure 3b).

The results are collected in Figure 7. More precisely, in Figure 7a we represent
the switching times, the eradication time and the susceptibles at the eradication time
for the optimal interventions of the strategy with KOL-m as surrogate state problem
(point markers) together with the benchmark results (solid lines) depending on the
maximum value of the intervention (umax). For the sake of comparison, in the same
figures we represent the eradication times and the susceptibles at the eradication time
for the trivial strategy implementing a constant intervention fixed at umax (dashed
lines). Figure 7b represents the same benchmark quantities of [13] where the different
quantities are retrieved by using KOL-∂. The matching of the results shows the ability
of our KOL approaches to reconstruct the optimal solution without directly relying
on the differential model.
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Fig 7. Solutions of the optimal control problem searching for minimum eradication time.

3.3.2. Optimal control for minimizing the total amount of infected

Here, we consider a second control problem in which the total amount of infected
individuals is minimized, as detailed in the following.

Optimal Control Problem (constrained by ODE).

min
u∈Uad

JI,u := CI

∫ t∗

0

I(t)2dt+ Cu

∫ t∗

0

u(t)2dt,
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subject to the state problem 
Ṡ = −β(1− u)SI,

İ = β(1− u)SI − γI,

Ṙ = γI,

∀t ∈ (0, t∗] given [S(0), I(0), R(0)]T = [S0, I0, R0]
T . The constants CI , Cu are positive

and they balance the effects of regularization with respect to the L2-infectious term.

This is an optimal control problem governed by the SIRmodel where the control u
acts on the transmission rate and incorporates any reducing effects. The optimal con-
figuration obviously depends on the choice of weights CI and Cu. The cost functional
presents the classical Tikhonov regularization term, which has the double-purpose
of increasing the convexity of the cost functional and to account for the (economic
and social) burden at which higher-level NPIs come. For what concerns the set of
admissible controls, we choose the space

Uad =

{
u(t) =

N∑
i=1

ui1[ti−1,ti)](t), with {ti}i=0,N ∈ (0, t∗]

}
, (21)

containing piecewise constant functions over subintervals of equal length, with the
number of subintervals that is a priori chosen. Moreover, choosing the admissible set
of controls as in (21) allows to immediately recast the optimal control problems as a
discrete optimization problems where the unknowns correspond to the value of the
piecewise constant control function in each time slab.

In our numerical exploration, we consider the scenario where R0 = 4, t∗ = 5,
dt = 0.05, initial conditions [S0, I0, R0]

T = [0.99, 0.01, 0]T , u : [0, t∗] → [0, 0.7] and
the number of subintervals N = {5, 10, 20}. Clearly, larger values of N increase
the complexity of the optimization problem, but at the same time they carry more
flexibility in designing the optimal control strategy. With the above choice of the
parameters, we compare the solutions of the optimal control problem constrained by
SIR with the solutions of the following two problems, where the ODE constraint has
been replaced by the surrogate operator obtained by KOL-m and KOL-∂, respectively.

Optimal Control Problem (governed by KOL-m).

min
u∈Uad

JI,u = CI

∫ t∗

0

I(t)2dt+ Cu

∫ t∗

0

u(t)2dt,
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where the state problem isS(t)I(t)
R(t)

 =

Ḡm,S(u)(t)
Ḡm,I(u)(t)
Ḡm,R(u)(t)


∀t ∈ (0, T ] given [S(0), I(0), R(0)]T = [S0, I0, R0]

T . This problem can be equivalently
rewritten as an unconstrained minimization problem:

min
u∈Uad

Ju := CI

∫ t∗

0

Ḡm,I(u)(t)
2dt+ Cu

∫ t∗

0

u(t)2dt.

Optimal Control Problem (governed by KOL-∂).

min
u∈Uad

JI,u = CI

∫ T

0

I(t)2dt+ Cu

∫ T

0

u(t)2dt,

where the state problem is Ṡ(t)İ(t)

Ṙ(t)

 =

Ḡ∂,S(u)(t)
Ḡ∂,I(u)(t)
Ḡ∂,R(u)(t)


∀t ∈ (0, T ] given [S(0), I(0), R(0)]T = [S0, I0, R0]

T . This problem can be equivalently
rewritten as an unconstrained minimization problem:

min
u∈Uad

Ju := CI

∫ t∗

0

(
I0 +

∫ t

0

Ḡ∂,I(u)(τ)dτ

)2

dt+ Cu

∫ t∗

0

u(t)2dt.

Both KOL approaches have been trained with a dataset of 800 input control func-
tions belonging to Uad where the values of the piecewise constant control functions
have been sampled from a uniform distribution in [0, 0.8]. We considered different
values of CI > 0 and Cu > 0 and solved the optimization problems using the Sequen-
tial Least Square Quadratic Programming methods (SLSQP) [37] as implemented in
the python library Scipy [38]. This optimization scheme consists in approximating
the original problem with a sequence of quadratic problems, whose objective is a
second-order approximation of the Lagrangian of the original problem, and whose
constraints are linearized.

In the case of N = 5 phases, Figure 8 shows 13 different scenarios of the optimal
trajectories reconstructed by solving the problem under SIR (solid line), KOL-m
(purple dashed line) and KOL-∂ (red dashed line) constraint, respectively. At first
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glance, we see that the optimal controls obtained with the three approaches do not
exactly coincide, especially when Cu ≪ CI , i.e. when the problem is extremely non-
convex. However, comparing the cost functional values associated to the three optimal
controls shed a completely different light on the reliability of our approach. Indeed,
solving the deterministic SIR problem for each optimal control strategy, and plotting
the corresponding cost functional values in Figure 9, we can appreciate that the cost
values practically coincide, thus showing the efficacy of our KOL-based approach
in solving the optimal control problem. It is worth remarking that in some cases,
typically the less convex ones (i.e. Cu much larger than CI), the KOL approaches
succeed in finding cost values lower than the ones obtained using the SIR constraint.

Finally, we compare the three approaches for increasing complexity of the opti-
mization problem, namely for N = 10, 20. The results are collected in Figures 10-11,
where the optimal control functions are reported, and in Figures 12-13, where the
corresponding cost values are compared. Also in these cases, we observe that the cost
values achieved by the two KOL approaches are comparable, if not lower, than those
obtained employing the SIR constraint. However, with a growing amount of phases
the three approaches produce different optimal trajectories due to the increased non-
convexity of the cost functional and, in cascade, of the optimal control problem itself,
which exhibit many local minima.

This latest set of results further proves the reliability and the effectiveness of KOL
approaches for the most common optimization tasks.
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Fig 8. Optimal controls for the three optimal control problems fixing N = 5.
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Fig 9. Cost functionals at the optimal control for different CI and Cu (N = 5). (a) We consider
different orders of magnitude for CI , keeping Cu = 1e − 1. (b) We consider different orders of
magnitude for Cu, keeping CI = 1.
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Fig 10. Optimal controls for the three optimal control problems fixing N = 10.
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Fig 11. Optimal controls for the three optimal control problems fixing N = 20.
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Fig 12. Cost functionals at the optimal control for different CI and Cu (N = 10). (a) We consider
different orders of magnitude for CI , keeping Cu = 1e − 1. (b) We consider different orders of
magnitude for Cu, keeping CI = 1.

27



CI = 1e− 1
Cu = 1e− 1

CI = 1
Cu = 1e− 1

CI = 1e1
Cu = 1e− 1

CI = 1e2
Cu = 1e− 1

CI = 1e3
Cu = 1e− 1

CI = 1e4
Cu = 1e− 1

CI = 1
Cu = 0

10 6

10 5

10 4

10 3

10 2

10 1

100

C
I

∫ T 0

I
2
(t

)d
t
+
C
u

∫ T 0

u
2
(t

)d
t

ODE
KOL-
KOL-m

(a)

CI = 1
Cu = 1

CI = 1
Cu = 1e− 1

CI = 1
Cu = 1e− 2

CI = 1
Cu = 1e− 3

CI = 1
Cu = 1e− 4

CI = 1
Cu = 1e− 5

CI = 1
Cu = 1e− 6

10 4

10 3

C
I

∫ T 0

I
2
(t

)d
t
+
C
u

∫ T 0

u
2
(t

)d
t

ODE
KOL-
KOL-m

(b)

Fig 13. Cost functionals at the optimal control for different CI and Cu (N = 20). (a) We consider
different orders of magnitude for CI , keeping Cu = 1e − 1. (b) We consider different orders of
magnitude for Cu, keeping CI = 1.
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A. Summary of Neural Tangent Kernel

We introduce the Neural Tangent Kernel in the specific context of neural networks
minimizing the Mean Square Error in the input dataset. Consider a set of input data
(training set)

D = {(x1, y1), (x2, y2) . . . (xn, yn)}, (A.1)

where {xi}i ∈ Rd represents the sequence of input data, and {yi}i ∈ R the respective
labels. Let f(x; θ) be the neural network regressor, whose weights θ need to be trained
solving the minimization problem

min
θ∈Rnθ

L(θ) =
n∑

i=1

1

2
(f(xi; θ)− yi)

2 =
n∑

i=1

l(f(xi; θ), yi). (A.2)

We solve the optimization problem via gradient flow, which is the continuous coun-
terpart of the usual full-batch gradient descent method used in machine learning,

∂τθ(τ) = −∂θL(θ(τ)) = −
n∑

i=1

∂θf(xi; θ(τ))(f(xi; θ(τ))− yi), (A.3)

where τ is a fictious time variable accounting for the iteration progress. Therefore,

∂τf(xj; θ(τ)) = ∂θf(xj; θ(τ))∂τθ(τ)

= −
n∑

i=1

∂θf(xj; θ(τ))
T∂θf(xi; θ(τ))(f(xi; θ(τ))− yi),

(A.4)

and we define the Neural Tangent Kernel K : Rd × Rd → R as

Kτ (xi, xj) := ⟨∂θf(xj; θ(τ)), ∂θf(xi; θ(τ))⟩. (A.5)

This kernel is symmetric and positive semi-definite by construction. We remark that
the NTK depends on the specific topology of the considered neural network and on
the choice of the activation function. Considering wider neural networks, it can be
proven [39, 40] that

Kτ (xi, xj) →
P
K∞(xi, xj), (A.6)

where in the infinite-width limit K∞(xi, xj) ≈ K0(xi, xj), meaning that the average
infinite-width limiting NTK is close to the NTK computed with weights and biases
at the initialization. Therefore, during the training processes of wide neural networks
the trajectories of the cost functional ruled by Kτ are close to the approximated
linearized ones (ruled by K∞).
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B. KOL: algebraic derivation

We set the learning problem in the specific Reproducing Kernel Hilbert Spaces
(RKHS) framework, so to employ the tools deriving from the Kernel Regression the-
ory, thus enhancing the computational efficiency and capitalizing on the linearity of
the resulting functional framework. Let U be an RKHS of functions u : Ω → R where
the kernel introduced is Q : Ω× Ω → R, and V is an RKHS of functions v : D → R
endowed with the following kernel K : D × D → R. Then, ψ and χ are defined as
optimal recovery maps as

ψ(U) := argmin
w∈U

∥w∥Q s.t. ϕ(w) = U,

χ(V ) := argmin
w∈V

∥w∥K s.t. ϕ(w) = V,
(B.1)

with ∥w∥Q =
√

⟨⟨w,Q(·, t)⟩, ⟨w,Q(·, t)⟩⟩ and ∥w∥K =
√
⟨⟨w,K(·, t)⟩, ⟨w,K(·, t)⟩⟩ are

the norms defined in the respective Hilbert spaces exploiting the kernel reproducibility
property. Assuming that ϕ and φ are pointwise evaluations at specific collocation
points as previously discussed, the optimal recovery maps have explicit closed forms
deriving from kernel interpolation theory [41]:

ψ(U)(t) = Q(t, T )Q(T, T )−1U, χ(V )(t) = K(t, T )K(T, T )−1V, (B.2)

where Q(T, T ) and K(T, T ) are symmetric and definite positive matrices such that
Q(T, T )ij = Q(Ti, Tj) and K(T, T )ij = K(Ti, Tj), whilst Q(t, T )i = Q(t, Ti) and
K(t, T )i = K(t, Ti) represent row-vectors. Following the Kernel-based approach pro-
posed in [17], the operator learning scheme simplifies to determine an approximation
of the mapping between two finite-dimensional Euclidean spaces f † : Rn → Rn, de-
fined as

f † := φ ◦ G ◦ ψ, (B.3)

cf. Figure 1, where the reconstruction maps ψ : Rn → U and χ : Rn → V need to be
properly defined.

Finally, we aim at approximating the f † function through the use of a vector-
valued kernel. Indeed, consider Γ : Rn × Rn → L(Rn) the matrix valued kernel
following the notation of [42]. We call the RKHS induced by the considered kernel
HΓ, and the respective induced norm is ∥ · ∥HΓ

. Hence, f † can be approximated with
the map f̄ solving the following optimization problem:

f̄ := argmin
f∈HΓ

∥f∥Γ s.t. f(ϕ(ui)) = φ(vi), i = 1, 2 . . . N. (B.4)
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We introduce the following block vectors U and V as

U =


U1

U2
...

UN−1

UN

 ∈ RnN , V =


V1
V2
...

VN−1

VN

 ∈ RnN , (B.5)

where {Ui}i := {ϕ(ui)}i, ∀ui ∈ U and {Vi}i := {φ(vi)}i, ∀ vi ∈ V . Then, we define
with a slight abuse of notation the matrix Γ : RnN × RnN → RnN×nN as

Γ(U,U) =


Γ(U1, U1) Γ(U1, U2) . . . Γ(U1, UN)
Γ(U2, U1) Γ(U2, U2) . . . Γ(U2, UN)

...
...

...
Γ(UN , U1) Γ(UN , U2) . . . Γ(UN , UN)

 , (B.6)

where each Γ(Ui, Uj) ∈ Rn×n, ∀i, j = 1, 2 . . . N is an independent block, and the
following matrix

Γ(U,U) =
[
Γ(U,U1) Γ(U,U2) . . . Γ(U,UN)

]
∈ Rn×nN . (B.7)

In this work we assume to deal with uncorrelated input samples, therefore the analysis
can be simplified by relying on diagonal kernels for Γ. In particular, let S : Rn×Rn →
R be a scalar kernel (see Section 2.1 where we compare different practical choices for
S). Thus, each block in (B.6) is a diagonal block, i.e.

Γ(Ui, Uj) = S(Ui, Uj)I =


S(Ui, Uj) 0 . . . 0

0 S(Ui, Uj) . . . 0
...

...
...

0 0 . . . S(Ui, Uj)

 . (B.8)

Hence, the problem of learning the operator from prescribed input-output couples
can be recast as an optimal recovery problem:

f̄j := argmin
g∈HS

∥g∥S s.t. g(ϕ(ui)) = φ(vi)j, ∀ i = 1, 2 . . . N, j = 1, 2 . . . n, (B.9)

where the RKHS endowed with the S kernel is named (HS, ∥·∥S). In this finite dimen-
sional case, it is possible to employ the fundamental result from kernel theory known
as representer theorem [41]. Therefore, each component of the dicrete representation
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can be written explicitly as

f̄j(U) = S(U,U)S(U,U)−1V·,j, (B.10)

where S(U,U) : Rn × RnN → RN is a row vector, S(U,U) : RnN × RnN → RN×N

and V·,j = [[V1]j, [V2]j . . . [VN ]j]
T ∈ RN . Equation (B.10) in the alternative kernel-

methods-like form

f̄(U) =
N∑
j=1

S(U,Uj)︸ ︷︷ ︸
∈R

αj︸︷︷︸
∈Rn

. (B.11)

Indeed, by the representer theorem it holds that

V (U) = Γ(U,U)Γ(U,U)−1V = Γ(U,U)α =
N∑
j=1

Γ(U,Uj)︸ ︷︷ ︸
∈Rn×n

αj =
N∑
j=1

S(U,Uj)︸ ︷︷ ︸
∈R

αj,

(B.12)
where

α =


α1

α2
...
αN︸︷︷︸
∈Rn

 =



α1
1

α2
1

.

.

.
αn
1

α1
2

α2
2

.

.

.
αn
2

.

.

.

α1
N

α2
N

.

.

.
αn
N


∈ RnN s.t Γ(U,U)α = V. (B.13)
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The matrix in system in (B.13) can be written explicitly as

Γ(U,U) =

S(U1, U1) 0 . . . 0 S(U1, U2) 0 . . . 0 . . . S(U1, UN ) 0 . . . 0
0 S(U1, U1) . . . 0 0 S(U1, U2) . . . 0 . . . 0 S(U1, UN ) . . . 0

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.
0 0 . . . S(U1, U1) 0 0 . . . S(U1, U2) . . . 0 0 . . . S(U1, UN )

S(U2, U1) 0 . . . 0 S(U2, U2) 0 . . . 0 . . . S(U2, UN ) 0 . . . 0
0 S(U2, U1) . . . 0 0 S(U2, U2) . . . 0 . . . 0 S(U2, UN ) . . . 0

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.
0 0 . . . S(U2, U1) 0 0 . . . S(U2, U2) . . . 0 0 . . . S(U2, UN )

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.
S(UN , U1) 0 . . . 0 S(UN , U2) 0 . . . 0 . . . S(UN , UN ) 0 . . . 0

0 S(UN , U1) . . . 0 0 S(UN , U2) . . . 0 . . . 0 S(UN , UN ) . . . 0

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.
0 0 . . . S(UN , U1) 0 0 . . . S(UN , U2) . . . 0 0 . . . S(UN , UN )


(B.14)

Hence, we can reorder the system as

S(U1, U1)α
1
1 + S(U1, U2)α

1
2 + S(U1, U3)α

1
3 + . . .+ S(U1, UN)α

1
N = V 1

1

S(U2, U1)α
1
1 + S(U2, U2)α

1
2 + S(U2, U3)α

1
3 + . . .+ S(U2, UN)α

1
N = V 1

2

S(U1, U1)α
1
1 + S(U1, U2)α

1
2 + S(U1, U3)α

1
3 + . . .+ S(U1, UN)α

1
N = V 1

1

S(U3, U1)α
1
1 + S(U3, U2)α

1
2 + S(U3, U3)α

1
3 + . . .+ S(U3, UN)α

1
N = V 1

3
...

S(UN , U1)α
1
1 + S(UN , U2)α

1
2 + S(UN , U3)α

1
3 + . . .+ S(UN , UN)α

1
N = V 1

N

,

(B.15)
and we can define the matrix

S(U,U) =


S(U1, U1) S(U1, U2) S(U1, U3) . . . S(U1, UN)
S(U2, U1) S(U2, U2) S(U2, U3) . . . S(U2, UN)

...
...

S(UN , U1) S(UN , U2) S(UN , U3) . . . S(UN , UN)

 ∈ RN×N . (B.16)

We get that

αi =


[S(U,U)−1V·,1]i
[S(U,U)−1V·,2]i

...
[S(U,U)−1V·,n]i

 , ∀i = 1, 2 . . . N. (B.17)
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Finally, we rewrite equation (B.12) as

f̄j(U) = V (U)j =

[
N∑
i=1

S(U,Ui)αi

]
j

=


N∑
i=1

S(U,Ui)



[S(U,U)−1V·,1]i
[S(U,U)−1V·,2]i

...

[S(U,U)−1V·,j]i
...

[S(U,U)−1V·,n]i




j

,

(B.18)
that, by rearranging the terms is exactly equation (B.10).

Combining equations (B.2) and (B.10) we obtain the approximation operator as

Ḡ := χ ◦ f̄ ◦ ϕ. (B.19)

Finally, recalling the definition of the operator in equation (B.11), Ḡ : U → V is

Ḡ(u) = χ

(
N∑
j=1

S(ϕ(u), Uj)αj

)
. (B.20)
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