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Abstract

Object pose refinement is essential for robust object pose
estimation. Previous work has made significant progress to-
wards instance-level object pose refinement. Yet, category-
level pose refinement is a more challenging problem due to
large shape variations within a category and the discrep-
ancies between the target object and the shape prior. To
address these challenges, we introduce a novel architecture
for category-level object pose refinement. Our approach in-
tegrates an HS-layer and learnable affine transformations,
which aims to enhance the extraction and alignment of ge-
ometric information. Additionally, we introduce a cross-
cloud transformation mechanism that efficiently merges di-
verse data sources. Finally, we push the limits of our model
by incorporating the shape prior information for transla-
tion and size error prediction. We conducted extensive ex-
periments to demonstrate the effectiveness of the proposed
framework. Through extensive quantitative experiments,
we demonstrate significant improvement over the baseline
method by a large margin across all metrics. 1

1. Introduction
Understanding an object’s pose is crucial for a wide range of
real-world applications, including robotic manipulation [18,
32, 52, 56], augmented reality [30, 33], and autonomous
driving [19, 39]. Significant progress has been made for
object pose estimation [5, 11, 15, 48, 53, 55] and pose re-
finement [2, 17, 22, 37, 51, 60] using the object’s CAD

*Equal contribution, order by dice rolling.
†The corresponding author.
1Project page: https://lynne-zheng-linfang.github.io/georef.github.io
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Figure 1. Illustration of the shape variation. SP-m represents the cate-
gory’s mean shape, SP-1 and SP-2 represents the randomly sampled object
shapes from the CAMERA25 training set.

model. Despite the promising performance, the reliance on
accurate instance-level CAD models limits their generaliz-
ability to everyday objects. Category-level methods [7, 23–
25, 29, 59, 61] is therefore been proposed to overcome this
limitation. The objective of this line of work focuses on esti-
mating object poses within a category given category-level
shape priors. As a result, they face unique challenges as
there exist diverse shape variations in each object category.
We illustrate these shape variations in Fig. 1.

Recently, there have been remarkable advancements in
category-level object pose estimation [9, 10, 25, 58, 61], pri-
marily due to effective utilization of geometric information
through 3D graph convolution [26]. In applications that re-
quire high precision, it is common to employ an object pose
refinement procedure in conjunction with pose estimation.
This involves an initial pose estimation algorithm determin-
ing the object pose, followed by a refinement step to further
enhance the accuracy of the initially estimated pose by pre-
dicting and correcting its error. However, while instance-
level object pose refinement has been extensively studied,
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category-level pose refinement remained unexplored until
the introduction of CATRE [29]. By leveraging initial ob-
ject pose and size estimations, CATRE achieves category-
level pose refinement by iteratively aligning the observed
target object point cloud with the category-level shape prior.
This pipeline is shown to be effective by improving the ac-
curacy of the initial pose and size estimations.

While CATRE has proven to be effective in many sce-
narios, it is limited by the reliance on the PointNet [35]
encoder, which is primarily designed for classification and
segmentation tasks. This design choice limits its ability to
capture essential and fine-grained geometric relationships
for accurate pose estimation and refinement. This ability is
particularly important in category-level pose refinement as
there exists diverse shape variations between inputs. Con-
sequently, CATRE obtains suboptimal performance by di-
rect application of 3D graph convolution. In addition, as
CATRE treats the point cloud and the shape prior features
separately until a later stage of the network, they potentially
miss out on the benefits of integrating these features earlier.
Moreover, their approach does not incorporate shape prior
information into the translation and scale estimation mod-
ule, which presents another area for potential improvement.

In this paper, we introduce a novel architecture for
category-level object pose refinement which aims to address
the limitations mentioned above. To better extract both lo-
cal and global geometric information, we incorporate an HS
layer into our feature extraction process. We apply learnable
affine transformations to the features to address the geomet-
ric discrepancies between the observed point cloud and the
shape prior. This enables the network to align these features
more effectively. In addition, we propose a cross-cloud
transformation mechanism that is specifically designed to
enhance the merging of information between the observed
point clouds and the shape prior. This mechanism enables
more efficient integration of information between the two
sources. Finally, we push the limit of our model by incor-
porating shape prior information to more accurately predict
errors in translation and size estimation.

Our extensive experimental results on two category-level
object pose datasets demonstrate that our proposed model
to be effective in addressing the problem of shape varia-
tions in category-level object pose refinement, and conse-
quently outperforms the state-of-the-art significantly. To
the best of our knowledge, our proposed method is the first
to successfully address the shape variation issue which is
common in category-level pose refinement. Specifically, to
enable graph convolution to be effective in capturing geo-
metric relationships between different shapes, we propose
an adaptive affine transformation matrix that aligns the ob-
served point clouds and the shape prior. Additionally, the
proposed cross-cloud transformation mechanism effectively
fuses features from different input point clouds and brings

further performance improvements.
Our contributions are as follows:

• We introduce a novel architecture to specifically address
the shape variations issue in category-level object pose re-
finement. Our proposed method results in consistent per-
formance gain and exhibits better generalization ability.

• We propose a unique cross-cloud transformation mecha-
nism which efficiently merges diverse information from
observed point clouds and shape priors.

• We conduct extensive experiments on two category-level
object pose datasets to validate our proposed method. On
the REAL275 dataset, our method significantly outper-
forms SPD by 39.1% increase in the 5◦5cm metric. Ad-
ditionally, we achieve 10.5% improvement in the 10◦2cm
metric over the state-of-the-art method, CATRE.

2. Related Work
Instance-level object pose estimation and refinement.
Instance-level approaches estimate the pose of the target ob-
ject given known 3D CAD models. They can be briefly
divided into correspondence matching methods and tem-
plate matching methods. Correspondence matching meth-
ods [4, 8, 12, 13, 31, 36, 40, 41, 44, 46, 55, 62] matches
the outstanding features of the observed object images with
its model. Template matching methods [1, 14, 27, 34, 38,
42, 43, 47] compares the images or extracted features with
the pre-generated templates. As the initial pose estimates
can be noisy to various factors such as occlusions, object
pose refinement [20, 22, 51] is shown to be useful in im-
proving the performance of instance-level methods. Even
though they achieved impressive over the target object, the
reliance on object CAD models limited their generalizabil-
ity for handling everyday objects. In this paper, we con-
sider a more challenging problem setting where only the
category-level shape prior is provided.

Category-level object pose estimation and refinement.
Both tasks mainly focus on addressing the shape varia-
tion between the objects. The pioneering work NOCS [49]
tackles the shape discrepancy by recovering the normal-
ized visible shape of the target object and achieving the
pose by point cloud matching. A series of methods extend
this structure by leveraging different information such as
domain adaptation [21], different reconstruction space [3],
shape prior [3, 16, 21, 45], and structural similarities [6, 25].
However, this line of work is often limited in speed due to
the iterative point matching. Another series of work starts
with FS-Net [9], which adopts 3D graph convolution (3D-
GC) [26] to obtain geometric sensitivity. Due to its effec-
tiveness and real-time performance, graph convolution is
widely adopted in recent methods with an enhancement in
directions including loss function [10], bounding box vot-
ing [58], and shape deformation [59]. HS-Pose [61] ex-
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tends the geometric feature extraction from local to global,
which enhances the capability to handle objects with com-
plex shapes. The research on category-level refinement be-
gan recently with the proposal of CATRE [29]. It intro-
duced an effective pipeline that leverages shape priors and a
focalization strategy for pose refinement and effectively im-
proves the initial pose estimations. In this paper, we extend
the CATRE and tackle the geometric variation issue within
the framework of category-level pose refinement.

3. Methodology
3.1. Problem Formulation

In this paper, we tackle the problem of category-level ob-
ject pose refinement. Given the initial pose and size esti-
mation (R0, t0, s0), along with the observed point cloud
O ∈ RNO×3 and the shape prior P ∈ RNP×3, we aim to
predict the estimation error (∆R, ∆t, ∆s) between the ini-
tial estimations and the ground truths. The pose refinement
algorithm ϕ can be described as:

(∆R,∆t,∆s) = ϕ(R0, t0, s0,O,P). (1)

This pose refinement algorithm ϕ can be applied iteratively
to improve the refinement performance.

3.2. Preliminaries

Our proposed category-level object pose refinement frame-
work builds upon two previous works, CATRE [29] and HS-
layer [61], which we briefly review them in the following.

CATRE. CATRE is the first framework that considers the
problem of category-level pose refinement. It predicts the
error between the ground truth and the estimated poses by
aligning the input point clouds and the categorical shape
priors. Specifically, the network architecture of CATRE
consists of four components: a) point cloud focalization, b)
shared encoder, c) rotation prediction, and d) translation and
size prediction. In point clouds focalization, the observed
point clouds O and the shape prior P are first aligned with
the initial pose and size estimation [R0, t0, s0]:

Ô = {ôi|ôi = oi − t0, oi ∈ O},
P̂ = {p̂i|p̂i = diag(s0)R0pi, pi ∈ P},

(2)

where diag(·) converts a vector to a diagonal matrix. The
focalized observed point cloud Ô and the focalized shape
prior points P̂ contain full information required to pre-
dict the estimation error (∆R,∆t,∆s). First, a PointNet-
based shared encoder is used to extract features from the
two focalized point clouds independently. Then, both the
extracted features are used for ∆R estimation, while the
global feature of the focalized observed point cloud along
with the s0 are used for ∆t and ∆s. The initial estimates

are updated using the predicted error (∆R,∆t,∆s). Fi-
nally, the updated estimates are used to predict the error
again in which this process is iterative and the estimations
are refined progressively and continuously.

HS-layer. The Hybrid-Scope Geometric Feature Extrac-
tion Layer (HS-layer) is a simple network structure based
on 3D graph convolution. It consists of two parallel paths
that extract different scopes of features from the point cloud.
The first path encodes the size and translation information
of the target object. Meanwhile, the second path extracts
outlier-robust local and global geometric features by apply-
ing graph convolution with a strategy of Receptive Fields
with Feature Distance (RF-F) metric, alongside an Outlier
Robust Feature Extraction Layer (ORL). These properties
are particularly beneficial for category-level object pose es-
timation tasks. For more details, please refer to [61].

3.3. Overall Structure of GeoReF

The overall framework of our proposed object pose refine-
ment approach is shown in Fig. 2. This framework com-
prises three principal components: 1) point cloud focaliza-
tion, 2) feature extraction, and 3) pose error prediction. We
follow CATRE and use the same point cloud focalization
module. We apply focalization and extract features from
both the observed point cloud and the shape prior by our
Feature Extraction component. Then, we predict the esti-
mation errors (∆R,∆t,∆s) using the extracted features in
the pose error prediction component.

3.4. Graph Convolution with Learnable Affine
Transformation (LAT)

Geometric structural information is effective in estimating
an object’s pose for category-level object pose estimations.
However, as shown in ablation study [AS-1], directly apply-
ing the 3D graph convolutions (e.g., HS-Encoder [61] and
3DGCN-Encoder [26]) to category-level object pose refine-
ment tasks results in poor performance. This is due to the
differences in task nature between the pose estimation and
the pose refinement. In the pose estimation task, the net-
work only needs to extract geometric structural information
from a single point cloud. However, in the pose refinement
framework, it requires extracting the geometric structural
information from the two input point clouds as well as es-
tablishing the geometric correspondences between different
object shapes. This becomes challenging due to the issue of
shape variation in category pose refinement.

To address the aforementioned problem, we propose to
use learnable affine transformations (LATs). By employing
LATs, the network can dynamically adjust the input point
cloud and the point features which enables better establish-
ment of geometric correspondences between the two dif-
ferent input shapes. Specifically, we apply three LATs (as
shown in the bottom left of Fig. 2, where the Matrix Net
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Figure 2. Overall structure of the proposed method. Our object pose refinement structure contains three main modules. Given the shape prior point
cloud, the target object’s observed point cloud, and the initial estimation, we first apply point cloud focalization on the input point clouds using the initial
estimation. The focalized point clouds then go through a geometric-based feature extraction encoder to obtain geometric structural features. The extracted
features are then fed into two branches for rotation error estimation, translation error, and size error estimation. Within the HS Feature Extractor, the Matrix
Net models output the learnable affine transformations (LATs) for adaptive point and feature adjustment. The left output of the Matrix Net adjusts the input
point clouds, while the right Matrix Net model outputs two affine transformations for adjusting the rotation features, and the translation and size features.

outputs the learnable affine transformations): The first LAT
M ∈ R3 is applied to the input point cloud in the Euclidean
space. The second LAT Mts is applied to the extracted trans-
lation and size features fts. The third LAT Mr is applied to
the extracted rotation feature fr. With this approach, our
method can better utilize the valuable geometric features in
pose refinement.

3.5. Cross-Cloud Transformation (CCT) for Infor-
mation Mixing

In pose refinement, effectively blending information from
the focalized observed object and the shape prior is crucial
for enabling the network to align them accurately. However,
in CATRE, the data from the observed point cloud and the
shape prior are processed independently until the late rota-
tion prediction stage, where they are merely concatenated,
limiting the effectiveness of the alignment. To address this
problem, we introduce a novel cross-cloud transformation
mechanism that effectively mixes the geometric informa-
tion from the shape of prior features into the features of the
observed point cloud. In particular, we use the feature trans-
formation matrices MP

r , MP
ts of shape prior to transforming

the features of the observed point cloud:

fO
r = MP

r fO
r , (3)

fO
ts = MP

ts f
O
ts . (4)

3.6. Integrating Shape Prior in Pose Estimation

The information contained in the shape prior is crucial for
the network to align the observed point cloud and the shape

prior. For the rotation error prediction, the information con-
tained in the shape prior is the essential information. For
the translation and size prediction, this information can also
be utilized by the network to adjust the learned geometric
features accordingly. Therefore, unlike CATRE, which re-
lied solely on features extracted from the observed point
cloud to predict (∆t,∆s), our approach also incorporates
the information from shape prior to predict them. In partic-
ular, we not only mix the information using previous CCT
mechanism, but also concatenate the features from shape
prior and observed point cloud to obtain mixed features in
the similarly way as the rotation estimation. We utilize fOP

t
and fOP

s which contain both information from shape prior
and observed point cloud like fOP

r to predict (∆t, δ).

We use two pose error predictors of the same network
architecture to predict the rotation error and the translation
and size error, respectively. Note that the weights of these
two pose error predictors are not shared. The network struc-
ture of the pose error predictor is shown in Fig. 2. The pose
predictor takes in two features, passes them through two
same paths separately, and obtains two vectors in R3. In the
translation and size branch, the pose error predictor takes in
fOP

t and fOP
s and passes them through the two paths, and the

output two vectors are regarded as ∆t and ∆s, respectively.
For the rotation error prediction, the mixed rotation features
fOP
r are copied and passed through the two paths in the pose

error predictor. The two output vectors are regarded as rx
and ry , where rx and ry are the first and second axes of the
rotation error matrix ∆R. The third column rz of ∆R can
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be found by:
rz = rx × ry. (5)

4. Experiments
Implementation details. We implement and experiment
with our method using an RTX 4090 GPU with a batch size
of 12 and 150 training epochs. We follow CATRE [29]
and adopt its loss functions and the basic data augmenta-
tion strategies including random dropping points, adding
Gaussian noise, random pose perturbations, etc. We set the
number of points for both the observed points and shape
prior to be 512. We train the network using Ranger opti-
mizer [28, 54, 57] with a base learning rate of 10−4 and
anneal the learning rate from the 72% of the total epoch
based on cosine schedule.

Baselines. We use CATRE as the baseline for our ablation
study as it is the state-of-the-art category-level object re-
finement method. As CATRE did not provide the results of
IoU50, we obtained them by using their official pre-trained
model and kept the rest of the reported metric scores con-
sistent with the corresponding paper. For fair comparisons,
we use the same initial estimations as CATRE, which is
the pose estimation results of SPD [45]. The result of re-
placing PointNet with the 3DGC-Encoder in the ablation
study is provided by CATRE. We also apply our method to
other state-of-the-art category-level object pose estimation
approaches [10, 25, 61] to demonstrate the effectiveness of
our proposed refinement method. For the pose refinement
on HS-Pose [61] and RBP-Pose [58], we compute the ini-
tial estimations using their official pre-trained models. The
results of other methods are taken directly from their paper.

Datasets. As we focus on the problem of shape variation
between input object point clouds, we choose two popular
category-level object pose estimation benchmarks to verify
our approach, i.e., REAL275 [49] and CAMERA25 [49].
They both contain 6 object categories with multiple levels
of shape complexities, i.e., bowl, can, bottle, laptop, mug,
and camera. REAL275 contains 36 objects in 13 real-world
scenes with 7k RGB-D images in total. Among them, 16
objects in 7 scenes are used for training, resulting in 4.3k
images in training. CAMERA25 is a large synthetic RGB-D
dataset. It provides 1085 objects and 275k RGB-D images
for training, and 184 objects and 25k images for testing.

Evaluation metrics. Following [29, 61], we evaluate our
method using: 1) The mean average precision (mAP) of
the 3D Intersection over Union (IoU) at different thresholds
(50% and 75%) to evaluate the pose and size estimation to-
gether2. 2) The pose metric at n◦mcm defines a pose as

2Note that there was a small mistake with the IoU computation from
the original benchmark evaluation code [49], we follow [29] to recalculate

correct if the rotation error is below n◦ and the translation
error is below m cm. Here, we use 5◦, 10◦, 2cm, and 5cm
as the thresholds.

4.1. Ablation study

To verify the proposed architecture, we conducted compre-
hensive ablation studies on the REAL275 dataset using the
initial pose estimations from SPD [45]. We present a quan-
titative comparison of our method with various key com-
ponents disabled to motivate our design choices in Table 1.
Full results of the ablation study are reported in the supple-
mentary materials.

[AS-1] Using geometric features directly. To illustrate
the limitations of existing geometric-based encoder under
the problem of shape variations, we replace the encoder
of CATRE with two robust geometric-based point cloud
convolutional structures, namely 3DGCN-Encoder [26] and
HS-Encoder [61]. 3DGCN is a widely adopted graph con-
volution in existing category-level object pose estimation
algorithms, while HS-Encoder is a recent architecture that
achieves state-of-the-art performance in category-level ob-
ject pose estimation. However, as shown in Table 1 [C0,
C1], even though both HS-Encoder and 3DGCN-Encoder
are powerful in finding an object’s pose from individual in-
puts, they failed to manage the pose refinement scenarios
when there exist shape variations between the target object
and the shape prior. We observed both encoders result in
a performance drop when compared to the original CATRE
with IoU75 of 37.3% (HS-Encoder) vs. 43.7% (CATRE),
5◦5cm of 43.4% (3DGCN-Encoder) vs. 53.3% (CATRE).

[AS-2] Use prior features in translation and scale esti-
mation. To validate that the information of shape prior is
also important in scale and translation error prediction, we
add the features of the prior shape to the scale and transla-
tion branch by using the same network architecture as the
rotation branch. As shown in Table 1 [D0], incorporating
shape prior information in translation and size estimation
enhanced the overall performance by 2.2% improvement on
5◦2cm metric and 2.4% on 10◦2cm metric.

[AS-3] Use learnable affine transformation (LAT) for
geometric features. To demonstrate the effectiveness of
LAT in addressing the shape variation issue, we conduct
ablation studies on applying the proposed LAT to the in-
put point cloud and the extracted geometric features in the
feature space. The result is shown in Table 1 [E0]. Com-
pared to using geometric features directly (Table 1 [C0]),
LATs bring a significant boost on all the metrics, with
IoU75 improved by 20.9%, 5◦2cm improved by 10.5%,

the IoU metrics for the SOTA methods.
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Table 1. Ablation studies on REAL275.
Higher score indicates better performance. In the ‘Row’ column, the code in bold means the strategies taken in the final structure. In the ‘Method’ column,
the notation ‘X:Y ’ denotes module Y from structure X , ‘X+Y ’ means add module Y to X , and ‘X → Y ’ indicates replacing X with Y .

Row Method IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 2cm 5◦

A0 CATRE[45] (baseline) 77.0 43.6 45.8 54.4 61.4 73.1 75.1 58.0

B0 Ours: E0 + Cross-Cloud Transformation 79.2 2.2↑ 51.8 8.2↑ 54.4 8.6↑ 60.3 5.9↑ 71.9 10.5↑ 79.4 6.3↑ 81.9 6.8↑ 64.3 6.3↑

C0 A0: PointNet → HS-Encoder 71.0 30.1 41.9 45.9 60.6 70.3 71.9 48.7
C1 A0: PointNet → 3DGCN-Encoder - 28.4 36.0 43.4 - - 68.0 47.7

D0 A0 + prior in ST branch 77.1 45.8 48.0 54.6 63.8 72.5 77.9 59.2

E0 D0: PointNet → HS-layer+LAT 79.4 51.0 52.4 58.6 69.4 77.7 80.4 62.4
E1 B0: No LAT on input points 76.1 39.3 46.6 53.0 65.4 74.8 78.0 58.2
E2 B0: No LAT on features 78.5 48.8 47.4 53.0 67.4 75.0 80.4 57.4
E3 B0: No LAT on the rotation feature 79.8 50.6 50.4 56.2 68.6 76.3 80.2 60.8

F0 E0+ Global Concatenation Fusion 77.7 48.4 47.8 54.5 67.1 75.2 80.1 59.4

and 5◦5cm improved by 12.7%. The resulted network also
significantly outperforms the PointNet-based encoder (Ta-
ble 1[D0]) on all the metrics with IoU75 and 10◦5cm im-
proved by 5.2%, 5◦2cm improved by 6.4%, and 10◦2cm
improved by 5.6%. These results verified the effectiveness
of LAT on geometric features.

[AS-4] The influence of each learnable affine transfor-
mation (LAT). To further demonstrate the influences of
each LAT, we conducted three experiments by gradually
disabling LAT from the framework: 1) without the LAT on
the input point cloud, 2) without applying LATs on features,
and 3) without independent LATs on the rotation features,
where a single LAT is used for the rotation, translation,
and scale features. The results are shown in Table 1 [E1-
E3]. Compared to the directly using geometric features (Ta-
ble 1 [C0]), we show that LAT can significantly enhance the
network by around 10% improvements on IoU75 and 7% on
5◦5cm metric in Table 1 [E1-E3]. We verify that the com-
bination of them consistently results in better performance.

[AS-5] Cross-cloud transformation (CCT) based fea-
ture fusion To demonstrate that it is important to have a
good feature fusion strategy in the feature extraction phase,
we conducted experiments on two different feature fusion
strategies. One of them is the widely adopted feature fu-
sion strategy, where the global feature of one point cloud is
concatenated with the features of another point cloud and
then goes through convolutional layers for feature fusion.
Another one is the proposed CCT-based feature fusion. As
shown in Table 1 [F0], applying global concatenation-based
fusion does not enhance the overall performance, and even
results in worse performance in all the metrics with the
5◦2cm significantly decreased by 4.6%, and 5◦5cm de-
creased by 3.1% (compared to Table 1 [D0]). On the con-
trary, as shown in Table 1 [B0], our simple CCT-based fea-
ture fusion shows its effectiveness by improving all the pose
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Figure 3. Performance comparison of our method and CATRE under
different shape priors. SP-m denotes the category’s mean shape, while
SP-1 and SP-2 are randomly sampled object shapes from CAMERA25.

metrics by around 2.0%. In Supplementary, we also visual-
ize the influence of CCT in feature space.

[AS-6] Handle shape variations. To demonstrate that the
proposed method can handle the shape variations, we re-
placed the original shape prior with two randomly sam-
pled models from CAMERA25 training set and trained on
REAL275. Note that the original shape prior represents the
mean shape of a category, and the new models are randomly
sampled. Therefore, there are larger shape variations with
certain target objects. As shown in Fig. 3, CATRE performs
best when using the mean shape of the category, while its
performance drops dramatically on the randomly sampled
shape priors. In contrast, our method exhibits robustness
to shape variations introduced by different shape priors and
consistently delivers strong performance.

[AS-7] Refinement with different initial estimations.
To demonstrate our model robustness to different initial es-
timations, we compare the proposed method with CATRE
on different initial estimations generated by category-level
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SPD

CATRE

Ours

Figure 4. Qualitative comparison of proposed (row #3) and baseline (row #2) methods using SPD (row #1) as initial estimation. Ground truth shown
with white lines. Note that the estimated rotations of symmetric objects (e.g. bowl, bottle, and can) are considered correct if the symmetry axis is aligned.

object pose estimation methods with varying performance,
including HS-Pose [61], GPVPose [10], and the Self-
DPDN [25]. As shown in Table 2, our method consistently
improves the initial estimations by a large margin across
different metrics. For example, we improved the SelfDPND
and GPV-Pose on strict 5◦2cm metric by 9.6% and 15.4%,
respectively. We boosted the IoU75 of the GPV-Pose and
the HS-Pose by 26.5% and 15.2%, respectively. However,
the baseline CATRE fails to refine the initial poses of Self-
DPDN. Also, CATRE reaches its limit when refining high-
accuracy initial estimations such as the initial poses gener-
ated by HS-Pose, resulting in performance drops on 10◦5cm
and 10◦2cm. The comparison results demonstrated the ro-
bustness and capability of our method to different initial es-
timations. We report full details in the supplementary.

4.2. Generalizabily test on the CAMERA25 dataset

In real-world applications, category-level algorithms often
need to generalize across diverse testing scenarios, encoun-
tering a larger number of objects than represented in their
training sets. To simulate this problem setting, we choose
CAMERA25 as it provides more than 25K RGB-D testing
images. We train our model using only a mini set (2%
and 4%) of the CAMERA25 training data, resulting in a
training set of around 5K and 10K images from a total of
275K images. As shown in Table 3, the performance of
the baseline method decreased dramatically when using 2%
of the training images, with IoU75 dropped by 12.9% and
5◦2cm dropped by 9.0% (see [B0]). On the contrary, our

Table 2. Comparison of the pose refinement with the baseline method
CATRE on REAL275 with different initial estimations. Each compar-
ison group contains 3 methods: the initial pose estimation method, refine-
ment using CATRE, and refinement using our method, respectively.

Method IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Self-DPDN [25] 42.2 44.3 50.9 65.1 78.6
Self-DPDN + CATRE 0.0 42.2↓ 0.3 44.0↓ 5.1 45.8↓ 0.4 64.7↓ 6.9 71.7↓
Self-DPDN + Ours 49.7 7.5↑ 53.9 9.6↑ 60.1 9.2↑ 75.0 9.9↑ 82.8 4.2↑

GPV-Pose [10] 23.1* 32.0 42.9 55.0 73.3
GPV-Pose + CATRE 42.6 19.5↑ 39.7 7.7↑ 54.1 11.2↑ 57.1 2.1↑ 78.0 4.7↑
GPV-Pose + Ours 49.6 26.5↑ 47.4 15.4↑ 57.8 14.9↑ 68.1 13.1↑ 81.2 7.9↑

HS-Pose [61] 39.1* 46.5 55.2 68.6 82.7
HS-Pose + CATRE 47.1 8.0↑ 48.7 2.2↑ 59.1 3.9↑ 67.8 0.8↓ 81.2 1.5↓
HS-Pose + Ours 54.3 15.2↑ 51.7 5.2↑ 59.6 4.4↑ 74.3 5.7↑ 83.8 1.1↑

method exhibits a much higher performance when using
small datasets for training. Specifically, our method can al-
ready outperforms the fully-trained CATRE with only 2%
of images (see [B1]). We also report the performance us-
ing 4% images of the training set in Table 3. It can be seen
that, despite CATRE use full CAMERA25 training set, our
method outperforms it with IoU75 and 5◦2cm improved by
3.1% and 3.6%, respectively.

4.3. Comparison with state-of-the-arts

REAL275. We conduct pose refinement on SPD [45]
using the proposed approach and compare the resulting
performance with the state-of-the-art category-level ob-
ject pose estimation and refinement methods. As shown
in Table 4, our method significantly improves the perfor-
mance of SPD on all the metrics, with 5◦5cm enhanced
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Table 3. The generalizability test on the CAMERA25 dataset.

Row Method Train Data Size IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 2cm 5◦

A0 CATRE 275K 76.1 75.4 80.3 83.3 89.3 - -

B0 CATRE 5K 63.2 66.4 72.3 79.4 87.4 88.8 73.3
B1 Ours 5K 77.5 75.4 81.1 83.4 90.0 91.0 82.3

C0 CATRE 10K 66.5 69.7 75.5 81.8 89.1 89.9 76.7
C1 Ours 10K 79.2 77.9 84.0 83.8 90.5 92.0 85.4

Table 4. Comparison with other methods on REAL275.

Method IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

NOCS [49] 9.4 7.2 10.0 13.8 25.2
DualPoseNet [24] 30.8 29.3 35.9 50.0 66.8
CR-Net [50] 33.2 27.8 34.3 47.2 60.8
SGPA [6] 37.1 35.9 39.6 61.3 70.7
RBP-Pose [58] 24.5 38.2 48.1 63.1 79.2
GPV-Pose [10] 23.1 32.0 42.9 55.0 73.3
HS-Pose [61] 39.1 46.5 55.2 68.6 82.7
SPD∗ [45] 27.0 19.1 21.2 43.5 54.0

SPD∗+CATRE [29] 43.6 45.8 54.4 61.4 73.1
SPD∗+Ours 51.8 54.4 60.3 71.9 79.4

by 39.1%, 5◦5cm improved by 35.3%, IoU75 enhanced
by 24.8%, 10◦2cm improved by 24.4%, and 10◦5cm im-
prove by 25.4%. In comparison to our baseline, CATRE,
our proposed method demonstrates a substantial improve-
ment across various performance metrics. Specifically, we
observe a remarkable enhancement of 10.5% in 10◦2cm,
8.6% in 5◦2cm, 7.2% in IoU75, and 6.3% in 10◦5cm. In
addition, compared with SOTA pose estimation methods,
the pose estimation results of applying our proposed re-
finement method on SPD significantly outperformed these
methods’s results by a large margin. Specifically, the esti-
mation results of applying our method on SPD rank top on
4 out of 5 metrics and rank second on the rest metric, and
achieved a 7.9% increase on the 5◦2cm metric and 5.1%
enhancement on 5◦5cm. It is worth noting that the purpose
of this section is not to compare refinement and estimation
methods, as they are designed to address different problems.
Instead, our objective here is to demonstrate how our pro-
posed refinement approach can improve the performance of
existing pose estimation methods. Therefore, even though
our refinement on HS-Pose produced better performance, as
mentioned in the ablation study, we choose to refine weaker
initial estimations to show the capability of our approach.

CAMERA25. Our method outperforms the state-of-the-
art methods using only 2% of the training image set. For
more details, please refer to the supplementary.

Qualitative examples. We provide qualitative compar-
isons of the pose estimation results by SPD, CATRE on
SPD, and our method on SPD in Fig. 4 and 5. As shown in
Fig. 4, our method on SPD achieves the best size and pose

CATRE

Ours

aaaa Initial Pose Iter 1 Iter 2 Iter 3 Iter 4

Figure 5. Comparison of proposed (row #2) and baseline (row #1)
methods) during a complete refinement iteration, both using SPD as
initial estimation. The ground truth is represented by white lines.

estimations. In particular, by considering the first column
of Fig. 4, all of the comparison methods struggle to esti-
mate the orientation of the camera category. We also pro-
vide qualitative examples on the iteration process in Fig. 5.
Our method demonstrates faster convergence and more ac-
curate final result than CATRE.

5. Conclusion

In this work, we proposed a novel category-level object
pose refinement method which targeted at addressing the
challenge of shape variation. We shown that the geomet-
ric structural information can be aligned by our adaptive
affine transformations. We also demonstrated that the cross-
cloud transformation mechanism can efficiently merges in-
formation from distinct point clouds. We further incorpo-
rated shape prior information and observed improvements
in translation and size predictions. We verified that each of
our technical components contributed meaningfully through
extensive ablations. We believe our method sets a strong
baseline for future study and opens up new possibilities to
handling more complex shapes, i.e. articulated objects.
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Aleš Leonardis3 Wei Zhang† 1 Hyung Jin Chang3

1Shenzhen Key Laboratory of Control Theory and Intelligent Systems, School of System Design and
Intelligent Manufacturing, Southern University of Science and Technology, China

2Department of Computer Science, the University of Hong Kong, China
3School of Computer Science, University of Birmingham, UK

{lxz948, txt994}@student.bham.ac.uk, cwang5@cs.hku.hk, sunyh2021@mail.sustech.edu.cn

{chenh6,zhangw3}@sustech.edu.cn,{a.leonadis,h.j.chang}@bham.ac.uk

1. About the Runtime
On a machine with an Intel 13900k CPU and a Nvidia RTX
4090 GPU, the speed of our proposed method is 67.5 FPS
for 1 iteration, and 22.3 FPS when using 4 iterations.

2. Effect of number of iterations
We find that the performance of our proposed method
saturates after 4 iterations. Therefore, we set the itera-
tion number to 4 for our experiments. We provide a line
graph to show the performance changes of our method and
CATRE [6] during the iteration in Fig. 1 We show that
our proposed method consistently outperforms the baseline
method and saturates after 4 iterations in both figures.

3. Ablation Studies
Refinement with different initial estimations. Apart
from the table provided in the main paper, we visually show
the robustness of our method on different initial estimations
generated from 5 pose estimation methods [2, 5, 8, 11, 13]
with ranging performance. As shown in Fig. 1, our method
keeps improving the performance of the initial estimations,
while CATRE [6] failed when refining the initial estima-
tions from Self-DPDN [5]. Additionally, our method keeps
improving during the iterations, while CATRE’s perfor-
mance starts to decrease after one iteration (see the dashed
lines in Fig. 1).

The effect of CCT. To demonstrate the effect of CCT, we
show a statistics plot of feature distances before and after

*Equal contribution, order by dice rolling.
†The corresponding author.
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Figure 1. Comparison between CATRE and our method on different
initial estimations across different refining iterations. (a) IoU75 perfor-
mance comparison. (b) 5◦2cm performance comparison. Our methods are
shown in solid lines and CATRE’s are in dashed lines. Iteration 0 shows
the performance of the initial estimations.

CCT on objects with different shape complexities of the
CAMERA25 test set. In this experiment, the initial pose
of the shape prior is aligned with the ground truth pose to
guarantee that the observed variations in feature distance
are solely attributable to differences in shape. As shown in
Fig 2, the feature distance between the shape prior and the
input target shrinks significantly after applying CCT.

4. Generalizability test on CAMERA25

More Results. To test the generalizability of our method
when trained on a small dataset and tested on a large dataset,
we randomly sample datasets from the CAMERA25 train-
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Figure 2. Feature distances between the shape prior and the input
point cloud before and after applying the cross-cloud transformation.

ing dataset at different ratios (2%, 4%, and 6%). This yields
training sizes of 5k, 10k, 15k. We show the results of the
generalizability test in Table 1. We observe that our method,
trained only using 2% of the train set, can already outper-
form a fully trained CATRE on all training data. Also, our
performance becomes stable when using 4% of the train set
(see Table 1 [C1, D1]), while CATRE requires additional
training data for better performance. Since our performance
became stable, we did not test on larger data sizes.

Experiment settings: To ensure the distribution of differ-
ent categories in the sampled mini datasets, we control the
image number of each object in the sampled datasets: 1) 5
images per object for the 2% train set, 2) 10 images for the
4% train set, and 3) 15 images for the 6% train set.

Table 1. The generalizability test on the CAMERA25 dataset.
Higher score means better performance. Overall best results are in bold,
and the second-best results are underlined. The training data size is de-
noted as T. Size.

Row Method T. Size IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

A0 CATRE 275k 76.1 75.4 80.3 83.3 89.3

B0 CATRE 5k 63.2 66.4 72.3 79.4 87.4
B1 Ours 5k 77.5 75.4 81.1 83.4 90.0

C0 CATRE 10k 66.5 69.7 75.5 81.8 89.1
C1 Ours 10k 79.2 77.9 84.0 83.8 90.5

D0 CATRE 15k 69.7 73.2 78.8 82.6 89.4
D1 Ours 15k 78.1 78.0 84.1 83.6 90.5

5. Detailed Network Architectures
The network structure of the HS Feature Extractor and the
Pose Error Predictor is shown in Fig. 2 of the main pa-
per. The structure of the Pose Error Predictor for ∆R es-
timation and the ∆t,∆s estimation are identical, we fol-
low the CATRE [6] and use 3 Convolution-1D layers with
permutation before the final layer to generate the pose er-
rors. For the Matrix Net, we follow PointNet [7] first use 3

Convolution-1D layers with [64, 128, 1024] output dimen-
sions and a kernel size of 1 to extract the dense point fea-
tures, then the features going through a maximum pooling
layer and 3 liner layers with [512, 256, fLAT] to generate
the matrix. For the first Matrix Net that generates the adap-
tive affine transformation (LAT) for the input point cloud,
fLAT is 9. For the second Matrix Net, fLAT is 8192, as
it outputs two LATs with the matrix size of R64×64. In
the final structure of the GeoReF, we use two HS-layers to
replace the first two Convolution-1D layers in the second
Matrix Net, which in our experiments, show slightly better
results than without HS-layers (See Table 2 [B0, G0] for
the performance comparison). The structure of the Global
Feature Extractor is shown in Fig. 3, we use 1 layer of HS-
layer and 2 Convolution-1D layers with the output size of
[128, 512, 1024] to extract dense point features, and then ap-
ply maximum pooling to get the global feature. Finally, the
global feature is concatenated with the input features for the
outputs.

+

C
onv 512

C
onv 1024

Max
Pool

Figure 3. Structure of the global extractor.

6. Performance Comparion on CAMERA25

Table 3 compares the accuracy of our method with the state-
of-the-arts. As discussed in Sec. 4, our performance sta-
bilizes when using 4% of the full train set. Therefore,
we present the results obtained with this training size. As
shown in Table 3, we greatly enhanced the performance of
SPD, resulting in a performance that outperformed state-of-
the-art pose estimation methods. Specifically, we improved
the performance of SPD [8] on IoU75 by 32.7%, 5◦5cm by
25.2%, and 5◦2cm by 23.8%. We also outperform the base-
line CATRE on IoU75 by 3.1%, 5◦5cm by 3.7%, and 5◦2cm
by 2.5%. Additionally, we show our results trained using 5k
images (2%) of the train set, which already outperforms the
state-of-the-art methods.

7. Per-category Performance

7.1. CAMERA25.

We present our per-category object pose refinement perfor-
mance in Table 4. We use SPD [8] as the initial estimation
method and report the performance after 4 refinement itera-
tions. We show that our method largely improved the initial
performance.
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Table 2. Ablation studies on REAL275.
Higher score means better performance. Overall best results are in bold. Row’s code in bold means the strategies taken in the final structure.

Row Method IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 2cm 5◦

A0 CATRE [6] (baseline) 77.0 43.6 45.8 54.4 61.4 73.1 75.1 58.0

B0 Ours: E0+Cross-Cloud Transformation 79.2 2.2↑ 51.8 8.2↑ 54.4 8.6↑ 60.3 5.9↑ 71.9 10.5↑ 79.4 6.3↑ 81.9 6.8↑ 64.3 6.3↑

C0 A0: PointNet → HS-Encoder 71.0 30.1 41.9 45.9 60.6 70.3 71.9 48.7
C1 A0: PointNet → 3DGCN-Encoder - 28.4 36.0 43.4 - - 68.0 47.7

D0 A0 + prior in ST branch 77.1 45.8 48.0 54.6 63.8 72.5 77.9 59.2

E0 D0: PointNet → HS-layer+LATs 79.4 51.0 52.4 58.6 69.4 77.7 80.4 62.4
E1 B0: No LAT on input points 76.1 39.3 46.6 53.0 65.4 74.8 78.0 58.2
E2 B0: No LATs on features 78.5 48.8 47.4 53.0 67.4 75.0 80.4 57.4
E3 B0: No LAT on the rotation feature 79.8 50.6 50.4 56.2 68.6 76.3 80.2 60.8

F0 E0+ Global Concatenation Fusion 77.7 48.4 47.8 54.5 67.1 75.2 80.1 59.4

G0 B0: No HS-layer in Matrix Net 77.8 50.2 54.1 60.1 70.5 78.0 81.2 63.6

Table 3. Comparison with other methods on CAMERA25.
Higher score means better performance. Overall best results are in bold.
SPD∗ is the implementation results from CATRE, which is similar to the
original SPD results.

Method IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

NOCS [9] 37.0 32.3 40.9 48.2 64.6
DualPoseNet [4] 71.7 64.7 70.7 77.2 84.7
CR-Net [10] 75.0 72.0 76.4 81.0 87.7
SGPA [1] 69.1 70.7 74.5 82.7 88.4
SAR-Net [3] 62.6 66.7 70.9 75.3 80.3
SSP-Pose [12] - 64.7 75.5 - 87.4
RBP-Pose [11] - 73.5 79.6 82.1 89.5
GPV-Pose [2] - 72.1 79.1 - 89.0
HS-Pose [13] - 73.3 80.5 80.4 89.4
SPD∗ [8] 46.9 54.1 58.8 73.9 82.1

SPD∗+CATRE [6] 76.1 75.4 80.3 83.3 89.3
SPD∗+Ours (2%) 77.5 75.4 81.1 83.4 90.0
SPD∗+Ours 79.2 77.9 84.0 83.8 90.5

7.2. REAL275.

We present the per-category object pose refinement results
in Table 5. We use SPD [8] as the initial estimation method
and report the performance after 4 refinement iterations. We
show that our method largely improved the initial perfor-
mance.

8. Additional Qualitative Results
We show additional qualitative results of our method test
on different REAL275 test scenes in Fig. 4 and Fig. 5. We
highlight the performance differences with red arrows.
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Table 4. Per-category results of our method on CAMERA25 dataset.

Method Category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 2cm

SPD bottle 88.9 64.5 63.8 82.8 69.2 92.4 97.3 86.8 69.8
SPD+Ours bottle 89.4 73.8 73.8 94.2 74.2 95.1 99.4 98.4 74.2

SPD bowl 95.9 80.6 83.4 83.7 95.8 96.3 96.3 83.7 99.2
SPD+Ours bowl 96.0 94.7 97.9 98.2 99.5 99.8 99.8 98.2 99.6

SPD camera 61.9 4.7 27.3 29.3 72.9 78.6 78.6 29.5 89.8
SPD+Ours camera 81.6 67.7 83.1 87.2 90.8 95.2 95.2 87.2 93.9

SPD can 90.2 87.2 98.1 98.2 99.4 99.6 99.6 98.2 99.6
SPD+Ours can 90.3 89.8 99.9 100.0 99.9 100.0 100.0 100.0 99.9

SPD laptop 93.3 17.7 35.0 41.9 61.0 80.5 84.5 43.7 65.5
SPD+Ours laptop 95.3 81.3 74.0 85.5 77.4 91.8 95.8 89.1 77.9

SPD mug 82.7 24.1 15.5 15.5 44.1 44.1 44.1 15.9 99.6
SPD+Ours mug 89.8 67.7 39.0 39.0 61.0 61.0 61.0 39.4 99.9

Table 5. Per-category results of our method on REAL275 dataset.

Method Category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 2cm

SPD bottle 49.9 13.1 21.6 23.2 69.4 76.0 87.1 35.9 80.7
SPD+Ours bottle 49.8 36.2 64.8 68.0 82.5 88.6 100.0 82.5 89.1

SPD bowl 100.0 77.1 50.5 54.0 75.8 80.3 80.3 54.0 94.7
SPD+Ours bowl 100.0 91.9 91.2 95.6 95.4 100.0 100.0 95.7 95.4

SPD camera 43.4 3.4 0.0 0.0 0.2 0.2 0.2 0.0 34.8
SPD+Ours camera 78.4 12.4 2.1 2.1 17.9 18.8 18.9 2.2 58.3

SPD can 70.0 29.8 37.9 42.7 80.4 91.6 91.6 45.5 87.1
SPD+Ours can 70.3 36.7 75.6 78.6 96.0 99.9 99.9 80.7 96.0

SPD laptop 82.0 35.5 4.6 7.0 24.5 65.3 65.9 7.1 29.1
SPD+Ours laptop 80.8 73.9 67.6 91.8 68.9 94.4 95.6 92.5 69.3

SPD mug 66.5 8.7 0.3 0.3 10.3 10.4 10.4 0.3 85.2
SPD+Ours mug 96.2 59.5 24.8 25.9 70.7 74.8 74.8 25.9 89.9
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scene 1-1

scene 1-2

scene 2-1

scene 2-2

scene 3-1

scene 3-2

scene 7 SPD SPD + CATRE SPD + Ours
Figure 4. More qualitative comparison between the proposed method (column #3) and the baseline method (column #2) use the SPD (column #1) as
the initial estimation. We choose two instances from each scene in REAL275 dataset. We show the ground truth with white lines. Note that the estimated
rotations of symmetric objects (e.g. bowl, bottle, and can) are considered correct if the symmetry axis is aligned.
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scene 4-1

scene 4-2

scene 5-1

scene 5-2

scene 6-1

scene 6-2

scene 7 SPD SPD + CATRE SPD + Ours
Figure 5. More qualitative comparison between the proposed method (column #3) and the baseline method (column #2) use the SPD (column #1) as
the initial estimation. We choose two instances from each scene in REAL275 dataset. We show the ground truth with white lines. Note that the estimated
rotations of symmetric objects (e.g. bowl, bottle, and can) are considered correct if the symmetry axis is aligned.
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