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Abstract

Establishing accurate 3D correspondences between
shapes stands as a pivotal challenge with profound im-
plications for computer vision and robotics. However,
existing self-supervised methods for this problem assume
perfect input shape alignment, restricting their real-world
applicability. In this work, we introduce a novel self-
supervised Rotation-Invariant 3D correspondence learner
with local Shape Transform, dubbed RIST, that learns to
establish dense correspondences between shapes even un-
der challenging intra-class variations and arbitrary orien-
tations. Specifically, RIST learns to dynamically formulate
an SO(3)-invariant local shape transform for each point,
which maps the SO(3)-equivariant global shape descriptor
of the input shape to a local shape descriptor. These local
shape descriptors are provided as inputs to our decoder to
facilitate point cloud self- and cross-reconstruction. Our
proposed self-supervised training pipeline encourages se-
mantically corresponding points from different shapes to
be mapped to similar local shape descriptors, enabling
RIST to establish dense point-wise correspondences. RIST
demonstrates state-of-the-art performances on 3D part la-
bel transfer and semantic keypoint transfer given arbitrarily
rotated point cloud pairs of the same category, outperform-
ing existing methods by significant margins.

1. Introduction
Establishing dense 3D correspondences between different
shapes is foundational to numerous applications across
computer vision, graphics, and robotics [9, 22, 28, 41].
One of the primary challenges hindering advancements in
this domain is the difficulty of annotating dense inter-shape
correspondences, which limits the leverage of strongly-
supervised learning paradigms.

Recently, self-supervised learning methods have been
proposed to address this issue [3, 21], showing promis-
ing directions for 3D correspondence estimation. Nonethe-
less, a significant limitation in existing approaches is their
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Figure 1. Semantic correspondence between rotated shapes.
We visualize the semantic correspondence results of the previous
SOTA [3] and ours, given two randomly rotated airplanes from
the ShapeNetPart dataset [39]. Green and red lines indicate the
correct and incorrect matches, respectively. For each method, 100
source points are randomly selected from the source (yellow) for
correspondence visualization1. Ours predicts SO(3)-invariant cor-
respondences, showing superior accuracy and robustness in com-
parison to the previous SOTA [3].

stringent assumption about the alignment of input shape
pairs; these methods strongly assume that the input point
cloud pair to establish correspondences between is precisely
aligned. This assumption is rarely met in practice, where
object scans and shape instances can be arbitrarily oriented.
We find that the performance of existing methods degrades
significantly when confronted with rotated input shapes, re-
stricting their real-world applicability (Figure 1).

To address this challenge, we introduce a novel self-
supervised learning approach, dubbed RIST, designed to
reliably determine dense SO(3)-invariant correspondences
between shapes via local shape transform. In essence, RIST
learns to formulate SO(3)-invariant local shape transform
for each point in a dynamic and input-dependent manner.
Each point-wise local shape transform maps the SO(3)-
equivariant global shape descriptor of the input shape to a
local shape descriptor, which is passed to the decoder to re-
construct the shape and pose of the input shape. By training
RIST via self- and cross-reconstruction of input shapes, true
semantically corresponding points are trained to yield sim-

1For the details of the inference algorithm, please refer to Appendix A.
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ilar local shape descriptors, enabling us to determine dense
shape correspondences.

RIST demonstrates state-of-the-art performance on
part segmentation label transfer when evaluated on the
ShapeNetPart [39] and ScanObjectNN [35] datasets. In par-
ticular, significant improvements over existing baselines are
observed when our method is applied to randomly oriented
shape pair inputs. Furthermore, our approach also proves
to be more effective compared to existing methods at se-
mantic keypoint transfer when evaluated on the Keypoint-
Net dataset [40]. This showcases not only the applicability
of RIST across a diverse range of tasks, but also its potential
to be utilized for efficient dense annotation of 3D shapes.
These results highlight the efficacy of RIST in addressing
the challenges posed by real-world scenarios where exist-
ing methods fail to perform effectively.

The main contributions of our work are as follows:
• We introduce RIST, a novel self-supervised approach for

determining dense SO(3)-invariant correspondences be-
tween arbitrarily aligned 3D objects.

• We propose to formulate the local shape information of
each point as a novel function called local shape trans-
form with dynamic input-dependent parameters, which
effectively maps the global shape descriptor of input
shapes to local shape descriptors.

• RIST achieves state-of-the-art performance on 3D part
segmentation label transfer and 3D keypoint transfer un-
der arbitrary rotations, indicating its potential for applica-
tion in a wide range of practical tasks in computer vision.

2. Related Work

Point cloud understanding via self-supervised learning.
While traditional methods for point cloud processing in-
volving hand-crafted features [27, 33] have shown impres-
sive performance, with the advent of deep learning, sub-
stantial research efforts have been directed towards devel-
oping learning-based algorithms capable of effectively pro-
cessing and understanding point clouds [5, 24–26, 42]. Due
to limited large-scale datasets with rich annotations, self-
supervised learning approaches emerged as a viable alter-
native. One of the most prominent directions to learn point
cloud representations in a self-supervised manner is learn-
ing through self-reconstruction [23, 38, 43] of the point
cloud. Primarily inspired by the efficacy of point cloud
reconstruction as a self-supervised representation learning
scheme, we train RIST to establish 3D correspondences in
a self-supervised manner via self- and cross-reconstruction
of point clouds by leveraging SO(3)-invariant dynamic local
shape transform.

Equivariance and invariance to rotation. The conven-
tional method to improve a neural network’s robustness
to rotation is by employing rotation augmentations dur-

ing training or inference. However, this tends to increase
the resources required for training and still shows unsat-
isfactory results when confronted with an unseen rota-
tion [14, 18]. In recent years, various methods have been
proposed to yield point cloud representations, which are
equivariant [2, 6, 29, 32] or invariant [14, 18, 19, 31, 37]
to the rotation of the input, demonstrating enhanced per-
formances under arbitrary input rotations. To facilitate the
rotation-robust establishment of 3D dense correspondences,
we utilize SO(3)-equivariant networks in building RIST,
leveraging SO(3)-equivariant and -invariant representations
to guarantee robustness to rotation by design.

Semantic correspondences under intra-class variations.
Finding correspondences between images or shapes under
intra-class variations - manifesting as differences in shape,
size, and orientation within the same category of objects -
poses significant challenges over photometric or viewpoint
variations. This task has been widely studied in the domain
of images, where existing methods make use of sparsely
annotated image pair datasets to train their method in a
strongly- or a weakly-supervised manner [4, 11, 13, 15, 34].
However, learning to establish dense yet reliable 3D cor-
respondences between 3D shapes remains challenging, as
it is infeasible to label dense correspondence annotations
across point cloud pairs with intra-class variations. Self-
supervised methods have been proposed to address this
issue [3, 21], but they strongly assume that the input
point clouds are aligned, leading to considerable significant
degradation when confronted with arbitrarily rotated point
clouds. Additionally, the functional map-based approach
introduced by Huang et al. [10] for non-rigid registration
struggles with topological changes and efficiency. To this
end, we propose RIST to establish reliable 3D dense cor-
respondences irrespective of the input point clouds’ poses.

3. RIST for 3D Semantic Correspondence
In this section, we detail the components of RIST, which
come together to facilitate the end-to-end self-supervised
training for 3D semantic correspondence establishment.
The objective of 3D semantic correspondence is as follows;
given two different point clouds instances P1 ∈ RN×3

and P2 ∈ RN×3 belonging to the same semantic category,
we aim to find all semantically corresponding point pairs
{pi,qi}N

′

i=1
2 such that pi ∈ P1 and qi ∈ P2. To achieve

this, we claim it is crucial to identify the local shape infor-
mation i.e. local semantics and geometry, which is general-
izable across different instances within the same category.

Therefore, the main idea of RIST is to dynamically gen-
erate a SO(3)-invariant local shape transform as a function
for each point, such that each local shape transform can

2N ′ ≤ N ; there could be points with no matches.
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Figure 2. Overview: Self-supervised training of RIST. The input point clouds are independently encoded to SO(3)-equivariant global
shape descriptor Z and dynamic SO(3)-invariant point-wise local shape transforms {fθi}. The local shape transforms map the global
shape descriptor to local shape descriptors by infusing local semantics and geometry, which are used as inputs to the decoder for self-
reconstruction. For cross-reconstruction, we apply the local shape transforms formulated from another point cloud to reconstruct the point
cloud, ensuring that the local shape descriptors successfully capture generalizable local semantics and geometries. We supervise RIST via
penalizing errors in self- and cross-reconstructions. At inference, we can leverage the local shape transforms for obtaining local shape
descriptors, to identify the dense correspondences.

map the SO(3)-equivariant global shape descriptor of the
input point cloud to its respective local shape descriptor.
In the following, we elaborate on the network architecture
of RIST, in particular how we leverage SO(3)-equivariant
and invariant representations to facilitate the dynamic for-
mulation of pointwise SO(3)-invariant local shape trans-
forms and the reconstruction of pose-preserved point clouds
(Sec. 3.1). Subsequently, we introduce our self-supervisory
objective function, which trains RIST to self- and cross-
reconstruct the input point clouds in a rotation-equivariant
manner (Sec. 3.2), finally enabling the establishment of 3D
dense correspondences (Sec. 3.3) via corresponding local
shape descriptors. Figure 2 illustrates the outline of the
training scheme of RIST.

3.1. Network Design of RIST

3.1.1 Preliminary: SO(3)-Equivariant Representation

One of the main motivations of RIST is to establish reliable
and accurate 3D dense correspondences given arbitrarily
rotated shapes, a setting where existing work shows to be
brittle. This requires our encoder to formulate the point-
wise local shape transforms not only effectively to capture
the local shape semantics and geometry, but also robustly
against transformations in the SO(3) space. To this end, we
integrate SO(3)-equivariant networks into RIST to facilitate
robustness to SO(3) transformations of the input. In this
work, we choose VNNs [7] to build our SO(3)-equivariant
layers for their simplicity and efficacy. In VNNs, a single

neuron, which is represented by a scalar-list of values, is
lifted to a vector-list feature V ∈ RC×3, which is essen-
tially a sequence of 3D vectors. The layers of VNNs handle
batches of such vector-list features such that equivariance
with respect to rotation R ∈ SO(3) is satisfied i.e. f(VR) =
f(V)R3. Notably, we can yield an SO(3)-invariant output
by performing a product of an equivariant vector-list fea-
ture VR ∈ RC×3 with the transpose of another consistently
equivariant vector-list feature UR ∈ RC′×3 as follows:
(VR)(UR)⊤ = VRR⊤U⊤ = VU⊤. This serves as a
critical functionality when constructing our SO(3)-invariant
local shape transform of our encoder (Sec. 3.1.2).

3.1.2 SO(3)-Equivariant Encoder

We design our encoder architecture to take as input a point
cloud P ∈ RN×3, and simultaneously output an SO(3)-
equivariant global shape descriptor and formulate point-
wise SO(3)-invariant local shape transforms.

SO(3)-equivariant global shape descriptor. Given a point
cloud, we first aim to obtain the SO(3)-equivariant global
shape descriptor Z ∈ RC×3, which captures the pose and
the global shape characteristics of the input point cloud.
We leverage VN-DGCNN [7] as our encoder architecture,
which consists of 4 edge convolutional VN-layers to capture
local semantics at a progressively larger receptive field, and
a FPN [20] to aggregate the multi-level features. Then, we

3We refer the readers to the original paper [7] for further information
and detailed formulations of VNNs.
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apply the global average pooling to the aggregated SO(3)-
equivariant point-wise features Vequi ∈ RC×3×N to en-
code SO(3)-equivariant global shape descriptor Z of the in-
put point cloud. The global shape descriptor can be used
subsequently as the input for our SO(3)-invariant point-wise
local shape transform, to be mapped to their respective local
shape descriptors, as shown in Figure 2.

SO(3)-invariant local shape transform. Alongside the ex-
traction of SO(3)-equivariant global shape descriptors, we
also formulate the SO(3)-invariant local shape transform
fθi : RC×3 7→ RC′×3 for each point pi ∈ R3 of the in-
put point cloud P ∈ RN×3. The parameters of each local
shape transform θi ∈ RC′×C are input-dependent - thus,
dynamic since they are predicted by our encoder for the i-th
point of the point cloud. To predict θi, we first obtain SO(3)-
invariant point-wise features Vin ∈ RC′×3×N as described
in Sec. 3.1.1. Then, we transform each vectorized SO(3)-
invariant point-wise feature vec(vin

i ) ∈ R3C′
to the vector-

ized parameter of the local shape transform vec(θi) ∈ RC′C

by using a multi-layer perceptron. By reshaping vec(θi)
to θi ∈ RC′×C , we finally obtain the dynamic and SO(3)-
invariant local shape transform fθi for the point pi.

The role of these local shape transforms is to map the
SO(3)-equivariant global shape descriptor Z ∈ RC×3 to
their respective local shape descriptors v′

i := fθi(Z) ∈
RC′×3, which is provided as the input to our decoder for re-
construction. Our self-supervised training scheme encour-
ages the point-wise dynamic local shape transform to en-
capsulate the local shape information e.g. semantics and ge-
ometry, to enhance the reconstruction performance.

3.1.3 SO(3)-Equivariant Decoder

Our decoder aims to reconstruct the initial input shapes us-
ing the obtained SO(3)-equivariant global shape descriptors
Z and the SO(3)-invariant local shape transforms {fθi}Ni=1.
To reconstruct the point clouds aligned to their initial
poses, we leverage SO(3)-equivariant layers as the build-
ing blocks of our decoder architecture. We first train
our decoder to perform self-reconstruction, using the local
shape descriptors V′, i.e. P ↔ P′ := Decoder(V′) =
Decoder({fθi(Z)}Ni=1). We also train our decoder to per-
form cross-reconstruction, where we use the local shape
descriptors obtained using global shape descriptors and lo-
cal shape transforms from different point clouds. Specif-
ically, assume we are given two point clouds P1,P2 ∈
RN×3, with SO(3)-equivariant global shape descriptors
Z1,Z2 ∈ RC×3 and SO(3)-invariant local shape transforms
{f1

θi
}Ni=1, {f2

θi
}Ni=1. As shown in Figure 2, we then can

perform cross-reconstruction from P2 to P1 as follows:
P1 ↔ P′

2 7→1 := Decoder({f2
θi
(Z1)}Ni=1). Intuitively, for

the above cross-reconstruction to be carried out success-
fully, the local shape transforms for points of a true cor-

respondence should hold similar dynamic parameters, map-
ping global shape descriptors to similar local shape descrip-
tors. By training RIST to cross-reconstruct point clouds, we
are supervising local shape transforms to map correspond-
ing points between shapes to similar local shape descriptors,
which encode local semantics and geometry that are gener-
alizable across different instances within a category.

3.2. Self-Supervised Objective

Due to the lack of annotated datasets for dense 3D inter-
shape correspondences, we train RIST in a self-supervised
manner by penalizing inaccurate shape reconstructions.
First, we supervise RIST for self-reconstruction using the
following loss:

LSR = λMSE MSE(P,P′) + λEMD EMD(P,P′), (1)

where MSE is the Mean Squared Error, EMD stands for
the Earth Mover’s Distance, and both λMSE and λEMD are
weight coefficients. In essence, we are trying to minimize
the difference between the input and reconstructed point
cloud. We also supervise RIST for cross-reconstruction as
follows: LCR = λCD CD(P1,P

′
27→1), where CD stands

for the Chamfer distance, and λCD is a weight coeffi-
cient. Finally, our total loss Ltotal is defined as: Ltotal =
LSR+LCR. We omit the CD loss from self-reconstruction,
as we can directly use the input point cloud to provide su-
pervision using the MSE loss. We also omit the EMD loss
from cross-reconstruction, as EMD tends to overlook the
fidelity of detailed structures [36], which is crucial in cross-
reconstruction of shapes under intra-class variations.

3.3. SO(3)-Invariant Correspondence

In this section, given two randomly rotated point clouds
P1 and P2, we elaborate on how our RIST establishes
the 3D dense correspondence from P1 to P2. As shown
in Figure 2, we first encode the SO(3)-equivariant global
shape descriptor of P1, Z1 ∈ RC×3, and the SO(3)-
invariant local shape transform functions of P2, {f2

θi
}Ni=1.

Then, we cross-reconstruct P1 as follows: P′
27→1 :=

Decoder({f2
θi
(Z1)}Ni=1). Finally, we define the 3D dense

correspondence from P2 to P1 as the nearest point pairs
among all possible pairs between P1 and P′

27→1. Since
both encoder and decoder are SO(3)-equivariant, the cross-
reconstructed point cloud P′

27→1 is aligned to P1. As a re-
sult, our RIST can predict 3D dense correspondences be-
tween randomly rotated point clouds, while previous ap-
proaches [3, 21] experience a high rate of failure.

4. Experiments
We present evaluations of RIST on the tasks of 3D part seg-
mentation label transfer and 3D semantic keypoint transfer,
following prior work [3, 21]. For both tasks, each method is
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Training Method Airplane Cap Chair Guitar Laptop Motorcycle Mug Table Average

w/o
Rotations

FoldingNet [38] 17.8 34.7 22.5 22.1 36.2 12.6 50.0 34.6 28.8
AtlasNetV2 [8] 19.7 31.4 23.6 22.7 36.0 13.1 49.7 35.2 28.9
DPC [17] 22.7 37.1 25.6 31.9 35.0 17.5 51.3 36.8 32.2
CPAE [3] 21.0 38.0 26.0 22.7 34.9 14.7 51.4 35.5 30.5
RIST (ours) 52.1 54.5 58.3 74.1 56.5 48.6 75.0 41.3 57.6

w/
Rotations

FoldingNet [38] 22.5 33.2 24.0 31.0 35.9 13.5 49.9 37.0 30.9
AtlasNetV2 [8] 21.1 32.7 25.2 28.8 35.5 14.5 49.9 41.0 31.1
DPC [17] 24.6 38.5 25.6 40.2 34.9 19.3 51.8 37.3 34.0
CPAE [3] 17.0 36.6 24.5 39.4 37.4 15.8 51.9 36.7 32.4
RIST (ours) 51.2 57.0 55.0 73.5 60.6 48.5 72.2 44.4 57.8

Table 1. Average IoU (%) of part label transfer for eight categories in the ShapeNetPart dataset [39]. Ours consistently outperforms
previous approaches [3, 8, 17, 38] both with and without rotation augmentations during training, achieving the state-of-the-art IoU. We
also provide results of the other classes in Appendix I.

trained with and without rotation augmentations, and tested
on arbitrarily rotated inputs to validate its rotation robust-
ness in predicting semantic correspondences between the
rotated inputs. Note that previous approaches [3, 8, 21, 38]
used aligned point clouds or slightly rotated point clouds
with a subset of SO(3), not the full SO(3), for testing -
which is unrealistic in practice, as described in Appendix H.

Datasets. We use the ShapeNetPart [39] and ScanOb-
jectNN [35] datasets to evaluate RIST on the task of 3D
part segmentation label transfer, which requires 3D dense
semantic correspondence. The ShapeNetPart dataset [39]
consists of 16,880 synthetic 3D data from 16 cate-
gories. The ScanObjectNN dataset [35] contains real-world
scanned data, and provides part label annotations for the
chair category. Following the previous work [3], we use the
same pre-processed KeypointNet [40] dataset for the 3D se-
mantic keypoint transfer task. Since both KeypointNet and
ShapeNetPart are based on the ShapeNet dataset [1], we use
the eight overlapping categories between the ShapeNetPart
and KeypointNet [40] datasets to evaluate each method on
both tasks without fine-tuning the method on each dataset.
For all tasks, we follow the experiment setting of the previ-
ous work [3].

Baseline methods. Throughout the evaluation section, we
mainly compare RIST against CPAE [3], the state-of-the-
art self-supervised method to establish 3D dense correspon-
dence by exploiting an intermediate UV canonical space.
When open-sourced pre-trained models or codes are appli-
cable, we also compare RIST with AtlasNetV2 [8], Fold-
ingNet [38] and DPC [17]. AtlasNetV2 proposes to repre-
sent shapes as the deformation and combination of learn-
able elementary 3D structures, which can be extended to
3D correspondence establishment. FoldingNet introduces
a folding-based decoder to ‘fold’ a canonical 2D grid into
the 3D object surface, where the canonical 2D grid can
be applied to identify cross-shape correspondences. DPC
predicts 3D dense correspondence between non-rigidly de-

Method w/o Rotations w/ Rotations

FoldingNet [38] 23.2 23.3
AtlasNetV2 [8] 23.6 24.1
DPC [17] 23.9 23.9
CPAE [3] 24.4 23.9
RIST (ours) 39.6 37.9

Table 2. Average IoU (%) of part label transfer for the chair
category in the ScanObjectNN dataset [35]. Ours shows the best
IoU both with and without rotation augmentations during training.

formed 3D humans, meaning that it can be a powerful base-
line for both 3D part segmentation label transfer and 3D
keypoint transfer tasks as well.
Implementation details. We use VN-DGCNN [7] as our
SO(3)-equivariant encoder, and VN-based multi-layer per-
ception as our SO(3)-equivariant decoder. For a fair com-
parison, we set the dimension, C, of SO(3)-equivariant
global shape descriptor Z ∈ RC×3 as 170 (≈ 512/3)
since CPAE [3] uses 512-dimensional global shape descrip-
tors. Following the training setup of CPAE [3], we use
λMSE, λEMD, and λCD as 1000, 1, and 10, respectively.
RIST is implemented in PyTorch, and is optimized with the
Adam [16] optimizer at a constant learning rate of 1e−3.

4.1. Part Segmentation Label Transfer

We compare RIST with the state of the art in 3D part seg-
mentation label transfer on ShapeNetPart [39] and ScanOb-
jectNN [35]. For both datasets, we use the average of
instance-wise IoU scores as the evaluation metric.
ShapeNetPart [39]. The quantitative results are presented
in Table 1, where RIST outperforms CPAE [3], DPC [17],
AtlasNetV2 [8], and FoldingNet [38] on all classes by a
large margin with and without rotation augmentations dur-
ing training. We also provide the qualitative results of the
part segmentation label transfer experiments on ShapeNet-
Part in Figure 3. Attributing to the SO(3)-invariant nature of
correspondences established by RIST, we are able to trans-
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Source CPAE Ours GT

Figure 3. Qualitative results of part label transfer on the ShapeNetPart dataset [39]. We visualize the label transfer results via learned
correspondences of each method with the ground truth labels of targets. Note that the input shapes were arbitrarily rotated at evaluation,
differently for both the source and targets of each row, but have been aligned in the above figure for better visibility of part label transfer
results. RIST shows to outperform CPAE [3] consistently, showing a high resemblance to ground truth results.

fer part labels significantly more accurately given randomly
rotated shape pairs.
ScanObjectNN [35]. We evaluate each method trained
on synthetic chair data of ShapeNet [1] on the real chair
data of ScanObjectNN [35], which is partial and more chal-
lenging than ShapeNetPart [39], without fine-tuning. As
shown in Table 2, RIST consistently outperforms previ-
ous approaches [3, 8, 17, 38] both with and without rota-
tion augmentations during training. The qualitative results
presented in Figure 4 show that RIST can predict rotation-
robust 3D semantic correspondence between real and partial
chair shapes, while CPAE [3] fails.

4.2. 3D Semantic Keypoint Transfer

Following the previous work [3], we compute the distances
from the transferred M keypoints to the ground truth key-
points, and report PCK (Percentage of Correct Keypoints)
of our transferred keypoints, which is computed by:

PCK =
1

M

M∑
m=1

1[∥km − k̂m∥ ≤ τ ], (2)

where τ , km, and k̂m are a distance threshold, m-th ground
truth keypoint, and m-th transferred keypoint, respectively.
The results on the KeypointNet dataset [40] are illustrated

Source GTOursCPAE

Figure 4. Qualitative results of part label transfer on ScanOb-
jectNN [35]. Note that both source and target point clouds were
arbitrarily rotated at evaluation, but have been aligned in the fig-
ure for better visibility of part label transfer results. The results
show that RIST reasonably predicts the semantic correspondences
between arbitrarily rotated and partial real point clouds.

in Figure 5 for varying distance thresholds τ . It can be seen
that RIST consistently outperforms baseline methods with
and without rotation augmentations during training for all
classes, by up to 10× on certain classes and thresholds. This
substantiates RIST’s superior efficacy at establishing dense

6



Figure 5. Percentage of Correct Keypoints (PCK) for the 12 categories of the KeypointNet dataset [40] with and without rotation
augmentations during training. RIST consistently outperforms previous approaches on all classes and thresholds in both settings.

3D correspondences between varying shapes. However, for
certain classes such as Bathtub or Table, the performance is
noticeably low, outperforming baseline methods only by a
tight margin. We speculate this to be due to the prevalent
rotational symmetry of those classes, making it especially
challenging to establish accurate 3D correspondences un-
der arbitrary rotations. The qualitative results of RIST in
comparison to baseline methods are presented in Figure 6.
It can also be seen that RIST can identify more accurate
keypoint correspondences compared to CPAE [3] under ar-
bitrary rotations, confirming the results of Figure 5.

4.3. Ablation Study and Analyses

We perform an ablation study to justify the design choice of
RIST, and evidence the efficacy of each component.

Self- and cross-reconstruction. We train RIST in a self-
supervised manner via penalizing errors in self- and cross-
reconstruction of input point clouds. We conduct an abla-
tion study on RIST’s reconstruction, providing comparative
results for scenarios with and without its use. The results are
illustrated in the first graph of Figure 7. It can be seen that
with and without rotation augmentations during training, in-
corporating both self- and cross-reconstruction yields the
best results. Removing self-reconstruction results in a much
dramatic drop in performance; we conjecture this is because

without self-reconstruction, the dynamic local shape trans-
form (Sec. 3.1.2) fails to capture the required locality of its
own point cloud in the first place, being unsuitable to estab-
lish correspondences.

Encoder outputs and SO(3)-equivariance. RIST uses
VNNs [7] as the SO(3)-equivariant layers to facilitate 3D
dense correspondence establishment between arbitrarily ro-
tated point cloud pairs, leveraging local shape transform
to map global shape descriptors to local shape descriptors
which encode the pointwise semantics and local geome-
try. We perform an ablation study to demonstrate the ef-
ficacy of local shape transforms and SO(3)-equivariant and
-invariant representations in RIST on the motorcycle class
of the KeypointNet dataset [40]. We start our comparison
from the architecture of CPAE [3], given that they also em-
ploy an encoder-decoder architecture to self-supervise their
network via shape reconstruction. The results are presented
in the two rightmost graphs of Figure 7, showing the evalua-
tion results with and without rotation augmentations during
training in order. It can be seen that our design choice of us-
ing equivariant encoders and decoders shows consistent im-
provements over using an SO(3)-variant counterpart. Also,
using UV coordinates as proposed in CPAE [3] performs
worse compared to our dynamic local shape transform, ev-
idencing the comparatively better efficacy of transforming
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Shape A Shape B

Shape B ↦ A

CPAE Ours

Shape A ↦ B

CPAE Ours

Figure 6. Keypoint transfer results for airplane and motorcycle categories of KeypointNet [40]. Each row contains a shape pair, each
with ground-truth keypoints and the keypoint transfer results. Note that the input shapes were arbitrarily rotated at evaluation, but have
been aligned in the above figure for better visibility of keypoint transfer results. RIST shows to transfer the keypoints more accurately.

Figure 7. Ablation study on losses (the leftmost) and the components of model architecture (the others); self-reconstruction loss
(SR), cross-reconstruction loss (CR), equivariant decoder (ED), local shape transform (LST), and local feature (LF). When excluding the
equivariant decoder, local shape transforms, or local features, the default is to use an SO(3)-variant decoder, UV coordinates [3], or global
features for encoding, respectively.

each point to their local shape descriptors via our dynamic
SO(3)-invariant shape transform. While using local features
as inputs to the encoder shows varied trends across with
and without augmentation settings, using the point-wise lo-
cal feature as input is a key component that facilitates the
learning of point-wise dynamic local shape transform that is
essential in establishing the 3D correspondences in RIST.

5. Conclusion

We’ve introduced RIST, a novel self-supervised learner for
dense 3D semantic matching across shapes of the same cat-
egory, even with arbitrary rotations. Its robustness stems
from our innovative use of SO(3)-equivariant and -invariant
representations, enabling dynamic local shape transforms
that preserve rotation equivariance. These transforms map
global descriptors to local ones, facilitating the establish-

ment of dense correspondences. Our method outperforms
existing ones on tasks like part label and keypoint trans-
fer, enhancing applicability in computer vision and robotics,
e.g., AR/VR and texture mapping. Future research could
focus on improving robustness under common corruption.
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Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform

Supplementary Material

In this supplementary material, we provide a detailed ex-
planation of RIST and additional experiment results.

A. Inference Algorithm of RIST
In this section, we provide a detailed algorithm for the in-
ference process of RIST for a better understanding of RIST.
As shown in Algorithm 1, given a pair of shapes, we cross-
reconstruct one shape and find the nearest neighbor for each
point of the cross-reconstructed shape from the other shape,
following the inference algorithm of the previous work [3].

Algorithm 1 : Inference
Input: A pair of shapes (P,Q), Encoder(·), Decoder(·)
Output: Correspondence C for all p ∈ P

1: Zp, {fp
θi
} ← Encoder(P)

2: Zq , {fq
θi
} ← Encoder(Q)

3: Q′← Decoder({fp
θi
(Zq)}) ▷ Cross-recon. from P to Q

4: C ← {} ▷ Initialization
5: for {i← 1 to |P|} do
6: p← Pi

7: q← NearestNeighborSearch(Q′
i,Q)

8: C ← C ∪ (p,q)
9: end for

B. Ablation Study on Losses
In this section, we conduct an ablation study of the compo-
nents of our self-reconstruction loss (Eq. 1) on the motorcy-
cle category of the ShapeNetPart dataset [39]. As shown in
Table A1, our choice (b) shows the best performance among
models trained with the seven loss variants from (a) to (g).

MSE EMD CD IoU (%)

(a) ✓ ✓ ✓ 46.0
(b) ✓ ✓ 48.5
(c) ✓ ✓ 47.0
(d) ✓ ✓ 46.4
(e) ✓ 45.8
(f) ✓ 46.4
(g) ✓ 44.9

Table A1. Ablation study on the self-reconstruction loss. The
model trained with ((b): MSE and EMD) shows the best perfor-
mance, justifying our choice for the self-reconstruction loss.

C. Multi-class Training
In this section, we provide the experiment results of pre-
vious approaches [3, 8, 17, 38] and ours trained with

multiple classes (airplane and chair) in the ShapeNetPart
dataset [39]. As shown in Table A2, RIST outperforms pre-
vious approaches [3, 8, 17, 38] by a large margin.

Method Airplane Chair Average

FoldingNet [38] 20.9 23.9 22.4
AtlasNetV2 [8] 21.1 24.6 22.9
DPC [17] 22.7 25.6 24.2
CPAE [3] 16.6 14.8 15.7
RIST (ours) 34.4 34.7 34.6

Table A2. Part label transfer with multi-classes training.

D. Generalization to Unseen Classes
In this section, we evaluate the generalization ability of pre-
vious approaches [3, 8, 17, 38] and ours to unseen classes.
Specifically, we train each method on the airplane category
in the ShapeNetPart dataset [39] and test it on the chair cat-
egory. As shown in Table A3, RIST shows a competitive
result with an unseen category, outperforming previous ap-
proaches [3, 8, 38] except DPC [17].

FoldingNet [38] AtlasNetV2 [8] DPC [17] CPAE [3] RIST

24.8 23.0 28.2 15.6 27.3

Table A3. Generalization results for the part label transfer.

E. Inference on Aligned Shapes
In this section, we provide the results of previous ap-
proaches [3, 8, 17, 38] and ours evaluated on the ShapeNet-
Part [39], ScanObjectNN [35], and KeypointNet [40]
datasets, but with aligned test shapes, as shown in Table A4,
Table A5, and Figure A1, respectively. Note that under the
aligned setting, the input shape pairs are perfectly aligned
both at train and test time - which is an unrealistic setting in
practice. For each method, we also include the results with
rotated shapes to show the performance difference between
aligned and rotated settings. It can be seen that while the
drop in performance for previous approaches [3, 8, 17, 38]
from the aligned to the rotated setting is drastic, the dif-
ference is negligible in RIST, demonstrating the robustness
of our SO(3) correspondence establishment scheme against
arbitrary rotations. While RIST is not always competitive
on all settings, it is impractical to expect perfectly aligned
shapes in real-world situations; on the realistic setting of
SO(3) evaluation, RIST consistently shows the best results.
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Inference Method Airplane Cap Chair Guitar Laptop Motorcycle Mug Table Average

Aligned

FoldingNet [38] 56.5 54.9 63.1 73.1 81.9 21.5 75.5 54.0 60.1
AtlasNetV2 [8] 51.7 44.7 63.3 65.0 84.0 41.5 84.2 59.3 61.7
DPC [17] 60.5 65.8 65.3 74.4 88.0 53.3 85.4 66.4 69.9
CPAE [3] 61.3 61.6 72.6 78.9 89.9 55.4 86.5 72.5 72.3
RIST (ours) 52.1 54.4 58.3 74.1 56.7 48.7 75.6 41.3 57.7

Rotated

FoldingNet [38] 17.8 34.7 22.5 22.1 36.2 12.6 50.0 34.6 28.8 (↓ 31.3)
AtlasNetV2 [8] 19.7 31.4 23.6 22.7 36.0 13.1 49.7 35.2 28.9 (↓ 32.8)
DPC [17] 22.7 37.1 25.6 31.9 35.0 17.5 51.3 36.8 32.2 (↓ 37.7)
CPAE [3] 21.0 38.0 26.0 22.7 34.9 14.7 51.4 35.5 30.5 (↓ 41.8)
RIST (ours) 52.1 54.5 58.3 74.1 56.5 48.6 75.0 41.3 57.6 (↓ 0.1)

Table A4. Average IoU (%) of part label transfer for eight categories in the ShapeNetPart dataset [39] on aligned and rotated
shapes. Note that each method is trained without rotation augmentation. RIST shows the most negligible performance drop (0.1% in IoU)
with rotated shapes, while previous approaches [3, 8, 17, 38] show large performance drops (at least 30% in IoU).

Inference FoldingNet [38] AtlasNetV2 [8] DPC [17] CPAE [3] RIST (ours)

Aligned 33.6 34.8 36.3 33.8 39.6

Rotated 23.2 (↓ 10.4) 23.6 (↓ 11.2) 23.9 (↓ 12.4) 24.4 (↓ 9.4) 39.6 (−)

Table A5. Average IoU (%) of part label transfer for the chair category in the ScanObjectNN dataset [35] on aligned and rotated
shapes. Note that each method is trained without rotation augmentation. RIST does not show any performance drop with rotated shapes,
while previous approaches [3, 8, 17, 38] show large performance drops (at least 9% in IoU).

Figure A1. Percentage of Correct Keypoints (PCK) for the 12 categories of the KeypointNet dataset [40] on aligned and rotated
shapes. Note that each method is trained without rotation augmentation. While previous approaches [3, 8, 17, 38] are vulnerable to
rotations, RIST shows a negligible performance drop with rotated shapes.
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Figure A2. Comparision of RIST with the combination of
CPAE [3] and aligning methods; PCA and VN-SPD [12]. Note
that RIST shows competitive results to the combined method of
CPAE [3] and VN-SPD [12], which is a SE(3)-equivariant orien-
tation predictor and requires additional parameters (17.4M).

We further evaluate CPAE [3] when integrated together
with two 3D shape alignment methods. We present results
when using PCA or VN-SPD [12] as the alignment method
in Figure A2. PCA yields only marginal performance im-
provements, likely due to sign and order ambiguities. In
contrast, using the SOTA learning-based alignment method,
VN-SPD, produces competitive results with RIST, but its
inconsistency in aligning shapes to a canonical orientation
limits performance as also reported in Katzir et al. [12], sac-
rificing the efficiency.

F. Comparision with 3D Keypoint Estimators
We compare RIST with SC3K [45], a recent self-supervised
method for coherent 3D keypoint estimation. However,
since this 3D keypoint estimation method cannot be eval-
uated on 3D keypoint matching, we instead used the Dual
Alignment Score (DAS)4 of RIST for an empirical com-
parison with SC3K. Additionally, to facilitate comparison
on the part label transfer task, we extended the number of
keypoints estimated by SC3K to match the total number of
points in a point cloud e.g., 2048.

Method Airplane Car Chair

SC3K [45] 81.3 73.8 86.2
RIST (ours) 82.4 76.9 81.8

Table A6. Dual Alignment Score of SC3K [45] and RIST. Dur-
ing the evaluation, we use 10 keypoints for both SC3K and RIST.

Method Airplane Car Chair

SC3K [45] 22.3 23.0 24.7
RIST (ours) 51.2 48.0 55.0

Table A7. Part label transfer results of SC3K [45] and RIST.
Note that we train SC3K [45] with 2048 keypoints.

4A metric for 3D keypoint estimation task SC3K [45] used.

As shown in Tables A6 and A7, RIST exhibits com-
petitive DAS results compared to SC3K, although it is not
trained for 3D keypoint estimation, and significantly out-
performs SC3K on the part label transfer task.

G. Evaluation with Pseudo-Ground Truth

We utilize DIT [44] to establish pseudo-ground truth on
ShapeNet [1] for a direct evaluation of RIST’s dense seman-
tic correspondence capabilities for airplane, car, and chair
classes, using official checkpoints. As shown in Figure A3,
the results show a similar trend of part label transfer results,
showing that RIST outperforms previous approaches.

H. Implementation Details of SO(3)

In this section, we explain the implementation details of
uniformly sampling random rotations and highlight the dif-
ferences from the previous approach [3]. Cheng et al. [3]
samples rotation angles from N (0, 0.22) and then clamps
them to [− 1

2π,
1
2π], which limits the range of rotation. In

our work, we follow Shoemake et al. [30] to uniformly sam-
ple to cover full SO(3), which is more challenging.

I. Part Label Transfer Results on More Classes

We initially presented evaluations only for the classes of
ShapeNetPart [39] that are shared with those of Keypoint-
Net [40]. In Table A8, we further present part label transfer
results on the remaining classes of ShapeNetPart [39].

Method Bag Car Ear. Knife Lamp Pistol Rocket Skate.

CPAE [21] 43.2 20.3 33.4 36.3 31.1 26.8 27.7 52.0
RIST (ours) 50.8 48.0 36.3 57.9 35.9 54.7 34.4 54.4

Table A8. Part label transfer results on ShapeNetPart [39].
RIST consistently outperforms the previous state-of-the-art
method on the remaining classes of ShapeNetPart [39].

J. Matching with Local Shape Transform

In this section, We experiment with a variant of RIST
(RISTLST), which matches 3D shapes using similarity be-
tween SO(3)-invariant Local Shape Transform (LST). As
shown in Table A9, our current scheme of comparing
point positions yields noticeably better results on ShapeNet-
Part [39], meaning that our trained decoder is better adept
at handling topology-varying structures

K. Alignment of Qualitative Results

In this section, we provide both unaligned and aligned qual-
itative results for a better understanding of how our quali-
tative results were drawn. As shown in Figure A4, both
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Figure A3. 3D semantic correspondence results of RIST using DIT [44] as pseudo-ground truth on ShapeNet [1]. We use the official
checkpoints of DIT to generate pseudo-ground truth of 3D semantic correspondence for rotated 3D shapes.

Method Airplane Chair

CPAE 17.0 24.5
RISTLST 48.6 50.3
RIST 51.2 55.0

Table A9. Part label transfer results of RISTLST. Note that we
use randomly rotated 3D shapes for the evaluation.

Source Target

In
pu

ts
La

be
ls

Al
ig

ne
d 

La
be

ls

Figure A4. Visualization for aligning qualitative results of part
label transfer on the ShapeNetPart dataset [39].

source and target shapes are randomly rotated at the infer-
ence time. Note that we use the part segmentation labels
transferred by RIST for the target shape in Figure A4.

L. Qualitative Results of Part Label Transfer
We provide additional qualitative results on the ShapeNet-
Part dataset [39] that were not included in our manuscript
due to space constraints, as shown in Figures A5 and A6.
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Source CPAE Ours GT

Figure A5. Qualitative results of part label transfer on the motorcycle class in the ShapeNet part dataset [39]. Note that the input
shapes were arbitrarily rotated, differently for each target column, but have been aligned for better visibility of part label transfer results.
RIST shows to outperform CPAE [3] consistently, showing a high resemblance to ground truth results.
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Source CPAE Ours GT

Figure A6. Qualitative results of part label transfer on the airplane class in the ShapeNet part dataset [39]. Note that the input shapes
were arbitrarily rotated, differently for each target column, but have been aligned for better visibility of part label transfer results. RIST
shows to outperform CPAE [3] consistently, showing a high resemblance to ground truth results.
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