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We present an advanced scanning probe microscopy system enhanced with artificial intelligence (AI-SPM)
designed for self-driving atomic-scale measurements. This system expertly identifies and manipulates atomic
positions with high precision, autonomously performing tasks such as spectroscopic data acquisition and
atomic adjustment. An outstanding feature of AI-SPM is its ability to detect and adapt to surface defects,
targeting or avoiding them as necessary. It’s also engineered to address typical challenges such as positional
drift and tip apex atomic variations due to the thermal effect, ensuring accurate, site-specific surface analyses.
Our tests under the demanding conditions of room temperature have demonstrated the robustness of the
system, successfully navigating thermal drift and tip fluctuations. During these tests on the Si(111)-(7×7)
surface, AI-SPM autonomously identified defect-free regions and performed a large number of current-voltage
spectroscopy measurements at different adatom sites, while autonomously compensating for thermal drift and
monitoring probe health. These experiments produce extensive data sets that are critical for reliable materials
characterization and demonstrate the potential of AI-SPM to significantly improve data acquisition. The
integration of AI into SPM technologies represents a step toward more effective, precise and reliable atomic-
level surface analysis, revolutionizing materials characterization methods.
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temperature

INTRODUCTION

The integration of artificial intelligence (AI) with nan-
otechnology has been recognized as crucial since the pi-
oneering work by Drexler in 19861. However, the ad-
vancements described in this book had not been widely
realized. As a key tool of the nanotechnology, scanning
probe microscopy (SPM) has emerged in characterizing
nanoscale surfaces, enabling the discovery of new surface
properties and phenomena2,3. Today, SPM has signifi-
cantly contributed to both basic science and industrial
applications. Especially, in the field of basic science, it
can not only image surfaces, but also measure the phys-
ical properties of individual atoms and move atoms to
create structures4. Most of these experiments have been
conducted in cryogenic environments. This is because not
only the SPM equipment but also the tip of the probe and
the sample itself are thermally stable. However, from a
practical standpoint, conducting these processes at room
temperature is essential.

Even in room temperature environments, where ther-
mal effects can affect measurements, SPM has provided
significant capabilities such as dynamic imaging to ob-
serve temporal changes in chemical reactions5,6, biolog-
ical processes7, surface dynamics8,9, diffusion10,11, and
crystal growth12. In addition, there are studies of
dopant atom manipulation that can be done at room
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temperature13,14.
There have been challenges in further pursuing these

pioneering room-temperature experiments. Using the
room-temperature SPM to achieve atomic resolution
does not remove the thermal effects on the device, which
lead to measurement instability. One of the most signif-
icant effects of thermal fluctuations in atomic-resolution
SPM measurements is thermal drift. Thermal drift con-
tinuously changes the relative position of the tip and sam-
ple atoms, which not only prevents continuous measure-
ment of the same area, but can also cause image distor-
tion. Another problem of the room-temperature SPM is
frequent change of the tip apex. The quality of the image
is affected by the frequently change of the tip apex atom
especially in atomic resolution imaging. Repairing the
tip apex is usually performed by touching to the surface,
which requires time and a great deal of attention. To
achieve the high-precision measurements under such in-
herently non-optimized conditions, SPM techniques such
as drift correction15,16 and tip fabrication17,18 become
indispensable in the context of room temperature SPM.
However, even with these techniques, it was very difficult
to perform site-specific experiments at the atomic level
at room temperature.

In recent years, to overcome the limits of human ca-
pability, experiments utilizing the concept of the self-
driving laboratory19,20 have become increasingly preva-
lent, driven by the demand for extensive and complex
data collection. This approach has risen to prominence as
a key solution for challenges like new materials discovery,
largely through the application of artificial intelligence
(AI). The self-driving concept is also anticipated to be
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highly beneficial for time-consuming and labor-intensive
SPM experiments, which is manually operated. A deep
learning model, adept in signal processing and computer
vision, can identify specific patterns with accuracy nearly
on par with human experts21,22. Strategically integrat-
ing AI can significantly reduce the dependency on manual
intervention in SPM operations23.

There are previous studies of the integrating the image
recognition AI and SPM yielding notable contributions
to the domains of data analysis and processing24–28. The
application of these AI-driven analysis techniques in the
processing of data measured in real-time holds the poten-
tial to significantly automate SPM operations. The effi-
cacious deployment of such technologies requires intricate
integration within the control mechanisms, encompass-
ing both hardware and software, that includes scanning
protocols and AI features, alongside the acquisition of ex-
tensive datasets for the cultivation of high-efficiency AI
models. Particularly in cryogenic conditions, where ther-
mal disturbances are markedly reduced, recent research
has underscored the utility of AI-facilitated methods in
promoting autonomous scanning procedures29–31 and the
manipulation of individual atoms32. However, unlike se-
tups in cryogenic environments, more sophisticated AI-
based SPM (AI-SPM) is required in room temperature
environments. This enhancement is necessary to com-
pensate for challenges posed by thermal fluctuations and
to ensure the reproducibility of experiments. Robustness
in handling measurements under unstable conditions is
crucial for performing real-time and site-specific exper-
iments at room temperature. Moreover, it is essential
to recognize during dataset collection that the simulated
datasets used for training25,27 may not fully capture the
variations in atomic images. This limitation arises from
differences in the tip state and the patterns of adsorbates
in actual measurements. Addressing these considerations
is vital for enhancing the reliability and performance of
site-specific SPM measurements at room temperature.

In this manuscript, we present a deep learning-assisted
AI-SPM system, specifically designed for the site-specific
operation at room temperature. Our AI-SPM system is
an integrated fusion of software, control firmware, and
hardware components, which facilitates the development
of a robust neural network through a systematic dataset
collection process. Decision-making and optimization
tailored for room temperature conditions, is fully au-
tomated, with the objective of achieving atomic preci-
sion measurements. Utilizing this system, we demon-
strate two key applications in surface characterization:
autonomous acquisition of high quality images and large
data sets for atomic precision scanning tunneling spec-
troscopy (STS) at room temperature.

SPM  
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FIG. 1. Schematic flow of artificial intelligence scanning probe
microscopy (AI-SPM) system. The system compensates for
thermal drift and the tip apex, which is a problem inherent to
room temperature. Then, It also determines the presence of
adsorption sites and defects, and performs site-specific exper-
iments at targeted atomic positions. Large amounts of data
can be obtained automatically.

AI-SPM FOR SELF-DRIVING MEASUREMENT

AI-SPM configuration

Figure 1 illustrates the configuration of our AI-SPM
system. SPM hardware is conventional one, and two
main program parts are added to our home-built scan
software for the AI operation. The AI inference section
receives the SPM measurement data, makes a situational
judgment and determines the next task. In particular,
it uses the images to determine the state of the probe
tip, the identification of individual atomic sites and unit
cells, the location and type of adsorbates, and whether
further site-specific measurements are possible. The in-
formation of the tip and sample surface sent to the Scan
Module part from the AI inference component is utilized
in the experiment programmed by the operator. In Fig.
1, the Scan Module comprises two scripts essential for
the room temperature experiment (thermal drift com-
pensation and tip condition optimization) alongside a
self-driving measurement script. These scripts are used
in the experiments in this manuscript.

Convolutional neural networks on AI inference

The acquired image data of the surface not only con-
firms the crystal structure of the surface, but also pro-
vides information of the condition for the site-specific
measurement: presence of defects or adsorbates, not
atomically clean area or steps, tip apex condition. To
automatically make decisions on all this information, we
have employed convolutional neural networks (CNNs).
Each CNN is tailored for a specific predictive task, and
they all utilize scanned topography as their input. By
integrating these CNNs into a composite network, we
enable comprehensive access to a wide range of infor-
mation about the real-time scanning topography33. Un-
derstanding of both tip and surface conditions enables
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the site-specific measurements such as STS and atomic
manipulation.
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FIG. 2. Convolutional neural networks (CNNs Net1, Net2,
and Net3) employed in this study for room-temperature site-
specific analysis of the Si(111)-(7×7) surface. Net1 is tasked
with recognizing the conditions of the tip and sample, Net2
identifies adsorption sites, and Net3 is responsible for recog-
nizing half unit cells and atomic positions.

In Fig. 2, the CNN architecture for the Si(111)-(7×7)
surface is presented. We designed a composite network
structure comprising three distinct models—Net1, Net2,
and Net3—each dedicated to a specific task. Net1 is
tasked with recognizing the conditions of both the tip
and sample, performing a multi-class classification of tip
and surface conditions Ki(i = 0, 1, · · · , 10)33. It deter-
mines whether the sample and the probe are both in a
state (K = 1, 2, 3, 4) in which site-specific measurement
is possible. If the surface is not contaminated and the
tip is capable of atomic resolution, it is considered to be
in a “good" condition for site-specific measurement. Our
previous studies have demonstrated that the accuracy of
Net1 is from 87% to 90%. The reason for classifying
good into four categories is to determine and create a
probe that can be used for atomic manipulation in the
future34,35.

Net2 determines adsorbates. On the Si(111)-(7×7),
we can find some adsorbates at the atomic level that are
moving and some are not. Here, we define the one im-
aged brighter than the Si adatom in the half-unit cell to
be the immobile adsorbent A2. As another type of ad-
sorbate, there are ones that are imaged like noise or feed-
back error. These are adsorbates in motion remaining in
a half-unit cell (A1 in Fig. 2). The moving adosorbates in
the half unit cell have been studied for experiments with
clusters and atomic manipulation36–44. Net2 is designed
to be applied to these studies as well.

Net3 detects site-specific information of the Si(111)-
(7×7) surface. Half-unit cells are categorized as bound-
ing boxes of C1 and C2, respectively. Applying a nega-
tive sample bias during measurement and observing the
screen’s response allows for the determination of whether
C1 or C2 corresponds to the faulty or non-faulty section.
In the experiment of Fig. 2, C1 was identified as faulted,
while C2 was found to be unfaulted. Local atomic sites
are represented as key points Pi (i = 1, 2, · · · , 9)(points of
coordinate (x, y)): three corner holes around each half-
unit cell as P1, P2, P3, corner adatom as P4, P8, P9, and
center adatom as P5, P6, P7.

Scan Module Scripts

The Scan Module comprises two scripts essential for
the room temperature experiment (thermal drift compen-
sation and tip condition optimization) alongside a self-
driving measurement script. These scripts are used in
the experiments in this manuscript. Users can add own
script to the Scan Module to customize the experiment.

The module for the thermal drift compensation works
based on the feedforward technique present in our pre-
vious study45. Continuously obtained SPM images are
compared using the feature point matching algorithm to
output the thermal drift velocity at the minute scale, en-
abling the correction of even non-linear thermal drift at
the days scale.

It is equipped to autonomously maintain the optimum
state of the probe33. Here, the CNN determines the state
of the tip from the images obtained: if the CNN deter-
mines that the tip is not optimal for atomic resolution
measurements, a tip shaping is performed by bringing
the tip close to the surface and simultaneously changing
the bias current. The images are then acquired and the
Net1 judges the state of the tip. These processes can be
performed automatically until the tip becomes a “good"
condition. The thermal drift module is activated during
the tip optimization process for automatically compen-
sating for thermal drift.

The self-driving measurement module autonomously
performs data acquisition based on the AI Inference out-
put and can also leverage other module functionalities for
drift correction and tip condition optimization. There-
fore, our AI-SPM system represents a departure from
traditional automation methods with fixed routines. It
offers the ability for self-guided data exploration and ac-
quisition, adapting to previous scans through a closed-
loop mechanism. Detailed descriptions of the AI-SPM
hardware are provided in the Methods section.

Two-phase training data acquisition

As mentioned above, at room temperature, even if
thermal drift is compensated, we are facing unstable im-
age conditions due to tip apex change. Adsorbates and
defects may be present in the first place, but they may
also appear during scanning, significantly influencing the
SPM images. This makes us assemble a comprehensive
and varied set of training data is needed. To acquire
data that take into account both the number and variety
of datasets, we have employed developed “two-pase" ap-
proach to training the AI-SPM itself as the experiment
progresses.

Phase 1 comprises collecting and creating a dataset
comprising image information obtained under diverse
conditions. Here, every image is acquired, including
those that have not been atomically resolved. To ob-
tain a lot of images categorized K0 to K10, same process
used in the tip-condition optimization was conducted. In
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this phase, although the initial accuracy may not fully
optimize the tip and sample state, this process contin-
ues iteratively, accumulating an extensive dataset. This
dataset is essential in training a robust model that can
distinguish data quality, ensuring the system’s capabil-
ity to autonomously capture atomic-resolution images on
Si(111)-(7×7).

The second phase is intended to further enhance the
data set of images being obtained at atomic resolution.
Autonomous measurement on a target atom is performed
within the self-driving measurement module, with the as-
sistance of Net3, which provides information about atom
locations. One of the examples of measurement is au-
tonomous atom manipulation techniques. It utilizes the
"atomic pen" technique14 to manipulate Si atoms within
a unit cell and individually place in-motion Si atoms as
single adsorptions. By repeatedly executing phase 2, a
larger number of adsorbate and defect patterns on the
topography are generated, augmenting the datasets uti-
lized in training Net1, Net2, and Net3.

To enhance the accuracy of Net1 and Net3, the dataset
has been expanded by incorporating topography scans
obtained from various leading states and scan areas. In
phase 1 and phase 2, 11,616 and 7,269 images were ac-
quired, respectively. From these, 2,082, 255, and 545
images and their augmented data were used in the train-
ing of Net1, Net2, and Net3, respectively. These data
points, likely consisting of individual images or instances,
comprehensively cover a wide range of surface properties.
The performance evaluation using confusion matrices of
Net1, Net2, and Net3 is detailed in the supplementary in-
formation (see Fig. 6 in Supplementary I), demonstrating
that they achieved high scores.

IMPLEMENTATION OF AI-SPM

Local site identification

Performance of the local site identification of STM
measurement at room temperature on Si(111)− (7× 7)
surfaces is shown in Fig. 3. Figure 3 shows the capa-
bility of the trained Net1, Net2, and Net3 that recog-
nize key points of the surface for the site-specific mea-
surements Images acquired as shown in Fig. 3 (a) are
evaluated by Net1. In this image, the (7× 7) structure
and defects and adsorbates are present. For this im-
age, Net1 outputs weight values of k2(Good2) = 0.53
and k4(Bad area) = 0.47. This means that the tip con-
dition is good, but surface defects and adsorbates are
present. In identifying adsorbates in Net2, it can be seen
in Fig. 3 (b) that it can identify stationary adsorbates
(A1), surrounded by red dashed lines, and adsorbates dif-
fusing in the half-unit cell (A2), surrounded by light blue
dashed lines. In Fig. 3 (c), Net3 classifies almost all
regions of the image into C1 (faulted half) and C2 (un-
faulted half) categories, as well as identifying individual
adatoms and corner holes within these halves. Net3 is

(c)Net3 output(a) Input Image

Net1 Label: 
(Good 2)=0.53,  

(Bad Area 1)=0.47
k2

k4

(b)Net2 output

 typeA1
 typeA2

(d)key points distribution ( )P1, . . . , P9
cell type1 ( )C1 cell type2 ( )C2

 typeC1
 typeC2

P1, P2, P3
P4 P5 P6
P7 P8 P9

FIG. 3. Performance of the local site identification on
Si(111)− (7× 7) surfaces. (a) an STM image after Net1 is
evaluated, which is used for the site identification as shown in
(b) to (d). The evaluation results are shown below the image.
(b) Identification of adsorbates by Net2. A1 and A2 indicate
moving and stationary adsorbates, respectively. (c) Net3 clas-
sification of half-unit cell type. C1 and C2 are faulted and
unfaulted half unit cells, respectively. (d) Site-specific identi-
fication of adatom site and corner holes in the half-unit cells.
Each site is labeled by Net3 as Pi(i = 1 · · · 9). Sample bias
voltage and tunneling current in the STM measurement are
Vs=1.5 V and It=200 pA, respectively.

capable of identifying each adatom. As depicted in Fig.
3 (d), the individual adatoms and corner holes are rep-
resented by Pi(i = 1, 2, · · · , 9). The labels indicate that
i = 1, 2, 3 correspond to corner holes, i = 4, 8, 9 to corner
adatoms, and i = 5, 6, 7 to center adatoms. These results
mean that our proposed Net1, Net2, and Net3 methods
can identify individual atomic sites as keypoints at room
temperature.

Probing for optimal measurement regions

Figure 4 shows a continuous image of the room tem-
perature STM measurement on the Si(111)− (7× 7) sur-
face, in which atomic images free of defects, adsorbates,
and steps are autonomously identified. In the experi-
ment, a total of 45 consecutive images were acquired over
different regions. In Fig. 4(a), scanning started from
the upper left corner of the figure, with the upper left
portion of each image marked by an inverted triangle.
The trajectory of the regions scanned is shown by red
lines connecting the sequence of images. Here, the scan-
ning routine includes two critical modules to identify the
atomic resolution images. First, a thermal drift correc-
tion module compensates thermal drift to minimizes the
image distortion45. As the second module, Net1 keeps
the tip in a state conducive to atomic resolution mea-
surements while bypassing areas affected by impurities,
atomic defects, and step edges. Figure 4(b) shows Net1
judgment of the acquired STM images, classifying the
most plausible probe or surface conditions shown in Fig.
2 by color.

Until now, it has been necessary to determine the ap-
propriate measurement area and to continuously moni-
tor the state of the probe tip. However, unlike in cryo-
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FIG. 4. Sequential images of STM on the Si(111)− (7× 7)
surface being measured while automatically searching for the
optimum measurement area and tip conditions. (a) Sequen-
tial images measured by self-guided STM. The first scan starts
at the upper right corner, and the scan area is automatically
changed. The upper left portion of each image is indicated by
an inverted triangle, and the inverted triangles are connected
by red lines to show the trajectory. (b) Top-most inferred
state during the whole data acquisition process including tip
conditioning, drift compensation, and STS target atom local-
ization during continuous scan expressed in color. All STM
topographic images were acquired with 2 V sample bias, -
200 pA set point, 105 s scan time, and 11.25 × 11.25 nm scan
area. During this measurement, thermal drift correction is
activated by feature point matching45.

genic environments where the probe tip remains rela-
tively stable, at room temperature the probe tip fre-
quently changes. This makes it virtually impossible for
researchers to conduct sustained long-time experiments.
As demonstrated in Fig. 4, by integrating advanced au-
tomation and deep learning techniques, we have been
able to establish optimal experimental conditions for ex-
ploring regions with atomic resolution. This method
enables the automatic identification of the appropriate
probe and region at room temperature, which is essential
for conducting site-specific experiments. Consequently,
experiments such as atomic manipulation and STS are
expected to be feasible under conditions comparable to
those in cryogenic environments.

Self-driving scanning tunneling spectroscopy at room
temperature on different Si(111) adatom sites

Using the methods described so far, the basic tools
are now available to realize an AI-SPM capable of self-
steering measurements. As an example of a site-specific
measurement at room temperature, we perform I − V
measurements on adatoms of the Si(111)-(7×7). From
the obtained I−V curve, the data of dI/dV, or STS as the
local electronic state, can be calculated.There have been
previous studies of the density state of Si(111)-(7×7) sur-
faces both at room46–49 and low49,50 temperatures. Pre-
vious studies have reported that the Si surface has dif-
ferent electronic state behaviors depending on tempera-

tures.
The results suggest the importance of performing the

site-specific measurement at room temperature. On the
other hand, in the room temperature environment, in ad-
dition to the thermal drift and tip instability described
above, there is also the effect of thermal fluctuations
in the LDOS itself due to the broadening of the Fermi
function for the population of electrons, resulting in a
reduction in the energy resolution of the STS measure-
ment. Therefore, in order to obtain a reliable site-specific
measurement, it is necessary to acquire a large amount
of data and statistically process the acquired data to
deal with irregularities such as data variations and probe
changes specific to room temperature. For site-specific
measurements at room temperature, the acquisition of
large amounts of data has been very difficult with previ-
ous room temperature STM setups.

To ensure the acquisition of reliable data in this inher-
ently uncertain environment, we’ve applied our AI-SPM
to perform a large number of I − V curve measurements
on the four different adatom sites of the Si(111)-(7×7)
and performed statistical analysis to calculate the STS
data. Specifically, it can locate individual atomic sites of
the respective center and corner adatoms of each faulted
and unfaulted unit cell where adsorptions and defects
were absent.
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FIG. 5. I − V and calculated STS curves on different
adatom site of the Si(111)-(7×7) measuered at room tem-
perature. Weighted plot of I − V curves on (a) faulted cen-
ter adatom (b) faulted corner adatom (c) unfaulted center
adatom (d) unfaulted corner adatom. The green dashed lines
are the most likely ones calculated by the overall data-based
selection method. (e) Over-wrapped I − V curves of the four
different adatom sites that are the same as the green dashed
curves in (a) to (d). (f) STS (dI/dV ) curves calculated from
the four I − V curves in (e). The inset in (f) is STM topo-
graphic image acquired with the -1.4 V sample bias, 200 pA
tunneling current and the scan range is 11.25 nm2. The four
points on the topography represent the I − V measurement
position. The color in the topography points and dI/dV line
correspond to each other. the measurement noise is reduced
by the Savitzky-Golay and mean filters.

Using this approach, we acquired a total of 324 I − V
curves measured at center and corner adatoms within
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both faulted and unfaulted unit cells, respectively. Fol-
lowing these measurements, the tip apex condition is
evaluated to ensure that it remains optimal, and then
the thermal drift is corrected again. I −V data were au-
tomatically obtained in appropriate regions and tip con-
ditions as evaluated by AI-SPM. This entire procedure is
performed iteratively, enabling the generation of robust
and reliable data under the challenges of room tempera-
ture.

Obtained I − V curves are individually plotted in
Fig. 5(a), (b), (c), and (d). Our preliminary experiments
(see Appendix B) have shown that the state of the tip
apex changes about 7% of the time when the voltage is
swept. To determine the most representative values for
the I − V curves of individual atoms (Fig. 5(e)), we em-
ployed the data selection approach to obtain a group of
curves with the highest tendencies, and the mean I − V
curves of the extracted group (see Methods). dI/dV
curves were calculated by averaging the extracted I − V
curves followed by the mean filter, Savitzky-Golay51 fil-
ter, and smoothing by the 1D spline function to minimize
the noise. When zooming in on the region with nega-
tive sample bias, subtle differences between the curves of
faulted unit cells and unfaulted unit cells become appar-
ent. In this region, the conductance of the faulted unit
cells is noted to be greater than that of the unfaulted
unit cells, supporting the higher electron density on the
faulted side with a stacking fault than on the unfaulted
side52.

As shown in the inset of Fig. 5(f), in the STM mea-
surements of the Si(111) surface, the contrast between
the corner adatom and the center adatom in the faulted
and unfaulted half-unit cells is different in the negative
sample bias region. The calculated STS results also show
that, under the negative sample bias region, the four site-
specific locations at faulted/unfaulted corner and cen-
ter adatom show distinct variations (the color of the
points representing the positions of the four atoms cor-
responds to the color of the dI/dV curves). Because of
the charge transfer from adatom to rest atom, the cen-
ter adatom, which has a larger number of neighbors to
the rest adatom, has a lower electron density than the
corner adatom48. This trend of the four sites is revealed
in our STS curves, and the positions of peaks [downward
arrow in Fig. 5(f)] align with the past result49. Addition-
ally, the most prominent peaks on the surface states of
Si(111)-(7× 7) appear at -0.8 V and 0.3 V, supported by
the ultraviolet photoemission spectroscopy and inverse
photoemission spectroscopy measurement53,54. Compar-
ing the difference among site-specific STS curves, it is
evident that the density state of the center adatom con-
tributes the most to the -0.8 V peak on the surface states.
By employing statistical analysis considering data vari-
ance in big data, which is obtained by an AI-assisted
measurement approach to expand the IV curve to a data
set, our method has shown a demonstration of the room
temperature measurement with reliability and validity.

DISCUSSION

Our research shows that the AI-SPM system has the
potential to revolutionize room temperature SPM by ad-
dressing longstanding challenges and opening new av-
enues for materials characterization. This implementa-
tion can also be used in variable temperature STM as
well as cryogenic SPM. The thermal correction will be
less relevant for the cryogenic environment but the au-
tomation part can be used. In fact, even in cryogenic
environments, in experiments over the span of days, ther-
mal drift will occur and the tip of the probe will change.
For site-specific experiments over a long period of time,
AI-SPM will be definitely a powerful tool in cryogenic
environments.

In room temperature environments, various heat-
assisted processes, including diffusion, crystal growth,
dislocation movements, and chemical reactions, occur at
the nano- to atomic-scale. Precise site-specific measure-
ments could potentially unveil new scientific domains if
local conditions are accurately assessed. However, ther-
mal drift and tip apex change in SPM often obstruct the
precise measurements. Furthermore, the necessity to col-
lect and statistically analyze extensive datasets in heat-
present environments presents a substantial challenge,
often beyond the capacity of manual operations. Pre-
viously, researchers have achieved excellent results with
diffusion and atomic manipulation using room tempera-
ture SPM, but it required patience, time, and luck.

To overcome these difficulties at room temperature, we
have shown that a deep learning-assisted AI-SPM sys-
tem capable of autonomously collecting real-time data
at room temperature can be deployed. A neural network
is trained for comprehensive Si(111)-(7×7) topography
assessment, achieving an impressive accuracy at around
90%, thanks to our two-phase data acquisition scheme
which can automatically collect training datasets in real-
time measurement. Moreover, this dataset acquisition
routine can be applied to various surfaces, allowing users
to train their own AI models for experimentation.

This transformation is evident not only in its capac-
ity to assist humans in accomplishing complex and time-
consuming operations, thus enabling automated experi-
ments but also in the extension of SPM to the big data
aiming to unlock deeper physical discoveries, as we delve
into the analysis of a vast amount of data. In the future,
it could be used effectively for SPM analysis at the atomic
to nanometer level in materials with high temperatures
and temperature variations, such as vanadium dioxide
and thermoelectric materials. To achieve this vision, we
need higher-bandwidth, automated SPM systems cou-
pled with AI and real-time data analysis algorithms to
provide intelligent data that is directly relevant to exper-
imental conditions and scan results. However, there is
a limitation of our current system, which demands pre-
liminary experiments for executing the automatic data
acquisition routine and gathering the training dataset
necessary for the automation AI. In future developments,



7

training large models such as Vision Transformer55, capa-
ble of encompassing a wide range of material structures
would enable the utilization of neural networks for the
analysis of general SPM data.

This manuscript has introduced the concept of a self-
driving lab, setting the stage for the development of in-
novative approaches, such as the automation and opti-
mization of manufacturing processes, and the operation,
self-replication, and self-repair of molecular machines in
the realm of atomic technology. These advancements
align closely with Drexler’s anticipated integration of
nanotechnology and AI1.

CONCLUSIONS

We demonstrated the effectiveness of the AI-SPM sys-
tem through two automated scanning experiments con-
ducted at room temperature. We implemented an AI-
equipped SPM capable of compensating for thermal drift
and repairing tip damage, which have been challenges
specific to the room-temperature operation. The system
automatically addressed the challenge of room tempera-
ture by locating adsorbate-free regions and acquiring a
large number of I − V curves at four different adatom
sites of the Si(111)-(7×7) surface. Our results indicated
a 6.3% probability of changes occurring in the probe tip
during the I − V measurement process. This suggests
that for reliable measurements at room temperature, it is
necessary to acquire a significant amount of big data and
subject these data to statistical processing. Such a pro-
cess was not feasible with conventional SPM controllers
for data acquisition, highlighting the need for AI support.
STS measurements on the Si(111)-(7×7)) demonstrated
experimentally that the electronic state varies across four
different adatom sites, confirming that STS characteriza-
tion can be effectively performed at room temperature.
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METHODS

Sample preparation and experiment environment

All experiments were carried out using a home-built
STM operated at room temperature under ultrahigh vac-
uum conditions (< ×10−8 Pa). The experiments were
repeated across multiple sessions with different Pt/Ir
STM tips to ensure reproducibility. A n-type low-doped
(ρ ≤ 0.02 Ωcm) Si substrate is used in this research.
Atomically flat and clean Si(111)-(7×7) surfaces were

prepared with the standard cleaning procedure, and used
for dataset acquisition and experiment demonstration.

For data acquisition, we have established SPM sys-
tem augmented with a deep learning model explicitly de-
signed for facilitating autonomous measurements, as de-
picted in Fig. 1. Our STM implementation combines an
SPM instrument with a server that includes an “AI Infer-
ence" subsystem for deep learning prediction, and a real-
time operating subsystem with “Scan Module" blocks
that remotely control the SPM hardware [Fig. 1]. The
control unit of the SPM instrument is built on an FPGA
with remote access from a PC. The system was built with
LabVIEW, LabVIEW FPGA, and Python. The scanning
and data acquisition methods were performed in Python.
NI PXIe-7857r was used as the measurement board. The
Scan Module block in the server contains SPM automa-
tion functions for optimizing the measurement environ-
ment. It encompassed the scan operation with custom
external scripts in Python that automated SPM mea-
surement routines and contained scan functions that op-
timized the experimental environment. OpenCV56 and
SPMUtil57 python packages were employed for data pro-
cessing and image processing. Communication between
the AI Inference subsystem and the SPM instrument ex-
ploited a TCP protocol connection. AI Inference sub-
system runs on Python and PyTorch58 is adapted as the
machine learning framework to perform training and in-
ference, which is accelerated by RTX 4090 GPU for ten-
sor computation.

Thermal drift compensation

The real-time thermal drift compensation is based on
an algorithm that extracts and matches feature points
across consecutive scanned images45. By computing pixel
shifts between consecutive scan images, the scan area is
offset to track the original region corresponding to the
first image. Furthermore, the drift velocity along the
x, y, and z is calculated from inter-image shifts and the
data acquisition time and is utilized as the real-time drift
compensation speed using a feedforward technique15,16.
The compensation process proceeded iteratively, acquir-
ing images and adjusting for drift until the measured drift
fell below a 0.2 nm threshold. Drift compensation is en-
abled to update the drift velocity at an interval of 10 min
after the previous compensation is completed.

Tip apex optimization

A protocol of tip apex optimization is implemented to
modify and evaluate tip apex conditions through con-
trolled mechanical impacts33. The bad tip is intention-
ally brought to poke toward the surface, inducing apex
changes. As a model case, the probe is indented 0.9 nm
towards the surface relative to the 1.5 V sample bias
and 200 pA tunneling current setpoint. After poking,
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the subsequent scanned image is input to Net1 for tip
quality determination. Unsatisfactory tip states based
on the network output triggered additional pokes. If a
poke does not induce a change in the probe, the next
poke will move the probe an additional 0.15 nm closer to
the surface. In this work, the Ki(i = 0, 1, 2, 3) label in
Fig. 2 (b) is regarded as a desired tip state for further
experiments. The efficacy and responsibility of this au-
tomated optimization routine at room temperature have
been demonstrated previously.

Training the deep learning model

Neural network types and hyperparameters for train-
ing Net1, Net2, and Net3 used in this work are listed
in Tab. ??. Net1 uses a custom convolutional network
structure which is presented in our previous study33.
Net2 and Net3 use the YOLOv8-small and YOLOv8-
large structure59 and the initial trainable parameters in
the network are loaded from the pre-trained model. The
YOLOv8-large in Net3 has more trainable parameters
than YOLOv8-small and the larger model is chosen to
improve the positioning accuracy on locating the atom
key point.

At the first stage for training Net1, Net2, and Net3,
input images were pre-processed with the plane fit sub-
traction and Gaussian-Hann filters, and the size of the fil-
tered images were adjusted to 256 x 256 pixels. The train-
ing dataset can be automatically labeled by the trained
model. Subsequently, the labeled dataset is exported
to CVAT for manual validation. A balanced dataset
was created, comprising more than 10,000 samples col-
lected from experiments. Within this dataset, 2082 sam-
ples were designated for training Net1, 255 samples for
training Net2, and 545 samples for training Net3. These
datasets were divided into 80% for training and 20% for
validation. Then, data augmentation60, which contained
random affine transform, image coping, and contrast
change, was separately applied to the training dataset
and the validation dataset and expands the dataset by 5
times. The three networks (Net1, Net2, and Net3) were
trained by AdamW61 optimizer.

I − V curves similarity metric and selection

To extract the high tendency from the part of the I−V
curves data group, the cosine similarity metric ϕ is used
to process statics analysis. The similarity ϕ of two I −V
curves Ii, Ij (i, j = 1, 2, · · · ,m) each containing n count
data points in one curve is calculated by the following
equation.

ϕ(Ii, Ij) =
Σn

k=1Ii[k] · Ij [k]√
Σn

k=1Ii[k]
2 · Σn

k=1Ij [k]
2

(1)

Especially, ϕ(I1, I2) is a range from -1 to 1, where
ϕ(I1, I2) = 1 means the two curve is fully equal. By
calculating the ϕ among all I − V curves, we can ob-
tain a group of curves that can represent the most com-
mon data of the whole data. The major group selection
method can be applied in two ways, which are based on
the overall data (overall selection) or based on selected
data (reference data-based selection), respectively. As for
the overall selection method, given the whole I−V curve
data as I1, I2, · · · , Il, · · · , Im, we first calculate the mean
value of cosine similarity (ϕmean[Il]) for each I−V curve
responding to the other all curves.

ϕmean([Il]) = Σi
mϕ([Il, Ii])/m (2)

The ϕmean([Il]) for Il means the common property to
the whole I − V curves, so we then apply a threshold T1

with the condition ϕmean([Il]) > T1 to choose all Il curve
that meets this condition as a major group. The refer-
ence data-based selection method is to select a group of
data similar to the reference data, which is one of an I−V
curve from the I − V curves group as the reference data
Iref . For an I−V curve Il, we give a threshold T2 and use
the ϕ(Iref , Il) > T2 condition to judge if Il can be added
into the major group which is based on Iref . Before com-
paring the relationship between the I − V curves, the
measurement noise is reduced by the Savitzky-Golay51

and mean filters. After the major group is extracted, The
most proper tendency in the group can be extracted by
taking the average value in the I−V curves and smooth-
ing by a 1D spline function.

I. MODEL EVALUATION

Several metrics are introduced to assess model perfor-
mance, specifically to validate the accuracy of classifi-
cation and detection. For Net1, a confusion matrix is
employed to verify classification accuracy as in Fig. 6(a).
In the matrix, each element represents the number of in-
stances by authors (horizontal axis) and the Net1 predic-
tions (vertical axis), and it is normalized by the number
of ground truth instances for each class. The diagonal
elements represent the Recall metric, defined as:

Recall =
TP

TP + FN
, (3)

where true positive (TP) denotes the number of pre-
dictions identified correctly as positive among the actual
positives, and false negative (FN) refers to the number
of actual positives incorrectly predicted as negative. The
Recall metric serves as an indicator of reproducibility
when the model is applied within a measurement sys-
tem. For instance, as illustrated by the first row and
column in Fig. 6(a), scanning with a tip in the "Good
1" state provided the system with 0.98 likelihood of suc-
cessful identification. The average Recall across all classes



9

back- 
ground

C1

C2

C1 C2 back- 
ground

Net3 bounding box@0.7

 thresholdOKS
A
ve
ra
ge

 P
re
ci
si
on

 (
%
)

Net3 keypoint precision

A1

A2

back- 
ground

A1 A2 back- 
ground

Net2 bounding box@0.7b c d

mAP@0.5:0.95 = 0.98

AP@0.95 = 0.91

Good 1 Good Tip  
Change

Bad  
Area 1

Step Bad Tip  
Change

Bad Bad  
Area 2

Good 2 Good 3 Good 4

Good 1

Good Tip Change

Bad Area 1

Step

Bad Tip Change

Bad

Bad Area 2

Good 2

Good 3

Good 4

No Resolution

Noisy

a confusion matrix of Net1 category

FIG. 6. Evaluation of the CNN performance of the room
temperature STM on the Si(111)− (7× 7). (a) to (c) Con-
fusion matrix demonstrating classification accuracy of Net1
to Net3, respectively. In (b) and (c), background means AI
does not treat the detection object as an interest to accu-
rately identify, and value of IoU ≥ 0.7 is defined as the true
positive case. Numbers enclosed in brackets within the ma-
trix elements, representing the number of test samples. (d)
OKS threshold dependence of AP(Average Precision) anal-
ysis of Net3 for atom point detection. mAP calculates the
mean value of the values of AP corresponding to the OKS
from 0.5 to 0.95.

was 0.93, and the Recall for binary judgment, determin-
ing whether a tip was good or bad, was 0.98. Compared
to our previous study33 in which the same algorithm of
Net1 has been used, we have confirmed the improvement
of the Recall value of Net1 from 87% to 93%. This en-
hancement is attributed to the expansion of the dataset
to 2000.

For Net2, the performance of the moving adsorption
(A1), and non-moving adsorption (A2) detection is vali-
dated. To define the success or failure of the detection,
the Intersection Over Union(IoU) metric which quanti-
fies the overlap between the predicted bounding box and
the ground truth bounding box for a given object in-
stance, was introduced. It is defined as the intersection
area between the predicted box and ground truth box
divided by the union of the two boxes,

IoU =
Soverlap

Sunion
, (4)

where Soverlap is the area of overlap of the predicted and
ground truth boxes, and Sunion is their union area, which
covered by both boxes. We defined the threshold value of
IoU = 0.7 to determine if a prediction should have been
considered a true or false positive. Specifically, a pre-
dicted box with IoU ≥ 0.7 concerning the ground truth
is counted as a true positive (TP), while a false negative
(FN) indicates a failure to detect a ground truth object.
Using this categorization, a confusion matrix can then be
constructed to summarize the performance of each object
class on the validation datasets. Fig. 6 (b) shows the

normalized confusion matrix when IoU ≥ 0.7 was used
as the threshold to divide the predictions in validation
datasets. The category label also contains “background”,
which represents the object that does not contain any
target. The reason that a certain amount of background
is misidentified as a target object may be because our de-
tection model will repeatedly detect specific targets. The
average Recall of detecting A1 and A2 is 0.92.

For Net3, Object Keypoint Similarity(OKS) was in-
troduced to verify the detection accuracy of the bounding
box (C1, C2) and key points (Pi) as,

OKS =
Σn

i exp(−d2i /2s
2)δ(vi > 0)

Σn
i δ(vi > 0)

, (5)

where n is the number of key points, di is the Euclidean
distance between the predicted keypoint and its corre-
sponding ground truth, s is the region scale of the de-
tected object, and δ(vi > 0) is an indicator function that
resolves to 1 if keypoint is visible or 0 if occluded. OKS
ranges from 0 to 1, with 1 indicating perfect alignment
of predicted key points to the ground truth. A threshold
value of OKS = 0.5 was used to determine true ver-
sus false predicted key points and OKS ≥ 0.95 can give
a rigorous evaluation precision of the atom localization
quality. The overall keypoint detection performance can
then be quantified by the proportion of key points with
OKS above a threshold. This is referred to as the mean
Average Precision (mAP) for one of the keypoint classes.

In Fig. 6 (c), the normalized confusion matrix of two
unit cells (C1, C2) and background is shown. Here, sim-
ilarly to Net2, IoU = 0.7 was chosen as the threshold
to plot the normalized confusion matrix of two unit cells
(C1, C2) and background. A substantial quantity of unit
cell training samples allowed the Recall value to approach
its maximum performance level of 1.0.

Besides, the capability of accurately localizing atom
keypoints can be evaluated by OKS value. When choos-
ing OKS thresholds varying by 0.05 from 0.5 to 0.95, the
respect of Average Precision detected in C1 and C2 are
plotted in Fig. 6 (d). mAP was above 0.98, and as the
most rigorous metric, mAP value at OKS ≥ 0.95 was
0.91. Overall, these models are trained on the variety
of the dataset which are acquired in real-time by a step-
up data acquisition scheme. All of the models achieved
high accuracy performance even for real-time data at
room temperature, thus ensuring the robustness of the
measurements and localization performance for SPM au-
tomation.

II. STATISTICAL METHODS IN ROOM TEMPERATURE
I − V MEASUREMENTS

Figure 7 shows the results of a long-time site-specific
I − V measurement, performed to verify the rate of
change of the probe. The measurement is the same as in
Fig. 5, but a different STM tip was used. The measure-
ment took 58 hours and totally 695 topographic STM
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FIG. 7. Site-specific I − V measurement by AI-SPM on the
Si(111)− (7× 7) surface at room temperature. The STM tip
was repaired while searching the region, and data were auto-
matically acquired in the region deemed appropriate for the
I −V measurement. (a) I −V curves measured at the corner
adatoms of faulted half-unit cells (C1) on the Si(111)− (7× 7)
surface. A total of 378 curves are superimposed. The hori-
zontal red dashed line indicates the set point of the tunneling
current before the start of the IV scan. "P4", "P8", and "P9"
in the inset are corner adatoms within C1 identified by Net3,
where the I−V curves were automatically measured. In real-
ity, measurements were acquired at four different atomic sites
on Si(111). (b) Top-most inferred state of the STM images
during the self-driving I − V measurements by our AI-SPM.
The notation is the same as in Fig. 4(b).

images and 2832 I − V curves were obtained. The se-
lected 378 I − V curves acquired on corner atoms of the
half unit cell (the 4th, 8th, and 9th points detected by
Net3) are shown in 7(a). Trajectory of the imaging area
and the top-most inferred state of the STM images dur-
ing the self-driving I − V measurements by our AI-SPM
is shown Fig. 7(b). The I − V curve measurement con-
tains both a forward sweep (Ifw), ranging from 2 V to
−2 V of sample bias, and a backward sweep (Ibw) from
−2 V to 2 V of sample bias. The scan is initiated from
the target atom where the z position is specifically at
a −200 pA setpoint on a 2 V sample bias. IV curves
in Fig.8(a) encompass both Ifw and Ibw and almost all
curves precisely align at the −200 pA setpoint under a
2 V sample bias position. This observation indicates that
drift along the x, y, and z axes has been effectively cor-
rected, offering compelling evidence that the system can
mitigate the impact of thermal drift even during room
temperature measurements.

However, due to various environment changes during
the measurement process, the numerical values of Ifw and
Ibw may not always align. In cases where the tip stabi-
lizes, and the surface remains undisturbed, Ifw and Ibw
tend to be consistent. To assess the level of agreement
between Ifw and Ibw curves, we used the cosine similar-
ity metric (see Method). In Fig. 8(a), as examples, three
curves (iv-0, iv-1, and iv-2) are shown. As in the case of
iv-0 and iv-1, respective ϕ values of 0.72 and 0.83 are ev-
ident that tip apex change happened. In contrast, when
there is a high degree of consistency, as observed in the
curve of "iv-2," the curve achieves a ϕ value of 1.00.

All ϕ(Ifw, Ibw) values across a set of I − V curves are
computed and depicted in the histogram in Fig. 8(b).
We defined ϕ(Ifw, Ibw) < 0.86 as indicating a flaw in
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FIG. 8. Statistical analysis on 378 curves on C1 corner
adatom. (a) Three raw data("iv-0", "iv-1", "iv-2") of the IV
measurement, which is taken from setting sample bias from
2 V to −2 V as the forward sweep and then −2 V to 2 V as
the backward sweep, starting from −200 pA setpoint at 2 V
sample bias. (b) Histogram of the similarity metric ϕ(Ifw, Ibw)
between forward I − V curve Ifw and backward I − V curve
Ibw. (c) The result of two I − V curves which represent the
two tend group’s mean value. Type 1 curve is selected by
the overall data-based selection method and type 2 curve is
selected by the reference curve-based selection method (see
Methods).

I − V measurements caused by changes in measurement
conditions, the probability of encountering such measure-
ment discrepancies using our STS parameter was 6.3%.
The reason behind these discrepancies is often associated
with the impact on the tip apex resulting from the ap-
plied sample bias, which can be likened to a process of
conditioning the probe29. These cases are frequently ob-
served during measurements, manifesting as tip changes
or impurities dropping onto the surface, and are largely
unavoidable when operating at room temperature.

Despite the potential influence of an unstable measure-
ment environment as described earlier, trends in surface
properties can still be observed, especially when sup-
ported by adequate data. Considering that all the curves
have been weighted in the plot, the areas with denser line
colors indicate higher-weight regions, reflecting a more
pronounced tendency in the I−V curve within those spe-
cific regions. Within the range of 1 to 2 V Sample Bias,
two I − V curves exhibit the most prominent directions.
To distinguish and represent these two distinct trends,
an algorithm based on cosine similarity (see Method)
is employed to statistically differentiate and select the
sets of I − V curves representing these two tendencies.
The average values of all curves within each set, corre-
sponding to the two tendencies, are plotted as blue and
green dotted lines in Fig. 8(c). The reason behind the
differentiation of these two trends on corner adatoms of
the C1 type, despite their identical nature, might be at-
tributed to variations in the density of the state of the
STM tip apex during I−V curve measurements. Though
our automated SPM system guarantees the ability to ac-
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quire atomic-resolution topography, it still needs to be
improved to maintain consistent local density of states of
the tip during measurements.
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