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A B S T R A C T

Birthday problem is a well-known classic problem in probability theory widely applied in
cryptography. Although bubble sort is a popular algorithm leading to some interesting theoretical
problems in computer science, its relation to birthday problem has not been found yet. This paper
indicates how Rayleigh distribution naturally arises in bubble sort by relating it to birthday
problem, which presents a novel direction for analysing bubble sort and birthday problem.
Then asymptotic distributions and statistical characteristics of bubble sort and birthday problem
with very small absolute errors are presented. Moreover, this paper proves that some common
optimizations of bubble sort could lead to average performance degradation.

1. Introduction
Birthday problem is a well-known classic problem in probability theory [4], invariably mentioned in both

mathematics textbooks such as [6, 7] and computer textbooks such as [3, 12]. The expectation of its collision is
√

𝜋𝑛∕2±Θ (1) [7], and after a suitable scaling, the limiting distribution is Rayleigh distribution [6]. Although birthday
problem and its generalizations have received much attention for their applications to cryptography such as [8, 14, 18],
sorting algorithms have not been related to birthday problem yet.

Bubble sort is a popular sorting algorithm [1], and leads to some interesting theoretical problems in computer
science [12]. Early studies such as [12] found that the expectation of its passes is 𝑛−

√

𝜋𝑛∕2 ± Θ (1), and researchers
such as [2, 9, 10] have focused on the structure of bubble sort graph in recent years. And there is a strong connection
between the passes of bubble sort and the monotonic paths of bubble sort graph, however, little attention has been paid
to the asymptotic distribution of the passes.

Moreover, in computer engineering, researchers such as [15, 16, 19] have often compared the average performance
of bubble sort with other sorting algorithms throughout many years, which is determined by the distribution of the
passes [12]. However, due to the intractability of asymptotic approximation, technical experiment instead of theoretical
analysis has been often adopted.

This paper relates bubble sort to birthday problem. In section 2, bounding bubble sort by birthday problem indicates
how Rayleigh distribution naturally arises in bubble sort. In section 3, estimating bubble sort with birthday exhibits
excellent performance such as (13), even in cases where the number of elements is small as figure 2 shows. In section
4, asymptotic distributions of bubble sort and birthday problem are presented, including the cumulative distribution
function (CDF) and the probability mass function (PMF). In section 5, statistical characteristics of bubble sort and
birthday problem are derived based on (17), including expectation, variance, moment and characteristic function, with
very small absolute errors shown in (27), (28) and (29).

2. Rayleigh distribution in birthday problem and bubble sort
Birthday problem concentrates on the probability that 𝑚+ 1 people have distinct birthdays, where 𝑛 is the number

of days in a year, especially for 𝑚 = 22, 𝑛 = 365 [12]. Formally, it concentrates on the distribution of the collision
𝐶𝑛 = min

{

𝑖 + 1 ∣ 𝑈𝑖+1 ∈
{

𝑈1, 𝑈2,⋯ , 𝑈𝑖
}}

, where𝑈1, 𝑈2, 𝑈3,⋯ are mutually independent and identically uniformly
distributed on 𝑛 distinct numbers [6], hence
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Relating bubble sort to birthday problem

ℙ
{

𝐶𝑛 > 𝑚 + 1
}

=
∏

1⩽𝑖⩽𝑚
ℙ
{

𝐶𝑛 > 𝑖 + 1 ∣ 𝐶𝑛 > 𝑖
}

=
∏

1⩽𝑖⩽𝑚

(

1 − 𝑖
𝑛

)

=
(

1 − 1
𝑛

)(

1 − 2
𝑛

)

⋯
(

1 − 𝑚
𝑛

)

(1)

The number of the passes of bubble sort is determined by the inversions. Formally, there holds 𝑃𝑛 =
max

{

𝑉𝑖 + 1 ∣ 1 ⩽ 𝑖 ⩽ 𝑛
}

, where 𝑃𝑛 is the number of the passes of bubble sort and 𝑉𝑖 is the number of the inversions
whose smaller component is the 𝑖-th smallest element [12]. For a uniformly random permutation of 𝑛 distinct numbers,
its 𝑉𝑖 is uniformly distributed on {0, 1,⋯ , 𝑛 − 𝑖} [12], hence

ℙ
{

𝑃𝑛 ⩽ 𝑛 − 𝑚
}

=
∏

1⩽𝑖⩽𝑚
ℙ
{

𝑉𝑚−𝑖+1 + 1 ⩽ 𝑛 − 𝑚
}

=
∏

1⩽𝑖⩽𝑚

(

1 − 𝑖
𝑛 − 𝑚 + 𝑖

)

=
(

1 − 1
𝑛 − 𝑚 + 1

)(

1 − 2
𝑛 − 𝑚 + 2

)

⋯
(

1 − 𝑚
𝑛 − 𝑚 + 𝑚

)

(2)

Thus bubble sort can be bounded by birthday problem as follows:

ℙ
{

𝐶𝑛−(𝑚−1) > 𝑚 + 1
}

⩽ ℙ
{

𝑃𝑛 ⩽ 𝑛 − 𝑚
}

⩽ ℙ
{

𝐶𝑛 > 𝑚 + 1
}

(3)

Consider that 𝑇𝑛 = 𝐶𝑛 ∕
√

𝑛 converges in distribution to the standard Rayleigh distribution [6], namely

ℙ
{

𝑇𝑛 ⩽ 𝑡
}

∼ 1 − 𝑒−𝑡2∕2 and ℙ
{

𝐶𝑛 > 𝑚 + 1
}

∼ exp
𝑚 (𝑚 + 1)

−2𝑛
, with the relative error displayed below [17]:

1 < exp
𝑚 (𝑚 + 1)

−2𝑛
∕ ℙ

{

𝐶𝑛 > 𝑚 + 1
}

< exp
(𝑚 + 1)3

6 (𝑛 − 𝑚)2
(4)

Therefore, 𝑋𝑛 =
(

𝑛 − 𝑃𝑛
)

∕
√

𝑛 also converges in distribution to the standard Rayleigh distribution, namely

ℙ
{

𝑋𝑛 ⩽ 𝑥
}

∼ 1 − 𝑒−𝑥2∕2 and ℙ
{

𝑃𝑛 ⩽ 𝑛 − 𝑚
}

∼ exp
𝑚 (𝑚 + 1)

−2𝑛
.

Moreover, ℙ
{

𝑉𝑚−𝑖+1 + 1 ⩽ 𝑛 − 𝑚
}

∼ ℙ
{

𝐶𝑛 > 𝑖 + 1 ∣ 𝐶𝑛 > 𝑖
}

indicates why bubble sort can be related to
birthday problem. And as presented in figure 1, there hold:

ℙ
{

𝐶𝑛 > 𝑚 + 1
}

= exp
𝑚 (𝑚 + 1)

−2 (𝑛 − 𝑚∕3)
± Θ

(

𝑚4

𝑛3

)

(5)

ℙ
{

𝑃𝑛 ⩽ 𝑛 − 𝑚
}

= exp
𝑚 (𝑚 + 1)

−2 (𝑛 − 2𝑚∕3)
± Θ

(

𝑚4

𝑛3

)

(6)

3. Estimation of bubble sort with birthday problem
To estimate the number of the passes of bubble sort with birthday problem, especially to analyse the relative error,

the Laurent series of their distribution functions deserve attention.
Denote 𝑠𝑘 as the summation of 𝑘-th power of the first 𝑚 positive integers, namely 𝑠𝑘 = 1𝑘 + 2𝑘 +⋯ + 𝑚𝑘, then

using the Maclaurin series of ln (1 − 𝑥) and ln (1 + 𝑥) gives
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Figure 1: 𝑛 = 365

ln ℙ
{

𝐶𝑛 > 𝑚 + 1
}

=
∑

1⩽𝑖⩽𝑚
+ ln

(

1 − 𝑖
𝑛

)

=
∑

1⩽𝑗

−𝑠𝑗
𝑗𝑛𝑗

(7)

ln ℙ
{

𝑃𝑛+𝑚 ⩽ 𝑛
}

=
∑

1⩽𝑖⩽𝑚
− ln

(

1 + 𝑖
𝑛

)

=
∑

1⩽𝑗

(−1)𝑗 𝑠𝑗
𝑗𝑛𝑗

(8)

Suppose that 𝑞 is a positive integer less than 𝑚, then using Newton’s binomial theorem gives

ln ℙ
{

𝐶𝑛−𝑞 > 𝑚 + 1
}

=
∑

1⩽𝑗

−𝑠𝑗
𝑗 (𝑛 − 𝑞)𝑗

=
∑

1⩽𝑘⩽𝑗

(

𝑗
𝑘

)

−𝑠𝑘𝑞𝑗−𝑘

𝑗𝑛𝑗
(9)

ln ℙ
{

𝑃𝑛 ⩽ 𝑛 − 𝑚
}

=
∑

1⩽𝑗

(−1)𝑗 𝑠𝑗
𝑗 (𝑛 − 𝑚)𝑗

=
∑

1⩽𝑘⩽𝑗

(

𝑗
𝑘

)

(−1)𝑘 𝑠𝑘𝑚𝑗−𝑘

𝑗𝑛𝑗
(10)
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= −
𝑚 (𝑚 + 1)

2𝑛

−
𝑚 (𝑚 + 1) (4𝑚 − 1)

12𝑛2

−
𝑚2 (𝑚 + 1) (3𝑚 − 1)

12𝑛3

−
𝑚 (𝑚 + 1)

(

24𝑚3 − 9𝑚2 − 𝑚 + 1
)

120𝑛4

−
𝑚2 (𝑚 + 1)

(

10𝑚3 − 4𝑚2 − 𝑚 + 1
)

60𝑛5

± Θ
(

𝑚7

𝑛6

)

Therefore, estimating passes of bubble sort with birthday problem yields the following relative error:

ℙ
{

𝐶𝑛 > 𝑚 + 1
}

∕ ℙ
{

𝑃𝑛 ⩽ 𝑛 − 𝑚
}

= 1 +
(𝑚 − 1)𝑚 (𝑚 + 1)
6 (𝑛 − 𝑚∕2)2

± Θ
(

𝑚5

𝑛4

)

(11)

Furthermore, the solution of ℙ
{

𝑃𝑛 ⩽ 𝑛 − 𝑚
}

= ℙ
{

𝐶𝑛−𝑞 > 𝑚 + 1
}

is 𝑞 = 𝑚 − 1
3

± Θ

(

1
√

𝑛

)

. And as presented

in figure 2, there holds:

ℙ
{

𝐶𝑛−(𝑚−1)∕3 > 𝑚 + 1
}

∕ ℙ
{

𝑃𝑛 ⩽ 𝑛 − 𝑚
}

= 1 −
(𝑚 − 1)𝑚 (𝑚 + 1) (𝑚 + 2) (2𝑚 + 1)

270 (𝑛 − (4𝑚 − 1) ∕6)4
± Θ

(

𝑚7

𝑛6

)

(12)

For example, substituting 𝑚 = 22, 𝑛 = 365 gives

ℙ
{

𝐶358 > 23
}

≈ 0.4857834
ℙ
{

𝑃365 ⩽ 343
}

≈ 0.4857848
ℙ
{

𝐶365 > 23
}

≈ 0.4927028
(13)

4. Asymptotic distributions of bubble sort and birthday problem
The factorial function is pivotal for analysing bubble sort and birthday problem, because there holdℙ

{

𝑃𝑛 ⩽ 𝑛 − 𝑚
}

=
(𝑛 − 𝑚)! (𝑛 − 𝑚)𝑚 ∕ 𝑛! [12] and ℙ

{

𝐶𝑛 > 𝑚 + 1
}

= 𝑛!∕ (𝑛 − 𝑚 − 1)!∕𝑛𝑚+1 [7] for 𝑛 − 𝑚 ∈ {1, 2,⋯ , 𝑛}.
Thus ℙ

{

𝑋𝑛 ⩾ 𝑥
}

is defined on a discrete set 𝑆 =
{

𝑥 ∈ 𝐑 ∣ 𝑛 − 𝑥
√

𝑛 ∈ {1, 2,⋯ , 𝑛}
}

due to 𝑋𝑛 =
(

𝑛 − 𝑃𝑛
)

∕
√

𝑛
and satisfies

ℙ
{

𝑋𝑛 ⩾ 𝑥
}

=
(

𝑛 − 𝑥
√

𝑛
)

!
(

𝑛 − 𝑥
√

𝑛
)𝑥

√

𝑛
∕ 𝑛! (14)

To obtain an extension, assume that 𝜈𝑛 (𝑥) is defined on an interval 𝑇 =
{

𝑥 ∈ 𝐑 ∣ 1 ⩽ 𝑛 − 𝑥
√

𝑛 ⩽ 𝑛
}

and satisfies

𝜈𝑛 (𝑥) = Γ
(

𝑛 − 𝑥
√

𝑛 + 1
) (

𝑛 − 𝑥
√

𝑛
)𝑥

√

𝑛
∕ Γ (𝑛 + 1) (15)

Then ℙ
{

𝑋𝑛 ⩾ 𝑥
}

= 𝜈𝑛 (𝑥) for 𝑥 ∈ 𝑆 and 𝜈𝑛 (𝑥) is real analytic for 𝑥 ∈ 𝑇 .
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Figure 2: 𝑛 = 5

Furthermore, consider the Stirling’s series:

Γ (𝑧 + 1) =
√

2𝜋𝑧
(𝑧
𝑒

)𝑧
exp

(

1
12𝑧

± Θ
(

1
𝑧3

))

(16)

Therefore, the Laurent series of ln 𝜈𝑛 (𝑥) is

ln 𝜈𝑛 (𝑥) = −𝑥2

2
− 2𝑥3 + 3𝑥

6
√

𝑛
− 𝑥4 + 𝑥2

4𝑛
− 12𝑥5 + 10𝑥3 − 5𝑥

60𝑛
√

𝑛
− 4𝑥6 + 3𝑥4 − 2𝑥2

24𝑛2
± Θ

(

𝑥7

𝑛2
√

𝑛

)

(17)

Then the cumulative distribution function (CDF) of 𝑋𝑛 denoted by 𝐹𝑋𝑛
(𝑥) is defined on 𝑆 and satisfies

𝐹𝑋𝑛
(𝑥) = 1 − 𝜈𝑛

(

𝑥 + 1
√

𝑛

)

= 1 − 𝑒−𝑥
2∕2 exp

(

−2𝑥3 + 9𝑥
6
√

𝑛
± Θ

(

𝑥4

𝑛

)

)

(18)

And the probability mass function (PMF) of 𝑋𝑛 denoted by 𝑓𝑋𝑛
(𝑥) is defined on 𝑆 and satisfies

𝑓𝑋𝑛
(𝑥) = 𝜈𝑛 (𝑥) − 𝜈𝑛

(

𝑥 + 1
√

𝑛

)

= 𝑒−𝑥2∕2𝑥
√

𝑛
exp

(

−𝑥4 − 3
3𝑥

√

𝑛
± Θ

(

𝑥4

𝑛

)

)

(19)
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Thus 𝑋𝑛 =
(

𝑛 − 𝑃𝑛
)

∕
√

𝑛 converges in distribution to the standard Rayleigh distribution due to lim
𝑛→∞

𝐹𝑋𝑛
(𝑥) =

1 − 𝑒−𝑥
2∕2, which is consistent with the result in section 2.

Similarly, for birthday problem, applying the Stirling’s series yields:

𝐹𝑇𝑛 (𝑡) = 1 − 𝑒−𝑡
2∕2 exp

(

− 𝑡3 − 3𝑡
6
√

𝑛
± Θ

(

𝑡4

𝑛

)

)

(20)

𝑓𝑇𝑛 (𝑡) =
𝑒−𝑡2∕2𝑡
√

𝑛
exp

(

− 𝑡4 − 9𝑡2 + 6
6𝑡
√

𝑛
± Θ

(

𝑡4

𝑛

)

)

(21)

5. Statistical characteristics of bubble sort and birthday problem
Euler–Maclaurin summation formula offers an effective approach for analysing the statistical characteristics of

bubble sort and birthday problem, such as expectation, variance, moment and characteristic function.
To obtain the 𝑘-th moment of 𝑋𝑛, using summation by parts gives

𝔼
(

𝑋𝑘
𝑛
)

=
∑

𝑥∈𝑆
𝑥𝑘 ℙ

{

𝑋𝑛 = 𝑥
}

=
∑

𝑥∈𝑆

(

𝑥𝑘 −
(

𝑥 − 1 ∕
√

𝑛
)𝑘

)

ℙ
{

𝑋𝑛 ⩾ 𝑥
}

+
(

−1 ∕
√

𝑛
)𝑘

(22)

Then, for a fixed positive number 𝜀 < 1∕6, using Euler–Maclaurin summation formula gives

∑

𝑥∈𝑆
𝜈𝑛 (𝑥) =

√

𝑛∫

𝑛𝜀

0
𝜈𝑛 (𝑥) 𝑑𝑥 +

𝜈𝑛 (0)
2

−
𝜈′𝑛 (0)

12
√

𝑛
+

𝜈′′′𝑛 (0)

720𝑛
√

𝑛
± Θ

(

1
𝑛2

)

(23)

Hence, it is consistent with Knuth’s results [11] that the expectation of 𝑋𝑛 is

𝔼
(

𝑋𝑛
)

= 𝔼̂
(

𝑋𝑛
)

± Θ

(

1
𝑛2
√

𝑛

)

𝔼̂
(

𝑋𝑛
)

=
√

𝜋
2
− 5

3
√

𝑛
+ 11

24𝑛

√

𝜋
2
+ 4

135𝑛
√

𝑛
− 71

1152𝑛2

√

𝜋
2

(24)

Similarly, by applying Euler–Maclaurin summation formula, the expectation of the square of 𝑋𝑛 is

𝔼
(

𝑋2
𝑛
)

= 𝔼̂
(

𝑋2
𝑛
)

± Θ

(

1
𝑛2
√

𝑛

)

𝔼̂
(

𝑋2
𝑛
)

= 2 − 4
√

𝜋
2𝑛

+ 5
𝑛
− 5

3𝑛

√

𝜋
2𝑛

− 4
135𝑛2

(25)

And the variance of 𝑋𝑛 is

𝕍
(

𝑋𝑛
)

= 𝕍̂
(

𝑋𝑛
)

± Θ

(

1
𝑛2
√

𝑛

)

𝕍̂
(

𝑋𝑛
)

= 4 − 𝜋
2

− 2
3

√

𝜋
2𝑛

+ 160 − 33𝜋
72𝑛

− 107
540𝑛

√

𝜋
2𝑛

− 1125𝜋 − 1792
25920𝑛2

(26)

For example, substituting 𝑛 = 10000 gives
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𝔼
(

𝑋10000
)

≈ 1.23670494307038

𝔼̂
(

𝑋10000
)

≈ 1.23670494307065
(27)

𝔼
(

𝑋2
10000

)

≈ 1.950365345384

𝔼̂
(

𝑋2
10000

)

≈ 1.950365345354
(28)

𝕍
(

𝑋10000
)

≈ 0.4209262291695

𝕍̂
(

𝑋10000
)

≈ 0.4209262291679
(29)

Furthermore, notice that the moment of 𝑅 is 𝔼
(

𝑅𝑘) ∕
√

2
𝑘
= Γ (𝑘∕2 + 1) and the characteristic function of 𝑅 is

𝜑𝑅 (𝑧) =
√

2𝜋 𝑖𝑧𝑒−𝑧2∕2 Φ (𝑖𝑧) + 1 where 𝑅 is a random variable following the standard Rayleigh distribution and Φ is
the cumulative distribution function of the standard normal distribution. The moments and the characteristic functions
of 𝑋𝑛 and 𝑇𝑛 are as follows:

𝔼
(

𝑋𝑘
𝑛
)

∕
√

2
𝑘
= Γ

(𝑘
2
+ 1

)

−

√

2𝑘 (𝑘 + 4)
6
√

𝑛
Γ
(𝑘 + 1

2

)

± Θ
(1
𝑛

)

(30)

𝔼
(

𝑇 𝑘
𝑛
)

∕
√

2
𝑘
= Γ

(𝑘
2
+ 1

)

−

√

2𝑘 (𝑘 − 5)
12
√

𝑛
Γ
(𝑘 + 1

2

)

± Θ
(1
𝑛

)

(31)

𝜑𝑋𝑛
(𝑧) =

√

2𝜋 𝑖𝑧𝑒−𝑧
2∕2 Φ (𝑖𝑧)

(

1 −
𝑖𝑧
(

6 − 𝑧2
)

3
√

𝑛

)

+

(

1 −
𝑖𝑧
(

5 − 𝑧2
)

3
√

𝑛

)

± Θ
(1
𝑛

)

(32)

𝜑𝑇𝑛 (𝑧) =
√

2𝜋 𝑖𝑧𝑒−𝑧
2∕2 Φ (𝑖𝑧)

(

1 +
𝑖𝑧
(

3 + 𝑧2
)

6
√

𝑛

)

+

(

1 +
𝑖𝑧
(

4 + 𝑧2
)

6
√

𝑛

)

± Θ
(1
𝑛

)

(33)

Therefore, both 𝑋𝑛 and 𝑇𝑛 converge in distribution to the standard Rayleigh distribution with convergence of all
moments, which is consistent with the result in section 2. And they satisfy the method of moments and basic limit laws
in [13].

6. Discussion
In analytic combinatorics, Kuba and Panholzer studied the distribution of inversions in labelled tree families

and indicated how mixed Poisson-Rayleigh distributions naturally arise in several critical composition schemes [13].
Inspired by their work, in section 2 and section 3, this paper relates bubble sort to birthday problem, which presents a
novel direction for analysing birthday problem and bubble sort. It is somewhat amazing that this relation has eluded
discovery for so long.

In computer science, Knuth studied the analysis of bubble sort and derived the expectation of its passes by the
inversions [11, 12]. Based on his work, in section 4 and section 5, this paper develops this approach and derives
several effective asymptotic approximations of bubble sort and birthday problem, including asymptotic distributions
and statistical characteristics, which completely addresses the analysis of the average performance of bubble sort for
distinct elements. And for analysing variations of bubble sort such as [5], some generalizations of this approach should
be effective.

Moreover, in computer engineering, nearly every description of bubble sort mentions the optimization that
terminates if no swaps are made in a pass [1], which reduces the number of the comparisons of elements by 𝑛𝑋2

𝑛 . Thus
some common implementations of this optimization such as [16, 19] could lead to average performance degradation for
all large enough 𝑛, because the cost of checking if no swaps are made is Θ

(

𝑛2
)

whereas whereas only 𝔼
(

𝑛𝑋2
𝑛
)

= Θ (𝑛)
comparisons can be reduced.
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