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A SIMPLE DERIVATION OF THE INTEGRALS OF PRODUCTS OF
LEGENDRE POLYNOMIALS WITH LOGARITHMIC WEIGHT

SEBASTIAN SCHMUTZHARD-HOFLER

ABSTRACT. We explore integrals of products of Legendre polynomials with a logarith-
mic weight function. More precisely, for Legendre polynomials P, and P, of orders m
and n, respectively, we provide simple derivations of the integrals

/Pn(Qx — 1) P (22 — 1) log(x)dz.

1. INTRODUCTION

In this short note we, compute the integrals of products of Legendre polynomials with
logarithmic weight. Specifically, we are interested in

1
Ny = /Pn(2x — 1P, (2x — 1) log(z)dx
0

for m,n € N. The Legendre polynomials Py, P;, P ..., are defined recursively (ﬂ],
22.7.10). The initial polynomials are given by

Po(z) =1,

Py(x) = .
For n > 1 the polynomials P, are defined by the three-term-recurrence
(1) (n+1)Py1(x) = 2n+ DaP,(x) — nPy_1(z).
In this work, we derive for n # m,

@) Ny = — S

- In —m|(n+m+1)’

2

2n+ )Ny = (20— 1)Np—1n-1 —
(’I’L+ ) n,n (TL ) n—1ln—1 (2n—1)2n(2n+1)

" 1
=-1-2 .
]Zl (25 —1)25(25 +1)
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The solution for the special case m = 0 and n > 0 is obtained in E], and given by

1
_ (_1)n+1
O/Pn (22 — 1) log(x)dz ECEg

This has been generalized to integrals of single Jacobi polynomials with various weight
functions, see for example [d, |4, [5, [4, §]. In [6][(4.6)],integrals of products of Le-
gendre polynomials with logarithmic weights are represented by finite sums involving
the Gamma function and the Digamma function. The result (2) can be found in
[1[8.14.8,8.14.10] as integrals of products of Legendre functions of the first and the
second kind. On the other hand N, , is given in [1][8.14.9] via the derivative of the
Digamma function. Albeit being a special case and easily derivable thereof, the simple
representation of (B]) seems to be new. Moreover, the elementary derivations of (2)) and
@) seem, to our surprise and the best of our knowledge, to be missing in the literature.

2. MAIN RESULTS

We give rigorous derivations of the values of the integrals

1
/Pn (2 — 1) Py, (22 — 1) log(x)dx
0

for arbitrary n,m € N.

Theorem 1. For n,m € N, n > m,

(_1)n+m+1
(n—m)(n+m+1)

Proof of Theorem [ We prove the result by induction.

Induction base case
The base case for m = 0 and n > m is, as discussed above, proven in E]

(_1)n+1

1
(5) Npo = /Pn(Qx — 1) log(x)dx = e
0

For m = 1 and n > m, we observe that P;(2z — 1) = 2z — 1. It follows from Equation
() that for n > 1

n+1

2n +1



Substituting (@) into the definition of N, ; gives

P,(2z — 1)(2z — 1) log(z)dx

[n—|—1

S Rl

Gy 1Pn,1(23: - 1)} log(z)dz

e [
|

1
/Pn+1 (2z — 1) log(x)dx +
0

_2n—i—

1
ST /Pn1(2x —1)log(x)dx
0

n-+1
2n + 1

= n+1,0 + Np_1,0-

n
2n+1

Substituting the results for Ny410 and N,,_1, see Equation (@), leads to

_n+1 (=1nt? n  (=1)"
LTI+ )(n+2)  2n+1(n—1Dn
_ (—1)"+2[ 1 1 }: (=12 2n+1
2n+1 |[n+2 n-1 2n+1 (n+2)(n—1)
_ (=ym
 (n+2)(n—1)

which is the base case for m = 1.

Induction hypothesis
We assume the result to be valid for any m € N with m < m. Specifically, we assume

(_1)n+m
Npm—1 = n—mt )mm) for n > m — 1 and
(7) (_1)n+m71
Nn7m—2 = forn >m — 2.

(n—m+2)(n+m-—1)

Induction step
It follows from Equation (IJ) that for m > 1

(8) mPp,(2x —1) = (2m —1)(2x — 1)Pp_1(22 — 1) — (m — 1) Py—2(22 — 1).



4

Multiplying N,, ., by m and substituting () yields
MmNy m = /Pn(2x — 1)mP,,(2x — 1) log(x)dx

P,(2x —1)(2m — 1)(2x — 1) P12z — 1) log(x)dz

P,(2x — 1)(m — 1) Py—2(2z — 1) log(x)dz,

O Y = o _ °

which results in

MNp m =

1
9
©) (2m —1 / 2z —1)P,(2x — 1) Ppy—1 (22 — 1) log(x)dx — (m — 1) Ny pm—2,
0

where we made use of the definition of Ny, ,,,—2. It follows from Equation (1)) that for
n>1

(10) 2n+1)(2z -1)P,2z—1)=(n+1)Ppy1(2x — 1) + nP—1(22 — 1)
Multiplying Equation (@) by (2n + 1) and subsituting (0] leads to

(2n 4+ 1)mNy, m =
1
(2m —1) / [(m+1)P41(2x — 1)+ nP,_1(2x — 1)] Pp—1(2z — 1) log(x)dx
0
— (277, + 1)(m — 1)Nn,m—2-

Making use of the definition of Ny41,,—1 and N, _1,,—1 gives us

2n+ 1)mNy, m =

11
( ) (2m — 1)(n + 1)Nn+1,m—1 + (2m — 1)nNn—1,m—1 — (2n + 1)(m + 1)Nn,m—2-

The assumption that n > m implies that

n+1l>m-—1,
n—1>m-—1and

n>m—2,
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hence the induction hypotheses () are valid for Ny41,m—1, Np—1,m—1 and Ny, 2. Sub-
stituting the respective results into Equation (1), we obtain

(_1)n+m+1
(@n 4 DmNom =(2m = 1)(n+ 1) o o e 1)
(_1)n+m*1

(12) +(2m_1)n(n—m)(n—i—m—1)

(_1)n+m—1

_(2n+1)(m_1)(n—m+2)(n+m—1)'

Bringing the right hand side of (I2)) on a common denominator shows that

2n+1)m(n—m+2)(n+m—1)

(2 4 DmdNo g = (=1)"7 (m—m+2)(n+m+1)(n—m)n+m-—1)

Dividing by (2n + 1)m and simplifying the fraction proves the result (). O
Corollary 1. Forn,m € N, n # m,

1 n+m+1
Ny — (=1)

In—m|(n+m+1)

Proof. The case of n > m is covered by Theorem [l In the case of m > n, we obtain the
result of the Corollary by observing that N, ., = Ny, 5. O

Theorem 2.
(13) Noog = —1,

4
(14) 3N11 :—g,

and forn > 1,

2

(2n + 1)Nnp = (20 — 1)Np—1,n-1 (2n — 1)2n(2n + 1)

n
1
=-1-2 ‘ — .
; (27 = 1)2j(25 + 1)
Proof of Theorem [4. Equations ([I3]) and (4] can be verified by using Py(2z — 1) = 1
and P;(2x — 1) = 2z — 1 and by explicitly computing the integrals. For arbitrary n > 1,
it follows from Equation () that for n > 1

o — 1 1
B e — )Py (20— 1) — 2

(15) P2z —1) = Py_a(22 — 1).

n
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Replacing one of the factors P, (22 — 1) in the defintion of N,,,, by (3] and using the
definition of IV, ,,—o yields

1
Ny = /Pn(Qx —1)P,(2x — 1) log(z)dz
0
1

(16)
n—1

2n —1
= /Pn(Qx —1) r (2 — 1)P—1(22 — 1) log(x)dx — Npn—2.

n
0

It follows from Equation () that for n > 1

(17) Cn+1)2z - 1)P,2x —1) = (n+1)Pp1(2x — 1) + nP,_1 (22 — 1).

By multiplication of Equation (I6) with (2n+1) and substituting (I7]) we obtain
2n+1)Ny, =

-1 n—1

2n
(277, - 1)Nn—1,n—1 + (n + 1)Nn+1,n—1 - (2n + 1)T n,n—2

where we made use of the definition of Ny41,—1 and Ny, ,—2. Using Theorem [I] results
in

_(2’[’L — 1)2(n + 1) + (27’L + 1)2(n _ 1)

(2n —1)2n(2n + 1)

(2n - 1)Nn—1,n—1 +

which can be easily simplified to
2
(2n —1)2n(2n + 1)
Finally, recursively substituting the last equation yields, together with the result for
N(],O, that

(2n+1)Npp = (2n —1)Np_1p—1 —

1
)2j(25 + 1)’

n
2 )Npm=-1-2
(n+) n,n ;(2]_1

which concludes the proof.
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