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A SIMPLE DERIVATION OF THE INTEGRALS OF PRODUCTS OF

LEGENDRE POLYNOMIALS WITH LOGARITHMIC WEIGHT

SEBASTIAN SCHMUTZHARD-HÖFLER

Abstract. We explore integrals of products of Legendre polynomials with a logarith-
mic weight function. More precisely, for Legendre polynomials Pm and Pn of orders m
and n, respectively, we provide simple derivations of the integrals

1∫

0

Pn(2x− 1)Pm(2x− 1) log(x)dx.

1. Introduction

In this short note we, compute the integrals of products of Legendre polynomials with
logarithmic weight. Specifically, we are interested in

Nn,m :=

1
∫

0

Pn(2x− 1)Pm(2x− 1) log(x)dx

for m,n ∈ N. The Legendre polynomials P0, P1, P2 . . . , are defined recursively ([1],
22.7.10 ). The initial polynomials are given by

P0(x) = 1,

P1(x) = x.

For n > 1 the polynomials Pn are defined by the three-term-recurrence

(n+ 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x).(1)

In this work, we derive for n 6= m,

Nn,m =
(−1)n+m+1

|n−m|(n+m+ 1)
,(2)

and for m = n

(2n + 1)Nn,n = (2n − 1)Nn−1,n−1 −
2

(2n − 1)2n(2n + 1)

= −1− 2

n
∑

j=1

1

(2j − 1)2j(2j + 1)
.

(3)
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The solution for the special case m = 0 and n > 0 is obtained in [2], and given by

1
∫

0

Pn(2x− 1) log(x)dx =
(−1)n+1

n(n+ 1)
.

This has been generalized to integrals of single Jacobi polynomials with various weight
functions, see for example [3, 4, 5, 7, 8]. In [6][(4.6)],integrals of products of Le-
gendre polynomials with logarithmic weights are represented by finite sums involving
the Gamma function and the Digamma function. The result (2) can be found in
[1][8.14.8,8.14.10] as integrals of products of Legendre functions of the first and the
second kind. On the other hand Nn,n is given in [1][8.14.9] via the derivative of the
Digamma function. Albeit being a special case and easily derivable thereof, the simple
representation of (3) seems to be new. Moreover, the elementary derivations of (2) and
(3) seem, to our surprise and the best of our knowledge, to be missing in the literature.

2. Main results

We give rigorous derivations of the values of the integrals

Nn,m :=

1
∫

0

Pn(2x− 1)Pm(2x− 1) log(x)dx

for arbitrary n,m ∈ N.

Theorem 1. For n,m ∈ N, n > m,

Nn,m =
(−1)n+m+1

(n−m)(n+m+ 1)
.(4)

Proof of Theorem 1. We prove the result by induction.

Induction base case
The base case for m = 0 and n > m is, as discussed above, proven in [2]:

Nn,0 =

1
∫

0

Pn(2x− 1) log(x)dx =
(−1)n+1

n(n+ 1)
.(5)

For m = 1 and n > m, we observe that P1(2x − 1) = 2x − 1. It follows from Equation
(1) that for n > 1

Pn(2x− 1)(2x− 1) =
n+ 1

2n+ 1
Pn+1(2x− 1) +

n

2n+ 1
Pn−1(2x− 1).(6)
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Substituting (6) into the definition of Nn,1 gives

Nn,1 :=

1
∫

0

Pn(2x− 1)(2x − 1) log(x)dx

=

1
∫

0

[

n+ 1

2n+ 1
Pn+1(2x− 1) +

n

2n + 1
Pn−1(2x− 1)

]

log(x)dx

=
n+ 1

2n+ 1

1
∫

0

Pn+1(2x− 1) log(x)dx+
n

2n+ 1

1
∫

0

Pn−1(2x− 1) log(x)dx

=
n+ 1

2n+ 1
Nn+1,0 +

n

2n+ 1
Nn−1,0.

Substituting the results for Nn+1,0 and Nn−1,0, see Equation (5), leads to

Nn,1 =
n+ 1

2n+ 1

(−1)n+2

(n+ 1)(n+ 2)
+

n

2n+ 1

(−1)n

(n− 1)n

=
(−1)n+2

2n+ 1

[

1

n+ 2
+

1

n− 1

]

=
(−1)n+2

2n+ 1

2n+ 1

(n + 2)(n − 1)

=
(−1)n+2

(n+ 2)(n − 1)
,

which is the base case for m = 1.

Induction hypothesis
We assume the result to be valid for any m̃ ∈ N with m̃ < m. Specifically, we assume

Nn,m−1 =
(−1)n+m

(n −m+ 1)(n +m)
for n > m− 1 and

Nn,m−2 =
(−1)n+m−1

(n −m+ 2)(n +m− 1)
for n > m− 2.

(7)

Induction step
It follows from Equation (1) that for m > 1

mPm(2x− 1) = (2m− 1)(2x − 1)Pm−1(2x− 1)− (m− 1)Pm−2(2x− 1).(8)
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Multiplying Nn,m by m and substituting (8) yields

mNn,m =

1
∫

0

Pn(2x− 1)mPm(2x− 1) log(x)dx

=

1
∫

0

Pn(2x− 1)(2m − 1)(2x− 1)Pm−1(2x− 1) log(x)dx

−

1
∫

0

Pn(2x− 1)(m− 1)Pm−2(2x− 1) log(x)dx,

which results in

mNn,m =

(2m− 1)

1
∫

0

(2x− 1)Pn(2x− 1)Pm−1(2x− 1) log(x)dx− (m− 1)Nn,m−2,
(9)

where we made use of the definition of Nn,m−2. It follows from Equation (1) that for
n > 1

(2n+ 1)(2x − 1)Pn(2x− 1) = (n+ 1)Pn+1(2x− 1) + nPn−1(2x− 1)(10)

Multiplying Equation (9) by (2n + 1) and subsituting (10) leads to

(2n + 1)mNn,m =

(2m− 1)

1
∫

0

[(n+ 1)Pn+1(2x− 1) + nPn−1(2x− 1)]Pm−1(2x− 1) log(x)dx

− (2n + 1)(m− 1)Nn,m−2.

Making use of the definition of Nn+1,m−1 and Nn−1,m−1 gives us

(2n+ 1)mNn,m =

(2m− 1)(n+ 1)Nn+1,m−1 + (2m− 1)nNn−1,m−1 − (2n + 1)(m+ 1)Nn,m−2.
(11)

The assumption that n > m implies that

n+ 1 > m− 1,

n− 1 > m− 1 and

n > m− 2,
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hence the induction hypotheses (7) are valid for Nn+1,m−1, Nn−1,m−1 and Nn,m−2. Sub-
stituting the respective results into Equation (11), we obtain

(2n+ 1)mNn,m =(2m− 1)(n + 1)
(−1)n+m+1

(n−m+ 2)(n +m+ 1)

+ (2m− 1)n
(−1)n+m−1

(n−m)(n+m− 1)

− (2n + 1)(m− 1)
(−1)n+m−1

(n −m+ 2)(n +m− 1)
.

(12)

Bringing the right hand side of (12) on a common denominator shows that

(2n+ 1)mNn,m = (−1)n+m+1 (2n + 1)m(n −m+ 2)(n +m− 1)

(n −m+ 2)(n +m+ 1)(n −m)(n+m− 1)
.

Dividing by (2n + 1)m and simplifying the fraction proves the result (4). �

Corollary 1. For n,m ∈ N, n 6= m,

Nn,m =
(−1)n+m+1

|n−m|(n+m+ 1)
.

Proof. The case of n > m is covered by Theorem 1. In the case of m > n, we obtain the
result of the Corollary by observing that Nn,m = Nm,n. �

Theorem 2.

N0,0 = −1,(13)

3N1,1 = −
4

3
,(14)

and for n > 1,

(2n + 1)Nn,n = (2n − 1)Nn−1,n−1 −
2

(2n − 1)2n(2n + 1)

= −1− 2

n
∑

j=1

1

(2j − 1)2j(2j + 1)
.

Proof of Theorem 2. Equations (13) and (14) can be verified by using P0(2x − 1) = 1
and P1(2x− 1) = 2x− 1 and by explicitly computing the integrals. For arbitrary n > 1,
it follows from Equation (1) that for n > 1

Pn(2x− 1) =
2n− 1

n
(2x− 1)Pn−1(2x− 1)−

n− 1

n
Pn−2(2x− 1).(15)
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Replacing one of the factors Pn(2x − 1) in the defintion of Nn,n by (15) and using the
definition of Nn,n−2 yields

Nn,n =

1
∫

0

Pn(2x− 1)Pn(2x− 1) log(x)dx

=

1
∫

0

Pn(2x− 1)
2n − 1

n
(2x− 1)Pn−1(2x− 1) log(x)dx−

n− 1

n
Nn,n−2.

(16)

It follows from Equation (1) that for n > 1

(2n + 1)(2x − 1)Pn(2x− 1) = (n+ 1)Pn+1(2x− 1) + nPn−1(2x− 1).(17)

By multiplication of Equation (16) with (2n+1) and substituting (17) we obtain

(2n + 1)Nn,n =

(2n − 1)Nn−1,n−1 +
2n− 1

n
(n+ 1)Nn+1,n−1 − (2n + 1)

n− 1

n
Nn,n−2

where we made use of the definition of Nn+1,n−1 and Nn,n−2. Using Theorem 1 results
in

(2n + 1)Nn,n = (2n − 1)Nn−1,n−1 −
(2n− 1)(n + 1)

2n(2n + 1)
+

(2n+ 1)(n − 1)

2n(2n− 1)
=

(2n − 1)Nn−1,n−1 +
−(2n − 1)2(n+ 1) + (2n+ 1)2(n − 1)

(2n− 1)2n(2n + 1)

which can be easily simplified to

(2n + 1)Nn,n = (2n − 1)Nn−1,n−1 −
2

(2n − 1)2n(2n + 1)
.

Finally, recursively substituting the last equation yields, together with the result for
N0,0, that

(2n + 1)Nn,n = −1− 2

n
∑

j=1

1

(2j − 1)2j(2j + 1)
,

which concludes the proof.
�
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