
ar
X

iv
:2

40
4.

11
19

0v
1 

 [
m

at
h.

FA
] 

 1
7 

A
pr

 2
02

4

Metric Sobolev spaces I: equivalence of definitions

Luigi Ambrosio ∗ Toni Ikonen † Danka Lučić ‡ Enrico Pasqualetto §

April 18, 2024

Abstract

This is the first of two works concerning the Sobolev calculus on metric measure spaces

and its applications. In this work, we focus on several notions of metric Sobolev space and on

their equivalence. More precisely, we give a systematic presentation of first-order p-Sobolev

spaces, with p ∈ [1,∞), defined over a complete and separable metric space equipped with a

boundedly- finite Borel measure. We focus on three different approaches: via approximation

with Lipschitz functions; by studying the behaviour along curves, in terms either of the curve

modulus or of test plans; via integration-by-parts, using Lipschitz derivations with divergence.

Eventually, we show that all these approaches are fully equivalent. We emphasise that no

doubling or Poincaré assumption is made, and that we allow also for the exponent p = 1.

A substantial part of this work consists of a self-contained and partially-revisited exposition

of known results, which are scattered across the existing literature, but it contains also several

new results, mostly concerning the equivalence of metric Sobolev spaces for p = 1.
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1 Introduction

1.1 General overview

1.1.1 The classical Euclidean setting

The theory of spaces of weakly differentiable functions in the Euclidean setting, today known

as Sobolev spaces (named after the Russian mathematician Sergei Sobolev), goes back to the

beginning of the 20th century. The main motivation for their study comes from seeking to give

the meaning to the ‘weak’ solutions to many important classes of PDEs. We refer e.g. to [1, 51, 60]

for a thorough account of the Sobolev space theory in this classical setting. Several equivalent

definitions of Sobolev space have been established, three of which we recall next as relevant in the

forthcoming discussion and we refer to them as the H-, W- and BL-approaches. If not specified
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differently, throughout the paper the exponent p ranges in the interval [1,∞), while q ∈ (1,∞]

denotes its conjugate exponent.

• The H-approach, based on the approximation by smooth, compactly-supported functions

C∞
c (Rn) led to the definition of the space H1,p(Rn), consisting of those p-integrable functions

f admitting a weak gradient ∇wf , obtained as the Lp-limit of ∇fi, for some approximating

sequence (fi)i of smooth functions. This notion was firstly considered by Hilbert in 1900,

when trying to find a suitable class of functions which minimize the Dirichlet integral [43].

The ‘H’ in the notation reminds of the Hilbertianity of the space H1,2(Rn).

• The W-approach, based on the existence of the weak gradient in terms of an integration-

by-parts formula, while testing against vector fields having distributional divergence. This

approach led to the definition of the space W 1,p(Rn), which is the space of those p-integrable

functions f associated with a weak gradient ∇wf for which the formula

ˆ

v · ∇wf dLn = −
ˆ

fdiv(v) dLn for v ∈ C∞
c (Rn;Rn) (1.1)

holds. The notation ‘W’ reminds of the existence of weak gradients. This notion has been

introduced by Sobolev in [66], originally using the notation ‘L’ and in 1950s switching to

‘W’.

• The BL-approach, based on the property of functions to be absolutely continuous ‘along

curves’, led to the definition of the space BL1,p(Rn). It was firstly introduced by Beppo Levi

in [52], considering only curves in the coordinate directions; this is where the ‘BL’ in the

notation comes from and came into use in 1950s, by Nikodým. A drawback of this approach

was the dependence on the choice of coordinates. This drawback was removed by the refined

approach of Fuglede [32], looking at functions absolutely continuous along ‘p-almost every’

curve. Namely, a p-integrable function f is an element of BL1,p(Rn) if for ‘p-almost every’

rectifiable curve γ : [0, 1] → Rn it holds that f ◦ γ is absolutely continuous and its weak

gradient ∇wf , determined by the validity of the identity

(f ◦ γ)′t = ∇wf(γt) · γ′t for a.e. t ∈ (0, 1),

is p-integrable. In particular, |∇wf | has the following variational characterization: it is

the a.e. minimal p-integrable non-negative function satisfying for ‘p-almost every’ rectifiable

curve γ the inequality

|(f ◦ γ)′t| ≤ |∇wf |(γt)|γ′t| for a.e. t ∈ (0, 1). (1.2)

We will recall below the concept of ‘p-almost every’ (in terms of the p-modulus) used by

Fuglede, which transfers also to the more general setting of our interest.

The equivalence between the approaches H and BL has been proved in 1957 by Fuglede [32].

Another important contribution to the theory was the paper ‘H=W’ by Meyers and Serrin from

1964 [57], proving the equivalence of the approaches H and W. More precisely, for p ∈ [1,∞)

H1,p(Rn) =W 1,p(Rn) = BL1,p(Rn) and the respective weak gradients coincide. (1.3)
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Thus we can refer to any of the above spaces as to the p-Sobolev space and state equivalently that

smooth functions are strongly dense in the p-Sobolev space, for all p ∈ [1,∞). (1.4)

1.1.2 Brief history of metric Sobolev spaces

In the last three decades, the analysis on metric measure spaces has been an intense research

area, developing at a fast pace. In this work, by a metric measure space we mean a complete

and separable metric space (X, d) endowed with a non-negative Borel measure m that is finite on

bounded sets. A significant role in the study of metric measure spaces is played by the investigation

of first-order Sobolev spaces. Several definitions of metric Sobolev space can be found in the

literature, starting from the one proposed by Hajłasz in [38]. Our aims in this work are the

following:

1) to provide a detailed and systematic overview of the approaches H, W and BL in the metric

setting;

2) to prove the equivalence of these approaches for all p ∈ [1,∞);

3) to lay the groundwork for the follow-up work [8], where we concentrate on the study of the

underlying differential calculus, dual energies and their applications to potential analysis

(see Section 1.3 below).

The family of metric measure spaces includes, among others, the following classes of spaces:

Riemannian, Finsler, or more general topological manifolds, Carnot groups and sub-Riemannian

structures, Alexandrov spaces, RCD spaces (containing all Ricci-limit spaces) and weighted Banach

spaces. We next recall the definitions that are the metric counterparts to the Euclidean ones

presented in Section 1.1.1:

• The H-approach, essentially due to Cheeger [16] — the role of |∇f | for smooth functions

being now played by any upper gradient of the function f . This theory has been later on

revisited in [6, 7], considering a more restrictive class of approximating functions f , namely

Lipschitz functions with bounded support, and a specific and possibly larger choice of upper

gradients in the approximation, namely the asymptotic slope lipa(f) of f ; we refer to the

latter as to the H approach. This led to the definition of the space H1,p(X), each element

f being associated with a minimal relaxed slope |Df |H , which plays the role of the modulus

of the weak gradient.

• The W-approach, due to Di Marino [19] – based on an integration-by-parts formula (1.1),

the role of vector fields being played by derivations with divergence. In this way, we obtain

the corresponding space W 1,p(X) whose elements f are associated with a minimal object

playing the role of the ‘modulus of the differential’, denoted by |Df |W .

The BL-approach has (essentially) two different viewpoints, with respect to the way of selecting

the negligible curve families where (1.2) does not hold.

• The B-approach, due to the first named author together with Gigli and Savaré [6, 7] – the

set of negligible curves determined by using the notion of q-test plan, providing the notion of

Sobolev space B1,p(X). Each element f is associated with a minimal function |Df |B, called

the minimal B-weak upper gradient, which plays the role of |∇wf | on the right-hand side

of (1.2). Here, the ‘B’ in the notation reminds of the relation with Beppo Levi’s approach.
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Similarly, Savaré [61] used the notion of plan with barycenter, previously introduced in [5],

for the same purpose.

• The N-approach, due to Shanmugalingam [64] after Koskela–MacManus [49] – generaliza-

tion of the original Fuglede’s approach on Rn to the metric measure space setting. The

concept of p-modulus introduced by Fuglede in [32] (being directly connected to the concept

of extremal length due to Ahlfors and Beurling [2]) has been used to determine the set of neg-

ligible curves. This approach led to the definition of the Newtonian Sobolev space N1,p(X),

where the notation ‘N’ comes from. Similarly as in B-approach, we associate to each f a

minimal function |Df |N and we call it the minimal N -weak upper gradient of f .

Already in the Euclidean theory, the interest in proving the equivalence between notions that

seem substantially different (approximation, integration by parts, behaviour along almost every

curve) is self-evident. In connection with the curve-based Beppo-Levi and Fuglede’s approaches,

particularly interesting for the development of a good differentiable calculus in metric measure

spaces (see for instance [33] and [34]) is the possibility not only to single out classes of exceptional

curves, but also the possibility to identify “nice” families of curves, as the test plans or the plans

with finite energy and/or bounded compression; the good behaviour of a function along these

families turns out to be sufficient to provide Sobolev regularity for any of the other definitions.

When restricted to the Euclidean setting, all the above-mentioned notions of Sobolev space

coincide with the usual notion of Sobolev space. A great attention has been devoted to the study

of their equivalence in full generality, or, in other words, to obtaining a result analogous to (1.3):

H1,p(X) =W 1,p(X) = B1,p(X) = N1,p(X) and |Df |H = |Df |W = |Df |B = |Df |N . (1.5)

In what follows, we shall walk briefly through a list of several instances in which the above

statement is true, depending on the assumptions of the underlying metric measure space, or on

the exponent p under consideration. It is clear that, with no linear structure on the underlying

space, in the metric measure space setting the role of smooth functions is, in general, played by

the Lipschitz ones. Thus, the key fact behind (1.5) is given by the following statement:

Lipschitz functions are dense in energy in the p-Sobolev space, for every p ∈ [1,∞), (1.6)

a result analogous to (1.4) in the Euclidean setting. Above, by the density in energy we mean

that for every p-Sobolev f there is a sequence of boundedly-supported Lipschitz functions (fi)i
approximating f in the following sense:

fi → f in Lp(m) and |Dfi| → |Df | in Lp(m). (1.7)

The notation |Df | is understood as any of the four minimal functions associated with the Sobolev

f . This form of density may be in general weaker than the strong density, but still sufficient for

many applications of the theory. In the case p ∈ (1,∞), the equivalence between the N approach

and the original Cheeger’s approach, has been proven in [64]. The first proof of the energy density

of Lipschitz functions in B1,p(X) appeared in [6] in the case p ∈ (1,∞), using techniques based on

the metric Hopf-Lax semigroup. As a consequence, the equivalence between the approaches H,

B and N is proven. By means of the same techniques, the equivalence of the four listed notions

has been then proven in [18, 19] for p ∈ (1,∞). Therein, similar techniques have been used also

to show the equivalence of the respective notions of the space of functions of bounded variation.

In the setting of extended metric measure spaces (which includes all metric measure spaces), in
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[61] an approach based on duality arguments and von Neumann min-max principle has been used

in proving the equivalence of H, B and N. Another route has been taken in [26], proving the

energy density in the Newtonian Sobolev space and thus establishing the equalities H = N and

|Df |H = |Df |N . This technique covers also the case p = 1.

A condition under which the density in energy can be improved to the strong density is given

by the reflexivity of the Sobolev space in the case p ∈ (1,∞); see Section 7.2. We mention, as

a particular example, the class of PI spaces, namely, those metric measure spaces with m being

doubling and satisfying a suitable form of Poincaré inequality; see [16, 39].

Another proof of the equivalence of the four notions in the case p ∈ (1,∞) has been recently

provided in [55], reducing the problem to the study of the same question in the setting of a

weighted Banach space, namely, a separable Banach space B endowed with an arbitrary non-

negative boundedly-finite Borel measure. In this setting we still have density in energy, but we

can actually gain the word ‘smooth’ appearing in the statement (1.6). It turns out that the class

of cylindrical functions (in particular of class C∞) is shown to be dense in energy in the Sobolev

space; see [61] and [55].

Without the aim of being exhaustive, we also mention other definitions of metric Sobolev space

and some other functional spaces present in the literature – obtained via approaches analogous to

the above – which will not be considered in this work.

• Hajłasz–Sobolev space [38] and Korevaar–Schoen Sobolev space (the latter introduced first

in the setting of Riemannian manifolds in [48]). In the PI setting, both notions turn out to

be equivalent to the four notions considered in this paper.

• Characterizations (in the PI setting) of the Sobolev space via non-local functionals à la

Bourgain–Brezis–Mironescu (see e.g. [23]).

• The spaces of functions of bounded variation (see e.g. [58, 18]).

• The spaces of metric-valued Sobolev maps (cf. [42]).

• First-order Sobolev spaces in the setting of extended metric measure spaces [61], comprising

for instance abstract Wiener spaces or configuration spaces.

1.2 Contents of this work

As can be seen from the above discussion, the question of the equivalence has been solved in the

case p ∈ (1,∞) in several different ways, while the density in energy of Lipschitz functions in

N1,p(X) from [26] gives N1,p(X) = H1,p(X) and |Df |N = |Df |H for all p ∈ [1,∞). In order to

obtain (1.5), i.e. the equivalence of the four notions in a general metric measure space, comprising

also the case p = 1, we prove in Section 7 that

H1,p(X) ⊆W 1,p(X) ⊆ B1,p(X) ⊆ N1,p(X) and |Df |N ≤ |Df |B ≤ |Df |W ≤ |Df |H .

This is then enough to conclude the equivalence, taking into account the previous observation.

The first two inclusions are proven via well-established techniques. The first one by writing the

integration-by-parts formula for Lipschitz functions and passing it to the limit suitably. The

second one comes from the relation between test plans and derivations, the objects we investigate

in Section 3 and Section 4 respectively. The most involved part of the proof is the third inclusion,

which relies on showing that, for a given function f ∈ B1,p(X), the set of curves along which the
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absolute continuity of f is violated (which is negligible with respect to any q-test plan) is negligible

for the p-modulus – we deal with this issue in Section 3.

We now describe section-by-section the contributions of this work. At the end of each section,

we will provide some bibliographical notes and a list of the symbols introduced in that section.

Section 2. We devote this section to set up the notation used throughout the paper. A significant

part of it is devoted to the study of curves in metric spaces, their reparametrizations and the

related notions of path integrals. Most of the results are already present in the literature – here we

collect, state and prove them in great generality. We draw the reader’s attention to Section 2.4.1

and Section 2.4.2, where, respectively, the properties of reparametrization maps of curves are

considered and the notion of integration along rectifiable curves of any Borel measurable function

is provided. We prefer to develop the curve theory in the generality of rectifiable curves for future

developments, also related to the fine theory of BV functions in metric measure spaces.

Section 3. This section deals with the two notions of measures on the space of rectifiable curves

R(X) on X needed to define the Sobolev spaces following the B and N approaches. The first one

is the p-modulus Modp, an outer measure on R(X), in the sense of Fuglede [32]. It is defined,

for every Γ ⊆ R(X), as the infimum of ‖ρ‖pLp(m) where ρ varies in the set of admissible functions,

i.e. among non- negative Borel functions satisfying
´

γ ρ ds ≥ 1 for all γ ∈ Γ. The second notion

consists of plans with q-barycenter (introduced in [5, 61]), where a plan is a non-negative Borel

measure π on the space of continuous curves, concentrated on the subset of the rectifiable ones,

and a plan has a q-barycenter Bar(π) ∈ Lq(m) if

ˆ

ρBar(π) dm =

ˆˆ

γ

ρ ds dπ(γ) for every Borel function ρ : X → [0,∞].

The q-test plans, used in the definition of B1,p(X), are in particular plans with q- barycenter.

A significant part of this section is devoted to the preparation of the proof of the inclusion

B1,p(X) ⊆ N1,p(X). In the case p ∈ (1,∞), the above inclusion comes as a consequence of the

duality formula between Modp and plans with q-barycenter: namely, for every Souslin family of

curves Γ with 0 < Modp(Γ) < +∞ there exists a plan with q-barycenter πΓ so that

(Modp(Γ))
1
p =

πΓ(Γ)

‖Bar(πΓ)‖Lq(m)
.

The duality formula is first verified for compact families and then the identity for Souslin Γ follows

from the Choquet capacity property of the modulus [5]. However, Mod1 is not a Choquet capacity,

see [44]. Thus, in order take into account all p ∈ [1,∞), our argument is based on showing that on

compact sets Γ of positive and finite p-modulus the above duality holds true (see Proposition 3.20),

and then on arguing by contradiction and on finding such a compact family of curves inside the

family of our interest (see Lemma 3.21). In order to prove the existence of the mentioned compact

family, we rely on the notion of modified modulus (introduced in [61]), taking into account the

value of ρ at the curve’s endpoints when testing admissibility.

Section 4. In this section, we recall the concept of Lipschitz derivation, which comes in when

defining the p-Sobolev space via the W approach introduced by Di Marino in [18]. In that case, the

role of q-integrable vector fields with divergence is played by linear maps b : LIPbs(X) → Lq(m).

Such b are also required to satisfy a suitable locality property and Leibniz rule, and to admit a
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divergence div(b) ∈ Lq(m), i.e.

ˆ

b(f) dm = −
ˆ

f div(b) dm holds for all f Lipschitz with bounded support.

We denote by Derqq(X) the space of all q-integrable Lipschitz derivations with q-integrable diver-

gence as above. The notion itself is inspired by that of Weaver [69]; we study the relation between

the two in Section 4.3. Although the class Derqq(X) is sufficient in order to define the space

W 1,p(X), we consider also a more general class of derivations having measure-valued divergence

(cf. Definition 4.2). In the follow-up work [8], one of our aims is related to the dual energies of

such measures and to the associated notion of a p-Laplacian. Regarding the equivalence of Sobolev

spaces, the inclusion W 1,p(X) ⊆ B1,p(X) is based on the fact that every plan with q-barycenter

induces an element of Derqq(X) (see Proposition 4.10).

Section 5. This section is devoted to the presentation of the precise definitions of the Sobolev

spaces obtained via the four approaches H, W, B and N listed above, relying on the prepara-

tory material on Lipschitz functions, plans, derivations and modulus we obtained in the previous

sections.

Section 6. This section is focused on the properties of Newtonian Sobolev functions, which –

after proving the equivalence – will be transferred to p-Sobolev functions in the sense of any of

the other three approaches. We study in Section 6.1 the calculus rules for the elements of the

Newtonian Sobolev space N1,p(X), recall the notion of p-capacity and of the good representative

of Newtonian Sobolev functions, needed in order to have the energy density result proven in [26].

In order to be self contained, we provide in Section 6.3 a sketch of the proof of the latter result.

We also emphasize that in Section 6.1 we prove calculus rules not only for Newtonian Sobolev

functions, but for all measurable functions admitting weak upper gradients (in particular, for all

Dirichlet functions). The key idea lies in Lemma 6.3, showing that the Leibniz rule ‘along curves’

is satisfied by the mentioned functions. This result is based on the notion of integration along

paths we present in Section 2.4.2. Analyzing Dirichlet functions is motivated by constructions of

capacitary potentials; we refer e.g. to [47, 13, 12, 29] and references therein for related topics.

Section 7. This section contains the proof of our main result Theorem 7.1, namely of the

equivalence of the approaches H, W, B and N for all p ∈ [1,∞). Once the equivalence is proven,

we turn to gathering some of the important functional properties of p-Sobolev spaces, e.g. the

property of being Banach spaces, sufficient and necessary conditions for reflexivity, the dependence

on p of the minimal weak upper gradients, as well as some stability and localization results.

1.3 Contents of the follow-up work

All the different approaches to the definition of Sobolev functions shared a common aspect: any

Sobolev function is associated with a minimal object that plays the role of the ‘modulus of the

distributional differential’ of the given function. However, many of the standard functional-analytic

tools have been generalized to the metric measure space setting within the work of Gigli in [34],

giving the possibility to talk about the linear differential df of a Sobolev function f as an element

of the p-cotangent module – a generalization of the space of p-integrable sections of the cotangent

bundle. The q-tangent module, consisting of abstract q-integrable vector fields, is defined as the

module dual of the cotangent module. As such, it gives the possibility of talking about gradients
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of Sobolev functions. For instance, it is not difficult to see that the elements of Derqq(X) belong to

the q-tangent module. Our follow-up work [8] will consist of:

• exploring deeper the relations between the above-mentioned differential objects, and their

relations to currents (revisiting partially the work of Schioppa [62]);

• proving a representation of the dual energy functional defined on (boundedly-finite) signed

measures ν by

Fp(ν) := sup

{
ˆ

f dν
∣∣∣
ˆ

lippa(f) dm ≤ 1 for f Lipschitz with bounded support

}
,

in terms of the minimization of the Lq-norm of the derivations with div(b) = ν. When

Fp(ν) < +∞, we call ν a divergence measure. Dual energies have been studied in [10, 61] for

p ∈ (1,∞) in terms of the duality with plans with barycenters (to make a comparison, take

into account Lemma 4.10);

• studying the properties of divergence measures and in particular their relations to capacity

measures;

• considering more specific divergence measures, namely, being a p-Laplacian of some Dirichlet

function in a suitable sense;

• applying the above understandings to study the pre-dual of the Sobolev space in the case

p ∈ (1,∞) and obtain several characterizations of the reflexivity property.
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2 Preliminaries

Aim of this section is to fix the terminology and recall some key results concerning metric spaces,

measure theory, and functional analysis, which will be used throughout the whole paper.

2.1 General notation

Given any exponent p ∈ [1,∞], we will implicitly denote by q ∈ [1,∞] its conjugate exponent,

and vice versa. Namely, it will be always tacitly understood that 1
p + 1

q = 1.

Given a non-empty set X and a function f : X → R, we will denote by f+ : X → [0,∞) and

f− : X → [0,∞) the positive part and the negative part of f , respectively. Namely,

f+ := max{f, 0}, f− := max{−f, 0}. (2.1)
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Notice that f = f+ − f− and |f | = f+ + f−. The collection of all subsets of X will be denoted by

P(X). Given any subset E of X, we denote by 1E : X → {0, 1} its characteristic function, i.e.

1E(x) :=

{
1

0

if x ∈ E,

if x ∈ X \ E. (2.2)

We denote by Ln the Lebesgue measure on Rn (defined on the Borel σ-algebra of Rn), while L1

will denote the restriction of L1 to the Borel sets of the unit interval [0, 1] ⊆ R.

2.2 Metric geometry

In a metric space (X, d), we denote by Br(x) (resp. B̄r(x)) the open (resp. closed) ball of radius

r > 0 and center x ∈ X, i.e. Br(x) := {y ∈ X : d(x, y) < r} and B̄r(x) := {y ∈ X : d(x, y) ≤ r}.
The diameter of a non-empty set E ⊆ X is defined as diam(E) := sup

{
d(x, y)

∣∣ x, y ∈ E
}
.

Let (X, dX) and (Y, dY) be complete, separable metric spaces. We denote by C(X;Y) the set

of all continuous maps from X to Y. We denote by Cb(X;Y) the subset of C(X;Y) consisting of

all f : X → Y continuous and bounded, meaning that f(X) has finite diameter.

The set Cb(X;Y) becomes a complete metric space (which is also separable in the case where

X is compact) if endowed with the supremum distance dCb(X;Y), which is defined as

dCb(X;Y)(f, g) := sup
x∈X

dY
(
f(x), g(x)

)
, for every f, g ∈ Cb(X;Y). (2.3)

Notice that if X is compact, then Cb(X;Y) = C(X;Y). In the case where Y = R with the Euclidean

distance, we opt for the shorthand notation C(X) and Cb(X), instead of C(X;R) and Cb(X;R),

respectively. We denote by Cbs(X) the space of f ∈ C(X) with bounded support. The space of all

non-negative continuous functions will be denoted by C+(X). We remark that hereafter the same

subscripts will be used to denote the corresponding property of the elements in some subspace of

C(X).

A map f ∈ C(X;Y) is said to be Lipschitz (or L-Lipschitz) if there exists L ≥ 0 with

dY
(
f(x), f(y)

)
≤ L dX(x, y), for every x, y ∈ X.

We denote by LIP(X;Y) ⊆ C(X;Y) the set of all Lipschitz maps from X to Y. Given a map

f ∈ LIP(X;Y) and ∅ 6= E ⊆ X, we define the Lipschitz constant of f on E as

Lip(f ;E) := sup

{
dY(f(x), f(y))

dX(x, y)

∣∣∣∣ x, y ∈ E, x 6= y

}
. (2.4)

When E = X, we use the shorthand notation Lip(f) := Lip(f ; X). Notice that Lip(f) is the

minimal value L ≥ 0 for which f is L-Lipschitz. Given any function f ∈ LIP(X), we define the

slope lip(f) : X → [0,Lip(f)] and the asymptotic slope lipa(f) : X → [0,Lip(f)] of f as

lip(f)(x) := lim
y→x

|f(x)− f(y)|
dX(x, y)

, lipa(f)(x) := inf
r>0

Lip
(
f ;Br(x)

)
, (2.5)

if x ∈ X is an accumulation point, while lip(f)(x) = lipa(f)(x) := 0 if x ∈ X is an isolated point.

Notice that lip(f) ≤ lipa(f) and that the infimum in (2.5) can be replaced by limr→0. We will

use the notations LIPb(X), LIPbs(X) and LIP+(X) to denote the spaces of bounded, boundedly-

supported and non-negative elements of LIP(X), respectively.
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We now briefly recall the concept of Souslin sets. Firstly, for a Hausdorff topological space

(Y, τ) we say that it is a Polish space if there exists a distance dY on Y that induces the same

topology as τ and such that the metric space (Y, dY) is complete and separable. A subset S ⊆ Y

of a Hausdorff topological space (Y, τ) is said to be a Souslin set if it is the image of some Polish

space under a continuous map. The following property will be useful for our purposes: given two

complete and separable metric spaces (X, dX) and (Y, dY) and a Borel map f : X → Y, it holds

that f(S) ⊆ Y is a Souslin set whenever S ⊆ X is so.

2.3 Measure theory

By a measure space we mean a triple (X,Σ, µ), where (X,Σ) is a measurable space (i.e. X 6= ∅

is a set and Σ ⊆ P(X) is a σ-algebra on X), while µ : Σ → [0,∞] is a (countably-additive, non-

negative) measure on (X,Σ). We say that µ is concentrated on a set E ∈ Σ if µ(A) = 0 for

every A ∈ Σ such that A∩E = ∅, or equivalently if µ(A) = µ(A∩E) for every A ∈ Σ. Given any

set G ∈ Σ, we define the restriction µ|G : Σ → [0,∞] of µ to G as

µ|G(E) := µ(E ∩G) for every E ∈ Σ. (2.6)

Then µ|G is a non-negative measure on (X,Σ). Given a measure space (X,ΣX, µ), a measurable

space (Y,ΣY) and a measurable map ϕ : X → Y (i.e. ϕ−1(F ) ∈ ΣX for every F ∈ ΣY), we define

the pushforward ϕ#µ : ΣY → [0,∞] of µ as

(ϕ#µ)(F ) := µ
(
ϕ−1(F )

)
, for every F ∈ ΣY. (2.7)

Then ϕ#µ is a measure on (Y,ΣY) and (ϕ#µ)(Y) = µ(X). In particular, if µ is finite (i.e.

µ(X) < +∞), then ϕ#µ is finite as well. However, if µ is σ-finite (i.e. there exists a partition

(En)n∈N ⊆ Σ of X such that µ(En) < +∞ for every n ∈ N), then ϕ#µ is not necessarily σ-finite.

For an arbitrary collection {µi}i∈I of measures on (X,Σ), we define their supremum
∨

i∈I µi as

(∨

i∈I

µi

)
(E) := sup

∑

i∈C

µi(Ei) for every E ∈ Σ, (2.8)

where the supremum is over all countable subsets C ⊆ I and all partitions (Ei)i∈I ⊆ Σ of E.

Then
∨

i∈I µi : Σ → [0,∞] is a measure on (X,Σ). Moreover, it is the smallest measure on (X,Σ)

satisfying µi ≤ µ for every i ∈ I, in the sense that if ν is any measure on (X,Σ) such that µi ≤ ν

for every i ∈ I, then
∨

i∈I µi ≤ ν. Analogous definition can be given for the infimum of such a

family, denoted by
∧

i∈I µi.

Given a metric space (X, d), we denote by B(X) its Borel σ-algebra, i.e. the σ-algebra

generated by the topology of X. Moreover, we denote by M+(X) the set of all finite (non-negative)

Borel measures on X. The space of all probability measures on X, i.e. of all µ ∈ M+(X) such

that µ(X) = 1, will be denoted by P(X). A non-negative Borel measure µ on X is said to be

boundedly-finite if µ(B) < +∞ holds for every bounded set B ∈ B(X). Notice that each

boundedly-finite Borel measure is in particular σ-finite. In this work, we are mostly concerned

with boundedly-finite Borel measures on a complete and separable metric space:

Definition 2.1 (Metric measure space). A metric measure space is a triple (X, d,m), where

(X, d) is a complete and separable metric space,

m ≥ 0 is a boundedly-finite Borel measure on X.
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When m is finite, we refer to (X, d,m) as a finite metric measure space.

At times, we will rather consider measures defined on the completion of the Borel σ-algebra.

Given a metric measure space (X, d,m), we say that a set A ⊆ X is m-measurable if there exist

Borel sets E, F ∈ B(X) such that E ⊆ A ⊆ F and m(F \ E) = 0. The family of Bm(X) of all

m-measurable subsets of X is a σ-algebra, called the completion of the Borel σ-algebra B(X).

Recall that all Souslin sets are m-measurable. Moreover, m can be uniquely extended to a measure

m̄ : Bm(X) → [0,∞], which we call the completion of m.

2.3.1 Lebesgue spaces

Let (X,Σ) be a measurable space. Then we define L0
ext(X,Σ), L0(X,Σ), and L∞(X,Σ) as

L0
ext(X,Σ) :=

{
f : X → R ∪ {−∞,+∞}

∣∣ f is Σ-measurable
}
,

L0(X,Σ) :=
{
f : X → R

∣∣ f is Σ-measurable
}
,

L∞(X,Σ) :=
{
f ∈ L0(X,Σ)

∣∣ sup |f | < +∞
}
,

(2.9)

respectively. Notice that L0(X,Σ) and L∞(X,Σ) are vector spaces if endowed with the usual

pointwise operations. The positive cones of L0
ext(X,Σ), L0(X,Σ), and L∞(X,Σ) are defined as

L0
ext(X,Σ)

+ :=
{
f ∈ L0

ext(X,Σ)
∣∣ f(x) ≥ 0 for every x ∈ X

}
,

L0(X,Σ)+ :=
{
f ∈ L0(X,Σ)

∣∣ f(x) ≥ 0 for every x ∈ X
}
,

L∞(X,Σ)+ :=
{
f ∈ L∞(X,Σ)

∣∣ f(x) ≥ 0 for every x ∈ X
}
,

(2.10)

respectively. Moreover, given a σ-finite measure space (X,Σ, µ) and p ∈ [1,∞), we define

Lp
ext(X,Σ, µ) :=

{
f ∈ L0

ext(X,Σ)

∣∣∣∣
ˆ

|f |p dµ < +∞
}
,

Lp(X,Σ, µ) := Lp
ext(X,Σ, µ) ∩ L0(X,Σ).

(2.11)

The space Lp(X,Σ, µ) is a vector subspace of L0(X,Σ).

We say that two functions f, g ∈ L0
ext(X,Σ) agree µ-almost everywhere, or µ-a.e., if

µ({f 6= g}) = 0, where we set {f 6= g} :=
{
x ∈ X

∣∣ f(x) 6= g(x)
}
.

The µ-a.e. equality induces an equivalence relation on L0
ext(X,Σ): given any f, g ∈ L0

ext(X,Σ), we

declare that f ∼µ g if and only if f = g holds µ-a.e. on X. Then we consider the quotient space

L0(X,Σ, µ) := L0(X,Σ)/ ∼µ, (2.12)

which inherits a vector space structure. The canonical projection map πµ : L0(X,Σ) → L0(X,Σ, µ)

is a linear operator. For any p ∈ [1,∞), we define the p-Lebesgue space Lp(X,Σ, µ) as

Lp(X,Σ, µ) := πµ
(
Lp(X,Σ, µ)

)
. (2.13)

Notice that Lp(X,Σ, µ) is a vector subspace of L0(X,Σ, µ). Also, Lp(X,Σ, µ) is a Banach space if

endowed with

‖f‖Lp(X,Σ,µ) :=

(
ˆ

|f |p dµ
)1/p

for every f ∈ Lp(X,Σ, µ).
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Moreover, the ∞-Lebesgue space L∞(µ) is defined as

L∞(X,Σ, µ) := πµ
(
L∞(X,Σ)

)
, (2.14)

is a vector subspace of L0(X,Σ, µ), and is a Banach space if endowed with the norm

‖f‖L∞(X,Σ,µ) := ess sup
X

|f | := inf
{
λ ≥ 0

∣∣ |f | ≤ λ holds µ-a.e.
}

for every f ∈ L∞(X,Σ, µ).

It holds that Lp(X,Σ, µ) is separable if p ∈ [1,∞), reflexive if p ∈ (1,∞), and Hilbert if p = 2.

The symbols X and/or Σ may be dropped from the Lp or Lp notation when their role is

clear from the context. This will be the case when (X, d) is a metric space: it is understood

that Σ = B(X), unless otherwise stated (occasionally the m-completion Bm(X) and m-measurable

functions, i.e. the elements of L0(X,Bm(X)), will be needed). For brevity, we keep using the

notation Lp(a, b), Lp(a, b) when X = (a, b) is an interval of the real line and L is the Lebesgue

measure. Still for brevity, we will also use the following shorthand notation:

1

µ
E := πµ(1E) ∈ L∞(X,Σ, µ), for every E ∈ Σ. (2.15)

At times, for a given set E ⊆ X we will use the notation ∞ · 1E to denote the function

(∞ · 1E)(x) :=

{
+∞,

0,

if x ∈ E,

if x ∈ X \ E.

In particular, when the set E ∈ Σ, we have that ∞ · 1E ∈ L0
ext(X,Σ)

+.

Lemma 2.2. Let (X, d,m) be a metric measure space. Then the following properties hold:

i) Given any p ∈ [1,∞), the space LIPbs(X) is strongly dense in Lp(m).

ii) Given any f ∈ L∞(m), there exists a sequence (fn)n ⊆ LIPbs(X) with supn ‖fn‖Cb(X) < +∞
such that fn(x) → f(x) holds for m-a.e. x ∈ X and fn weakly∗ converges to f . In particular,

the space LIPbs(X) is sequentially weakly∗ dense in L∞(m).

Proof. We omit the proof of i), since it is a standard knowledge. Let us verify ii). Fix f ∈
L∞(m). Choose a point x̄ ∈ X. For every n ∈ N we have that 1m

Bn(x̄)
f ∈ L1(m), thus by i)

we can find a function f̃n ∈ LIPbs(X) such that ‖f̃n − 1

m

Bn(x̄)
f‖L1(m) ≤ 1

n2 . It follows that the

function fn := (f̃n ∧ supX f) ∨minX f ∈ LIPbs(X) satisfies ‖fn − 1

m

Bn(x̄)
f‖L1(m) ≤ 1

n2 . Therefore,

supn ‖fn‖Cb(X) ≤ ‖f‖L∞(m) and fn(x) → f(x) for m-a.e. x ∈ X because for any integer k the

series
∑

n ‖(fn − f)1m

Bk(x̄)
‖L1(m) is convergent. The weak∗ convergence fn ⇀ f follows thanks to

the dominated convergence theorem. Therefore, ii) is proved.

2.3.2 Finite signed measures

Let (X, d) be a complete and separable metric space. Then we denote by M(X) the vector space

of all finite signed Borel measures on X. The space M(X) is Banach if endowed with the

total variation norm ‖µ‖TV := |µ|(X), where the total variation measure |µ| ∈ M+(X) of a

given µ ∈ M(X) is defined as

|µ|(E) := sup
(En)n

∑

n∈N

∣∣µ(En)
∣∣, for every E ∈ B(X), (2.16)
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the supremum being taken over all countable partitions (En)n∈N ⊆ B(X) of the set E. However,

on M(X) we always consider the weaker (metrisable) topology induced by narrow convergence:

given (µn)n ⊆ M(X) and µ ∈ M(X), we declare that µn ⇀ µ in the narrow sense provided

ˆ

f dµn →
ˆ

f dµ, for every f ∈ Cb(X). (2.17)

Remark 2.3. Note that, in the case in which the space (X, d) is also locally compact, the narrow

convergence implies the weak* convergence on M(X), since the space (M(X), ‖ · ‖TV) is isometric

to the dual of the closure of Cc(X) in C(X), endowed with the sup norm. In this case, a direct

application of the Uniform Boundedness Principle gives that any sequence of measures (µn)n ⊆
M(X) narrowly converging to some µ ∈ M(X), is bounded with respect to the total variation

norm, i.e. it holds supn ‖µn‖TV <∞.

We also recall that each µ ∈ M(X) admits a Hahn decomposition (P,N), i.e. P,N ∈ B(X)

are disjoint sets with P ∪N = X such that

µ(E) ≥ 0, for every E ∈ Σ with E ⊆ P,

µ(E) ≤ 0, for every E ∈ Σ with E ⊆ N.

The Hahn decomposition (P,N) is essentially unique, in the following sense: if (P̃ , Ñ) is another

Hahn decomposition of µ, then (P∆P̃ ) ∪ (N∆Ñ) has null µ-measure. The Hahn decomposition

naturally induces a Jordan decomposition µ = µ+ − µ− (with µ+ and µ− called positive and

negative parts of µ, respectively) by

µ+(E) = µ(E ∩ P ), µ−(E) = −µ(E ∩N), for every E ∈ B(X). (2.18)

Notice that |µ| = µ+ + µ−. The Jordan decomposition can also be characterized as the unique

one with µ+, µ− ∈ M+(X) and µ+ singular with respect to µ−.

Remark 2.4. We claim that the map

M(X) ∋ µ 7→ |µ| ∈ M+(X), is Borel measurable. (2.19)

To this end, fix a sequence of functions (fn)n ⊆ Cb(X) with ‖fn‖Cb(X) ≤ 1 such that

‖µ‖TV = sup
n∈N

ˆ

fn dµ, for every µ ∈ M(X), (2.20)

whose existence is well-known, cf. [14]. Moreover, given any f ∈ Cb(X) with f ≥ 0, it holds

|fµ| = f |µ|. Therefore, for any µ ∈ M(X) and f ∈ Cb(X) we have

ˆ

f d|µ| =
ˆ

f+ d|µ| −
ˆ

f− d|µ| = (f+|µ|)(X) − (f−|µ|)(X)

= ‖f+µ‖TV − ‖f−µ‖TV
(2.20)
= sup

n∈N

ˆ

f+fn dµ− sup
n∈N

ˆ

f−fn dµ.
(2.21)

Given that M(X) ∋ µ 7→
´

f+fn dµ ∈ R and M(X) ∋ µ 7→
´

f−fn dµ ∈ R are continuous,

we deduce from (2.21) that M(X) ∋ µ 7→
´

f d|µ| is Borel measurable for every f ∈ Cb(X).

Consequently, the claim (2.19) is achieved. �
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2.3.3 Boundedly-finite signed measures

Given a set X, we say that a family R ⊆ P(X) is a δ-ring if it is closed under finite unions, under

countable intersections, and under relative complementation (i.e. E \F ∈ R whenever E,F ∈ R).

On a metric space (X, d), we consider the following δ-ring:

Bb(X) :=
{
B ∈ B(X)

∣∣ B is bounded
}
.

Definition 2.5 (Boundedly-finite signed measure). Let (X, d) be a complete and separable metric

space. Then by a boundedly-finite signed measure on X we mean a set-function µ : Bb(X) → R

having the following property: given any B ∈ Bb(X), the set-function µB : B(X) → R defined as

µB(E) := µ(B ∩E) for every E ∈ B(X)

is a finite signed Borel measure on X. We denote by M(X) the space of all boundedly-finite signed

measures on X. We also define M+(X) := {µ ∈ M(X) |µ ≥ 0}.

Remark 2.6. A set-function ν : R → R on a δ-ring R is said to be a measure if ν(∅) = 0 and

ν(E) =

∞∑

n=1

ν(En) whenever (En)n∈N ⊆ R are pairwise disjoint and E :=
⋃

n∈N

En ∈ R.

Definition 2.5 ensures that a boundedly-finite signed measure is a measure in this sense. �

Definition 2.7 (Jordan decomposition). Let (X, d) be a complete and separable metric space. Let

µ ∈ M(X) be given. Then we define the positive part and the negative part of µ as

µ+ :=
∨

B∈Bb(X)

µ+
B, µ− :=

∨

B∈Bb(X)

µ−
B,

respectively. Then µ+, µ− : B(X) → [0,∞] are (possibly infinite) non-negative Borel measures.

One can readily check that whenever (Bn)n∈N ⊆ Bb(X) is a partition of X, we have that

µ+ =
∑

n∈N

µ+
Bn
, µ− =

∑

n∈N

µ−
Bn
.

Furthermore, we are entitled to write µ = µ+ − µ−, since it holds that

µ(B) = µ+(B)− µ−(B) for every B ∈ Bb(X).

However, note that the quantity µ+(E)−µ−(E) might be undefined for an arbitrary (non-bounded)

Borel set E ⊆ X, since it can happen that both µ+(E) and µ−(E) are equal to +∞.

The total variation measure of a given µ ∈ M(X) is then defined as

|µ| := µ+ + µ−. (2.22)
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2.4 Curves in metric spaces

Let us fix a complete and separable metric space (X, d). Given a, b ∈ R with a < b, any continuous

map γ : [a, b] → X is said to be a curve. The family of all curves in X is denoted by

C (X) :=
⋃

a,b∈R:
a<b

C([a, b]; X). (2.23)

Given any curve γ ∈ C (X), we denote by Iγ = [aγ , bγ ] ⊆ R its compact interval of definition. We

say that γ is constant provided its image γ(Iγ) ⊆ X is a singleton, non-constant otherwise. The

image γ(Iγ) is denoted by im(γ). By a subcurve of the curve γ we mean the restriction of γ to

a closed subinterval.

Given a non-trivial, compact interval I ⊆ R, we denote by e : C(I; X)× I → X the evaluation

map, which is defined as

e(γ, t) := γt for every γ ∈ C(I; X) and t ∈ I. (2.24)

Moreover, for any t ∈ I we denote by et : C(I; X) → X the evaluation map at time t, namely

et(γ) := e(γ, t) = γt, for every γ ∈ C(I; X). (2.25)

Notice that e and et are continuous.

Recall that a partition P of an interval [a, b] is a nondecreasing family of elements {ti}ni=0

satisfying t0 = a and tn = b. The mesh of P is the largest diameter among the intervals [ti−1, ti].

Given any function γ : [a, b] → X and partition P = {ti}ni=0 of [a, b], the variation of γ relative

to P is the number

V (γ;P ) :=

n∑

i=1

d(γti , γti−1). (2.26)

The length of γ is the number

ℓ(γ) := sup
P
V (γ;P ). (2.27)

We say that γ is rectifiable if γ is continuous and the length in (2.27) is finite. Observe that

γ 7→ V (γ;P ) in (2.26) is continuous on C([a, b]; X) for any partition P . Therefore (2.27) implies

that γ 7→ ℓ(γ) is lower semicontinuous on C([a, b]; X). We denote by R([a, b]; X) the collection of

rectifiable elements in C([a, b]; X). When X = R, we omit X from the notation. Notice that

R([a, b]; X) is a Borel subset of C([a, b]; X).

Indeed, we have R([a, b]; X) =
⋃

n∈N{γ ∈ C([a, b]; X) | ℓ(γ) ≤ n}, which shows that R([a, b]; X) is a

countable union of closed sets (thanks to the lower semicontinuity of ℓ). Moreover, we set

R(X) :=
⋃

a,b∈R:
a<b

R([a, b]; X). (2.28)

We next define the map ms : C([0, 1]; X)× (0, 1) → [0,∞] as

ms(γ, t) :=

{
lim
h→0

d(γt+h,γt)
|h| ,

+∞
if such limit exists,

otherwise.
(2.29)
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Further, for a given s, t ∈ [0, 1] with s < t, we define

Restrts(γ)r := γ(1−r)s+rt, for every γ ∈ C([0, 1]; X) and r ∈ [0, 1]. (2.30)

Notice that the resulting mapping Restrts : C([0, 1]; X) → C([0, 1]; X) is 1-Lipschitz, thus Borel.

Definition 2.8 (Absolutely continuous curve). Let (X, d) be a complete, separable metric space.

Let q ∈ [1,∞] be a given exponent. Then we say that a curve γ ∈ C([0, 1]; X) is q-absolutely

continuous if there exists a non-negative function g ∈ Lq(0, 1) such that

d(γs, γt) ≤
ˆ t

s

g(r) dr, for every s, t ∈ [0, 1] with s < t. (2.31)

We denote by ACq([0, 1]; X) the space of all q-absolutely continuous curves in X.

Lemma 2.9. Let (X, d) be a complete, separable metric space. Let q ∈ [1,∞] and γ ∈ C([0, 1]; X)

be given. Then, if γ ∈ ACq([0, 1]; X) the following three conditions hold:

i) The metric speed of γ at t, which is given by

|γ̇t| := lim
h→0

d(γt+h, γt)

|h| , (2.32)

exists and is finite for L1-a.e. t ∈ (0, 1).

ii) The resulting L1-a.e. defined function |γ̇| : (0, 1) → [0,∞) belongs to Lq(0, 1).

iii) It holds that

d(γs, γt) ≤
ˆ t

s

|γ̇r| dr, for every s, t ∈ [0, 1] with s < t.

Moreover, |γ̇| is the L1-a.e. minimal function g ∈ Lq(0, 1) verifying (2.31).

Notice that if γ ∈ ACq([0, 1]; X) for some q ∈ [1,∞], then for the function ms defined in (2.29)

it holds that ms(γ, t) = |γ̇t| for L1-a.e. t ∈ (0, 1). Also, ms is a Borel function.

Proposition 2.10. Let (X, d) be a complete, separable metric space. Let q ∈ [1,∞] be given.

Then

ACq([0, 1]; X) is a Borel subset of C([0, 1]; X).

Proof. Suppose q <∞. Given any γ ∈ C([0, 1]; X) and s, t ∈ [0, 1] with s < t, we define

Φq(γ; s, t) :=

ˆ t

s

lim
h→0

d(γr+h, γr)
q

|h|q dr.

Moreover, for any n ∈ N we also define

Φq,n(γ; s, t) :=

ˆ t

s

lim
h→0

d(γr+h, γr)
q

|h|q ∧ n dr.

An application of the monotone convergence theorem ensures that

Φq,n(γ; s, t) → Φq(γ; s, t), as n→ ∞. (2.33)
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By Definition 2.8 and Lemma 2.9, the space ACq([0, 1]; X) can be equivalently characterised as

follows:

ACq([0, 1]; X) =

{
γ ∈ C([0, 1]; X)

∣∣∣∣ Φq(γ; 0, 1) < +∞
}
∩

⋂

s,t∈Q:
0≤s<t≤1

A (γ; s, t),

where we define A (γ; s, t) :=
{
γ ∈ C([0, 1]; X) : d(γs, γt) ≤ Φ1(γ; s, t)

}
. Therefore, to prove

that ACq([0, 1]; X) is a Borel set amounts to showing that C([0, 1]; X) ∋ γ 7→ Φq(γ; s, t) are Borel

measurable functions for every s, t ∈ [0, 1] with s < t. Bearing (2.33) in mind, it is sufficient to

check that C([0, 1]; X) ∋ γ 7→ Φn,q(γ; s, t) are Borel measurable for every n ∈ N. For any k ∈ N,

fix an enumeration (hki )i∈N of
(
− 1

k ,
1
k

)
∩ (Q \ {0}). The dominated convergence theorem yields

Φn,q(γ; s, t) = lim
k→∞

lim
j→i

ˆ t

s

sup
i∈N:
i≤j

d(γr+hk
i
, γr)

q

|hki |q
∧ n dr.

Since each function C([0, 1]; X) ∋ γ 7→
´ t

s supi≤j

(
d(γr+hk

i
, γr)

q/|hki |q
)
∧ n dr is continuous, we

conclude that C([0, 1]; X) ∋ γ 7→ Φn,q(γ; s, t) is Borel measurable, so that ACq([0, 1]; X) is Borel.

In the case where q = ∞, just observe that AC∞([0, 1]; X) = LIP([0, 1]; X) can be written as

LIP([0, 1]; X) =
⋃

n∈N

⋂

s,t∈Q:
0≤s<t≤1

{
γ ∈ C([0, 1]; X)

∣∣∣ d(γs, γt) ≤ n|s− t|
}
,

whence it follows that LIP([0, 1]; X) is a Borel subset of C([0, 1]; X).

Definition 2.11 (q-energy of a curve). Let (X, d) be a complete and separable metric space. Given

any γ ∈ C([0, 1]; X) we define for every q ∈ [1,∞) the q-energy of γ as

Eq(γ) :=

ˆ 1

0

|γ̇t|q dt for γ ∈ ACq([0, 1]; X), and Eq(γ) = +∞ otherwise, (2.34)

and for q = ∞ we set

E∞(γ) := esssup
t∈[0,1]

|γ̇t| = Lip(γ) for γ ∈ LIP([0, 1]; X), and E∞(γ) = +∞ otherwise. (2.35)

Notice that the energy functionals Eq are Borel measurable, due to the Borel measurability

of the map ms and Fubini’s theorem in the case q ∈ [1,∞), or to the definition of the essential

supremum in the case q = ∞. Moreover, it is not difficult to see that for q ∈ (1,∞) the energies

Eq are lower semicontinuous in the topology of uniform convergence on C([0, 1]; X). In fact, one

can show that for every γ ∈ ACq([0, 1]; X) it holds that

ˆ 1

0

|γ̇t|q dt = sup
∑

i

d(γ(ti), γ(ti+1))
q

|ti+1 − ti|q−1
,

the supremum being taken over all finite partitions of the unit interval. Then the claimed lower

semicontinuity follows. In the case q = ∞, the lower semicontinuity of the functional E∞ follows

from the the fact that the sublevel sets {γ ∈ LIP([0, 1]; X)|E∞(γ) ≤ k}, for k ∈ R, are closed with

respect to the uniform convergence.

We recall here an elementary lemma proven in [6, Lemma 2.1].
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Lemma 2.12. Let f : (0, 1) → R be a Borel function and assume that there exists a non-negative

function g ∈ L1(0, 1) such that

|f(t)− f(s)| ≤
∣∣∣∣
ˆ t

s

g(r) dr

∣∣∣∣ holds for L2-a.e. (s, t) ∈ (0, 1)2.

Then there exists an absolutely continuous representative f̂ : [0, 1] → R of f such that

|f̂ ′
t | ≤ g(t) holds for L1-a.e. t ∈ (0, 1).

2.4.1 Constant-speed reparametrization

Definition 2.13 (Reparametrization of curves). Let (X, d) be a complete and separable metric

space. Given γ ∈ R([a, b]; X), we say that γrp ∈ R([c, d]; X) is a reparametrization of γ if there

exists a non-decreasing, continuous and surjective function R : [a, b] → [c, d] such that

γ = γrp ◦ R.

Consider a curve γ ∈ R([a, b]; X). We say that it has constant speed L ≥ 0 if

ℓ(γ|[s,t]) = L (t− s), for all a ≤ s < t ≤ b.

Let us define the function Sγ : [0, 1] → [a, b] by

Sγ(t) := sup
{
s ∈ [a, b] | ℓ(γ|[a,s]) ≤ t ℓ(γ)

}
, for all t ∈ [0, 1], (2.36)

and the function Rγ : [a, b] → [0, 1] by

Rγ(s) =





ℓ(γ|[a,s])
ℓ(γ)

, for every s ∈ [a, b], if ℓ(γ) > 0,

0, if ℓ(γ) = 0.

(2.37)

Observe that Rγ is continuous, non-decreasing and surjective and that

Rγ ◦ Sγ = id[0,1] whenever ℓ(γ) > 0. (2.38)

Lemma 2.14 (Constant-speed reparametrization). Let (X, d) be a complete and separable metric

space. Given γ ∈ R([a, b]; X), define

γcs := γ ◦ Sγ ∈ R([0, 1]; X). (2.39)

Then γcs has constant speed equal to ℓ(γ) and it holds that γ = γcs ◦ Rγ .

Proof. In the case ℓ(γ) = 0, we have that γ(t) = γ(b) for all t ∈ [a, b] and γcs(s) = γ(b) for all

s ∈ [0, 1] and thus γ = γcs ◦ Rγ trivially holds. Let us now consider the case ℓ(γ) > 0. Since

Rγ is continuous, non-decreasing and surjective there exists a unique σ ∈ R([0, 1]; X) such that

γ = σ ◦Rγ . Indeed, it is easy to check that σ(s) := γ(t) for every s = Rγ(t) ∈ [0, 1] does the job.

Taking into account (2.38), it follows from the very definition of γcs that γcs = σ. To see

that γcs has constant speed ℓ(γ), we argue as follows: fix any 0 ≤ s < t ≤ 1 and a partition

Q = (ti)
n
i=0 of the interval [Sγ(s), Sγ(t)]. Then P := (si)

n
i=0 with si := Rγ(ti) is a partition of [a, b]
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such that V (γ;Q) = V (γcs;P ). Consequently, we have that ℓ(γcs|[s,t]) = ℓ(γ|[Sγ(s),Sγ(t)]). Taking

into account that (cf. (2.38))

ℓ(γ|[Sγ(s),Sγ (t)]) = ℓ(γ)
(
Rγ(Sγ(t))− Rγ(Sγ(s))

)
= ℓ(γ)(t− s),

the claim follows.

We refer to γcs defined in (2.39) as the constant-speed reparametrization of γ. We shall

sometimes use the notation γ̂ instead of γcs. We shall denote by Rcs([0, 1]; X) (resp. ACq
cs([0, 1]; X)

for q ∈ [1,∞]) the set of curves in R([0, 1]; X) (resp. ACq([0, 1]; X) for q ∈ [1,∞]) having constant

speed. We also define the constant-speed-reparametrization map CSRep : R(I; X) → Rcs([0, 1]; X)

as

CSRep(γ) := γcs, for every γ ∈ R(I; X). (2.40)

The following measurability result will be needed in the sequel (for a similar result see also [61,

Theorem 2.2.13]).

Lemma 2.15. Let (X, d) be a complete and separable metric space. Let I ⊆ R be a non-trivial,

compact interval. We define the distance d̂ on R(I; X) as

d̂(γ, σ) := max
{
dC(I;X)(γ, σ), |ℓ(γ)− ℓ(σ)|

}
, for every γ, σ ∈ R(I; X).

Then the constant-speed reparametrization map CSRep : (R(I; X), d̂) → (Rcs([0, 1]; X), dC([0,1];X))

is continuous. In particular, CSRep : (R(I; X), dC(I;X)) → (Rcs([0, 1]; X), dC([0,1];X)) is Borel.

Proof. Let (γn)n ⊆ R(I; X) and γ ∈ R(I; X) satisfy d̂(γn, γ) → 0 as n → ∞. For brevity, we

denote γ̂n := CSRep(γn) for every n ∈ N.

Since γn → γ uniformly, there exists a compact set K ⊆ X such that γnt ∈ K for every

n ∈ N and t ∈ I. In particular, γ̂nt ∈ K for every n ∈ N and t ∈ [0, 1]. Moreover, since

Lip(γ̂n) ≤ ℓ(γ̂n) = ℓ(γn) for every n ∈ N and ℓ(γn) → ℓ(γ) as n→ ∞, we deduce that (γ̂n)n is an

equiLipschitz family of curves. Hence, an application of the Arzelá–Ascoli theorem ensures that

any subsequence of (γ̂n)n admits a further subsequence such that γ̂n → σ converging uniformly to

some limit curve σ : [0, 1] → X. We will show that σ ≡ γ̂. This will then imply that the original

sequence γ̂n itself converges to γ̂ uniformly, by uniqueness of the limit, thereby establishing the

desired continuity property.

To ease notation, we relabel the subsequence and assume that γ̂n converge to σ uniformly as

n→ ∞.

To this aim, fix a countable dense subset D of I = [a, b]. Up to passing to a further subsequence

and relabeling, we may assume that both limn ℓ(γ
n|[a,t]) = limn ℓ(γ

n|[a,t]) and limn ℓ(γ
n|[t,b]) =

limn ℓ(γ
n|[t,b]) for every t ∈ D. The lower semicontinuity of ℓ ensures that

ℓ(γ) = ℓ(γ|[a,t]) + ℓ(γ|[t,b]) ≤ lim
n→∞

ℓ(γn|[a,t]) + lim
n→∞

ℓ(γn|[t,b]) = lim
n→∞

ℓ(γn) = ℓ(γ)

for every t ∈ D, which yields the identities ℓ(γ|[a,t]) = limn ℓ(γ
n|[a,t]) and ℓ(γ|[t,b]) = limn ℓ(γ

n|[t,b]).
Letting hn(t) :=

ℓ(γn|[a,t])

ℓ(γn) and h(t) :=
ℓ(γ|[a,t])

ℓ(γ) for all n ∈ N and t ∈ I, we have verified that

hn(t) → h(t) for every t ∈ D. Recalling that γ̂nhn(t)
= γnt for every t ∈ I and that γ̂n → σ

uniformly, we deduce

σh(t) = lim
n→∞

γ̂nhn(t)
= lim

n→∞
γnt = γt, for every t ∈ D.
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By continuity, we conclude that σh(t) = γt for every t ∈ I and thus σ = γ̂, as required.

Let us now pass to the verification of the last part of the statement. We endow the product

space R(I; X)× R with the distance D, defined as

D
(
(γ, λ), (γ̃, λ̃)

)
:= max

{
dC(I;X)(γ, γ̃), |λ− λ̃|

}
, for every (γ, λ), (γ̃, λ̃) ∈ R(I; X)× R.

Notice that the map ι : R(I; X) → R(I; X)×R given by ι(γ) := (γ, ℓ(γ)) is Borel measurable if its

domain R(I; X) is endowed with the distance dC(I;X). Moreover, if R(I; X) is endowed with the

distance d̂, then ι (which we denote by ι̂ in this case) is an isometric embedding. We also denote

by ˆCSRep the constant-speed reparametrization map when its domain is endowed with d̂. The first

part of the statement says that ˆCSRep is continuous. Therefore, we can finally conclude that the

map CSRep : (R(I; X), dC(I;X)) → (Rcs([0, 1]; X), dC([0,1];X)), which can be written as ˆCSRep◦ ι̂−1◦ι,
is Borel measurable. The proof of the statement is achieved.

2.4.2 Path integral

We start by making some considerations about continuous real valued curves with finite length.

Recalling that our curves are defined on compact intervals of the real line, let θ ∈ R(R) be a

rectifiable curve θ : Iθ → R. Given any ε > 0 and any continuous function a : Iθ → R, we define

the set Dε(a, θ) ⊆ R as

Dε(a, θ) :=

{ n∑

i=1

a(ti)
(
θ(ti)− θ(ti−1)

) ∣∣∣∣ P = (ti)
n
i=0 is a partition of Iθ with |P | ≤ ε

}
.

Notice that each Dε(a, θ) is a non-empty set and Dε′(a, θ) ⊆ Dε(a, θ) holds for every ε, ε′ > 0

with ε′ < ε. Moreover, denoting by δa(·) the modulus of continuity of the function a, namely

δa(ε) := sup
{
|a(t)− a(s)|

∣∣ t, s ∈ Iθ, |t− s| ≤ ε
}
, for every ε > 0,

one can easily obtain the following estimate:

diam
(
Dε(a, θ)

)
≤ δa(ε)ℓ(θ), for every ε > 0. (2.41)

Since Iθ is compact and thus a is uniformly continuous, we deduce that δa(ε) → 0 as ε → 0, so

that accordingly the diameter of Dε(a, θ) converges to 0 as ε→ 0. All in all, we have shown that

the intersection
⋂

ε>0 clR
(
Dε(a, θ)

)
consists of a unique element, which we denote by φθ(a). The

number φθ(a) ∈ R is called the Riemann–Stieltjes integral of a over θ (cf. [30, 2.5.17]). The

resulting function φθ : C(Iθ) → R is linear and |φθ(a)| ≤ ℓ(θ)‖a‖C(Iθ) for every a ∈ C(Iθ).

Definition 2.16 (Measures induced by rectifiable curves in R). Let θ ∈ R(R) be given. Then we

denote by µθ ∈ M(Iθ) the unique signed Borel measure on Iθ such that

ˆ

Iθ

a dµθ = φθ(a), for every a ∈ C(Iθ).

We call µθ the signed variation of θ, characterized by the property µθ([a, b]) = θ(b) − θ(a)

whenever [a, b] ⊂ Iθ.

When θ is absolutely continuous, then µθ = θ′L1, where θ′ is the classical derivative of θ. This

follows from the fundamental theorem of calculus.
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Lemma 2.17. Consider RL :=
{
θ ∈ C([0, 1])

∣∣ ℓ(θ) ≤ L
}

for every L > 0. Then the map

RL ∋ θ 7→ µθ ∈ M([0, 1])

is continuous, where the domain RL is endowed with the supremum distance dC([0,1]) defined in

(2.3), while the codomain M([0, 1]) is endowed with the narrow topology (2.17).

Proof. Let (θk)k ⊆ RL and θ ∈ RL satisfy limk dC([0,1])(θk, θ) = 0. Fix any a ∈ C([0, 1]). We

want to show that
´

a dµθk →
´

a dµθ as k → ∞. To this aim, fix any ε > 0 and pick ε′ > 0 such

that 2ε′ + δa(ε
′)L < ε. Then there exist δ ∈ (0, ε′) and a partition P = (ti)

n
i=0 of [0, 1] such that

|P | ≤ δ and
∣∣φa(θ)−

∑n
i=1 a(ti)

(
θ(ti)− θ(ti−1)

)∣∣ < ε′. Now pick k0 ∈ N such that

dC([0,1])(θk, θ) ≤
ε′

2(1 + max[0,1] |a|)n
, for every k ≥ k0.

Therefore, for any k ≥ k0 we can estimate

∣∣∣∣
n∑

i=1

a(ti)
(
θ(ti)− θ(ti−1)

)
−

n∑

i=1

a(ti)
(
θk(ti)− θk(ti−1)

)∣∣∣∣ ≤ 2n dC([0,1])(θk, θ)max
[0,1]

|a| ≤ ε′,

whence it follows that φa(θ) belongs to the 2ε′-neighbourhood of Dε′(a, θk) for every k ≥ k0.

Given that diam
(
Dε′(a, θk)

)
≤ δa(ε

′)L holds for every k ≥ k0 by (2.41), we can finally deduce

that supk≥k0

∣∣φa(θ) − φa(θk)
∣∣ ≤ ε. This proves that RL ∋ θ 7→ µθ ∈ M([0, 1]) is continuous.

Corollary 2.18. Let (X, d,m) be a metric measure space. Let f ∈ LIPbs(X) and g ∈ LIPb(X) be

given. Denote R̄L :=
{
γ ∈ C([0, 1]; X)

∣∣ ℓ(γ) ≤ L
}
⊆ R([0, 1]; X) for every L > 0. Then

R̄L ∋ γ 7→
ˆ

g ◦ γ dµf◦γ ∈ R is continuous.

In particular, the function R([0, 1]; X) ∋ γ 7→
´

g ◦ γ dµf◦γ ∈ R is Borel.

Proof. The map C([0, 1]; X) ∋ γ 7→ f ◦ γ ∈ C([0, 1]) is Lip(f)-Lipschitz and f ◦ γ ∈ RLip(f)L for

every γ ∈ R̄L (where RLip(f)L is defined as in Lemma 2.17), thus R̄L ∋ γ 7→ µf◦γ ∈ M([0, 1]) is

continuous by Lemma 2.17. Now let R̄L ∋ γn → γ ∈ R̄L be fixed. Since µf◦γn ⇀ µf◦γ in the

narrow sense, we have that M := supn |µf◦γn |([0, 1]) < +∞ (cf. Remark 2.3). Therefore,

∣∣∣∣
ˆ

g ◦ γn dµf◦γn −
ˆ

g ◦ γ dµf◦γ

∣∣∣∣

≤
ˆ

|g ◦ γn − g ◦ γ| d|µf◦γn |+
∣∣∣∣
ˆ

g ◦ γ dµf◦γn −
ˆ

g ◦ γ dµf◦γ

∣∣∣∣

≤MLip(g)dC([0,1];X)(γn, γ) +

∣∣∣∣
ˆ

g ◦ γ dµf◦γn −
ˆ

g ◦ γ dµf◦γ

∣∣∣∣ −→ 0

as n → ∞, which proves that the map R̄L ∋ γ 7→
´

g ◦ γ dµf◦γ ∈ R is continuous. Finally, given

that R([0, 1]; X) =
⋃

k∈N R̄k and each set R̄L is closed (and thus Borel) by the lower semicontinuity

of ℓ, we conclude that R([0, 1]; X) ∋ γ 7→
´

g ◦ γ dµf◦γ ∈ R is a Borel function.

Definition 2.19 (Measures induced by rectifiable curves in a metric space and path integrals).

Let (X, d) be a complete and separable metric space. Let γ ∈ C (X) be given with ℓ(γ) < +∞. The

total variation measure sγ of γ is the measure µθ induced by θ(t) := ℓ(γ|[aγ ,t]), t ∈ [aγ , bγ ].
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For every ρ ∈ L0
ext(X,B(X))+, the path integral of ρ over γ as

ˆ

γ

ρ ds :=

ˆ

Iγ

(ρ ◦ γ) dsγ . (2.42)

If ℓ(γ) = +∞, by convention,
´

γ
ρ ds = +∞ holds for every ρ ∈ L0

ext(X,B(X))+.

For rectifiable γ, the same measure sγ is obtained if the usual Carathéodory’s construction is

applied to the premeasure ψ([s, t]) := ℓ(γ|[s,t]) for intervals [s, t] ⊆ [aγ , bγ ], cf. [30, Section 2.10].

Moreover, if γ ∈ R(X) and f ∈ LIP(X) are given, then it holds that f ◦ γ ∈ R(R) and

sf◦γ ≤ (lip(f) ◦ γ)sγ . (2.43)

In the next lemma (see for instance [42, Proposition 4.4.25]) we collect a useful characterization

of the above defined integral in the special case of absolutely continuous curves.

Lemma 2.20 (Path integral over an absolutely continuous curve). Let (X, d) be a complete and

separable metric space and let γ ∈ ACq([0, 1]; X), for some q ∈ [1,∞]. Then for every Borel

function ρ : X → [0,∞], it holds that

ˆ

γ

ρ ds =

ˆ 1

0

ρ(γt)|γ̇t| dt.

In particular,

sγ = |γ̇t|L1. (2.44)

Remark 2.21. We observe the following properties for a rectifiable θ : [a, b] → R; we apply them

later.

1) As an immediate consequence of the definitions, we have that

|µθ| ≤ sθ ∀ θ ∈ R(R). (2.45)

In fact, |µθ| ≡ sθ.

2) From the area formula for paths [30, Theorem 2.10.13], we have that sθ(θ
−1(N)) = 0,

whenever N ⊆ R is L1-negligible.

3) If θ is also absolutely continuous and θ(t) = 0 for all t ∈ E, for some Borel set E ⊆ [a, b],

then sθ(E) = 0.

4) The map R([a, b]) ∋ θ 7→ µθ ∈ M([a, b]) is linear. Indeed, if θ1, θ2 ∈ R([a, b]) and λ ∈ R are

given, then it can be readily checked that Dε(c, λθ1 + θ2) ⊆ λDε(c, θ1) +Dε(a, θ2) for every

c ∈ C([a, b]) and ε > 0, so that by taking the intersection over all ε > 0 we obtain that

ˆ

c dµλθ1+θ2 = φλθ1+θ2(c) = λφθ1(c) + φθ2(c) = λ

ˆ

c dµθ1 +

ˆ

c dµθ2 .

By the arbitrariness of c ∈ C([a, b]), it follows that µλθ1+θ2 = λµθ1 + µθ2 , as claimed.

5) If θ1, θ2 ∈ R([a, b]), then θ1θ2 ∈ R([a, b]) and

µθ1θ2 = θ1µθ2 + θ2µθ1 . (2.46)
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Indeed, for any δ > 0 we can take ε(δ) ∈ (0, δ) so small that |θ1(t) − θ1(s)| ≤ δ whenever

t, s ∈ [a, b] and |t− s| ≤ ε(δ), whence it readily follows that for any c ∈ C([a, b]) it holds that

Dε(δ)(c, θ1θ2) ⊆ Dε(δ)(θ1c, θ2) +Dε(δ)(θ2c, θ1) + [−λ(δ), λ(δ)],

where λ(δ) := ‖c‖C([a,b])ℓ(θ2)δ. Letting δ → 0 we get
´

c dµθ1θ2 =
´

θ1c dµθ2 +
´

θ2c dµθ1 ,

whence (2.46) follows, given the arbitrariness of c ∈ C([a, b]).

For the convenience of the reader, we recall the following result and its proof. The proof can

be also found for instance in [46, Lemma 2.2] or [61, Lemma 2.2.11].

Lemma 2.22 (Lower semicontinuity of the integral with respect to curves). Let (X, d) be a

complete and separable metric space. Given any lower semicontinuous function ρ : X → [0,∞],

the function R(X) ∋ γ 7→
´

γ
ρ ds ∈ [0,∞] is lower semicontinuous.

Proof. Since ρ is lower semicontinuous, we find an increasing sequence of continuous bounded

functions (ρi)i∈N such that ρ = supi∈N ρi. Consequently, by Monotone Convergence Theorem,

we have that
´

γ
ρ ds = limi→∞

´

γ
ρi ds, and therefore it is enough to prove that

´

γ
ρi ds is lower

semicontinuous, for every i ∈ N. So, fix i ∈ N. As ρi is continuous, we have that

ˆ

γ

ρi ds = sup





n∑

j=1

min
t∈[tj−1,tj ]

ρi(γt) ℓ(γ|[γtj−1
,γtj

])
∣∣P = (tj)

n
j=0 is a partition of Iγ



 ,

This yields the claimed lower semicontinuity, given that the right hand side in the formula above

is the supremum of continuous functions and thus lower semicontinuous.

Corollary 2.23. Let (X, d) be a complete and separable metric space. The map

R(X) ∋ γ 7→
ˆ

γ

f ds ∈ R

is Borel whenever f : X → R is bounded and Borel. Moreover, whenever f : X → [0,∞] is Borel,

C (X) ∋ γ 7→
ˆ

γ

f ds ∈ [0,∞]

is Borel.

Proof. By a standard reduction argument it suffices to prove that γ 7→
´

γ
χB ds is Borel for any

Borel set B. The class L of Borel sets having this property is stable under complement, under

monotone countable unions and contains all open sets U (as a consequence of Lemma 2.22 and

the fact that χU is lower semicontinuous whenever U is open). Since B1, B2, B1 ∪ B2 ∈ L imply

B1 ∩B2 ∈ L we can apply the monotone class theorem [17, Chapter 1, Theorem 21] to conclude

that L = B(X).

Whenever f : X → [0,∞] is Borel, so is fn = min {n, f} for each n ∈ N. Now if γ ∈ C (X)\R(X),

then according to our convention one has
´

γ
f ds = +∞ = limn→∞

´

γ
fn ds. Otherwise γ ∈ R(X),

so monotone convergence yields
´

γ f ds = limn→∞

´

γ fn ds. Either case, the map C (X) ∋ γ 7→
´

γ
f ds ∈ [0,∞] is a pointwise limit of Borel functions by the Borel measurability of R(X) ⊆ C (X)

and the first half of the claim.
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Corollary 2.24. Let (X, d) be a complete and separable metric space. Fix any lower semicontin-

uous function ρ : X → [0,∞]. Then the function M+(C([0, 1]; X)) ∋ π 7→
´ ´

γ ρ ds dπ ∈ [0,∞] is

lower semicontinuous with respect to the narrow topology on measures.

Proof. Let us denote for brevity F (γ) :=
´

γ
ρ ds and consider an increasing sequence of bounded

continuous functions (Fi)i∈N such that F = supi∈N Fi. Fix also a sequence of measures (πn)n ⊆
M+(C([0, 1]; X)) converging in the narrow topology to some π ∈ M+(C([0, 1]; X)). By applying

Lemma 2.22, we deduce

lim
n

ˆ

F (γ) dπn(γ) ≥ lim
n

ˆ

Fi(γ) dπn(γ) =

ˆ

Fi(γ) dπ(γ) for every i ∈ N.

Passing to the supremum over i ∈ N, we deduce the claimed lower semicontinuity of the map

M+(C([0, 1]; X)) ∋ π 7→
´ ´

γ ρ ds dπ ∈ [0,∞].

Lemma 2.25 (Invariance of the path integral under reparameterization). Let (X, d) be a complete

and separable metric space. Let γ ∈ R(Iγ ; X) be given. Then γ#sγ = γrp#sγrp, where γrp ∈ R(Iγrp ; X)

is any reparametrization of γ (cf. Definition 2.13).

In particular, for every Borel function ρ : X → [0,∞], it holds that

ˆ

γ

ρ ds =

ˆ

γrp

ρ ds.

Proof. Let us recall that γ = γrp ◦ R, where R : Iγ → Iγrp is non-decreasing, continuous and

surjective. First, we observe that

sγ([a, b]) = ℓ
(
γrp ◦ R|[a,b]

)
= ℓ

(
γ|[R(a),R(b)]

)
= sγrp([R(a),R(b)]), for every [a, b] ⊆ Iγ .

Since γ#sγ = (γrp ◦ R)#sγ = γrp#(R#sγ), in order to conclude the proof, we need to show that

R#sγ = sγrp . Pick any interval [c, d] ⊆ Iγrp and call cmin := minR−1(c) and dmin := minR−1(d).

Note that R−1([c, d]) = [cmin, dmin]. Consequently, we have that

R#sγ([c, d]) = sγ(R
−1([c, d])) = sγ([cmin, dmin]) = sγrp([R(cmin),R(dmin)]) = sγrp([c, d]),

proving the claim.

2.5 Bibliographical notes

The material in this section is mainly taken from the following sources:

• For the reminder about measure theory, we refer e.g. to Bogachev’s monograph [14].

• Many of the results regarding reparametrization maps of paths can be found in [30, 42, 5],

respectively. See also [24].

• When q ∈ (1,∞), most of the measure theory regarding families of curves and path integrals

in the metric measure space setting can be found in [5] and in extended metric measure

space setting in [61].

• The argument used to prove Proposition 2.10 is new and different from the standard approach

(used e.g. in [53]). The proof we present here is suitable to cover the entire range of exponents

q ∈ [1,∞]. For another proof in the case where q = 1, we refer to [7, Section 2.2].

25



2.6 List of symbols

N the set of natural numbers

Q the set of rational numbers

R the set of real numbers

Ln the n-dimensional Lebesgue measure on Rn; Section 2.1

L1 restriction of L1 to [0, 1]; Section 2.1

µ⊗ ν product of two measures µ and ν

a ∧ b minimum of a, b ∈ R

a ∨ b maximum of a, b ∈ R

f+ positive part of a function f : X → R; (2.1)

f− negative part of a function f : X → R; (2.1)

P(X) the set of all subsets of X; Section 2.1

1E characteristic function of a set E; (2.2)

Br(x) open ball of radius r > 0 and center x ∈ X; Section 2.2

B̄r(x) closed ball of radius r > 0 and center x ∈ X; Section 2.2

diam(E) diameter of a set E; Section 2.2

C(X;Y) space of continuous maps from X to Y; Section 2.2

Cb(X;Y) space of bounded continuous maps from X to Y; Section 2.2

C(X) shorthand notation for C(X;R); Section 2.2

Cb(X) shorthand notation for Cb(X;R); Section 2.2

Cbs(X) space of boundedly-supported continuous functions from X to R; Section 2.2

C+(X) space of non-negative continuous functions from X to R; Section 2.2

LIP(X;Y) space of Lipschitz maps from X to Y; Section 2.2

Lip(f ;E) Lipschitz constant of a map f ∈ LIP(X;Y) on a set E ⊆ X; (2.4)

Lip(f) shorthand notation for Lip(f ; X); Section 2.2

LIP(X) shorthand notation for LIP(X;R); Section 2.2

lip(f) slope of a function f ∈ LIP(X); (2.5)

lipa(f) asymptotic slope of a function f ∈ LIP(X); (2.5)

LIPb(X) space of bounded Lipschitz functions from X to R; Section 2.2

LIPbs(X) space of boundedly-supported Lipschitz functions from X to R; Section 2.2

LIP+(X) space of non-negative Lipschitz functions from X to R; Section 2.2

µ|G restriction of a measure µ to a set G; (2.6)

ϕ#µ pushforward of a measure µ with respect to a map ϕ; (2.7)∨
i∈I µi supremum of a collection of measures {µi}i∈I ; (2.8)∧
i∈I µi infimum of a collection of measures {µi}i∈I ; Section 2.3

B(X) Borel σ-algebra of X; Section 2.3

M+(X) space of finite non-negative Borel measures on X; Section 2.3

P(X) space of probability measures on X; Section 2.3

(X, d,m) a metric measure space; Definition 2.1

Bm(X) completion of the Borel σ-algebra with respect to a measure m; Section 2.3

m̄ completion of the measure m; Section 2.3

L0
ext(X,Σ) space of measurable functions from (X,Σ) to R ∪ {−∞,+∞}; (2.9)

L0(X,Σ) space of measurable functions from (X,Σ) to R; (2.9)

L∞(X,Σ) space of bounded measurable functions from (X,Σ) to R; (2.9)
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L0
ext(X,Σ)

+ positive cone of L0
ext(X,Σ); (2.10)

L0(X,Σ)+ positive cone of L0(X,Σ); (2.10)

L∞(X,Σ)+ positive cone of L∞(X,Σ); (2.10)

Lp
ext(X,Σ, µ) space of p-integrable elements of L0

ext(X,Σ) for p ∈ [1,∞); (2.11)

Lp(X,Σ, µ) space of p-integrable elements of L0(X,Σ) for p ∈ [1,∞); (2.11)

L0(X,Σ, µ) quotient of L0(X,Σ) up to µ-a.e. equality; (2.12)

πµ the canonical projection map πµ : L0(X,Σ) → L0(X,Σ, µ); Section 2.3.1

Lp(X,Σ, µ) p-Lebesgue space over (X,Σ, µ) for p ∈ [1,∞]; (2.13), (2.14)

1

µ
E equivalence class of 1E up to µ-a.e. equality; (2.15)

M(X) space of finite signed Borel measures on X; Section 2.3.2

|µ| total variation measure of a measure µ; (2.16), (2.22)

‖µ‖TV total variation norm of µ ∈ M(X); Section 2.3.2

µn ⇀ µ narrow convergence of (µn)n ⊆ M(X) to µ ∈ M(X); (2.17)

(µ+, µ−) Jordan decomposition of µ; (2.18), Definition 2.7

Bb(X) the δ-ring of bounded Borel subsets of X; Section 2.3.3

M(X) space of boundedly-finite signed measures on X; Definition 2.5

M+(X) positive cone of M(X); Definition 2.5

C (X) space of continuous curves on X parametrized on a compact interval; (2.23)

Iγ = [aγ , bγ ] domain of definition of a curve γ ∈ C (X); Section 2.4

e the evaluation map e : C(I; X)× I → X; (2.24)

et the evaluation map et : C(I; X) → X at time t ∈ I; (2.25)

V (γ;P ) variation of a curve γ : [a, b] → X relative to a partition V of [a, b]; (2.26)

ℓ(γ) length of a curve γ; (2.27)

R([a, b]; X) space of all rectifiable curves γ : [a, b] → X; Section 2.4

R(X) space of all rectifiable curves in X; (2.28)

ms the metric speed functional ms : C([0, 1]; X)× [0, 1] → [0,+∞]; (2.29)

Restrts the map that restricts γ to [s, t] and stretches it to [0, 1]; (2.30)

ACq([0, 1]; X) space of q-absolutely continuous curves in X; Definition 2.8

|γ̇| metric speed of a curve γ ∈ ACq([0, 1]; X); (2.32)

Eq(γ) q-energy of a curve γ : [0, 1] → X; Definition 2.11

Sγ constant-speed reparametrizing function of γ; (2.36)

Rγ left inverse of Sγ ; (2.37)

γcs, γ̂ constant-speed reparametrization of γ; (2.39)

Rcs([0, 1]; X) curves in R([0, 1]; X) having constant speed; Section 2.4.1

ACq
cs([0, 1]; X) curves in ACq([0, 1]; X) having constant speed; Section 2.4.1

CSRep the constant-speed-reparametrization map; (2.40)

µθ signed variation of a curve θ ∈ R(R); Definition 2.16

sγ total variation measure of a curve γ ∈ R(X); Definition 2.19
´

γ ρ ds path integral of ρ over γ; (2.42)
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3 Modulus and plans

This section is devoted to various notions of measures on the space C (X) of continuous curves on

X. In the first subsection, we recall the p-modulus Modp and its properties, used in the definition of

the Newtonian Sobolev space N1,p(X), and its modified version Mod1p. In the second subsection,

a notion of plan with barycenter in Lq(m) is presented. A particular example of a plan with

barycenter, known as a test plan, is used in the definition of the Sobolev space B1,p(X). The last

subsection deal with the relation between the two and provides all the technical results needed in

order to show that B1,p(X) ⊆ N1,p(X) in Section 7.

3.1 Modulus of a family of curves

Definition 3.1. Let (X, d,m) be a metric measure space and let λ ∈ {0, 1}. Given a family

Γ ⊆ C (X), a Borel function ρ : X → [0,∞] is said to be λ-admissible for Γ if

λ
(
ρ(γaγ ) + ρ(γbγ )

)
+

ˆ

γ

ρ ds ≥ 1 for every γ ∈ Γ.

We denote by Admλ(Γ) the set of all functions ρ that are λ-admissible for Γ. When λ = 0, we use

the standard convention λ · ∞ = 0 above.

Definition 3.2. Let (X, d,m) be a metric measure space, p ∈ [1,∞) and λ ∈ {0, 1}. Given a

family Γ ⊆ C (X), the (p, λ)-modulus Modλp(Γ) of Γ is defined as

Modλ
p(Γ) := inf

{
ˆ

ρp dm

∣∣∣∣ ρ ∈ Admλ(Γ)

}
∈ [0,∞] (3.1)

with the convention inf ∅ = ∞.

Remark 3.3. Notice that the choice of λ = 0 corresponds to the standard definition of p-modulus,

while the choice of λ = 1 corresponds to the new modulus M̃odp introduced in [61]. Both definitions

can be formulated in terms of modulus on the space of measures, along the lines of Fuglede’s

original paper [32]. Indeed, as noticed in [61], each curve can generate a measure via the maps

γ 7→ λ((e0)#γ + (e1)#γ) + γ#(|γ̇|L1), for λ ∈ {0, 1}.
In the case λ = 0, we shall use the standard notation Modp in place of Mod0p. Given Γ ⊆ C (X),

since Adm0(Γ) ⊆ Adm1(Γ) one has

Mod1p(Γ) ≤ Modp(Γ).

We do not impose any integrability conditions for ρ in the definition of Admλ(Γ). For this

reason, it is natural to consider the class of Borel and p-integrable extended functions Lp
ext(m)+

when computing Modλp(Γ). This plays a role, especially in the study of Newtonian Sobolev space

in Section 5.4.

In the following lemma we list some standard properties of (p, λ)-modulus - these statements

essentially follow from the work by Fuglede [32]; cf. [5]. See also the λ = 0 case from [41].

Lemma 3.4 (Some properties of Modλp). Let (X, d,m) be a metric measure space, p ∈ [1,∞) and

λ ∈ {0, 1}. Then the following statements hold:

(1) Modλp vanishes on any family of curves which are not rectifiable.

(2) Modλp(∅) = 0 and Modp(Γ) = ∞ whenever Γ contains a constant curve.
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(3) Given any Γ1 ⊆ Γ2 ⊆ C (X) it holds that Modλp (Γ1) ≤ Modλp (Γ2).

(4) Given any family (Γi)i∈N ⊆ C (X) it holds that Modλp (∪i∈NΓi) ≤
∑

i∈N Modλp(Γi).

(5) Given any h ∈ Lp
ext(m)+ it holds that

Modλp

({
γ ∈ C (X)

∣∣λ
(
h(γaγ ) + h(γbγ )

)
+

ˆ

γ

h ds = +∞
})

= 0.

(6) Given any Γ ⊆ C (X) such that Modλp (Γ) = 0 there exists h ∈ Lp
ext(m)+ such that

Γ ⊆
{
γ ∈ C (X)

∣∣ λ
(
h(γaγ ) + h(γbγ )

)
+

ˆ

γ

h ds = +∞
}
.

(7) If Γ, Γ′ ⊆ C (X) and for every γ ∈ Γ there exists a subinterval I ⊆ Iγ such that γ|I ∈ Γ′ and

γI has the same end points as γ, then Modλp (Γ) ≤ Modλp(Γ
′). If λ = 0, the same inequality

holds under the condition that γ|I ∈ Γ′.

In particular, the properties (2), (3) and (4) imply that for every λ ∈ {0, 1} the function

C (X) ∋ Γ 7→ Modλp(Γ) ∈ [0,∞] is an outer measure on C (X). We also use the following lemma

later.

Lemma 3.5. Let (X, d,m) be a metric measure space and p ∈ [1,∞). For E ⊆ X Borel, we define

Γa,b
E :=

{
γ ∈ C (X)

∣∣ γaγ , γbγ ∈ E
}
.

Then it holds that

Mod1p(Γ
a,b
E ) ≤ m(E)p

2p
.

Proof. Define ρ := 1
21E and notice that ρ(γaγ ) + ρ(γbγ ) +

´

γ
ρ ds ≥ 1

21E(γaγ ) +
1
21E(γbγ ) = 1 for

every γ ∈ Γa,b
E . This shows that the function ρ is 1-admissible for Γa,b

E , thus accordingly we can

conclude that Mod1p(Γ
a,b
E ) ≤

´

ρp dm = m(E)p/2p, as desired.

Theorem 3.6 (Fuglede’s lemma). Let (X, d,m) be a metric measure space and p ∈ [1,∞). Let

(fn)n ⊆ Lp(m) be a sequence of non-negative functions converging in the Lp(m)-seminorm to 0.

Then there exist a subsequence (fnk
)k ⊆ (fn)n and a family ΓN ⊆ C (X) with Modp(ΓN ) = 0 such

that

lim
k→+∞

ˆ

γ

fnk
ds = 0 for every γ ∈ C (X) \ ΓN .

Proof. See, for instance, [42, page 131].

Lemma 3.7 (Invariance of Modλp under reparametrization). Let (X, d,m) be a metric measure

space, p ∈ [1,∞) and λ ∈ {0, 1}. Then

Modλp(Γ) = Modλp (CSRep(Γ ∩ R(X))) for any curve family Γ ⊆ C (X).

Proof. Follows by the very definition and taking into account Lemma 2.25.

Definition 3.8 (p-exceptional sets). Let (X, d,m) be a metric measure space and let p ∈ [1,∞).

A set E ⊆ X is said to be p-exceptional if Modp(ΓE) = 0, where ΓE denotes the family of

non-constant curves in X intersecting E.
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3.2 Plans with barycenter

Definition 3.9 (Plan). Let (X, d,m) be a metric measure space. A plan on X is any non-negative

Borel measure π ∈ M+(C([0, 1]; X)) that is concentrated on R([0, 1]; X).

Let λ ∈ {0, 1} and a plan π on X be fixed. Then, taking into account Corollary 2.23, we can

associate to π a non-negative measure Πλ
π
∈ M+(X) defined as

Πλ
π
:= λ(e0)#π + λ(e1)#π +

ˆ

γ#sγ dπ(γ). (3.2)

Notice that the measure Πλ
π

can be alternatively characterised as the unique measure satisfying

ˆ

ρ dΠλ
π
=

ˆ

(
λρ(γ0) + λρ(γ1) +

ˆ

γ

ρ ds

)
dπ(γ)

for every bounded Borel function ρ : X → R, or equivalently for every ρ : X → [0,∞] Borel.

Definition 3.10 (Barycenter). Let (X, d,m) be a metric measure space, q ∈ (1,∞] and λ ∈ {0, 1}.
A plan π on X admits λ-barycenter Barλ(π) in Lq(m) if

Πλ
π
≪ m and Barλ(π) :=

dΠλ
π

dm
∈ Lq(m). (3.3)

We refer to Barλ(π) as the λ-barycenter of π. We also shorten 0-barycenter to barycenter and

we write Bar(π) instead of Bar0(π).

Lemma 3.11. Let (X, d,m) be a metric measure space, p ∈ [1,∞) and let λ ∈ {0, 1}. A plan π

on X admits λ-barycenter in Lq(m) if and only if there exists C ≥ 0 such that

ˆ

ρ dΠλ
π
≤ C‖ρ‖Lp(m) for every non-negative ρ ∈ LIPbs(X). (3.4)

In this case, ‖Barλ(π)‖Lq(m) is the minimal constant C ≥ 0 satisfying (3.4).

Proof. If π admits λ-barycenter in Lq(m), then an application of Hölder’s inequality gives

∣∣∣∣
ˆ

ρ dΠλ
π

∣∣∣∣ ≤
ˆ

|ρ|Barλ(π) dm ≤ ‖Barλ(π)‖Lq(m)‖ρ‖Lp(m) for every ρ ∈ LIPbs(X),

which proves that (3.4) holds with C := ‖Barλ(π)‖Lq(m). Conversely, suppose (3.4) holds. Then

the map T : πm
(
LIPbs(X)

)
→ R given by T

(
πm(ρ)

)
:=
´

ρ dΠλ
π

for every ρ ∈ LIPbs(X) is well-

defined, linear, and continuous by applying (3.4) to the positive and negative parts of ρ separately.

Given that πm
(
LIPbs(X)

)
is a dense linear subspace of Lp(m), the map T can be uniquely extended

to a linear, continuous map T̄ : Lp(m) → R with ‖T̄‖ ≤ C.

Recalling that the dual Banach space of Lp(m) is Lq(m), we deduce that there exists a unique

function g ∈ Lq(m) with ‖g‖Lq(m) ≤ C such that
´

ρg dm = T̄ (ρ) =
´

ρ dΠλ
π

for every ρ ∈
LIPbs(X). By the arbitrariness of ρ, it follows that Πλ

π
≪ m and that Barλ(π) =

dΠλ
π

dm = g ∈ Lq(m),

which also proves the minimality property of ‖Barλ(π)‖Lq(m).

Remark 3.12. In the setting of Definition 3.10 and for π being a plan on X with λ-barycenter

in Lq(m), we collect here some properties of plans with barycenter.
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1) Consider any π-measurable set Γ ⊆ C([0, 1]; X) with Admλ(Γ) 6= ∅. Pick any ρ ∈ Admλ(Γ)

and notice that

π(Γ) ≤
ˆ

(
λρ(γ0) + λρ(γ1) +

ˆ

γ

ρ ds

)
dπ(γ) ≤

ˆ

|ρ|Barλ(π) dm

≤ ‖Barλ(π)‖Lq(m)‖ρ‖Lp(m).

Passing to the infimum among all ρ ∈ Admλ(Γ), we get the estimate

π(Γ) ≤ ‖Barλ(π)‖Lq(m)

(
Modλp (Γ)

)1/p
. (3.5)

2) It follows from 1) and from Lemma 3.4(5) that

π

({
γ ∈ C([0, 1]; X)

∣∣λ
(
h(γaγ ) + h(γbγ )

)
+

ˆ

γ

h ds = +∞
})

= 0

for any h ∈ Lp
ext(m)+.

Next, we introduce the notion of a test plan (first considered in [6]).

Definition 3.13 (q-energy of a plan). Let (X, d,m) be a metric measure space and let q ∈ (1,∞].

We say that a plan π on X has finite q-energy if it is concentrated on ACq(C[0, 1]; X)) and

Eq(π) :=

ˆ

Eq(γ) dπ(γ) =

ˆˆ 1

0

|γ̇t|q dt dπ(γ) < +∞. (3.6)

Definition 3.14 (q-test plans). Let (X, d,m) be a metric measure space and q ∈ (1,∞]. A plan

π on X is said to be a q-test plan if it satisfies the following two conditions:

(TP1) there exists C ≥ 0 such that (et)#π ≤ Cm holds for every t ∈ [0, 1];

(TP2) π is a probability measure and it has finite q-energy.

The compression constant Comp(π) of π is defined as the minimal non-negative C satisfying

(TP1). Since π is a probability, the compression constant is strictly positive.

Lemma 3.15. Let (X, d,m) be a metric measure space. Let π be a q-test plan on X, for some

exponent q ∈ (1,∞]. Then

e#(π ⊗ L1) ≤ Comp(π)m. (3.7)

Moreover, recalling the definition (2.29), the plan π admits barycenter in Lq(m) and

Bar(π) =
de#(ms(π ⊗ L1))

dm
with ‖Bar(π)‖Lq(m) ≤ Comp(π)Eq(π)

1/q.

Proof. Given any non-negative Borel function ρ : X → [0,∞), we can estimate

ˆ

ρ de#(π ⊗ L1) =

ˆˆ 1

0

ρ(γt) dt dπ(γ) =

ˆ 1

0

ˆ

ρ d(et)#π dt ≤ Comp(π)

ˆ

ρ dm,

thus proving (3.7). Moreover, still for every Borel function ρ : X → [0,∞) we can compute (using

the fact that π is concentrated on q-absolutely continuous curves and the characterisation of the
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integral along such curves given in Lemma 2.20)

ˆˆ

γ

ρ ds dπ(γ) =

ˆˆ 1

0

ρ(γt)|γ̇t| dt dπ(γ) =
ˆ

ρ ◦ ems d(π ⊗ L1) =

ˆ

ρ de#(ms(π ⊗ L1)),

which proves that Bar(π) is the density of e#(ms(π⊗L1)) with respect to m. To see that Bar(π)

is q-integrable, let us fix any non-negative g ∈ Lp(m). Then, by using Hölder’s inequality and

(3.7), we get

ˆ

Bar(π)g dm =

ˆ ˆ

γ

g ds dπ(γ) =

ˆ

g ◦ ems d(π ⊗ L1) ≤ Comp(π)‖g‖Lp(m)Eq(π)
1/q.

Then applying Lemma 3.11 concludes the proof.

The proof of the following two propositions is straightforward.

Proposition 3.16. Let (X, d,m) be a metric measure space. Let π be a q-test plan on X, for

some exponent q ∈ (1,∞]. Let Γ ⊆ C([0, 1]; X) be a Borel set such that π(Γ) > 0. Then

πΓ :=
π|Γ
π(Γ)

, is a q-test plan on X with Comp(πΓ) ≤
Comp(π)

π(Γ)
.

Proposition 3.17. Let (X, d,m) be a metric measure space. Let π be a q-test plan on X with

q ∈ (1,∞]. Let s, t ∈ [0, 1] with s < t be given. Then

(Restrts)#π, is a q-test plan on X with Comp((Restrts)#π) ≤ Comp(π).

The notion of barycenter introduced above is usually referred to as ’non-parametric barycenter’

(see [61] and references therein). We shall also need the notion of ’parametric barycenter’ defined

below, where the term
´

γ#(sγ) dπ(γ) is replaced by e#(π ⊗ L1).

Definition 3.18 (Parametric barycenter). Let (X, d,m) be a metric measure space, q ∈ (1,∞]

and λ ∈ {0, 1}. We say that a plan π on X admits parametric λ-barycenter pBarλ(π) in Lq(m)

if the non-negative measure

ρλ
π
:= λ(e0)#π + λ(e1)#π + e#(π ⊗ L1) ∈ M+(X)

satisfies

ρλ
π
≪ m and pBarλ(π) :=

dρλ
π

dm
∈ Lq(m).

3.3 Relations between modulus and plans with barycenter

In this section we will show the relation between p-modulus and plans admitting a q-integrable

barycenter. First, we show in Proposition 3.20 that on the compact family of curves the two

measures coincide (up to a scaling). Before stating and proving the result, we recall Sion’s min-

max theorem, which will be our key tool in the proof.

Theorem 3.19 (Sion’s minmax theorem). Let V,W be topological vector spaces, let K ⊆ V be a

compact and convex set, and let C ⊆W be a convex set. Suppose that the function L : C×K → R

satisfies

a) for each v ∈ C, the function L(v, ·) : K → R is upper semicontinuous and concave,
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b) for each w ∈ K, the function L(·, w) : C → R is convex.

Then we have that

max
w∈K

inf
v∈C

L(v, w) = inf
v∈C

max
w∈K

L(v, w). (3.8)

For the proof of this result we refer the reader for instance to [65] or [68].

Proposition 3.20. Let (X, d,m) be a metric measure space, p ∈ [1,∞) and λ ∈ {0, 1}. Given a

compact set Γ ⊆ R([0, 1]; X) such that 0 < Modλp (Γ) < +∞, there exists πΓ ∈ P(Γ) that admits

λ-barycenter in Lq(m) with

‖Barλ(πΓ)‖Lq(m) = (Modλp (Γ))
−1/p.

Proof. Let us start by observing that, as the evaluation map e is continuous and Γ is compact, the

set K := e(Γ × [0, 1]) ⊆ X is compact. We consider the restriction map R : LIPb(X) → LIP(K),

given by R(ρ) := ρ|K . By the compactness of K and by McShane extension theorem, the map R

is onto. Given ρ ∈ LIP(K) in the sequel we will denote by ρ̂ ∈ LIP(X) the McShane extension of

ρ, namely:

ρ̂(x) := inf
y∈K

{ρ(y) + Lip(ρ)d(y, x)} , for all x ∈ X.

Note that ρ̂1K ∈ Lp(m) and that ρ̂ ≥ 0 whenever ρ ≥ 0.

Step 1. Given any ρ ∈ LIP+(K) and τ > 0, the function

ρ̃ := (Modλ
p(Γ))

1/p ρ̂1K

‖ρ̂1K‖Lp(m) + τ

is not λ-admissible for Γ. Indeed, the claim is immediate from the definition of Modλp , the obser-

vation that the image of every γ ∈ Γ lies in K, and the fact that 0 < Modλp(Γ) < +∞. Since ρ̃ is

not λ-admissible for Γ, there exists γ ∈ Γ such that

λ
(
ρ̃(γ0)+ρ̃(γ1)

)
+

ˆ

γ

ρ̃ds < 1 or equivalently λ
(
ρ(γ0)+ρ(γ1)

)
+

ˆ

γ

ρ ds <
‖ρ̂1K‖Lp(m) + τ

(Modλ
p(Γ))

1/p
. (3.9)

Step 2. Consider the functional Φ: LIP+(K)× P(Γ) → R defined by

Φ(ρ,π) := ‖ρ̂1K‖pLp(m) − (Modλp (Γ))
1/p

(
ˆ

λ
(
ρ(γ0) + ρ(γ1)

)
+

ˆ

γ

ρ ds dπ(γ)

)
.

Using the definition of Φ, the condition (3.9) can be equivalently written as

τ + Φ(ρ, δγ) > 0,

where δγ is the Dirac measure at the path γ. This implies that τ + sup
π∈P(Γ)Φ(ρ,π) > 0, thus

by letting τ → 0 and passing to the infimum over ρ ∈ LIP+(K), we obtain

inf
ρ∈LIP+(K)

sup
π∈P(Γ)

Φ(ρ,π) ≥ 0.

Step 3. We wish to apply Theorem 3.19 to Φ. To this end, whenever ρ ∈ LIP+(K), the functional

Φ(ρ, ·) is concave and upper semicontinuous with respect to the narrow-topology on measures, due

to Lemma 2.24. Also, the convex set P(Γ) ⊂ M(C([0, 1]; X)) is compact with respect to the

narrow-topology, by Prokhorov theorem. The set LIP+(K) is a convex subset of the topological
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vector space C(K) and for every π ∈ P(Γ), the mapping Φ(·,π) is convex. We have now verified

the assumptions of Theorem 3.19, so

sup
π∈P(Γ)

inf
ρ∈LIP+(K)

Φ(ρ,π) = inf
ρ∈LIP+(K)

sup
π∈P(Γ)

Φ(ρ,π) ≥ 0.

Due to the upper semicontinuity of Φ(ρ, ·) and compactness of P(Γ), the suprema above are

maxima. Thus, there exists πΓ ∈ P(Γ) such that for every ρ ∈ LIP+(K) it holds

ˆ

(
λ
(
ρ(γ0) + ρ(γ1)

)
+

ˆ

γ

ρ ds

)
dπΓ(γ) ≤ (Modλp (Γ))

−1/p‖ρ̂1K‖pLp(m).

Since the restriction map R is onto, we obtain

ˆ

(
λ
(
ρ(γ0) + ρ(γ1)

)
+

ˆ

γ

ρ ds

)
dπΓ(γ) ≤ (Modλp (Γ))

−1/p‖ρ‖pLp(m)

for any non-negative ρ ∈ LIPbs(X). We may now apply Lemma 3.11, showing that πΓ admits a

λ-barycenter in Lq(m) and

‖Barλ(πΓ)‖Lq(m) ≤ (Modλp (Γ))
−1/p.

Step 4. To get the reverse inequality, we observe that every ρ ∈ Admλ(Γ) satisfies

1 = πΓ(Γ) ≤
ˆ

(
λ
(
ρ(γ0) + ρ(γ1)

)
+

ˆ

γ

ρ ds

)
dπΓ ≤ ‖ρ‖Lp(m)‖Barλ(πΓ)‖Lq(m).

Taking the infimum over such ρ shows

(Modλp(Γ))
−1/p ≤ ‖Barλ(πΓ)‖Lq(m)

as claimed.

The rest of this section is devoted to the technical results needed to prove the inclusion

B1,p(X) ⊆ N1,p(X) in Section 7. In order to make it easier for the reader to follow the argu-

ment we first outline our strategy for proving the latter. The proof is based, essentially, on the

fact that

π(Γq
f,ρ) = 0 for every q-test plan π =⇒ Modp(LIP([0, 1]; X) \ Cf,ρ) = 0, (3.10)

where the sets Γq
f,ρ and Cf,ρ are introduced below in (3.13) and (3.16), respectively.

• In the case p > 1 the right-hand side holds true due to the fact that the family LIP([0, 1],X)\
Cf,ρ) is a stable family of curves (in the sense of [5, Definition 9.3]) and π-null, for any q-test

plan π and thus it is negligible also for Modp due to [5, Theorem 9.4]. The above result

comes as a consequence of the fact that the result of our Proposition 3.20 in the case p > 1

holds true not only for compact, but for all Souslin sets - indicating in the same time that

Modp in this case is a Choquet capacity. In the case p = 1 this property fails (cf. [44]). To

overcome this difficulty, we proceed as follows, providing a proof that covers the range [1,∞)

for the exponent p.
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• We show (3.10) in two steps: first one, contained in Lemma 3.24 showing that

π(Γq
f,ρ) = 0 for every q-test plan π =⇒ Mod1p(Γ

q
f,ρ) = 0, (3.11)

and the second one contained in Lemma 3.25 proving that

Mod1p(Γ
q
f,ρ) = 0 =⇒ Modp(LIP([0, 1]; X) \ Cf,ρ) = 0. (3.12)

• To prove (3.11), we argue by contradiction, and show in Lemma 3.21 that Mod1p(Γ
q
f,ρ) > 0

implies the existence of a compact subfamily Γ ⊆ Γq
f,ρ having positive and finite Mod1p. As

in [61], the use of Mod1p is crucial for getting the compactness here. Then, by means of

Proposition 3.20 we associate to such Γ the plan πΓ with 1-barycenter in Lq(m), which in

particular has the property πΓ(Γ) > 0.

In order to get to a contradiction with the assumption in (3.10), we aim at constructing,

starting from πΓ, a q-test plan with the latter property. Lemma 3.22 says that equivalently,

we may show such a property for a plan with parametric barycenter in L∞, having finite

q-energy. We show its existence in Theorem 3.23.

Lemma 3.21. Let (X, d,m) be a metric measure space and let p ∈ [1,∞). For r ∈ [1,∞],

f ∈ Lp(m) and ρ ∈ Lp
ext(m)+, define

Γr
f,ρ :=

{
γ ∈ ACr([0, 1]; X)

∣∣∣∣ |f(γ1)− f(γ0)| >
ˆ

γ

ρ ds

}
. (3.13)

If Mod1p(Γ
r
f,ρ) > 0, there exist a compact family Γ ⊆ Γr

f,ρ and k > 0 such that

0 <Mod1p(Γ) < +∞ and Γ ⊆
{
γ ∈ LIP([0, 1]; X) : Lip(γ) ≤ k

}
.

Proof. Define Γ̂ := Γr
f,ρ ∩ LIP([0, 1]; X). Letting CSRep be the constant-speed-reparametrization

map defined as in (2.40), we have that CSRep(Γr
f,ρ) ⊆ Γ̂ by Lemma 2.25. Since CSRep(Γr

f,ρ) and

Γr
fρ have the same Mod1p-modulus by Lemma 3.7, we deduce that Mod1p(Γ̂) = Mod1p(Γ

r
f,ρ) > 0.

In Steps 1 to 3, we construct the claimed subfamily Γ of Γ̂ ⊂ Γr
f,ρ of uniformly Lipschitz paths,

whose images lie in some closed and bounded set. Then in Step 4 we prove that the constructed

family Γ is compact.

Step 1. As a consequence of the Vitali–Carathéodory theorem (see e.g. [42, Section 4.2]), we find

a sequence (ρn)n ⊆ Lp
ext(m)+ of lower semicontinuous functions satisfying

´

|ρn − ρ|p dm → 0 and

ρn ≥ ρn+1 ≥ ρ everywhere. By Fuglede’s lemma, cf. Theorem 3.6, we may assume the existence

of Γ0 ⊂ C (X) satisfying Modp(Γ0) = 0 such that

inf
n∈N

ˆ

γ

ρn ds = lim
n→∞

ˆ

γ

ρn ds =

ˆ

γ

ρ ds for every γ ∈ C (X) \ Γ0.

By Remark 3.3, we have Mod1p(Γ0) = 0, so the subadditivity of Mod1p implies

Mod1p(Γ̂) = Mod1p(Γ̂ \ Γ0).
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By the subadditivity and monotonicity of Mod1p, there is µ > 0 such that

Γ̂µ :=

{
γ ∈ Γ̂ \ Γ0 : |f(γ1)− f(γ0)| > µ+

ˆ

γ

ρ ds

}

has positive Mod1p-modulus. By definition of Γ0, for every γ ∈ Γ̂µ, there is n0 ∈ N satisfying

|f(γ1)− f(γ0)| ≥ µ+

ˆ

γ

ρn ds for every n ≥ n0.

Thus Γ̂µ is contained in the union of

Γn :=

{
γ ∈ LIP([0, 1]; X)

∣∣∣∣ |f(γ1)− f(γ0)| ≥ µ+

ˆ

γ

ρn ds

}
for n ∈ N.

Since ρn ≥ ρ everywhere, we have Γn ⊂ Γ̂ for every n ∈ N. By monotonicity and subadditivity of

Mod1p, we have ∑

n∈N

Mod1p(Γn) ≥ Mod1p(Γ̂µ \ Γ̃) = Mod1p(Γ̂µ) > 0,

so there is n ∈ N for which Mod1p(Γn) > 0. We fix such an n for the rest of the claim. The

subfamily Γn of Γ̂ is the first simplification we make. Our next goal is to reduce to uniformly

Lipschitz paths contained in a closed ball.

Step 2. Fix an arbitrary point x̄ ∈ X. Given any k ∈ N, we define

Σk :=
{
γ ∈ C([0, 1]; X)

∣∣ Lip(γ) ≤ k, γt ∈ B̄k(x̄) for every t ∈ [0, 1]
}
.

Since uniform limits of k-Lipschitz curves are k-Lipschitz, the set Σk is closed in C([0, 1]; X).

Observe that Γn =
⋃

k∈N Γn ∩ Σk, so there is k ∈ N for which Mod1p(Γn ∩ Σk) > 0. Moreover, by

Lemma 3.5 and Lemma 3.4(3), we also have that Mod1p(Γn ∩ Σk) < +∞. We fix k ∈ N with this

property for the rest of the proof.

In the next two steps, our goal is to find a closed subfamily Γ of Γn ∩ Σk such that f is

continuous relative to the end points of Γ. More precisely, for every sequence (γn)∞n=1 in Γ

converging uniformly to some γ, we have that f(γni ) → f(γi) for i ∈ {0, 1} as n→ ∞.

Step 3. An application of Lusin’s theorem gives an increasing sequence (Kj)j of compact subsets

of B̄k(x̄) such that f |Kj is continuous and m
(
B̄k(x̄) \Ki

)
≤ 2−jp for every j ∈ N. In particular,

∞∑

j=0

m
(
B̄k(x̄) \Kj

)1/p ≤
∞∑

j=0

1

2j
= 2,

whence it follows that η :=
∑∞

j=0 1B̄k(x̄)\Kj
∈ Lp

ext(m)+. Since each function 1B̄k(x̄)\Kj
is lower

semicontinuous in B̄k(x̄) (due to the fact that Kj is closed), we deduce that the function η is lower

semicontinuous in B̄k(x̄) as well. Consequently, the function h := ρn + η : B̄k(x̄) → [0,∞] is lower

semicontinuous. We extend h as infinite to X \ B̄k(x̄), thereby obtaining a lower semicontinuous

function on X. We denote the extension by h as well.

Now define the sets (Σk,m)m as

Σk,m :=

{
γ ∈ Σk

∣∣∣∣ h(γ0) + h(γ1) +

ˆ

γ

h ds ≤ m

}
for every m ∈ N,
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and let N := Σk \
⋃

m∈N Σk,m.

Using Lemma 2.22, we see that C([0, 1]; X) ∋ γ 7→ h(γ0)+h(γ1)+
´

γ h ds is lower semicontinuous

and thus Σk,m is a closed subset of C([0, 1]; X). Moreover, from Lemma 3.4 (5), we have that

Mod1p(N ) = 0. Since (Γn ∩ Σk) \ N =
⋃

m∈N(Γn ∩ Σk,m) \ N , we find m ∈ N such that the set

Γ := Γn ∩Σk,m satisfies Mod1p(Γ) > 0.

Step 4. It remains to verify that Γ is compact. Let us begin with its closedness. We claim that

γ0, γ1 ∈ Km, for every γ ∈ Γ. (3.14)

To this end, fix i ∈ {0, 1} and observe that for every γ ∈ Γ we have

#{j ∈ N | γi /∈ Kj} = η(γi) ≤ h(γi) ≤ m.

Since the sets (Kj)j are increasing, we deduce that γi ∈ Km, proving (3.14).

We are in a position to show that Γ is closed: fix a sequence (γi)i ⊆ Γ uniformly converging

to some γ ∈ C([0, 1]; X). Since Σk,m is closed, we have that γ ∈ Σk,m, so we need only to prove

that γ ∈ Γn. To this end, we obtain that

µ+

ˆ

γ

ρn ds ≤ lim
i→∞

(
µ+

ˆ

γi

ρn ds

)
≤ lim

i→∞

∣∣f(γi1)− f(γi0)
∣∣ =

∣∣f(γ1)− f(γ0)
∣∣,

where the first inequality follows from Lemma 2.22, the second inequality from the definition of

Γn, while the last equality follows from (3.14) and the continuity of f |Km . Therefore γ ∈ Γ.

We have deduced that Γ is closed. To establish compactness, we wish to apply Arzelà–Ascoli

theorem. Since the elements of Γ are uniformly Lipschitz, the compactness follows from the

following claim:

[Γ] :=
{
γt

∣∣ γ ∈ Γ, t ∈ [0, 1]
}
⊆ X, is totally bounded. (3.15)

Towards proving (3.15), fix any ε > 0 and an ε-separated set S ⊆ [Γ]. The claim follows if we can

show that S is finite.

To this end, fix j0 ∈ N satisfying j0 ≥ m and m
j0−m+1 <

ε
4 . We obtain a cardinality upper bound

for S by showing [Γ] ⊆ Bε/4(Kj0). Indeed, by total boundedness of Kj0 , we find x1, . . . , xℓ ∈ Kj0

satisfying Kj0 ⊆ ⋃ℓ
i=1 Bε/4(xi) and d(xi, xj) ≥ ε/4 for every i, j with i 6= j. Now if S ⊂ [Γ] is

ε-separated, then for every distinct pair x, y ∈ S satisfying x ∈ Bε/2(xi) and y ∈ Bε/2(xj), we

have i 6= j. Indeed, otherwise we would have

ε ≤ d(x, y) ≤ d(x, xi) + d(xi, y) < ε; a contradiction.

We deduce, therefore, that the cardinality of S is at most ℓ.

We have reduced (3.15) to showing that [Γ] ⊆ Bε/4(Kj0). We argue by contradiction and

suppose the existence of γ ∈ Γ and t1 ∈ [0, 1] such that d(γt1 ,Kj0) ≥ ε/4. Given any j = m, . . . , j0,

we have that γ0 ∈ Km ⊆ Kj ⊆ Kj0 by (3.14), so letting t0 := max{t ∈ [0, t1) : γt ∈ Kj}, we have

that γ((t0, t1]) ⊆ B̄k(x̄) \Kj and thus

ε

4
≤ d(γt1 ,Kj0) ≤ d(γt1 ,Kj) ≤ d(γt1 , γt0) ≤ ℓ(γ|[t0,t1]) ≤

ˆ

γ

1B̄k(x̄)\Kj
ds.
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Summing the resulting inequalities over j = m, . . . , j0 yields

(j0 −m+ 1)ε

4
≤

j0∑

j=m

ˆ

γ

1B̄k(x̄)\Kj
ds ≤

ˆ

γ

η ds ≤
ˆ

γ

h ds ≤ m,

leading to a contradiction with the choice of j0. So (3.15) follows.

Given that Γ is a compact subset of Γn ∩ Σk ⊆ Γ̂ satisfying Mod1p(Γ) > 0, the proof is

complete.

The proof of the next result follows by the same lines of the proof of [61, Lemma 5.1.38]. We

include it for the sake of completeness.

Lemma 3.22. Let (X, d,m) be a metric measure space and p ∈ [1,∞). Let f ∈ Lp(m) and

ρ ∈ Lp
ext(m)+ be given and let Γq

f,ρ be defined as in (3.13). Suppose that the family Γq
f,ρ is π-

negligible for every q-test plan π. Then π(Γq
f,ρ) = 0 for every plan π on X admitting parametric

1-barycenter in L∞(m) (see Definition 3.18), and having finite q-energy.

Proof. Fix a plan π on X having finite q-energy and with parametric 1-barycenter in L∞(m).

We also set M := ‖pBar1(π)‖L∞(m) > 0. Given 0 ≤ r < s ≤ 1, we consider the Borel maps

D+
r , D

−
s : C([0, 1]; X)× [0, 1] → C([0, 1]; X) given by

D+(γ, r)t := γ((r + t) ∧ 1) and D−(γ, s)t := γ((t− s) ∨ 0).

Now we set λ := 3L1|(1/3,2/3) and define

π
+ := D+

#(π ⊗ λ) and π
− := D−

#(π ⊗ λ).

We will show that π+ and π
− are q-test plans. It is not difficult to check that (et)#π

+ = (e1)#π ≤
Mm for all t ≥ 2/3. For t ∈ [0, 2/3) and every non-negative Borel function f : X → R we have

that
ˆ

f(et(γ)) dπ
+(γ) = 3

ˆ
2
3

1
3

ˆ

f(γ(r+t)∧1) dπ(γ) dr

= 3

ˆ (1−t)∧ 2
3

1
3

ˆ

f(γr+t) dπ(γ)dr + 3(
1

3
− t)+

ˆ

f(γ1) dπ(γ)

≤ 3

ˆ

f de#(π ⊗ L1) +

ˆ

f d(e1)#π ≤ 4M

ˆ

f dm.

Therefore, we get for every t ∈ [0, 1] that (et)#π
+ ≤ 4Mm. An analogous computation shows the

same property of π−. Also, for every r ∈ [0, 1] the inequality | ˙D±(γ, r)t| ≤ |γ̇t| holds for L1-a.e.

every t ∈ (0, 1), implying that Eq(D
±(γ, r)) ≤ Eq(γ) and thus that π+ and π

− have finite q-energy.

All in all, we have proven that π
+ and π

− are q-test plans and thus, by the assumptions of the

theorem, we have that π
±(Γq

f,ρ) = 0. Thus, applying Fubini’s theorem we obtain the existence of

a Borel set N ⊆ C([0, 1]; X) with π(N) = 0 and such that for every γ ∈ ACq([0, 1]; X) \N it holds

|f(γ1−s)− f(γ0)| = |f(D−(γ, s)1)− f(D−(γ, s)0)| ≤
ˆ 1

0

ρ(γ(t−s)∨0)|γ̇(t−s)∨0| dt

=

ˆ 1−s

0

ρ(γt)|γ̇t| dt,
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for L1-a.e. s ∈ (1/3, 2/3), and similarly for L1-a.e. r ∈ (1/3, 2/3) it holds

|f(γ1)− f(γr)| = |f(D+(γ, r)1)− f(D+(γ, r)0)| ≤
ˆ 1

0

ρ(γ(t+r)∧1)|γ̇(t+r)∧1| dt =
ˆ 1

r

ρ(γt)|γ̇t| dt.

Thus, for π-a.e. curve γ ∈ ACq([0, 1]; X) we can find a common value r = 1− s ∈ (1/3, 2/3) such

that

|f(γ1)− f(γ0)| ≤
ˆ 1−s

0

ρ(γt)|γ̇t| dt+
ˆ 1

r

ρ(γt)|γ̇t| dt =
ˆ 1

0

ρ(γt)|γ̇t| dt,

proving that π(Γq
f,ρ) = 0, as claimed.

We next prove a slight variant of the result proven in [5, Theorem 8.5], an improvement,

obtained via reparameterization, of the 1-barycenter from Lq(m) to parametric 1-barycenter in

L∞(m).

Theorem 3.23. Let (X, d,m) be a metric measure space and q ∈ (1,∞]. Let π ∈ P
(
C([0, 1]; X)

)

be a plan with 1-barycenter in Lq(m). Suppose that π is concentrated on a Souslin set Γ ⊆
LIP([0, 1]; X) which consists of curves having the following properties:

a) there exists C > 0 so that Lip(γ) ≤ C for π-a.e. γ ∈ Γ;

b) there exists ℓ > 0 so that ℓ(γ) ≥ ℓ for π-a.e. γ ∈ Γ;

c) there exists a bounded Borel set B ⊆ X so that im(γ) ⊆ B for π-a.e. γ ∈ Γ.

Then there exist a Borel reparametrization map H : AC([0, 1]; X) → AC([0, 1]; X) and a plan σ ∈
P
(
C([0, 1]; X)

)
having parametric 1-barycenter in L∞(m), finite q-energy and being concentrated

on the Souslin set H(Γ).

Proof. We assume q < ∞, the statement being trivially true with H equal to the identity map

in the case q = ∞. Since the 1-barycenter is invariant under reparameterizations, we can assume

with no loss of generality that Γ consists of nonconstant curves with constant speed. We denote by

L ≤ C the L∞(π)-norm of the length of the curves in Γ. Let g ∈ Lq(m)+ be a Borel representative

of the 1-barycenter of π and let us set h := 1/(g ∨ 1), so that h takes its values in (0, 1]. We then

set

G(γ) :=

ˆ 1

0

h(γ(r)) dr ∈ [0, 1], tγ(s) :=
1

G(γ)

ˆ s

0

h(γ(r)) dr : [0, 1] → [0, 1],

and define the reparameterization map

Hγ(t) := γ(sγ(t))

where sγ : [0, 1] → [0, 1] is the inverse of tγ : [0, 1] → [0, 1]. We postpone the proof of Borel

measurability of γ 7→ Hγ and γ 7→ G(γ) to the end of the proof.

We set σ1 := z−1
1 H#(Gπ), where z1 ∈ (0, 1] is the normalization constant

´

G(γ) dπ(γ). Let

us evaluate, first, the q-energy of σ, using η = Hγ as the dummy variable. We notice that, since

t′γ(s) = h(γ(s))/G(γ), one can compute

|Ḣγ(t)| = |γ̇(sγ(t))||s′γ(t)| =
|γ̇(sγ(t))|G(γ)
h(γ(sγ(t)))

.
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Using the differential identity above, the very definition of 1-barycenter and finally the inequality

G ≤ 1, one has

z1

ˆ ˆ 1

0

|η̇(t)|q dt dσ1(η) =

ˆ ˆ 1

0

|Ḣγ(t)|q dtG(γ) dπ(γ)

≤ Lq−1

ˆ

Gq+1(γ)

ˆ 1

0

h−q(γ(sγ(t)))|γ̇(sγ(t))| dt dπ(γ)

= Lq−1

ˆ

Gq+1(γ)

ˆ 1

0

h−q(γ(s))|γ̇(s)|t′γ(s) ds dπ(γ)

≤ Lq−1

ˆ

Gq(γ)

ˆ 1

0

h1−q(γ(s))|γ̇(s)| ds dπ(γ)

≤ Lq−1

ˆ

g(g ∨ 1)q−1 dm < +∞,

where property a) is used in the first inequality and the finiteness of the last integral follows from

property c). Next, let us compute the parametric 1-barycenter of σ. With analogous computations,

for Borel f : X → [0,∞), one has

z1

ˆ ˆ 1

0

f(η(t)) dt dσ1(η) =

ˆ ˆ 1

0

f(γ(σ(t))) dtG(γ)dπ(γ)

=

ˆ ˆ 1

0

f(γ(s))t′γ(s) dsG(γ)dπ(γ)

=

ˆ ˆ 1

0

f(γ(s))h(γ(s)) dsdπ(γ)

≤ 1

ℓ

ˆ

fgh dm,

where we have used property b) in the last inequality. Since gh ≤ 1, this shows that

de#(σ1 ⊗ L1)

dm
∈ L∞(m).

Finally, in order to get an L∞-control also on the marginals at t = 0, t = 1, we set

α := max {1, d0 + d1}

where di ∈ Lq(m) are the densities of (ei)#π, i = 0, 1. Since α ≥ 1, setting

σ := z−1 1

α(e0) + α(e1)
σ1,

where z ≤ 1 is the normalization constant, we conclude that the previous properties of σ1 are

retained by σ. Since α ≥ di, the marginals at i of σ have density in L∞(m).

Borel measurability of the reparametrization map: We claim that γ 7→ G(γ) and γ 7→ Hγ

considered above are Borel functions. This then shows that H(Γ) is Souslin [14, Theorem 6.7.3]

and that σ1 is a Borel measure. This yields also that σ is a Borel measure. We first prove the

claim under the assumption that h is continuous and then prove stability of the conclusion under

pointwise convergence; then the measurability in our case follows from a standard monotone class
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argument, cf. [17, Chapter 1, Theorem 21]. Given that h : X → (0, 1] is continuous,

γ 7→ (s 7→
ˆ s

0

h(γ(r)) dr)

is continuous from C([0, 1]; X) to C([0, 1]). This, in turn, yields the continuity of

C([0, 1]; X) → C([0, 1]), γ 7→ tγ

Since every tγ : [0, 1] → [0, 1] is a homeomorphism, the above map takes values in the topological

group of self-homeomorphisms of [0, 1] (with composition being the group operation and topology

arising from uniform convergence). So

C([0, 1]; X) → C([0, 1]), γ 7→ sγ

is continuous by the continuity of the inverse operation. Hence γ 7→ Hγ is continuous as a compo-

sition of continuous maps. Next, if hn : X → (0, 1] are Borel functions for which the corresponding

Hn
γ are Borel and h = limn→∞ hn pointwise everywhere, then we claim that the limiting Hγ is

also Borel. To this end, observe that

(s 7→
ˆ s

0

hn(γ(r)) dr) → (s 7→
ˆ s

0

h(γ(r)) dr)

in C([0, 1]) by dominated convergence. This implies that the corresponding tnγ converge uniformly

to tγ , so snγ → sγ uniformly. Consequently, Hn
γ → Hγ uniformly. Hence Hγ is Borel as well.

Similar argument holds for γ 7→ G(γ).

Lemma 3.24. Let (X, d,m) be a metric measure space and let p ∈ [1,∞). Let f ∈ Lp(m) and

ρ ∈ Lp
ext(m)+ be given and let Γq

f,ρ be defined as in (3.13). The family Γq
f,ρ satisfies π(Γq

f,ρ) = 0

for every q-test plan π on X if and only if Mod1p(Γ
q
f,ρ) = 0.

Proof. Proof of (=⇒): We argue by contradiction: assuming Mod1p(Γ
q
f,ρ) > 0, we need to prove

the existence of a q-test plan π such that π(Γq
f,ρ) > 0. By Lemma 3.21, there is C > 0 and a

compact subfamily Γ ⊆ Γq
f,ρ of C-Lipschitz curves with 0 < Mod1p(Γ) < +∞. In particular, their

images lie in a compact set K ⊂ X by the continuity of the evaluation map. Proposition 3.20

provides us with πΓ ∈ P(Γ) admitting 1-barycenter in Lq(m). The definition of Γq
f,ρ implies that

every γ ∈ Γq
f,ρ has positive length. In particular, by the πΓ-integrability of the length functional

and Lusin’s theorem, there is a compact family Γ′ ⊆ Γ and ℓ ∈ (0, 1) such that ℓ(γ) ≥ ℓ for every

γ ∈ Γ′ and πΓ(Γ
′) ≥ (1 − ℓ). Observe that πΓ′ := π|Γ′/π(Γ′) ∈ P(Γ′) admits a 1-barycenter in

Lq(m).

Case p = 1. Since πΓ′(Γ∞
f,ρ) ≥ πΓ′(Γ′) > 0, Lemma 3.22 yields the existence of an ∞-test plan π

with π(Γ∞
f,ρ) > 0.

Case p > 1. In this case, we first apply Theorem 3.23 to πΓ′ in order to get a plan σ ∈
P(C([0, 1]; X)) and a Borel reparametrization map H so that σ is concentrated on the Souslin set

H(Γ′) ⊆ ACq([0, 1]; X), has finite q-energy and has a parametric 1-barycenter in L∞(m). Since the

condition determining the elements in the family Γq
f,ρ is reparametrization invariant, we have that

H(Γ′) ⊆ Γq
f,ρ. In particular, σ(Γq

f,ρ) = 1. Then, as in the case p = 1, Lemma 3.22 implies that

there is a q-test plan satisfying π(Γq
f,ρ) > 0.

Proof of (⇐=): Since q-test plans have barycenter in Lq(m), the conclusion follows directly from

the estimate (3.5).
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Lemma 3.25. Let (X, d,m) be a metric measure space and let p ∈ [1,∞), f ∈ Lp(m) and ρ ∈
Lp
ext(m)+ be given. Let Γq

f,ρ be as in (3.13) for the Hölder conjugate q of p. Set

Cf,ρ :=

{
γ ∈ LIP([0, 1]; X)

∣∣∣∣
f ◦ γ has an absolutely continuous representative fγ
satisfying |(fγ)′t| ≤ ρ(γt)|γ̇t| < +∞ for L1-a.e. t ∈ (0, 1)

}
. (3.16)

If Mod1p(Γ
q
f,ρ) = 0, then Modp(LIP([0, 1]; X) \ Cf,ρ) = 0.

Proof. By Lemma 3.4 (6), there exists h ∈ Lp
ext(m)+ such that

Γq
f,ρ ⊆

{
γ ∈ AC([0, 1]; X)

∣∣∣ h(γ0) + h(γ1) +

ˆ

γ

h ds = +∞
}

=: H̃

We can, by simply replacing h by ρ+ h, assume that ρ ≤ h everywhere in X. We further set

H :=

{
γ ∈ AC([0, 1]; X)

∣∣∣
ˆ

γ

h ds = +∞
}
,

so that Lemma 3.4 (5) shows that Modp(H) = 0. We show that LIP([0, 1]; X) \H ⊆ Cf,ρ. Since

Cf,ρ contains all constant curves and is invariant under absolutely continuous reparametrizations

(cf. Lemma 2.14), it suffices to prove the conclusion for nonconstant curves γ ∈ LIP([0, 1]; X) \H
that have constant speed. For such a γ and notice that, since the speed is positive and constant,

h(γ) is finite L1-a.e. in (0, 1). Consequently, we have that h(γs) + h(γt) < +∞ for L2-a.e.

(s, t) ∈ (0, 1)2. Given 0 < s < t < 1 we define γ
(s,t)
r := γs+r(t−s) for every r ∈ [0, 1]. Thus, for

L2-a.e. (s, t) ∈ (0, 1)2 it holds

h
(
γ
(s,t)
0

)
= h(γs) < +∞, h

(
γ
(s,t)
1

)
= h(γt) < +∞ and

ˆ

γ(s,t)

h ds ≤
ˆ

γ

h ds < +∞.

This implies that γ(s,t) ∈ LIP([0, 1]; X) \ H̃ ⊆ LIP([0, 1]; X) \ Γq
f,ρ. Then we have that

∣∣f(γt)− f(γs)
∣∣ =

∣∣f(γ(s,t)1 )− f(γ
(s,t)
0 )

∣∣ ≤
ˆ

γ(s,t)

ρ ds =

ˆ 1

0

ρ(γ(s,t)r )|γ̇(s,t)r | dr =
ˆ t

s

ρ(γr)|γ̇r| dr.

We are now in a position to apply Lemma 2.12 to f(γ) and deduce that γ ∈ Cf,ρ. This concludes

the proof.

Corollary 3.26. Let (X, d,m) be a metric measure space and let p ∈ [1,∞). Given f ∈ Lp(m)

and ρ ∈ Lp
ext(m)+, assume that Mod1p(Γ

q
f,ρ) = 0. Then there exists an m-measurable representative

f̂ : X → R of f such that for Modp-a.e. curve γ ∈ Cf,ρ we have

f̂ ◦ γ ≡ fγ in [0, 1], (3.17)

where Cf,ρ is defined as in (3.16).

Proof. Let us consider h0, h1 ∈ Lp
ext(m)+ such that

LIP([0, 1]; X) \ Cf,ρ ⊂ Γ0 :=

{
γ ∈ C([0, 1]; X) |

ˆ

γ

h0ds = ∞
}

Γq
f,ρ ⊂ Γ1 :=

{
γ ∈ C([0, 1]; X) | h1(γ0) + h1(γ1) +

ˆ

γ

h1ds = ∞
}
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The existence of h1 is guaranteed by Lemma 3.4(6) and the existence of h0 by the same lemma

and Lemma 3.25. By considering h0 + h1 + |f | + ρ in place of h0 and h1, we may assume that

h ≡ hi for i = 0, 1 and that h ≥ |f |+ ρ everywhere in X. We assume these from now on, recalling

also that Modp(Γ0) = 0 and Mod1p(Γ1) = 0 from Lemma 3.4. We denote

G := {γ ∈ LIP([0, 1]; X) | essinf|γ̇| > 0} \ Γ0.

Observe that if γ ∈ G, the set of points N(γ) for which h(γ(t)) = ∞ or f(γ(t)) 6= fγ(t) (for

the absolutely continuous representative fγ of f ◦ γ) is negligible for the Lebesgue measure. In

particular, the set [0, 1] \N(γ) is dense in [0, 1].

Consider θ1, θ2 ∈ G and nonconstant affine maps A1, A2 : [0, 1] → R for which the concatenation

θs :=

{
θ1 ◦A1(s), s ∈ [0, 1/2]

θ2 ◦A2(s), s ∈ (1/2, 1]

is well-defined and continuous. It is clear that θ ∈ G. Notice also that there are sn ∈ (A1)−1([0, 1]\
N(θ1)) ∩ (0, 1/2) and tn ∈ (A2)−1([0, 1] \N(θ2))) ∩ (1/2, 1) converging to 1/2. Consequently,

γns := θsn+s(tn−sn), s ∈ [0, 1]

defines an element of G \ Γ1. Hence

|(fθ2)A2(tn) − (fθ1)A1(sn)| = |f(θtn)− f(θsn)| = |f(γn(1))− f(γn(0))|

≤
ˆ

γn

ρ ds =

ˆ

[sn,tn]

(ρ ◦ θ)|θ̇| ds ≤
ˆ

[sn,tn]

(h ◦ θ)|θ̇| ds.

The upper bound converges to zero as n→ ∞ by the absolute continuity of integration. We deduce

that the concatenation of fθ2 ◦A2 and fθ1 ◦A1 defines an absolutely continuous representative of

f ◦ θ. Given this technical observation, we define a function f̂ : X → R as

f̂(x) :=

{
(fγ)r, if x = γr for some γ ∈ G and r ∈ [0, 1]

f(x), otherwise.

Well-posedness of the definition follows from the concatenation argument above.

We claim that f̂ coincides with f in the set {h < +∞}. Indeed, if we have h(x) < ∞ and

f̂(x) 6= f(x), there is γ ∈ G and r ∈ [0, 1] so that x = γr. Consider a sequence of sn ∈ [0, 1]\N(γ),

with limn sn = r and sn 6= r for every n ∈ N. Then

γns = γsn+s(r−sn), s ∈ [0, 1]

defines an element of G \ Γ1. Therefore, as (fγ)r = (fγn)1 and (fγn)0 = f(γsn) = f(γn0 ), we have

|(fγ)r − f(γr)| ≤ |(fγ)r − (fγn)0|+ |f(γr)− (fγn)0| = |(fγn)1 − (fγn)0|+ |f(γn1 )− f(γn0 )|

≤
ˆ

γn

ρ ds+

ˆ

γn

ρ ds ≤ 2

ˆ

γn

h ds.

As before, the term on the right converge to zero as n → ∞ by absolute continuity of integra-

tion. Hence fγ(r) = f(γ(r)), a contradiction. Therefore f̂ ≡ f in {h < +∞}, so f̂ defines a

representative of f . The proof is complete.
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3.4 Bibliographical notes

• The notion of p-modulus has been introduced in [32] (in the more general setting of positive

measures, instead of curves). For the p-modulus (here denoted by Modp) on the space of

curves and its use in the metric Sobolev space theory, we refer to [42]. Its properties were

then studied in [5], in order to provide a relation with test plans. For this reason, in the

same paper the notion of plan with parametric barycenter (corresponding to our notion of

0-parametric barycenter in Definition 3.18) has been introduced.

• The notion of Mod1p has been introduced in [61] (therein denoted by M̃odp). When p > 1,

Mod1p was used in [61] to establish the equivalence between the Newtonian Sobolev space

and the Sobolev space defined via a notion of plans with nonparametric barycenter (here

denoted by Bar(π)).

• Following [61], we introduce in this section the corresponding notions of plans with non-

parametric barycenter Bar(π) in Lq(m). Plans with q-integrable 1-barycenter Bar1(π) cor-

respond to the nonparametric q-test plans in [61]. The notion of a q-test plan has been first

introduced in [6, 7].

• In the case p ∈ (1,∞), the duality relation between plans with barycenter in Lq(m) and

the p-modulus as in Proposition 3.20 has been first proven in [5] (relying on the use of

Hahn–Banach theorem) and later in [61], by means of von Neumann min-max principle.

• The results about the negligibility of the family Γq
f,ρ with respect to different notions of plans

and modulus follow mainly from the ideas of [5] and [61]. However, the novelty in our proof

is the existence of a compact family in Γq
f,ρ in Lemma 3.22. We provide a unified argument,

which covers also the case p = 1. When p > 1, a different proof – leveraging on the fact that

Modp is a Choquet capacity – was given in [5], but a different strategy is needed for p = 1

since Mod1 is not a Choquet capacity (see [44]).

3.5 List of symbols

Admλ(Γ) set of λ-admissible functions for Γ; Definition 3.1

Modλp (p, λ)-modulus; (3.1)

Modp shorthand notation for Mod0p; Remark 3.3

Barλ(π) λ-barycenter of a plan π; (3.3)

Bar(π) shorthand notation for Bar0(π); Definition 3.10

Eq(π) q-energy of a plan π; (3.6)

Comp(π) compression constant of a q-test plan π; Definition 3.14

pBarλ(π) parametric λ-barycenter of a plan π; Definition 3.18

4 Lipschitz derivations

This section is devoted to the study of the notion of Lipschitz derivation in the sense of Di Marino

[18], needed for the ‘integration-by-parts’ definition of the Sobolev space. The latter has been

inspired by the one introduced by Weaver in [69] – we will also show the connection between the

two in the last part of this section.
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4.1 Definitions and main properties

Definition 4.1 (Lipschitz derivation). Let (X, d,m) be a metric measure space and let q ∈ [1,∞].

Let A be a subalgebra of LIPb(X). Let ̺ : A → L∞(m)+ be a given function, which we call a

gauge function on X, having the property that ̺(f) vanishes in the complement of the support

of f .

Then by a (̺, q)-Lipschitz derivation on X we mean a linear operator b : A → Lq(m) such

that:

i) Weak locality. There exists a function G ∈ Lq(m)+ such that

|b(f)| ≤ G̺(f) for every f ∈ A . (4.1)

ii) Leibniz rule. b(fg) = f b(g) + g b(f) for every f, g ∈ A .

We denote by Derq(X; ̺) the space of all (̺, q)-Lipschitz derivations on X.

To any derivation b ∈ Derq(X; ̺) we associate the function |b| ∈ Lq(m)+ defined as follows:

|b| :=
∧{

G ∈ Lq(m)+
∣∣ (4.1) holds

}
=

∨

f∈A

1

m

{̺(f) 6=0}

|b(f)|
̺(f)

. (4.2)

Moreover, given b, b̃ ∈ Derq(X; ̺) and λ ∈ R, we define

(b+ b̃)(f) := b(f) + b̃(f) for every f ∈ A ,

(λb)(f) := λ b(f) for every f ∈ A .

It can be readily checked that b + b̃, λb ∈ Derq(X; ̺) and that Derq(X; ̺) is a vector space with

respect to such operations. Letting ‖ · ‖Derq(X;̺) : Derq(X; ̺) → [0,∞) be given by

‖b‖Derq(X;̺) := ‖|b|‖Lq(m) for every b ∈ Derq(X; ̺),

we also have that
(
Derq(X; ̺), ‖ · ‖Derq(X;̺)

)
is a Banach space, as standard verifications show.

Furthermore, given any b ∈ Derq(X; ̺) and ϕ ∈ L∞(m), we define ϕb : A → Lq(m) as

(ϕb)(f) := ϕ b(f) for every f ∈ A . (4.3)

One can readily check that ϕb ∈ Derq(X; ̺) and |ϕb| = |ϕ||b|. It follows that Derq(X; ̺) is a

module over the ring L∞(m) if endowed with the multiplication (ϕ, b) 7→ ϕb defined in (4.3).

In order to define the space of (̺, q)-Lipschitz derivations with (measure-valued) divergence, we

need to assume further that the subalgebra A has the following property:

Abs := A ∩ LIPbs(X) is dense in Lq(µ) for every µ ∈ M+(X), (4.4)

where we mean weak (or, equivalently, strong) density if q <∞, whereas weak∗ density if q = ∞.

Notice that both LIPbs(X) and LIPb(X) satisfy (4.4).

Definition 4.2 (Derivations with divergence). Let (X, d,m) be a metric measure space and let

q ∈ [1,∞]. Let A be a subalgebra of LIPb(X) satisfying (4.4) and let ̺ : A → L∞(m)+ be a gauge
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function on X. Let b ∈ Derq(X; ̺) be a given derivation. Then we say b has (measure-valued)

divergence if there exists a measure div(b) ∈ M(X) such that

ˆ

b(f) dm = −
ˆ

f ddiv(b) for every f ∈ Abs.

The divergence div(b) is uniquely determined by the strong density of Abs in L1(|div(b)|). We

denote by Derq
M
(X; ̺) the space of all those (̺, q)-Lipschitz derivations on X having divergence.

Moreover, for any exponent r ∈ [1,∞] we define the space Derqr(X; ̺) as

Derqr(X; ̺) :=

{
b ∈ Derq

M
(X; ̺)

∣∣∣∣ div(b) ≪ m, div(b) :=
ddiv(b)

dm
∈ Lr(m)

}
. (4.5)

Both Derq
M
(X; ̺) and Derqr(X; ̺) are (not necessarily closed) vector subspaces of Derq(X; ̺).

Moreover, Derq
M
(X; ̺) ∋ b 7→ div(b) ∈ M(X) and Derqr(X; ̺) ∋ b 7→ div(b) ∈ Lr(m) are linear.

Proposition 4.3 (Leibniz rule for the divergence). Let (X, d,m) be a metric measure space and

let q ∈ [1,∞]. Let A be a subalgebra of LIPb(X) satisfying (4.4) and let ̺ : A → L∞(m)+ be a

gauge function on X. Let ϕ ∈ Abs and b ∈ Derq
M
(X; ̺) be given. Then it holds ϕb ∈ Derq

M
(X; ̺)

and

div(ϕb) = ϕdiv(b) + b(ϕ)m. (4.6)

Moreover, if in addition b ∈ Derqr(X; ̺) for some r ∈ [1,∞], then ϕb ∈ ⋂
s∈[1,q∧r]

Derqs(X; ̺) and

div(ϕb) = ϕdiv(b) + b(ϕ). (4.7)

In particular, the spaces Derq
M
(X; ̺) and Derqq(X; ̺) are modules over the ring A .

Proof. Given any function f ∈ Abs, we have that ϕf ∈ Abs and b(ϕf) = ϕ b(f) + fb(ϕ), so that

ˆ

(ϕb)(f) dm =

ˆ

b(ϕf) dm−
ˆ

fb(ϕ) dm = −
ˆ

f d(ϕdiv(b) + b(ϕ)m),

which gives ϕb ∈ Derq
M
(X; ̺) and (4.6). If in addition b ∈ Derqr(X; ̺), then ϕdiv(b) ∈ L1(m)∩Lr(m)

and b(ϕ) ∈ L1(m) ∩ Lq(m), so that ϕdiv(b) + b(ϕ) ∈ L1(m) ∩ Lq∧r(m). It follows that ϕb belongs

to Derqs(X; ̺) for every s ∈ [1, q ∧ r] and that (4.7) is verified. The proof is complete.

4.2 Derivations in the sense of Di Marino

Definition 4.4 (Derivations in the sense of Di Marino). Let (X, d,m) be a metric measure space

and q, r ∈ [1,∞]. Consider the gauge function lipa : LIPbs(X) → L∞(m)+. Then, with A =

LIPbs(X), we define

Derq(X) := Derq(X; lipa), Derq
M
(X) := Derq

M
(X; lipa), Derqr(X) := Derqr(X; lipa). (4.8)

Moreover, we define the Lipschitz tangent module of (X, d,m) as

Lq
Lip(TX) := clDerq(X)(Derq

M
(X)). (4.9)

Since Derq
M
(X) is a module over LIPbs(X), and LIPbs(X) is weakly∗ dense in L∞(m), one has

Lq
Lip(TX) is an L∞(m)-submodule of Derq(X).
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Also, since any L∞(m) function is the pointwise m-a.e. limit of LIPbs(X) functions uniformly

bounded in L∞(m) (by Lemma 2.2), using Proposition 4.3 the proof of the following lemma is

immediate:

Lemma 4.5. Let (X, d,m) be a metric measure space and q ∈ [1,∞]. It holds that

clDerq(X)(L
∞(m)-span of Derqq(X)) = clDerq(X)(Derqq(X)) ⊆ Lq

Lip(TX).

In particular, the Derq(X)-closure of Derqq(X) is closed under taking L∞(m)-linear combinations.

Lemma 4.6 (Strong locality property). Let (X, d,m) be a metric measure space and q ∈ [1,∞].

Let b ∈ Lq
Lip(TX) be given. Then for every f, g ∈ LIPbs(X) we have that

b(f) = b(g) holds m-a.e. on {f = g}. (4.10)

In particular, for every closed set C ⊆ X we have that

|b(f)| ≤ |b| lipa(f |C) holds m-a.e. on C. (4.11)

Proof. First of all, observe that (by approximation) it is enough to check (4.10) for b ∈ Derq
M
(X).

Define h := f − g ∈ LIPbs(X) and fix an arbitrary compact set K ⊆ {h = 0}. Consider the

cut-off functions ϕn := (1 − n d(·,K)) ∨ 0 ∈ LIPbs(X) for every n ∈ N. Notice that 0 ≤ ϕn ≤ 1,

ϕn(x) → 1K(x) for every x ∈ X, and lipa(ϕn) ≤ n1B1/n(K)\K . Hence, for ψ ∈ LIPbs(X) one has

ˆ

ϕnψ b(h) dm =

ˆ

b(ϕnψh)− ϕnh b(ψ)− ψh b(ϕn) dm

= −
ˆ

ϕnh d(ψ div(b) + b(ψ)m)−
ˆ

ψh b(ϕn) dm.

(4.12)

Since ψ div(b) + b(ψ)m has bounded support and ϕnh → 1Kh = 0 everywhere, by Dominated

Convergence Theorem we see that
´

ϕnh d(ψ div(b) + b(ψ)m) → 0 as n→ ∞. Moreover, we have

∣∣∣∣
ˆ

ψh b(ϕn) dm

∣∣∣∣ ≤ ‖ψ‖Cb(X)

ˆ

|b||h|lipa(ϕn) dm ≤ ‖ψ‖Cb(X)

ˆ

B1/n(K)\K

n|b||h| dm

≤ ‖ψ‖Cb(X)Lip(h)

ˆ

B1/n(K)\K

|b| dm → 0 as n→ ∞,

where we used the fact that |h(x)| ≤ Lip(h)d(x,K) ≤ 1
nLip(h) for every x ∈ B1/n(K) and the

Dominated Convergence Theorem. We also have that
´

ϕnψ b(h) dm →
´

K
ψ b(h) dm as n → ∞,

again by the Dominated Convergence Theorem. All in all, recalling also (4.12) we conclude that

ˆ

K

ψ b(h) dm = lim
n→∞

ˆ

ϕnψ b(h) dm = 0 for every ψ ∈ LIPbs(X).

Since LIPbs(X) is weakly∗ dense in L∞(X), we deduce that b(f) − b(g) = b(h) = 0 m-a.e. on K.

Given that K was an arbitrary compact subset of {f = g}, by the inner regularity of m we can

finally conclude that b(f)− b(g) = 0 holds m-a.e. on {f = g}, thus proving the first claim (4.10).

Let us now pass to the verification of (4.11). Let k ∈ N be fixed. Then we can find a sequence

of points (xi)i ⊆ C such that C ⊆ ⋃
i∈NB1/k(xi). By McShane’s Extension Theorem (and a

standard cut-off argument), for any i ∈ N we can find a Lipschitz function fi ∈ LIPbs(X) such
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that fi|B1/k(xi)∩C = f |B1/k(xi)∩C and Lip(fi) = Lip(f ;B1/k(xi) ∩ C). Therefore, (4.10) yields

|b(f)|(x) = |b(fi)|(x) ≤ |b|(x) lipa(fi)(x) ≤ Lip(f ;B1/k(xi) ∩C)|b|(x) ≤ Lip(f ;B2/k(x) ∩C)|b|(x)

for m-a.e. x ∈ B1/k(xi) ∩ C, whence it follows that |b(f)|(x) ≤ |b|(x)Lip(f |C ;B2/k(x) ∩ C) holds

for m-a.e. x ∈ C. By the arbitrariness of k ∈ N, we can finally conclude (4.11).

Corollary 4.7. Let (X, d,m) be a metric measure space and q ∈ [1,∞]. Fix any b ∈ Lq
Lip(TX).

Then there exists a unique linear extension b̄ : LIP(X) → Lq(m) of b such that

b̄(fg) = f b̄(g) + g b̄(f) for every f, g ∈ LIP(X).

Moreover, it holds that |b̄(f)| ≤ |b| lipa(f) for every f ∈ LIP(X). If, in addition, b ∈ Derq
M
(X),

the divergence measure div(b) belongs to M(X) and |b| ∈ L1(m), then it holds that

ˆ

b̄(f) dm = −
ˆ

f ddiv(b) for every f ∈ LIPb(X). (4.13)

Finally, if b ∈ Lq
Lip(TX), f, g ∈ LIP(X) and C ⊆ X is closed, then the two strong locality properties

(4.10) and (4.11) of Lemma 4.6 hold for b.

Proof. The uniqueness of b follow readily from the Leibniz rule. Indeed, if b and b̂ are two such

extensions of b, ψ ∈ LIPbs(X) and f ∈ LIP(X), then by the Leibniz rule and extension property,

b(ψf) = ψb(f) + fb(ψ),

b̂(ψf) = ψb̂(f) + fb(ψ), and

b(ψf) = b(ψf) = b̂(ψf).

So ψb(f) = ψb̂(f) for every ψ ∈ LIPbs(X). Thus b(f) = b̂(f) for every f ∈ LIP(X), giving the

claimed uniqueness. It remains to argue existence of the extension. To this end, fix x0 ∈ X and

a strictly increasing sequence of radii rn > 0 converging to ∞. Let ψn ∈ LIPbs(X) such that

0 ≤ ψn ≤ 1, B(x0, rn) = {ψn = 1}, supported on B(x0, rn+1) and that is 1/(rn+1 − rn)-Lipschitz.

Then we have that

{ψn 6= 0} ⊂ {ψm = 1} for every m > n. (4.14)

In the following, we consider rn = 2n for n ∈ N and ψn : X → [0, 1] by

ψn = max

{
0,min

{
d(x0, ·)− rn
rn+1 − rn

, 1

}}
.

Now we define the function

b̄(f) = lim
n→∞

b(ψnf) for f ∈ LIP(X). (4.15)

We argue well-posedness as follows. Observe that (4.14) yields that ψ2
mψnf = ψnf in {ψn0 6= 0}

for m > n > n0. This fact, (4.10) and the Leibniz rule for b give

b(ψnf) = (ψmψn)b(ψmf) + (ψmf)b(ψmψn) (4.16)

= ψnb(ψmf) in {ψn0 6= 0} for m > n > n0.
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Here ψmψn = ψn by (4.14) and b(ψmψn) = b(1) = 0 in {ψn0 6= 0} by (4.10) and (4.11). Thus

(b(ψnf))
∞
n=n0

has a pointwise limit in {ψn0 6= 0} for every n0 ∈ N. So (4.15) is well-defined in

L0(m). Moreover, by taking the limit m→ ∞, we see from (4.16) that

b(ψnf) = ψnb̄(f) in {ψn0 6= 0} for n > n0. (4.17)

By (4.11), we have that

|b(ψnf)| ≤ |b|(|ψn|lipa(f) + |f |lipa(ψn)) = |b|(|ψn|lipa(f)) in {ψn0 6= 0} for n > n0. (4.18)

So combining (4.17) and (4.18) and taking the limit n→ ∞ and then n0 → ∞ gives that

|b̄(f)| ≤ |b|lipa(f) for every f ∈ LIP(X).

Lastly, an argument similar to (4.16) gives that

b(ψnfg) = b((ψnf)(ψng)) = (ψnf)b(ψng) + (ψng)b(ψnf) = fb(ψng) + gb(ψnf)

in {ψn0 6= 0} for n > n0. Passing to the limit n→ ∞ and then to n0 → ∞ gives the Leibniz rule

for b̄.

To deduce (4.13), it suffices to recall (4.15) and apply dominated convergence. The fact that

b(f) = b(g) m-a.e. on {f = g} for every f, g ∈ LIP(X) follows from (4.13) and (4.15). Similar

reasoning based on (4.18) and the validify of (4.11) in LIPbs(X) extends (4.11) for f ∈ LIP(X)

and closed C ⊆ X.

Given the uniqueness part of the above Corollary 4.7, we can unambiguously keep the same

notation b to denote the extension b̄ of b to LIP(X).

Proposition 4.8. Let (X, d,m) be a metric measure space, q ∈ [1,∞] and b ∈ Lq
Lip(TX). Let

(fn)n ⊆ LIP(X) be such that supn Lip(fn) < +∞ and fn(x) → f(x) for every x ∈ X. Then

f ∈ LIP(X). Moreover, b(fn) converge weakly (weakly∗ in the case q = ∞) in Lq(m) to b(f).

Proof. Let us denote L := supn Lip(fn) < +∞. Since |b(fn)| ≤ L|b|, we need only to check

convergence in duality with ϕ ∈ LIPbs(X). In addition, as

∣∣∣∣
ˆ

ϕ b(fn) dm−
ˆ

ϕ c(fn) dm

∣∣∣∣ ≤ L

ˆ

|b− c||ϕ| dm ∀c ∈ Derq(X)

and an analogous property holds for the limit function f or in the case q = ∞, by the definition

of Lq
Lip(TX) we can also assume that b ∈ Derq

M
(X). Under these additional assumptions it is

sufficient to check the convergence properties

ˆ

fnϕddiv(b) →
ˆ

fϕddiv(b) and

ˆ

fn b(ϕ) dm →
ˆ

f b(ϕ) dm.

Both follow by the dominated convergence theorem, since fn are uniformly bounded on spt(ϕ).
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4.2.1 Derivations induced by plans

Lemma 4.9. Let (X, d,m) be a metric measure space and let q ∈ (1,∞]. Let π be a plan with

barycenter in Lq(m). For any f ∈ LIPbs(X), the operator Tf : L
p(m) → L1(π) given by

Tf (g)(γ) :=

ˆ

g ◦ γ dµf◦γ for every g ∈ Lp(m) and π-a.e. γ (4.19)

is well-defined, linear and continuous. More precisely, for every g ∈ Lp(m) it holds that

‖Tf(g)‖L1(π) ≤
ˆ

|g| lip(f)Bar(π) dm ≤ Lip(f)‖g‖Lp(m)‖Bar(π)‖Lq(m). (4.20)

Proof. Given any g ∈ Lp(m), we can find a sequence (gn)n ⊆ LIPbs(X) such that gn(x) → g(x) for

m-a.e. x ∈ X and supn |gn| ≤ h m-a.e. on X for some h ∈ Lp(m)+. Since
´

γ#sγ dπ(γ) = Π0
π
≪ m,

and sf◦γ ≪ sγ for π-a.e. γ by (2.43), from the m-a.e. convergence gn → g we deduce that for

π-a.e. γ it holds that gn ◦ γ → g ◦ γ in the sf◦γ-a.e. sense. Similarly, from the m-a.e. inequality

supn |gn| ≤ h it follows that supn |gn| ◦ γ ≤ h ◦ γ holds sf◦γ-a.e. for π-a.e. γ. Given that

ˆˆ

h ◦ γ dsf◦γ dπ(γ)
(2.43)

≤
ˆˆ

(h lip(f)) ◦ γ dsγ dπ(γ) =
ˆ

h lip(f) dΠ0
π

=

ˆ

h lip(f)Bar(π) dm ≤ Lip(f)‖h‖Lp(m)‖Bar(π)‖Lq(m) < +∞,

we deduce that h◦γ ∈ L1(sf◦γ) for π-a.e. γ. Hence, (2.45) and the dominated convergence theorem

give that
´

gn ◦ γ dµf◦γ →
´

g ◦ γ dµf◦γ for π-a.e. γ, so that γ 7→ T̄f(g)(γ) :=
´

g ◦ γ dµf◦γ is a

π-measurable function thanks to Corollary 2.18. Now observe that (2.45) and (2.43) yield

|T̄f (g)(γ)| ≤
ˆ

|g| ◦ γ dsf◦γ ≤
ˆ

(|g| lip(f)) ◦ γ dsγ for every γ ∈ R([0, 1]; X).

By integrating with respect to π, we thus obtain that

ˆ

|T̄f(g)| dπ ≤
ˆˆ

|g| lip(f) dγ#sγ dπ(γ) =
ˆ

|g| lip(f)Bar(π) dm

≤ Lip(f)‖g‖Lp(m)‖Bar(π)‖Lq(m) < +∞.

This shows that T̄f (g) is integrable with respect to π and π-a.e. invariant under modifications of

the function g on m-negligible sets. Therefore, T̄f induces a well-defined, linear, and continuous

operator Tf : L
p(m) → L1(π) as in (4.19) that also satisfies (4.20). The proof is complete.

Proposition 4.10 (Derivation induced by a plan). Let (X, d,m) be a metric measure space and

let q ∈ (1,∞]. Let π be a given plan on X with barycenter in Lq(m). Then there exists a unique

derivation bπ ∈ Derq
M
(X) such that

ˆ

g bπ(f) dm =

ˆˆ

g ◦ γ dµf◦γ dπ(γ) for every (f, g) ∈ LIPbs(X)× L∞(m). (4.21)

Moreover, it holds that |bπ| ≤ Bar(π) and div(bπ) = (e0)#π − (e1)#π.

Proof. Given any f ∈ LIPbs(X), let us define Tf : L
p(m) → L1(π) as in Lemma 4.9. In particular,

the function Lp(m) ∋ g 7→
´

Tf (g) dπ ∈ R is linear and continuous. Given that Lq(m) is the dual
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of Lp(m), we deduce that there exists a unique function bπ(f) ∈ Lq(m) such that

ˆ

g bπ(f) dm =

ˆ

Tf (g) dπ =

ˆˆ

g ◦ γ dµf◦γ dπ(γ) for every g ∈ Lp(m). (4.22)

Since
´

|Tf(g)| dπ ≤
´

g lip(f)Bar(π) dm holds for every g ∈ Lp(m)+ by (4.20), we have that

|bπ(f)| ≤ Bar(π)lip(f) and thus bπ(f) ∈ L1(m). Now fix any g ∈ L∞(m) and take a sequence

(gn)n ⊆ LIPbs(X) such that gn(x) → g(x) for m-a.e. x ∈ X and supn supX |gn| < +∞. As in the

proof of Lemma 4.9, we have that gn ◦ γ → g ◦ γ in the sf◦γ-a.e. sense for π-a.e. γ, so that

ˆ

g bπ(f) dm = lim
n→∞

ˆ

gn bπ(f) dm
(4.22)
= lim

n→∞

ˆ ˆ

gn ◦ γ dµf◦γ dπ(γ) =

ˆ ˆ

g ◦ γ dµf◦γ dπ(γ)

by dominated convergence theorem. Hence, (4.21) is proved. The map bπ : LIPbs(X) → L1(m),

which is linear by Remark 2.21 4), satisfies the Leibniz rule by Remark 2.21 5). We also know that

|bπ(f)| ≤ Bar(π)lip(f) ≤ Bar(π)lipa(f) for every f ∈ LIPbs(X), thus accordingly bπ ∈ Derq(X)

and |bπ| ≤ Bar(π). Finally, for every f ∈ LIPbs(X), by using the characterization of the measure

µf◦γ given in Definition 2.16, that

ˆ

bπ(f) dm
(4.21)
=

ˆ

µf◦γ([0, 1]) dπ(γ) =

ˆ

f(γ1)− f(γ0) dπ(γ),

whence it follows that bπ ∈ Derq
M
(X) and div(bπ) = (e0)#π− (e1)#π. The proof is complete.

Proposition 4.11 (Derivation induced by a test plan). Let (X, d,m) be a metric measure space

and let q ∈ (1,∞]. Given a q-test plan π, the map bπ : LIPbs(X) → Lq(m) given by

ˆ

g bπ(f) dm =

ˆ ˆ 1

0

g(γt)(f ◦ γ)′t dt dπ(γ), for every (f, g) ∈ LIPbs(X)× Lp(m), (4.23)

defines an element of Derq∞(X), which satisfies |bπ| ≤ Bar(π) and

ˆ (
f(γ1)− f(γ0)

)
dπ(γ) =

ˆ

f div(bπ) dm, for every f ∈ L1(m). (4.24)

In measure-theoretic terms, div(bπ) = (e0)#π − (e1)#π ≪ m with bounded density.

Proof. We recall from Lemma 3.15 that π has a barycenter in Lq(m), so the existence of bπ
is immediate by Proposition 4.10. The divergence measure has a density in L∞(m) by Defini-

tion 3.14 of test plans, namely, by the property (TP1). The fact that (4.23) and (4.24) hold in

(f, g) ∈ LIPbs(X)×Lp(m) and f ∈ L1(m), respectively, follow from the corresponding identities in

Proposition 4.11 and an approximation of the elements in Lp(m) by those in L∞(m)∩Lp(m).

4.3 Derivations in the sense of Weaver

We now present the definition of derivation in the sense of Weaver, and show the connection

between the previously considered notions.

Lemma 4.12. Let (X, d,m) be a metric measure space and b : LIPb(X) → L∞(m) a linear operator.

Suppose that:

i) b is weak∗ continuous, i.e. if a sequence (fn)n ⊆ LIPb(X) of equi-Lipschitz functions

converges pointwise to some f ∈ LIPb(X), then b(fn)⇀ b(f) weakly∗ in L∞(m).
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ii) The Leibniz rule holds, i.e. b(fg) = f b(g) + g b(f) for every f, g ∈ LIPb(X).

Then for every f, g ∈ LIPb(X) it holds that b(f) = b(g) m-a.e. on {f = g}.

Proof. By linearity of b, it suffices to show that b(f) = 0 holds m-a.e. on {f = 0}. TakeM > 0 such

that |f | ≤ M on X. For any n ∈ N, define φn : R → R and ψn : R → R as φn(t) := 1 − e−nt2 and

ψn(t) := tφn(t) for every t ∈ R. Since |φ′n(t)| = 2n|t|e−nt2 ≤ 2nM for every t ∈ [−M,M ], we see

that φn|[−M,M ] is 2nM -Lipschitz and thus φn ◦ f ∈ LIPb(X). Moreover, easy computations show

that ψ′
n(t) = 2nt2e−nt2 − e−nt2 +1 ≥ 0 has maximum 1+ 2e−3/2 = ψ′

n(
√
3/2n), whence it follows

that Lip(ψn ◦ f) ≤ (1 + 2e−3/2)Lip(f) for every n ∈ N. Noticing also that (ψn ◦ f)(x) → f(x) for

every x ∈ X, we infer from the Leibniz rule and the weak∗ continuity of b that

f b(φn ◦ f) + φn ◦ f b(f) = b(f φn ◦ f) = b(ψn ◦ f)⇀ b(f) weakly∗ in L∞(m).

Since 1m

{f=0}(f b(φn ◦ f) + φn ◦ f b(f)) = 0, we deduce that 1m

{f=0}b(f) = 0, as desired.

Remark 4.13. Let b : LIPb(X) → L∞(m) be a linear operator satisfying the Leibniz rule. Then

b(λ1X) = 0 for every λ ∈ R.

Indeed, b(λ21X) = λ b(λ1X) by linearity and b(λ21X) = 2λ b(λ1X) by the Leibniz rule, whence it

follows that λ b(λ1X) = 0. If λ 6= 0, we deduce that b(λ1X) = 0. Finally, b(01X) = 0 by linearity.

Corollary 4.14. Let (X, d,m) be a metric measure space. Let b : LIPb(X) → L∞(m) be a weakly∗

continuous linear map satisfying the Leibniz rule. Fix G ∈ L0(m)+. Then the following conditions

are equivalent:

i) |b(f)| ≤ (Lip(f) + ‖f‖Cb(X))G holds m-a.e. on X for every f ∈ LIPb(X).

ii) |b(f)| ≤ (Lip(f) + ‖f‖Cb(X))1
m

spt(f)G holds m-a.e. on X for every f ∈ LIPb(X).

iii) |b(f)| ≤ Lip(f)G holds m-a.e. on X for every f ∈ LIPb(X).

iv) |b(f)| ≤ lipa(f)G holds m-a.e. on X for every f ∈ LIPb(X).

Proof. Trivially, iv) ⇒ ii) ⇒ i) and iv) ⇒ iii) ⇒ i). Let us now prove that i) ⇒ iv). Assume

i) holds and fix any f ∈ LIPb(X). Fix a sequence of radii rn ց 0. Since (X, d) is a separable

metric space, for any n ∈ N we can find a sequence (xnk )k ⊆ X such that X =
⋃

k∈NBrn(x
n
k ).

By the McShane extension theorem, for k ∈ N there exist functions fn
k ∈ LIPb(X) such that

fn
k |Brn (xn

k )
= f |Brn/2(x

n
k )

, Lip(fn
k ) = Lip(f ;Brn(x

n
k )), and infBrn (xn

k )
f ≤ fn

k (x) ≤ supBrn (xn
k )
f for

all x ∈ X. In particular, f̃n
k := fn

k − infX f
n
k ∈ LIPb(X) satisfies Lip(f̃n

k ) ≤ Lip(f ;Brn(x
n
k )). Since

supBrn (xn
k )
f−infBrn (xn

k )
f ≤ Lip(f)diam(Brn(x

n
k )) ≤ 2 Lip(f)rn, we have ‖f̃n

k ‖Cb(X) ≤ 2 Lip(f)rn.

Using Lemma 4.12, Remark 4.13, and the fact Brn(x
n
k ) ⊆ B2rn(x) for every x ∈ Brn(x

n
k ), we get

|b(f)|(x) = |b(fn
k )|(x) = |b(f̃n

k )|(x) ≤ G(x)(Lip(f̃n
k ) + ‖f̃n

k ‖Cb(X))

≤ G(x)(Lip(f ;Brn(x
n
k )) + 2Lip(f)rn) ≤ G(x)(Lip(f ;B2rn(x)) + 2Lip(f)rn)

for m-a.e. x ∈ Brn(x
n
k ). Hence, we deduce that |b(f)| ≤ GLip(f ;B2rn(·)) + 2GLip(f)rn holds

m-a.e. on X for every n ∈ N. Since lipa(f)(x) = limn Lip(f ;B2rn(x)) holds for every x ∈ X, by

letting n→ ∞ we can finally conclude that |b(f)| ≤ G lipa(f) holds m-a.e. on X, proving iv).
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Definition 4.15 (Derivations in the sense of Weaver). Let (X, d,m) be a metric measure space.

Let the gauge function ̺X : LIPb(X) → L∞(m)+ be given by ̺X (f) := (Lip(f)+ ‖f‖Cb(X))1
m

spt(f).

We say that b ∈ Der∞(X; ̺X ) is a Weaver m-derivation on X if it is weakly∗ continuous.

We denote by X (m) the set of all Weaver m-derivations on X. Given any exponent q ∈ [1,∞],

we say that b ∈ X (m) is q-integrable if |b| ∈ Lq(m) and we write b ∈ X q(m).

Remark 4.16. In view of Corollary 4.14, the spaces X (m) and X q(m) could be equivalently

defined by considering the gauge function LIPb(X) ∋ f 7→ lipa(f) instead of ̺X . Corollary 4.14

also implies that Definition 4.15 is equivalent to the original formulation by Weaver [69].

Proposition 4.17. Let (X, d,m) be a metric measure space and let q ∈ [1,∞]. Let us define the

operator ιq : X
q(m) → Derq(X) as ιq(b) := b|LIPbs(X) for every b ∈ X

q(m), namely

ιq(b)(f) := b(f) for every b ∈ X
q(m) and f ∈ LIPbs(X).

Then ιq is well-defined, L∞(m)-linear, and satisfies |ιq(b)| = |b| for every b ∈ X q(m). Moreover,

Lq
Lip(TX) ∩Der∞(X) ⊆ ιq(X

q(m)).

Proof. The first part of the statement follows from the equivalence ii) ⇔ iv) of Corollary 4.14. To

prove the last part of the statement, fix any b ∈ Lq
Lip(TX)∩Der∞(X). Consider the extension b̄ of

b constructed in Corollary 4.7 and denote by b̄ its restriction to LIPb(X). Since |b̄(f)| ≤ |b| lipa(f)
for every f ∈ LIPb(X) and |b| ∈ L∞(m), we see that b̄(LIPb(X)) ⊆ L∞(m). To prove that

b̄ ∈ X q(m), it only remains to show that b̄ is weakly∗ continuous. When q = ∞, this follows

directly from Proposition 4.8. When q < ∞, Proposition 4.8 ensures that b̄(f) ⇀ b̄(f) weakly

in Lq(m) if (fn)n ⊆ LIPb(X) and f ∈ LIPb(X) satisfy L := supn Lip(fn) < +∞ and fn → f

pointwise. Now fix any g ∈ L1(m). Since g|b| ∈ L1(m), for any ε > 0 we can find a bounded Borel

set B ⊆ X such that 1m

Bg ∈ Lp(m) and 2L
´

X\B
|g||b| dm ≤ ε. We can then find nε ∈ N such that∣∣ ´

B
g b̄(fn) dm−

´

B
g b̄(f) dm

∣∣ ≤ ε for every n ≥ nε. Therefore, for every n ≥ nε we can estimate

∣∣∣∣
ˆ

g b̄(fn) dm−
ˆ

g b̄(f) dm

∣∣∣∣ ≤
∣∣∣∣
ˆ

B

g b̄(fn) dm−
ˆ

B

g b̄(f) dm

∣∣∣∣+
ˆ

X\B

|g||b̄(fn − f)| dm

≤ ε+ Lip(fn − f)

ˆ

X\B

|g||b| dm ≤ ε+ 2L

ˆ

X\B

|g||b| dm ≤ 2ε,

which shows that
´

g b̄(fn) dm →
´

g b̄(f) dm, and thus b̄(fn)⇀ b̄(f) weakly∗ in L∞(m). All in all,

we proved that b̄ ∈ X q(m), so that accordingly b = ιq(b̄) ∈ ιb(X
q(m)). The proof is complete.

4.4 Bibliographical notes

• The notion of Lipschitz derivation has been introduced in [69], as a bounded linear and

weakly∗ continuous map from the space (LIPb(X), ‖ · ‖∞ + Lip(·)) to L∞(m), satisfying the

Leibniz rule. The argument in Corollary 4.14 for showing the equivalence of this notion with

the one in Definition 4.15 follows closely the ideas presented in [63, Lemma 3.157]. In the

latter work the relation between Weaver’s derivations and currents has been investigated.

We will elaborate on this in the follow-up work [8].

• In [19], the notion of q-derivation with q-divergence has been introduced (here denoted by

Derqq(X)). We recall here its properties and generalize the results to the case of derivations

with measure-valued divergence.
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• In [34], also the notion of Sobolev derivation has been considered – its relation with Lipschitz

derivations will be studied in our follow-up work [8].

4.5 List of symbols

A a subalgebra of LIPb(X); Definition 4.1

̺ a gauge function ̺ : A → L∞(m)+ on X; Definition 4.1

Derq(X; ̺) space of (̺, q)-Lipschitz derivations on X; Definition 4.1

|b| pointwise norm of a derivation b ∈ Derq(X; ̺); (4.2)

Abs shorthand notation for A ∩ LIPbs(X); (4.4)

div(b) measure-valued divergence of a derivation b ∈ Derq(X; ̺); Definition 4.2

Derq
M
(X; ̺) (̺, q)-Lipschitz derivations having measure-valued divergence; Definition 4.2

Derqr(X; ̺) space of (̺, q)-Lipschitz derivations having divergence in Lr(m); (4.5)

div(b) the divergence div(b) ∈ Lr(m) of a derivation b ∈ Derqr(X; ̺); (4.5)

Derq(X) space Derq(X) := Derq(X; lipa) of derivations in the sense of Di Marino; (4.8)

Derq
M
(X) shorthand notation for Derq

M
(X; lipa); (4.8)

Derqr(X) shorthand notation for Derqr(X; lipa); (4.8)

Lq
Lip(TX) the Lipschitz tangent module Lq

Lip(TX) := clDerq(X)(Derq
M
(X)) of X; (4.9)

bπ derivation induced by a plan π; Proposition 4.10

X (m) space of Weaver m-derivations on X; Definition 4.15

X q(m) space of q-integrable Weaver m-derivations on X; Definition 4.15

5 Definitions of Sobolev space

In this section, we present the four notions of Sobolev space listed in Introduction. Here we only

give the definitions of the spaces and of the minimal objects associated with Sobolev functions.

All the calculus rules and other fine properties will be proven in the next section only for one of

the notions (namely, for the Newtonian Sobolev functions). After proving the equivalence, we will

then know that the latter hold true for Sobolev functions defined via any of the other (equivalent)

approaches.

5.1 H-approach: via relaxation

In order to introduce the notion of Sobolev space via the H-approach, we start by recalling the

definition of relaxed upper slopes.

Definition 5.1 (Relaxed upper slope and minimal relaxed upper slope). Let (X, d,m) be a metric

measure space, let p ∈ [1,∞) and f ∈ Lp(m). A function G ∈ Lp(m)+ is said to be a relaxed

p-upper slope of f if there exist (fn)n ⊆ LIPbs(X) and G′ ≤ G such that

fn → f in Lp(m) and lipa(fn)⇀ G′ weakly in Lp(m). (5.1)

Moreover, given f ∈ Lp(m) we denote by RS(f) the possibly empty set of all relaxed p-upper slopes
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of f and, whenever RS(f) 6= ∅, we call minimal relaxed p-upper slope the function

|Df |H :=
∧{

G ∈ Lp(m)+
∣∣∣ G ∈ RS(f)

}
. (5.2)

Definition 5.2 (Sobolev space H1,p(X)). Let (X, d,m) be a metric measure space, let p ∈ [1,∞)

and f ∈ Lp(m). The relaxation-type p-Sobolev space H1,p(X) is defined as

H1,p(X) := {f ∈ Lp(m) | RS(f) 6= ∅}.

Then the norm on H1,p(X) is given by

‖f‖H1,p(X) =

(
‖f‖pLp(m) + ‖|Df |H‖pLp(m)

)1/p

∀f ∈ H1,p(X).

Remark 5.3. Some observations about Definition 5.1 and Definition 5.2 are in order:

i) The convexity of f 7→ lipa(f) grants that RS(f) is a convex set, that H1,p(X) is a vector

space, and that ‖f‖H1,p(X) is a norm. In addition, still convexity of lipa(f) in combination

with Mazur’s lemma ensure that we can assume in (5.1) that lipa(fn) ≤ G′
n with G′

n strongly

convergent in Lp(m) to G′. This refined convergence property, together with a diagonal

argument, ensures the validity of the implication

lim
k→+∞

‖fk − f‖Lp(m) = 0, Gk ∈ RS(fk), lim
k→∞

‖Gk −G‖Lp(m) = 0 =⇒ G ∈ RS(f). (5.3)

ii) From (5.3) with fk = f we obtain the Lp(m)-closedness of RS(f). In addition, RS(f) is a

lattice (see Lemma 4.4 of [7] for a proof, made in the case p = 2, but extendable to all cases

p ∈ [1,∞)).

iii) Completeness of the normed space
(
H1,p(X), ‖ · ‖H1,p(X)

)
easily follows by (5.3), considering

a “refined” Cauchy sequence (fk)k with the property

∑

k

‖fk+1 − fk‖Lp(m) + ‖|D(fk+1 − fk)|H‖Lp(m) < +∞.

Lemma 5.4. Let p ∈ [1,∞) and f ∈ H1,p(X). Then |Df |H is the element with minimal Lp(m)

norm in RS(f) and there exist (fk)k ⊆ LIPbs(X) such that fk → f and lipa(fn) → |Df |H strongly

in Lp(m).

Proof. Since in σ-finite measure spaces the essential infimum is achieved by the infimum of a

countable subfamily, from the lattice property of RS(f) and Lp(m)-closure we obtain that |Df |H
belongs to RS(f), while the property of being the element with minimal Lp(m)-norm is obvious

from the definition.

In connection with the refined convergence property, let (fk)k ⊆ LIPbs(X) be convergent in

Lp(m) with lipa(fk) ≤ Gk and Gk strongly convergent in Lp(m) to |Df |H . We claim that lipa(fk)

strongly converges in Lp(m) to |Df |H as well. Indeed, assuming with no loss of generality that

lipa(fk) weakly converges in Lp(m) to L, from the inequality L ≤ |Df |H and the minimality of

|Df |H , we obtain L = |Df |H . In the case p > 1, from

lim
k→∞

ˆ

lippa(fk) dm ≤
ˆ

|Df |pH dm
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and the uniform convexity of the Lp norm, we obtain strong convergence. In the case p = 1, since

lipa(fk) weakly converge to |Df |H , we can assume with no loss of generality (possibly multiplying

fk by normalization constants ck convergent to 1) that
´

lipa(fk) dm =
´

|Df |H dm. Then

ˆ

|lipa(fk)− |Df |H | dm =
1

2

ˆ (
lipa(fk)− |Df |H

)+
dm ≤ 1

2

ˆ (
Gk − |Df |H

)+
dm → 0.

The claim follows.

In the case p ∈ (1,∞) one can formulate the above definition of Sobolev space in terms of the

domain of finiteness of an appropriate energy functional (known as Cheeger energy functional).

Notice that if the support of m coincides with the whole space there is a unique LIPbs(X) repre-

sentative in the Lebesgue equivalence class and then the inf in (5.4) is not necessary.

Definition 5.5 (Cheeger energy functional). Let (X, d,m) be a metric measure space and let

p ∈ (1,∞). We define the pre-Cheeger energy functional Ep,lip : Lp(m) → [0,∞) as

Ep,lip(f) := inf

{
1

p

ˆ

lipp
a(f̄) dm

∣∣∣ f̄ ∈ LIPbs(X) and f ∈ πm(f̄)

}
for every f ∈ Lp(m), (5.4)

and the Cheeger energy functional Ep : Lp(m) → [0,∞] as

Ep(f) := inf
{

lim
n→+∞

Ep,lip(fn)
∣∣∣ (fn)n ⊆ Lp(m), fn → f in Lp(m)

}
for every f ∈ Lp(m). (5.5)

Proposition 5.6. Let (X, d,m) be a metric measure space and let p ∈ (1,∞). Then it holds that

H1,p(X) = Dom(Ep) and Ep(f) =
1

p

ˆ

|Df |pH dm.

Proof. The inclusion ⊇ follows by the weak sequential compactness of (closed bounded subsets of)

Lp(m) (here we use that p > 1), while the inequality ≥ follows by the lower semicontinuity of the

norm under weak convergence (recall that |Df |H is the least element in RS(f)). The inclusion ⊆
follows by the very definition of relaxed p-upper slope, as weakly convergent sequences are norm

bounded, while the inequality ≤ follows by Lemma 5.4.

We also have notions of p-relaxed slopes obtaining via relaxation of functionals involving upper

gradients.

Definition 5.7. Let (X, d) be a complete and separable metric space and let f : X → R be a

function. A Borel function ρ : X → [0,∞] is said to be an upper gradient of f if

|f(γbγ )− f(γaγ )| ≤
ˆ

γ

ρ ds holds for every γ ∈ R(X).

We will denote by ug(f) the (possibly empty) set of all upper gradients of the function f .

The next result follows from [42, Lemma 6.2.6].

Lemma 5.8 (Upper gradients of Lipschitz functions). Let (X, d) be a complete and separable

metric space. Then for every f ∈ LIP(X) the function lip(f) belongs to ug(f). In particular, the

same is true for lipa(f).

Definition 5.9 (More general relaxed slopes). Let (X, d,m) be a metric measure space and p ∈
[1,∞). We say that a function f ∈ Lp(m) admits a
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1) (lip)-relaxed p-upper slope G ∈ Lp(m)+ if there exist (fn)n ⊆ LIPbs(X) and G′ ≤ G such

that

fn → f in Lp(m) and lip(fn)⇀ G′ weakly in Lp(m);

2) (ug)-relaxed p-upper slope G ∈ Lp(m)+ if there exist (fn)n ⊆ LIPbs(X), ρn ∈ ug(fn) and

G′ ≤ G such that

fn → f in Lp(m) and ρn ⇀ G′ weakly in Lp(m).

As in Remark 5.3 iii) the weak convergences above to G′ can be equivalently asked to be

strong in Lp(m) for functions G′
n larger than lip(fn) or ρn, respectively.

Recalling the inequality lip(f) ≤ lipa(f) for every f ∈ LIPbs(X) and the fact that lipa(f) ∈
ug(f) (see Lemma 5.8), we get the following result.

Lemma 5.10. Let (X, d,m) be a metric measure space and p ∈ [1,∞). Every f ∈ H1,p(X) admits

both (lip)- and (ug)-relaxed p-upper slopes.

We will see in Section 7 that for a function f ∈ Lp(m) having (lip)- or (ug)-relaxed p-upper

slope is equivalent to being an element of the Sobolev space.

5.2 W-approach: via integration-by-parts

Next, we present the definition of the Sobolev space via the W-approach, by means of the notion

of Di Marino’s derivation presented in Section 5.1.

Definition 5.11 (The spaceW 1,p(X)). Let (X, d,m) be a metric measure space and p ∈ [1,∞). We

say that a function f ∈ Lp(m) belongs to the integration-by-parts p-Sobolev space W 1,p(X) if

there exists a LIPbs(X)-linear map Lf : Derqq(X) → L1(m), continuous with respect to the Derq(X)

norm, such that

ˆ

Lf (b) dm = −
ˆ

fdiv(b) dm holds for all b ∈ Derqq(X). (5.6)

Remark 5.12. Note that, whenever it exists, the map Lf is uniquely determined: suppose there

exists another LIPbs(X)-linear map L̃f satisfying (5.6). Now fix h ∈ LIPbs(X) and note that, by

LIPbs(X)-linearity, it holds that

ˆ

hLf (b) dm =

ˆ

Lf (hb) dm = −
ˆ

fdiv(hb) dm for all b ∈ Derqq(X).

Since the same holds for L̃f , we have that
´

hLf(b) dm =
´

hL̃f (b) dm holds for every h ∈ LIPbs(X).

By the arbitrariness of h ∈ LIPbs(X) we deduce that Lf (b) = L̃f (b) holds m-a.e. in X.

Taking into account the above remark, given b ∈ Derqq(X) we denote, for ease of notation,

b(f) := Lf (b) for every f ∈ W 1,p(X)

and define |Df |W as the m-a.e. smallest function g satisfying

|Lf (b)| ≤ g|b| m-a.e. in X for all b ∈ Derqq(X), (5.7)

57



namely

|Df |W :=
∨

b∈Derqq(X)

1

m

{|b|6=0}

|Lf (b)|
|b| . (5.8)

We consider the following lemma, establishing well-posedness of (5.7).

Lemma 5.13. Let (X, d,m) be a metric measure space and q ∈ (1,∞]. Let L : Derqq(X) → L1(m)

be a LIPbs(X)-linear ‖ ·‖q-continuous operator. Then there exists a function g ∈ Lp(m)+ such that

|L(b)| ≤ g|b| for every b ∈ Derqq(X).

Proof. The closure V of Derqq(X) in (Derq(X), ‖ · ‖q) is a Banach space. Due to the density of

LIPbs(X) in L∞(m) as in the point 2) of Lemma 2.2 and the fact that Derqq(X) is a LIPbs(X)-

module, we have that V is also an L∞(m)-submodule of Derq(X). Indeed, by Lemma 4.5, we have

that

clDerq(X)(L
∞(m)-span of Derqq(X)) = clDerq(X)(Derqq(X)) = V.

Denote V1 := {b ∈ V : |b| ≤ 1} for brevity. Given any derivation b ∈ V1, we define

mb(E) :=

ˆ

L(1m

Eb) dm for every E ∈ B(X).

Notice that |mb(E)| ≤ C
( ´

E
|b|q dm

)1/q
, where C ≥ 0 is the operator norm of L. By dominated

convergence theorem, it follows that mb is a finite signed Borel measure with mb ≪ m. Then define

g :=
∨

b∈V1

dmb

dm
∈ L0

ext(m)+.

First, we check that g ∈ Lp(m). We claim that there exists (bn)n ⊆ V1 such that
dmbn

dm ≥
(
1− 1

n

)
g

for every n ∈ N. To prove it, take a sequence (bin)i ⊆ V1 and a Borel partition (Ei
n)i of X such that

∑
i∈N 1

m

Ei
n

dmbin

dm ≥
(
1 − 1

n

)
g. Routine verifications show that, letting bn(f) :=

∑
i∈N 1

m

Ei
n
bin(f) for

every f ∈ LIPbs(X), we obtain a derivation bn ∈ V1 satisfying
dmbn

dm ≥
(
1− 1

n

)
g, as desired. Notice

that
´

h
dmbn

dm dm =
´

L(hbn) dm holds for every h ∈ Lq(m) ∩L∞(m): the case where h is a simple

function is a direct consequence of the definition of mbn , whence the general case follows from the

weak∗ density of simple functions in L∞(m). In particular,
∣∣ ´ hdmbn

dm dm
∣∣ ≤ C‖hbn‖q ≤ C‖h‖Lq(m)

for every h ∈ Lq(m) ∩ L∞(m). Since Lq(m) ∩ L∞(m) is dense in Lq(m), and Lq(m) is the dual of

Lp(m), we conclude that
( ´

gp dm
)1/p ≤ limn

n
n−1

∥∥dmbn

dm

∥∥
Lp(m)

≤ C, thus in particular g ∈ Lp(m).

Finally, given any b ∈ Derqq(X), we set φk := |b|∧k ∈ L∞(m) and ψk := 1

m

{|b|≥1/k}/|b| ∈ L∞(m)

for every k ∈ N. Notice that bk := ψkb ∈ V1. Hence, by dominated convergence theorem we get

ˆ

E

L(b) dm = lim
k→∞

ˆ

E

1

m

{|b|≥1/k}

|b| ∧ k
|b| L(b) dm = lim

k→∞

ˆ

E

φkL(b
k) dm = lim

k→∞

ˆ

E

φk
dmbk

dm
dm

≤ lim
k→∞

ˆ

E

φkg dm ≤
ˆ

E

g|b| dm for every E ∈ B(X),

whence it follows that L(b) ≤ g|b|. Replacing b with −b, we conclude that |L(b)| ≤ g|b|.
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5.3 B-approach: via a notion of plan

The definition of the Sobolev space we present next is the one obtained via the B-approach.

Namely, we look at the behaviour of the function along curves selected by using notions of plans.

Definition 5.14 (B-weak p-upper gradient). Let (X, d,m) be a metric measure space, p ∈ [1,∞)

and f ∈ Lp(m). Then we say that a function G ∈ Lp(m)+ is a B-weak p-upper gradient of f

provided for any q-test plan π on X, it holds that f ◦ γ ∈ W 1,1(0, 1) for π-a.e. curve γ and

|(f ◦ γ)′t| ≤ G(γt)|γ̇t|, for (π ⊗ L1)-a.e. (γ, t) ∈ C([0, 1]; X)× (0, 1). (5.9)

We define the set of all B-weak p-upper gradients of f as

WUGB(f) :=
{
G ∈ Lp(m)+

∣∣∣ G is a B-weak p-upper gradient of f
}

(5.10)

and, whenever WUGB(f) 6= ∅, we denote by |Df |B ∈ Lp(m)+ the minimal B-weak p-upper

gradient of f , defined as

|Df |B :=
∧{

G ∈ Lp(m)+
∣∣∣ G ∈ WUGB(f)

}
. (5.11)

Definition 5.15 (Sobolev space B1,p(X)). Let (X, d,m) be a metric measure space and p ∈ [1,∞).

The Beppo Levi p-Sobolev space B1,p(X) is defined as the space of all functions in Lp(m)

admitting a B-weak p-upper gradient. The norm on B1,p(X) is given by

‖f‖B1,p(X) :=
(
‖f‖pLp(m) +

∥∥|Df |B
∥∥p
Lp(m)

)1/p

, for every f ∈ B1,p(X).

Remark 5.16. Some comments on Definition 5.15 are in order:

i) By the bounded compression property of π and Lemma 3.15, the validity of the properties

(5.9) and f ◦ γ ∈ W 1,1(0, 1) for π-a.e. γ are in fact independent of the chosen Borel

representatives in the Lp(m) class. For this reason, they have been stated directly at the Lp

level, rather than at the Lp level. A similar discussion applies to items ii), iii), and iv) of

Theorem 5.18 below.

ii) The set WUGB(f) is easily seen to be a lattice. Hence, arguing as in Lemma 5.4 we obtain

that the minimal B-weak p-upper gradient |Df |B is indeed a B-weak p-upper gradient of f .

iii) One can easily infer from the definition that
(
B1,p(X), ‖ · ‖B1,p(X)

)
is a normed space. In

fact, it is also complete, but we do not prove it, as it will follow from Theorem 7.1.

Theorem 5.17 (Properties of B1,p(X)). Let (X, d,m) be a metric measure space, p ∈ [1,∞),

f ∈ B1,p(X) and π a q-test plan. Then

∣∣f(γ1)− f(γ0)
∣∣ ≤
ˆ 1

0

|Df |B(γt)|γ̇t| dt for π-a.e. γ ∈ C([0, 1]; X).

Proof. Without loss of generality we can assume that all curves in the support of π are contained in

a bounded subset of X, so that the bounded compression property ensures the L1(π) integrability

of γ 7→ f(γt), t ∈ [0, 1]. First of all, it is sufficient to prove the integrated form of the inequality,

namely
ˆ ∣∣f(γ1)− f(γ0)

∣∣ dπ(γ) ≤
ˆ ˆ 1

0

|Df |B(γt)|γ̇t| dt dπ(γ).
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Indeed, by applying the integrated form to any restricted test plan as in Proposition 3.16, one

obtains the inequality as stated. Set now

aε(γ) :=
1

ε

ˆ ε

0

f(γs) ds, bε(γ) :=
1

ε

ˆ 1

1−ε

f(γs) ds for π-a.e. γ

and notice that, since f ◦ γ ∈W 1,1(0, 1) for π-a.e. γ, one has

ˆ ∣∣aε(γ)− bε(γ)
∣∣dπ(γ) ≤

ˆ ˆ 1

0

|(f ◦ γ)′| dt dπ(γ) ≤
ˆ ˆ 1

0

|Df |B(γt)|γ̇t| dt dπ(γ).

Hence, to conclude, it is sufficient to prove that aε → f(γ0) and bε → f(γ1) in L1(π), respectively.

We prove it for aε, as the proof for bε is analogous, as a consequence of the bounded compression

property. Indeed,

ˆ

|aε(γ)− f(γ0)| dπ(γ) ≤
1

ε

ˆ

|f(γε)− f(γ0)| dπ(γ),

so the operators f 7→
´

|f(γε) − f(γ0)| dπ(γ) are uniformly bounded in L1(m) and obviously

converge to 0 when f ∈ LIPbs(X). By density, they converge to 0 in L1(m).

Theorem 5.18 (Equivalent characterization of B1,p(X)). Let (X, d,m) be a metric measure space,

p ∈ [1,∞), f ∈ Lp(m) and G ∈ Lp(m)+. Then f ∈ B1,p(X) and |Df |B ≤ G m-a.e. in X if and

only if

f(γ1)− f(γ0) ≤
ˆ 1

0

G(γt)|γ̇t| dt for π-a.e. γ ∈ C([0, 1]; X) (5.12)

for any q-test plan π.

Proof. One implication is obvious by Theorem 5.17. By applying (5.12) to the restricted q-test

plans as in Proposition 3.17, we obtain

f(γt)− f(γs) ≤
ˆ t

s

G(γr)|γ̇r| dr, π-a.e. γ ∈ C([0, 1]; X), for all (s, t) ∈ T,

where we denote T :=
{
(s, t) ∈ [0, 1] : s < t

}
. Hence, by Fubini’s theorem, for π-a.e. γ we have

that

f(γt)− f(γs) ≤
ˆ t

s

G(γr)|γ̇r| dr, for L2-a.e. (s, t) ∈ T. (5.13)

By applying the same inequality to the image of π under the map γt 7→ γ1−t, we easily obtain

that the same inequality holds π-a.e. with |f(γt) − f(γs)| in the left-hand side. Hence, from

Lemma 2.12 it follows that f ◦ γ ∈W 1,1(0, 1) for π-a.e. γ and that

|(f ◦ γ)′t| ≤ G(γt)|γ̇t|, for (π ⊗ L1)-a.e. (γ, t).

Therefore, the proof is complete.

5.4 N-approach: via a notion of modulus

The last definition of the Sobolev space we present is the one obtained via the N-approach, the

so-called Newtonian Sobolev space. Namely, we look at the behaviour of the function along curves

selected by using notions of modulus.
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Definition 5.19 (N-weak p-upper gradient). Let (X, d,m) be a metric measure space and p ∈
[1,∞). A function f : X → [−∞,∞] has an N-weak p-upper gradient if f(γaγ ) and f(γbγ ) are

finite for Modp-a.e. nonconstant curve γ ∈ R(X) and there is a Borel function ρ ∈ Lp
ext(m)+ such

that

|f(γbγ )− f(γaγ )| ≤
ˆ

γ

ρ ds for Modp-a.e. nonconstant curve γ ∈ R(X). (5.14)

Under these conditions we say that ρ is an N-weak p-upper gradient of f . We define the set

of N-weak p-upper gradients of f as

WUGN (f) :=
{
ρ ∈ Lp

ext(m)+
∣∣ ρ is an N -weak p-upper gradient of f

}
. (5.15)

Whenever WUGN (f) 6= ∅, we denote by ρf ∈ Lp
ext(m)+ any element of WUGN (f) of minimal

Lp(m)-seminorm. Then we define the minimal N-weak p-upper gradient of f as

|Df |N := πm(ρf ) ∈ Lp(m)+. (5.16)

Remark 5.20. Some comments on Definition 5.19 are in order:

i) The set WUGN (f) is a closed convex lattice in Lp
ext(m)+ and thus admits a unique (up to m-

a.e. equality) element of Lp(m)-minimal seminorm, therefore |Df |N is uniquely determined

as an element of Lp(m). The lattice property ensures also that such an element is minimal

in the m-a.e. sense. We prove these statements below; see also [42, Theorem 6.3.20].

ii) The minimal N -weak p-upper gradient satisfies several calculus rules which we formulate

below in Theorem 6.1. For example, if f, g : X → [−∞,∞] are m-measurable with WUGN (f)

and WUGN (g) non-empty, then WUGN (f − g) 6= ∅ and ρ(f−g) = 0 and ρf = ρg m-almost

everywhere in {f = g}.

iii) Since constant curves have infinite modulus, our finiteness assumption on f at the endpoint

of Modp-almost every nonconstant curve does not entail the global finiteness of f but, rather,

that the set where f is infinite is p-exceptional according to Definition 3.8. Moreover, notice

that p-integrability of ρ entails that the right-hand side in (5.14) is finite as well for Modp-a.e.

curve γ.

iv) We highlight that in Definition 5.19 we did not make any measurability assumption on the

function f . In some cases, for example on doubling metric measure spaces supporting a weak

p-Poincaré inequality (see [46, Theorem 1.11]), it holds that

WUGN (f) 6= ∅ =⇒ f is m-measurable. (5.17)

However, this implication is not valid on every metric measure space. For example, let

(X, d,m) be a metric measure space where non-m-measurable functions exist and consider

the ‘snowflake distance’
√
d; then (X,

√
d,m) is a metric measure space where all rectifiable

curves are constant, thus every function f has the zero function as an N -weak p-upper

gradient and in particular (5.17) fails. In Remark 5.21, we construct a more sophisticated

example of a space where (5.17) fails and any two points are joined by a rectifiable curve.

Remark 5.21. We endow C :=
{
(λ, t) ∈ R2

∣∣ 0 ≤ t ≤ λ ≤ 1
}

with the unique distance such that

d((λ1, t1), (λ2, t2))
2 = λ21 + λ22 − 2λ1λ2 cos

√
|λ−1

1 t1 − λ−1
2 t2| ∀(λ1, t1), (λ2, t2) ∈ C \ {(0, 0)}.
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Notice that d induces the Euclidean topology on C, that (C, d) is isometric to a (truncated)

Euclidean cone over the interval [0, 1] equipped with the ‘snowflake distance’ (t1, t2) 7→
√
|t1 − t2|,

and that any two points of C can be joined by a rectifiable curve (passing through the tip (0, 0)

of the cone). Finally, let us endow the space (C, d) with the restriction m of the 2-dimensional

Lebesgue measure. We claim that the space (C, d,m) does not satisfy (5.17). To prove it, fix some

non-L1-measurable function f : [0, 1] → [0, 1]. Let us define

F (λ, t) := λf(λ−1t) for every (λ, t) ∈ C \ {(0, 0)}

and F (0, 0) := 0. Since F (λ, ·) : [0, λ] → [0, λ] is non-L1-measurable for every λ ∈ (0, 1], we have

that the function F : C → [0, 1] is not m-measurable. Nevertheless, one can readily check that for

any p ∈ [1,∞) the function F admits the constant function 1 as an N -weak p-upper gradient.

We define two spaces using functions with N -weak p-upper gradients.

Definition 5.22 (Dirichlet spaces D
1,p

(X), D1,p(X)). Let (X, d,m) be a metric measure space and

p ∈ [1,∞). Let D̄1,p(X) denote the collection of m-measurable f : X → [−∞,∞] with WUGN (f) 6=
∅. Consider the function ‖ · ‖ : D̄1,p(X) → [0,∞) defined by

‖f‖D1,p(X) := ‖ρf‖Lp(m). (5.18)

Identify f, g ∈ D̄1,p(X) if ‖f − g‖D1,p(X) = 0. The associated quotient space is the Dirichlet

space D1,p(X).

In the following section, cf. Section 6, we establish calculus rules for Dirichlet functions guar-

anteeing that D1,p(X) becomes a vector space and (5.18) induces a norm on the vector space.

When we include an integrability condition on the function f , we may define the pre-space

of Newtonian p-Sobolev functions N̄1,p(X) and a seminorm ‖f‖N1,p(X) in the vector space of m-

measurable functions in such a way that f = 0 m-a.e. in X implies ‖f‖N1,p(X) = 0. Hence, it

makes sense to pass this definition and the norm to the quotient in Lp(m), defining the Newtonian

p-Sobolev space N1,p(X) (in a way consistent with the definition given in [42, (7.1.26)]).

Definition 5.23 (Sobolev spaces N̄1,p(X), N1,p(X)). Let (X, d,m) be a metric measure space and

p ∈ [1,∞). The space N̄1,p(X) is defined as the space of m-measurable p-integrable functions

f : X → R for which WUGN (f) 6= ∅. The seminorm on N̄1,p(X) is given by

‖f‖N1,p(X) :=
(
‖f‖pLp(m) + ‖f‖pD1,p(X)

)1/p

.

The Newtonian p-Sobolev space N1,p(X) ⊆ Lp(m) is the quotient

N1,p(X) := πm
(
N̄1,p(X)

)
, (5.19)

keeping the same notation for the quotient norm ‖ · ‖N1,p(X) in N1,p(X).

5.5 Bibliographical notes

The content of this section is of expository nature, where we recall four different notions of metric

Sobolev space present in the literature. More precisely:

• The content of Section 5.1 is mainly taken from [6]. In the latter paper, the H-approach
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presented in this section has been shown to be equivalent to the original Cheeger’s definition

in [16].

• Section 5.2 mainly follows [18]. Let us mention that this kind of approach has been employed

also in [15] to define the Sobolev space on the Euclidean space endowed with an arbitrary

Radon measure.

• The main references for Section 5.3 are [6, 7]. Another (equivalent in case p > 1) notion has

been recently introduced in [61], expressing the weak upper gradient property in terms of

nonparametric plans with q-integrable barycenters.

• We follow the standard reference [42] in Section 5.4; see also [12]. The definition itself has

been introduced in [64], after [49].

5.6 List of symbols

RS(f) set of relaxed p-upper slopes of f ; Definition 5.1

|Df |H minimal relaxed p-upper slope of f ; (5.2)

H1,p(X) relaxation-type p-Sobolev space; Definition 5.2

Ep,lip pre-Cheeger energy functional; (5.4)

Ep Cheeger energy functional; (5.5)

Dom(Ep) finiteness domain of Ep; Proposition 5.6

ug(f) set of upper gradients of f ; Definition 5.7

W 1,p(X) integration-by-parts p-Sobolev space; Definition 5.11

|Df |W minimal function associated to a function f ∈W 1,p(X); (5.8)

WUGB(f) set of B-weak p-upper gradients of f ; (5.10)

|Df |B minimal B-weak p-upper gradient of f ; (5.11)

B1,p(X) Beppo Levi p-Sobolev space; Definition 5.15

WUGN (f) set of N -weak p-upper gradients of f ; (5.15)

ρf element of WUGN (f) of minimal Lp(m)-seminorm; Definition 5.19

|Df |N minimal N -weak p-upper gradient of f ; (5.16)

D̄1,p(X) m-measurable functions with an N -weak p-upper gradient; Definition 5.22

D1,p(X) Dirichlet space; Definition 5.22

N̄1,p(X) p-integrable functions with an N -weak p-upper gradient; Definition 5.23

N1,p(X) Newtonian p-Sobolev space; (5.19)

6 Calculus rules and fine properties of Newtonian Sobolev

functions

In this section, we prove that minimal N -weak p-upper gradients satisfy the standard calculus

rules, formulated in Theorem 6.1 below. In particular, this will justify the well-posedness of the

definition of Newtonian Sobolev space (cf. Remark 5.20) and its consistency with the one in [42].

We will prove calculus rules for Dirichlet functions and apply them to show some standard

fine properties of Newtonian Sobolev functions in terms of the Sobolev capacity. The former are
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motivated by our follow-up work [8] and the latter by the energy density of Lipschitz functions in

the Sobolev space, a result we report from [26].

6.1 Calculus rules for Dirichlet functions

We establish the following theorem in this section.

Theorem 6.1 (Calculus rules for minimal N -weak p-upper gradients). Let (X, d,m) be a metric

measure space and p ∈ [1,∞). Then the following properties hold:

i) Let f : X → [−∞,∞] be m-measurable with WUGN (f) 6= ∅. Then

ρf = 0 m-a.e. on {x ∈ X | |f(x)| = +∞}.

and

ρf = 0 m-a.e. on f−1(N)

whenever a Borel set N ⊆ R satisfies L1(N) = 0.

ii) Chain rule. Let f : X → R be m-measurable with WUGN (f) 6= ∅. If ϕ : R → R is Lipschitz

and g = ϕ ◦ f , then WUGN (g) 6= ∅ and

ρg = (lip(ϕ) ◦ f)ρf , m-almost everywhere.

More generally, suppose that f : X → [−∞,∞] is m-measurable with WUGN (f) 6= ∅. Then,

given a Lipschitz ϕ : R → R, consider

g(x) =

{
ϕ(f(x)), if f(x) ∈ R,

0, if |f(x)| = +∞.

Then WUGN (g) 6= ∅ and m-almost everywhere

ρg =

{
(lip(ϕ) ◦ f)ρf , in {x ∈ X | |f(x)| <∞},
0, in {x ∈ X | |f(x)| = +∞}.

iii) Locality property. Let f, g : X → [−∞,∞] be m-measurable such that WUGN (f) 6= ∅

and WUGN(g) 6= ∅. Then WUGN (f − g) 6= ∅ and

ρ(f−g) = 0 m-almost everywhere on {f = g}.

iv) Leibniz rule. Let f, g : X → [−∞,∞] be m-measurable such that WUGN (f) 6= ∅ and

WUGN (g) 6= ∅ and |f |+ |g| ≤ C m-almost everywhere in X. Then WUGN (fg) 6= ∅ and

ρfg ≤ |f |ρg + |g|ρf m-a.e. on X.

The proof of Theorem 6.1 is split into several sublemmas some of which hold in a slightly more

general setting. We prove Theorem 6.1 at the end of this section. The key ingredient in the proof

of Theorem 6.1 is the following lemma that functions with N -weak p-weak upper gradients are

absolutely continuous along Modp-almost every nonconstant absolutely continuous curve.

64



Lemma 6.2. Let p ∈ [1,∞) and f : X → [−∞,∞] with WUGN (f) 6= ∅ and ρ ∈ WUGN (f). Then

there exists a Modp-negligible curve family Γ0 such that for every nonconstant γ ∈ R(X) \ Γ0,

1. f ◦ γ is continuous and rectifiable;

2. the total variation measures sf◦γ of f ◦ γ and sγ of γ satisfy

sf◦γ ≪ sγ and
dsf◦γ
dsγ

≤ ρ ◦ γ ∈ L1
ext(sγ)

+. (6.1)

Proof. Let Γ1 be a Modp-negligible family such that (5.14) holds for every nonconstant γ ∈
R(X) \ Γ1 for the pair (f, ρ) and that f(aγ) and f(bγ) are finite. Then, by Lemma 3.4 (6), there

there exists h ∈ Lp
ext(m)+ for which ρ ≤ h everywhere and

Γ1 ⊆
{
γ ∈ C (X) |

ˆ

γ

h ds = +∞
}

=: Γ0.

Recall that Γ0 is Modp-negligible by Lemma 3.4 (5). We prove that Γ0 is a curve family for which

the conclusion of the Lemma holds.

To this end, observe that Γ0 satisfies the following monotonicity principle: if γ ∈ R(X) has

a subinterval I ⊆ [aγ , bγ ] such that γ|I ∈ Γ0, then γ ∈ Γ0. Indeed, by monotonicity of the path

integration,

+∞ =

ˆ

γ|I

ρ ds ≤
ˆ

γ

ρ ds.

Now, if γ ∈ R(X) \ Γ0, then γ|I ∈ R(X) \ Γ0 ⊆ R(X) \ Γ1 holds for every interval I ⊆ [aγ , bγ ]

for which ℓ(γ|I) > 0. Hence, by definition of Γ1 and the inclusion Γ1 ⊂ Γ0, (5.14) holds for every

subinterval I ⊆ [aγ , bγ ] with ℓ(γ|I) > 0.

Consequently, whenever [a, b] ⊆ [aγ , bγ ] is such that ℓ(γ|[a,b]) > 0, we have that

|f(γ(b))− f(γ(a))| ≤
ˆ

γ|[a,b]

ρ ds < +∞.

Consider a nonconstant γ ∈ R(X) \ Γ0 and its constant speed reparametrization γcs : [0, 1] → X.

Here γcs ∈ R(X) \Γ0 by the invariance of path integral under reparametrization, cf. Lemma 2.25.

Then, for every partition P of [0, 1], we have the total variation bound

V (f ◦ γcs;P ) ≤
ˆ

γcs

ρ ds < +∞.

Taking the supremum over P yields that f ◦ γcs is bounded, continuous and rectifiable. In fact,

for every subinterval I ⊆ [0, 1] of positive diameter,

ℓ(f ◦ γcs|I) ≤
ˆ

γcs|I

ρ ds ≤
ˆ

γcs

ρ ds < +∞.

This implies that the total variation measure sf◦γcs is absolutely continuous with respect to sγcs ,

with density bounded from above by ρ ◦ γ ∈ L1
ext(sγcs)+. We may replace γcs by γ in this last

conclusion by Lemmas 2.14 and 2.25.

The following lemma implies that products of functions with N -weak p-upper gradients are

well-defined along p-almost every rectifiable curve.
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Lemma 6.3 (Leibniz rule for paths). Consider f1, f2 : X → [−∞,∞], ρ1, ρ2 : X → [−∞,∞], and

Γ1
0 and Γ2

0 are families such that (fi, ρi,Γ
i
0) satisfies the conclusion of Lemma 6.2 for i = 1, 2.

Then, for every nonconstant curve γ ∈ R(X) \ (Γ1
0 ∪ Γ2

0), the integrals

Tγ(f1, f2) :=

ˆ

[aγ ,bγ ]

(f1 ◦ γ) dµf2◦γ , Tγ(f2, f1) :=

ˆ

[aγ ,bγ ]

(f2 ◦ γ) dµf1◦γ and

∂Tγ(f1f2) = (f1f2)(γbγ )− (f1f2)(γaγ )

are well-defined and satisfy

|Tγ(f1, f2)| ≤
ˆ

γ

|f1|ρ2 ds < +∞, |Tγ(f2, f1)| ≤
ˆ

γ

|f2|ρ1 ds < +∞ and

∂Tγ(f1f2)− Tγ(f1, f2) = Tγ(f2, f1).

Proof. We denote Γ0 = Γ1
0 ∪Γ2

0 and consider γ ∈ R(X) \Γ0. Then f1 ◦ γ and f2 ◦ γ are integrable

over the signed measures µf2◦γ and µf1◦γ , respectively, and the integral estimates follow from the

fact that the total variation of µfi◦γ is bounded from above by sfi◦γ , cf. (2.45), for i = 1, 2. Thus,

by definition,

Tγ(f1, f2) =

ˆ

[a,b]

f1 ◦ γ dµf2◦γ and Tγ(f2, f1) =

ˆ

[a,b]

f2 ◦ γ dµf1◦γ .

We may apply the integration by parts formula for the rectifiable paths f1 ◦ γ and f2 ◦ γ to show

Tγ(f1, f2) = −Tγ(f2, f1) + (f1f2)(γbγ )− (f1f2)(γaγ ).

The rest of the claim follows from µfi◦γ having density with respect to sfi◦γ , with absolute value

of the density bounded from above by one and that the density of sfi◦γ relative to sγ is bounded

from above by (ρi ◦ γ) ∈ L1
ext(sγ) for i = 1, 2.

Corollary 6.4 (Leibniz rule for functions). Consider m-measurable f1, f2 : X → [−∞,∞] and

ρ1, ρ2 : X → [−∞,∞] with ρi ∈ WUGN (fi) for i = 1, 2. If f1 and f2 are in L∞
ext(m), then any

Borel representative of |f1|ρ2 + |f2|ρ1 belongs to WUGN (f1f2).

Proof. Consider a Borel representative ρ of |f1|ρ2 + |f2|ρ1. Let B be a Borel set with m(B) = 0

and B ⊇ {ρ 6= |f1|ρ2 + |f2|ρ1}. Using the notation from Lemma 6.2 and Lemma 6.3, let

Γ0 = Γ1
0 ∪ Γ2

0 ∪ Γ+
B,

where

Γ+
B =

{
γ ∈ C (X):

ˆ

γ

∞ · 1B = +∞
}
, (6.2)

so that Γ+
B consists of the Modp-negligible set of unrectifiable curves and rectifiable curves that

have positive length in B.

We deduce from Lemma 6.3 that for every nonconstant γ ∈ R(X) \ Γ0, we have that

|(f1f2)(γbγ )− (f1f2)(γaγ )| ≤
ˆ

γ

|f1|ρ2 ds+
ˆ

γ

|f2|ρ1 ds =
ˆ

γ

ρ ds.

The claim follows.
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We obtain the following immediate corollaries from Lemmas 6.2 and 6.3.

Corollary 6.5. Let p ∈ [1,∞) and consider f1, f2 : X → [−∞,∞] with ρ1 ∈ WUGN (f1) and

ρ2 ∈ WUGN (f2). Then ρ1 + ρ2 ∈ WUGN (f1 + f2).

Proof. We apply Lemma 6.3 and consider the family Γ0 = Γ1
0 ∪ Γ2

0. Then Modp(Γ0) = 0 and for

every nonconstant γ ∈ R(X)\Γ0, the compositions f1 ◦γ and f2 ◦γ are continuous and rectifiable,

and satisfy

ℓ((f1 + f2) ◦ γ) ≤ ℓ(f1 ◦ γ) + ℓ(f2 ◦ γ) ≤
ˆ

γ

ρ1 ds+

ˆ

γ

ρ2 ds =

ˆ

γ

ρ1 + ρ2 ds < +∞.

Corollary 6.6. Let p ∈ [1,∞) and consider f : X → [−∞,∞] with ρ1, ρ2 ∈ WUGN (f). Then

min {ρ1, ρ2} ∈ WUGN (f).

Proof. We apply Lemma 6.3 for f = f1 = f2 and ρ1 and ρ2, and consider the family Γ0 = Γ1
0∪Γ2

0.

Then Modp(Γ0) = 0 and every nonconstant γ ∈ R(X) \ Γ0 is such that

sf◦γ ≪ sγ and
dsf◦γ
dsγ

≤ min {ρ1, ρ2} ◦ γ ∈ L1
ext(sγ)

+.

Therefore min {ρ1, ρ2} ∈ WUGN (f).

Corollary 6.6 implies the following:

Proposition 6.7. Let p ∈ [1,∞) and consider f : X → [−∞,∞]. If WUGN (f) 6= ∅, there is

ρ ∈ WUGN (f) such that ρ ≤ ρ′ m-almost everywhere for every ρ′ ∈ WUGN (f). In particular,

ρ = ρf in the sense of Definition 5.19.

Proof. We consider a sequence (ρn)n ⊆ WUGN (f) such that

lim
n→∞

‖ρn‖Lp(m) = inf
ρ′∈WUGN (f)

‖ρ′‖Lp(m).

By applying Corollary 6.6 iteratively, and by using the fact that a countable union of Modp-

negligible curve families is Modp-negligible, there is Γ0 such that Modp(Γ0) = 0 and for every

nonconstant γ ∈ R(X) \ Γ0 and every n ∈ N, we have

sf◦γ ≪ sγ and
dsf◦γ
dsγ

≤ ρn ◦ γ ∈ L1
ext(sγ)

+. (6.3)

In particular, if we denote ρ̃n = mini≤n ρi, then (6.3) implies that

ρ = lim
n→∞

ρ̃n = inf ρ̃n

satisfies

sf◦γ ≪ sγ and
dsf◦γ
dsγ

≤ ρ ◦ γ ∈ L1
ext(sγ)

+

for every nonconstant γ ∈ R(X) \ Γ0. Thus ρ ∈ WUGN (f) and Fatou’s lemma yield

‖ρ‖Lp(m) = inf
ρ′∈WUGN (f)

‖ρ′‖Lp(m).
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This equality and Corollary 6.6 imply that ρ ≤ ρ′ m-almost everywhere for every ρ′ ∈ WUGN (f).

The following uniqueness result holds for the minimal weak upper gradients.

Lemma 6.8 (Strong locality). Consider f1, f2 : X → [−∞,∞] such that both WUGN (f1) and

WUGN (f2) are not empty. If E ⊂ X is Borel and N = E \ {f1 = f2} is m-negligible, then

ρ(f2−f1) = 0 and ρf1 = ρf2 m-almost everywhere in E.

Proof. Fix ρi ∈ WUGN (fi) for i = 1, 2. Let B ⊇ N be an m-negligible Borel set. We consider the

Modp-negligible family in (6.2) and we apply Lemma 6.3. Then, there exists a Modp-negligible

family Γ0 such that for every nonconstant γ ∈ R(X) \ Γ0,

f1 ◦ γ and f2 ◦ γ are continuous and rectifiable

and the conclusion (6.1) holds for the pairs (f1, ρ1) and (f2, ρ2).

In particular, if γ ∈ R(X)\(Γ0∪Γ+
B) is nonconstant, then f1◦γ = f2◦γ everywhere in γ−1(E\B)

and sγ(γ
−1(B)) = 0. Using this fact we deduce that s(f2−f1)◦γ = 0 sγ-almost everywhere in γ−1(E)

by using property 3) in Remark 2.21.

Next, by arguing as in the proof of Corollary 6.5, we see that

ds(f2−f1)◦γ

dsγ
≤ 1X\E(ρf1 + ρf1) ∈ L1

ext(sγ).

In particular, ρ(f2−f1) = 0 m-almost everywhere in E by Proposition 6.7. Corollary 6.5 implies

that |ρf2 −ρf1 | ≤ ρ(f2−f1) m-almost everywhere, so we also deduce the equality ρf2 = ρf1 m-almost

everywhere on E.

Next, we prove a chain rule for functions withN -weak p-upper gradients. We establish the claim

even for non-measurable functions which causes further technical issues. Indeed, since N-weak p-

upper gradient are Borel, we need the following construction and observation. Let h : X → [0,∞)

be any function for which there is at least one Borel function ρ′ : X → [0,∞) satisfying h ≤ ρ′

m-almost everywhere. Then the class of such ρ′ : X → [0,∞) is non-empty, closed under taking

essential infima, and closed under pointwise convergence m-almost everywhere. These facts imply

that there is a Borel function ρ : X → [0,∞) such that ρ ≥ h m-almost everywhere and every Borel

ρ′ : X → [0,∞) satisfying ρ′ ≥ h m-almost everywhere satisfies ρ′ ≥ ρ m-almost everywhere. We

refer to such a ρ as a minimizer for the majorization problem associated to h.

Lemma 6.9 (Chain rule). Consider f : X → [−∞,∞] such that WUGN (f) 6= ∅. If ϕ : R → R is

Lipschitz and η : X → [0,∞] is a Borel function satisfying

(lip(ϕ) ◦ f)ρf ≤ ηρf ≤ Lip(ϕ)ρf m-almost everywhere, (6.4)

then

ηρf ∈ WUGN (g)

for the function

g(x) =

{
ϕ(f(x)) if f(x) ∈ R

0 if |f(x)| = +∞.

Furthermore, ρg = ηρf m-almost everywhere whenever η is an essential infima of nonnegative

Borel functions satisfying (6.4).
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Proof. We apply the construction above as follows. Consider a minimal p-weak upper gradient

ρf ∈ WUGN (f), and let

h(x) =

{
lip(ϕ) ◦ f(x), when 0 < ρf (x) <∞
0, otherwise.

(6.5)

Let ρ denote a minimizer for the majorization problem associated to h from (6.5). Up to modifying

ρ in an m-negligible Borel set, we lose no generality in assuming that

h ≤ ρ ≤ Lip(ϕ) everywhere in X. (6.6)

We show that ρρf ∈ WUGN (g) and if ρ′ ∈ WUGN (g), then ρ′ ≥ ρρf m-almost everywhere.

By Lemma 6.2, there is a Modp-negligible curve family Γ0 such that for every nonconstant

γ ∈ R(X) \ Γ0, f ◦ γ is continuous and rectifiable, and

1γ−1(E)sf◦γ ≤ 1γ−1(E)ρfsγ for every Borel set E ⊂ X. (6.7)

For such a γ, we may apply the chain rule for rectifiable paths to deduce that the total variation

measure sϕ◦(f◦γ) (from (2.19)) satisfies

sϕ◦(f◦γ) = lip(ϕ) ◦ (f ◦ γ)sf◦γ ≤ (lip(ϕ) ◦ fρf ) ◦ γsγ . (6.8)

Indeed, the equality is readily verified using the length speed reparametrization of f ◦ γ and the

chain rule for Lipschitz functions. The inequality follows from (6.7).

Since f ◦ γ is continuous, the path γ does not intersect the set {x ∈ X: |f(x)| = +∞}, so

ϕ ◦ (f ◦ γ) ≡ g ◦ γ. Then the inequalities (6.6) and (6.8) imply ρρf ∈ WUGN (g).

Consider ρg ∈ WUGN (g). Since ρρf ∈ WUGN (g), Proposition 6.7 implies that ρg ≤ ρρf
m-almost everywhere. The proof is complete after we show that ρg ≥ ρρf m-almost everywhere.

To this end, apply Lemma 6.2 to the pair of g and ρg, and let Γ1 denote the Modp-negligible curve

family from the conclusion.

First, if suph = 0, the claim is clear by the previous paragraph, so it suffices to consider the

case suph > 0. Let ε > 0 and consider the Borel set

B := {x ∈ X| ρg(x) + ε suph < ρ(x)ρf (x) < +∞} .

We claim that m(B) = 0 for every ε > 0. To this end, since 0 < ρf < +∞ in B, the minimality

of ρ implies that hρf > ρg + ε suph m-almost everywhere in B. In particular, there is a Borel set

B0 ⊂ B with m(B0) = 0 and

h(x)ρf (x) > ρg + ε suph for every x ∈ B \B0. (6.9)

We claim that

ρ̃ =

{
ρf , if x ∈ B0 ∪ (X \B)

ρf − ε, if x ∈ B \B0

is an N -weak p-upper gradient of f . Unless m(B) = 0, this leads to a contradiction with the

mimimality of ρf , To prove the claim, notice that if a nonconstant γ belongs to R(X)\(Γ+
B∪Γ0∪Γ1),

with Γ+
B as in (6.2), it is clear that the N -weak upper gradient inequality holds by (6.7), and it

remains to verify the upper gradient inequality for rectifiable γ ∈ Γ+
B \ (Γ0∪Γ1∪Γ+

B0
). Then (6.7),
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(6.8) and (6.9) imply

1γ−1(B\B0)hsf◦γ = 1γ−1(B\B0)sg◦γ ≤ 1γ−1(B\B0)(ρg ◦ γ)sγ
≤ 1γ−1(B\B0) (−ε suph+ (hρf ◦ γ)) sγ
≤ 1γ−1(B\B0) (−ε+ ρf ◦ γ)hsγ

Dividing both sides by h, which is possible since (6.9) implies that h > 0 in B \B0, yields that

1γ−1(B\B0)sf◦γ ≤ 1γ−1(B\B0) (−ε+ ρf ◦ γ) sγ = 1γ−1(B\B0)(ρ̃ ◦ γ)sγ .

Combining this with (6.7) shows

sf◦γ ≤ (ρ̃ ◦ γ)sγ .

Then ρ̃ ∈ WUGN (g) follows from the fact that Γ+
B0

∪Γ0∪Γ1 is Modp-negligible. Hence m(B) = 0.

Since ε > 0 was arbitrary in the definition of B, we deduce that ρg ≥ ρρf m-almost everywhere.

Proof of Theorem 6.1. Corollary 6.5 and Lemma 6.8 imply iii). The Leibniz rule iv) follows from

Corollary 6.4.

We prove i). Consider a Borel set B1 ⊇ f−1(N) with m(B1 \ f−1(N)) = 0, and let a Borel set

B ⊇ B1 \ f−1(N) satisfy m(B) = 0. We apply Lemma 6.2 to f and ρf ∈ WUGN (f) and let Γ0

denote the Modp-negligible curve family obtained from the conclusion.

Consider θ = f ◦ γ, for nonconstant γ ∈ R(X) \ (Γ0 ∪ Γ+
B). By property 2) of Remark 2.21, we

have that sf◦γ((f ◦ γ)−1(N)) = 0, while (6.1) gives that sf◦γ(γ
−1(B)) = 0. Overall, we deduce

sf◦γ(γ
−1(B1)) = 0. Since Modp(Γ0 ∪ Γ+

B) = 0, this implies that 1X\B1
ρf is a N -weak p-upper

gradient of f , so ρf m-almost everywhere in f−1(N) ⊂ B1 by Lemma 6.8. The claim follows.

Lastly, we verify ii). The claim that ρf = 0 m-almost everywhere in {x ∈ X | |f(x)| = +∞}
follows from two facts. First, by Lemma 6.2 1., outside a Modp-negligible family Γ0, the path γ

does not intersect the set γ−1({|f | = +∞}), given the convention in the definition (5.14). Next,

there are Borel sets B ⊇ {|f | = +∞} and B′ ⊇ B \ {|f | = +∞} such that m(B′) = 0. Then,

keeping the notation (6.2), we have R(X) \ (Γ0 ∪ Γ+
B′) ⊂ R(X) \ Γ+

B. Thus 1X\Bρf is an N -weak

p upper gradient of f , so ρf = 0 m-almost everywhere in {|f | = +∞} by Proposition 6.7. The

latter part of the claim is immediate from Lemma 6.9.

6.2 Sobolev capacity and fine properties of Newtonian Sobolev func-

tions

In this section, we define a Sobolev capacity which uses the fact that elements of Newtonian p-

Sobolev spaces have, a priori, finer properties than Sobolev functions relying on other approaches.

Definition 6.10 (Sobolev p-capacity). Let (X, d,m) be a metric measure space, let p ∈ [1,∞) and

let E be any subset of X. The p-capacity of the set E is given by the quantity

Capp(E) := inf
{
‖f‖pN1,p(X)

∣∣ f ∈ N̄1,p(X) such that f ≥ 1 on E
}
, (6.10)

taking values in the interval [0,∞]. The value is understood to be infinite if such functions do not

exist.

Remark 6.11. We recall some basic properties of Capp.
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1) We have

Capp(E) = inf
{
‖f‖pN1,p(X)

∣∣ f ∈ N̄1,p(X) such that 0 ≤ f ≤ 1 and f = 1 on E
}
.

Indeed, the chain rule Theorem 6.1 i) implies that the same infimum is obtained if we only

consider functions f ∈ N̄1,p(X) for which 0 ≤ f ≤ 1 everywhere and f = 1 on E.

2) The set function Capp is an outer measure for every p ∈ [1,∞). The subadditivity follows

from 1) and a suitable monotonicity argument. We refer the reader to [42, Lemma 7.2.4] for

a proof.

3) Sets of null p-capacity can be characterized by using the concept of p-exceptional sets (cf.

Definition 3.8) as follows (for the proof see [42, Proposition 7.2.8]): Let (X, d,m) be a metric

measure space, p ∈ [1,∞) and E an m-measurable subset of X . Then

Capp(E) = 0 if and only if m̄(E) = 0 and E is p-exceptional.

4) If E ⊂ X is any set, then

Capp(E) = inf Capp(U),

where the infimum is taken over open sets U containing E; see [27, Theorem 1.8].

The following proposition implies that representatives of a given equivalence class f ∈ N1,p(X)

having N -weak p-upper gradients coincide in a set negligible for Capp, cf. [42, Corollary 7.2.10].

Proposition 6.12. Let (X, d,m) be a metric measure space and let f ∈ N̄1,p(X) for p ∈ [1,∞).

If m({f 6= 0}) = 0, then

Capp
(
{x ∈ X | f(x) 6= 0}

)
= 0.

Proof. Lemma 6.8 implies that ρf = 0 m-almost everywhere so |Df |N = 0. The claim follows

from Remark 6.11 3).

The proof of the proposition below follows the same ideas as those of Fuglede’s lemma (The-

orem 3.6). The claim is standard (see e.g. [42, Proposition 7.3.7]), but we include the proof for

completeness.

Proposition 6.13 (Capp-representative of a Newtonian p-Sobolev function). Let (X, d,m) be a

metric measure space and let p ∈ [1,∞). Let (fn)n ⊆ N̄1,p(X) and let (ρn)n ⊆ Lp
ext(m)+ be a

sequence of corresponding N -weak p-upper gradients. Assume that

lim
n

‖fn − f‖Lp(m) = 0 and lim
n

‖ρn − ρ‖Lp(m) = 0, (6.11)

for some f ∈ Lp(m) and ρ ∈ Lp
ext(m)+. Then there exists an m-measurable representative f̄ in

the equivalence class of f such that ρ ∈ WUGN (f̄). Moreover, up to a subsequence, it holds that

limn fn(x) = f̄(x) for Capp-a.e. x ∈ X.

Proof. First of all, we can extract from the given sequences the subsequences (without relabeling

them, for the simplicity of the notation) a fastly converging in Lp(m) – namely, so that

‖ρn+1 − ρn‖pLp(m) + ‖fn+1 − fn‖pLp(m) ≤ 2−np.

71



In particular, it holds that

H := |f1|+ ρ1 +

∞∑

n=1

|fn+1 − fn|+
∞∑

n=1

|ρn+1 − ρn|

is p-integrable. Let E = {x ∈ X| (fn(x))∞n=1 is not Cauchy in R}. Since H(x) < ∞ m-almost

everywhere, we have that m̄(E) = 0. We define

f̄(x) =





lim
n→∞

fn(x), if x ∈ X \ E,

0, if x ∈ E,
and ρ̄(x) =





lim
n→∞

ρn(x), if H(x) <∞,

0, otherwise.

As (6.11) holds, we have that (f̄ , ρ̄) is a representative of (f, ρ). We claim that f̄ ∈ N̄1,p(X) with

N -weak p-upper gradient ρ̄. To this end, we apply Lemma 6.2 to every pair (fn, ρn) and obtain a

Modp-negligible curve family Γn
0 from the conclusion. We consider the Modp-negligible family

Γ0 =

{
γ ∈ R(X) |

ˆ

γ

∞ · 1{H=∞} ds = ∞
}
∪
{
γ ∈ R(X) |

ˆ

γ

H ds = ∞
}
∪

∞⋃

i=1

Γi
0.

Notice that if γ ∈ R(X) \ Γ0 is nonconstant, then (fn ◦ γ(t))∞n=1 is Cauchy for sγ-almost every t,

namely, for every t ∈ γ−1(X \ E). For such t, the limit will be f̄ ◦ γ(t) by definition of f̄ .

Next, by passing to a constant-speed reparametriztion, we lose no generality in assuming that

the domain of γ is [0, 1] and γ has constant speed. Then for every s ∈ [0, 1] and δ > 0, there is

t ∈ [0, 1] ∩ (s− δ, s+ δ) \ γ−1(E). For every m,n ∈ N, we deduce

|fm(γ(s)) − fn(γ(s))| ≤ |fm(γ(s))− fm(γ(t))| + |fm(γ(t)) − fn(γ(t))| + |fn(γ(s))− fn(γ(t))|

≤ 2

ˆ

γ|[0,1]∩(s−δ,s+δ)

H ds+ |fm(γ(t))− fn(γ(t))|.

Next, taking lim with respect to m, then n and lastly over δ → 0, implies that (fm(γ(s)))∞m=1 is

Cauchy. In particular, γ does not intersect the set E, so γ ∈ R(X) \ ΓE . Together with the fact

that m̄(E) = 0 this show that E has null p-capacity and therefore the last part of the statement

follows. By Arzela–Ascoli theorem, the pointwise convergence of (fm ◦ γ)∞m=1 to f̄ ◦ γ improves to

uniform convergence. Then, by lower semicontinuity of length, we deduce that

ℓ(f̄ ◦ γ|[s,t]) ≤ lim
n→∞

ℓ(fn ◦ γ|[s,t]).

Observe that

lim
n→∞

ℓ(fn ◦ γ|[s,t]) ≤ lim
n→∞

ˆ

γ|[s,t]

ρn ds =

ˆ

γ|[s,t]

ρ̄ ds

by dominated convergence in L1
ext(sγ). Thus ρ̄ is an N -weak p-upper gradient of f̄ as claimed.

The proof is complete.

Remark 6.14. Observe that the Proposition 6.13 and its proof imply the following:

1) If the functions fn are Borel, then the limit function f has a Borel representative f̄ ∈ N̄1,p(X)

(since the set E in the proof is Borel and pointwise limits of sequences of Borel functions are

Borel).
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2) N1,p(X) endowed with the quotient norm ‖ · ‖N1,p(X) is a Banach space.

We also have the following stability result.

Lemma 6.15. Let (X, d,m) be a metric measure space and p ∈ [1,∞). Let (fn)n ⊆ N1,p(X),

f ∈ N1,p(X) and (gn)n ⊆ Lp(m) be such that

fn → f in Lp(m) and gn → |Df |N in Lp(m).

Assume also that |Dfn|N ≤ gn for every n ∈ N. Then |Dfn|N → |Df |N in Lp(m).

Proof. First, let us check that |Dfn|N ⇀ |Df |N weakly in Lp(m). Since |Dfn|N ≤ gn → |Df |N , we

have (up to a non-relabelled subsequence) that |Dfn|N ≤ h for every n ∈ N, for some h ∈ Lp(m)+.

By Dunford–Pettis theorem (or, when p > 1, just the reflexivity of Lp(m)), up to a further

subsequence we have that |Dfn|N ⇀ G for some G ∈ Lp(m)+ with G ≤ |Df |N . Mazur’s lemma

implies that, for any k ∈ N, we can find N(k) ∈ N with N(k) ≥ k and (αk
n)

N(k)
n=k ⊆ [0, 1] such

that
∑N(k)

n=k α
k
n = 1 and

∑N(k)
n=k α

k
n|Dfn|N → G in Lp(m). Since f̃k :=

∑N(k)
n=k α

k
nfn ∈ N1,p(X)

satisfies ‖f̃k − f‖Lp(m) ≤
∑N(k)

n=k α
k
n‖fn − f‖Lp(m) → 0 as k → ∞ and |Df̃k|N ≤ ∑N(k)

n=k α
k
n|Dfn|

by Corollary 6.5, we deduce from Proposition 6.13 that |Df |N ≤ G. Therefore, G = |Df |N and

thus the original sequence (fn)n has the property that |Dfn|N ⇀ |Df |N weakly in Lp(m).

Next, observe that the weak lower semicontinuity of ‖ · ‖Lp(m) yields

‖|Df |N‖Lp(m) ≤ lim
n→∞

‖|Dfn|N‖Lp(m) ≤ lim
n→∞

‖gn‖Lp(m) = ‖|Df |N‖Lp(m),

which implies ‖|Dfn|N‖Lp(m) → ‖|Df |N‖Lp(m). In the case p > 1, we deduce that |Dfn|N →
|Df |N strongly in Lp(m) by the uniform convexity of Lp(m). Finally, in the case p = 1,

lim
n→∞

‖|Dfn|N − |Df |N‖L1(m) ≤ lim
n→∞

‖|Dfn|N − gn‖L1(m) + lim
n→∞

‖gn − |Df |N‖L1(m)

= lim
n→∞

(
ˆ

gn dm−
ˆ

|Dfn|N dm

)
= 0.

Therefore, the proof is complete.

6.3 Energy density of Lipschitz functions in the Newtonian Sobolev

space

We provide a sketch of proof for the recent energy density result from [26]. More precisely, we

prove the following.

Theorem 6.16 (Density in energy of LIPbs(X) in N1,p(X)). Let (X, d,m) be a metric measure

space and let p ∈ [1,∞). Given f ∈ N1.p(X), there exist (fn)n ⊆ LIPbs(X) such that

lim
n

‖fn − f‖Lp(m) = 0 and lim
n

‖lipa(fn)− |Df |N‖Lp(m) = 0.

The proof uses some ideas from discrete convolution. All the notions we introduce below, as

well as the proof of the above theorem are contained in [26].

Definition 6.17 (Discrete paths). Let (X, d) be a metric space. Given any n ∈ N, a discrete

n-path (or briefly path) in X is a finite ordered set P = (p0, · · · , pn) ⊆ X. Given a path P , we
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introduce the following notions:

diam(P ) :=max
{
d(pk, pl)| k, l ∈ {0, . . . , n}

}
; (6.12)

Mesh(P ) :=max
{
d(pk, pk+1)| k ∈ {0, . . . , n− 1}

}
; (6.13)

Len(P ) :=

n−1∑

k=0

d(pk, pk+1). (6.14)

We say that a path Q = (q0, . . . , qn) is a sub-path of P = (p0, . . . , pm) with n ≤ m, and we write

Q ≤ P , if there exists 0 ≤ l ≤ m− n such that pk+l = qk for every k ∈ {0, . . . , n}.

Given δ > 0, a closed set C ⊆ X and a point x ∈ X, a path P is said to be (δ, C, x)-admissible

if Mesh(P ) ≤ δ, p0 ∈ C and pn = x. We will denote by Adm(δ, C, x) the collection of all (δ, C, x)-

admissible paths.

Lemma 6.18. Let (X, d) be a metric space. Fix M, δ > 0 and a closed set C ⊆ X. Let f : X →
[0,M ] be any function, and let g : X → [0,∞) be bounded and continuous. Define f̃ : X → [0,M ]

as

f̃(x) := min
{
M, inf

P∈Adm(δ,C,x)
f(p0) +

n−1∑

k=0

g(pk)d(pk, pk+1)
}
, for every x ∈ X.

The function f̃ satisfies the following properties:

a) f̃(x) ≤ f(x) for every x ∈ C;

b) |f̃(x) − f̃(y)| ≤ max{g(x), g(y)}d(x, y) for every x, y ∈ X with d(x, y) ≤ δ;

c) lipa(f̃)(x) ≤ g(x) for every x ∈ X;

d) Lip(f̃) ≤ max{M/δ, ‖g‖∞}.

In what follows we fix an isometric embedding ι : X →֒ ℓ∞ and identify X with the image of ι.

As observed in [26], the notions we introduce next do not depend on the choice of ι.

Definition 6.19 (Linearly interpolating curves). Let (X, d) be a metric space. Let n ∈ N and let

P = (p0, · · · , pn) be a given discrete n-path in X. We define the linearly interpolating curve

(associated with P ) γP : [0, 1] → ℓ∞ as follows: if Len(P ) = 0, we set γP (t) := p0 for every

t ∈ [0, 1]; if Len(P ) > 0, we first define the sequence of interpolating times TP := (t0, . . . , tn) by

setting

t0 := 0 and tk :=
k−1∑

i=0

d(pi, pi+1)

Len(P )
, for k ∈ {1, . . . , n}.

Then we define for every k ∈ {0, . . . , n}

γP (tk) := pk and γP (t) :=
(t− tk)pk+1 + (tk+1 − t)pk

tk+1 − tk
for every t ∈ [tk, tk+1].

We next introduce a notion of convergence for discrete paths.

Definition 6.20 (Convergence of discrete paths). Let (X, d) be metric space. Let (Pi)i be a given

sequence of discrete ni-paths, ni ∈ N. We say that (Pi)i converges to a curve γ : [0, 1] → ℓ∞ if

(γPi)i converge uniformly to γ and Mesh(Pi) → 0 as i→ +∞.
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Lemma 6.21 (A compactness result for discrete paths). Let (X, d) be a metric space. Let

M, L, D > 0 be given real constants and let (Kk)k be an increasing sequence of non-empty compact

sets in X. Given n ∈ N, define hn : X → [0,∞] as

hn(x) :=

n∑

k=1

min
{
n d(x,Kk), 1

}
, for every x ∈ X.

Then, given any sequence (Pi)i of discrete ni-paths Pi = (pi0, . . . , p
i
ni
) satisfying

lim
i→+∞

Mesh(Pi) = 0, sup
i∈N

Len(Pi) ≤ L, inf
i∈N

diam(Pi) ≥ D

as well as
ni−1∑

j=0

hi(p
i
j)d(p

i
j , p

i
j+1) ≤M ∀i ∈ N,

there exist a subsequence of (Pi)i converging to some γ : [0, 1] → ℓ∞ in the sense of Definition 6.20.

Lemma 6.22 (A lower semicontinuity result for discrete paths). Let (X, d) be a metric space.

Let g : X → [0,∞] be a lower semicontinuous function and let (gi)i be an increasing sequence

of continuous functions gi : X → [0,∞) converging to g pointwise. Given a sequence (Pi)i of

discrete ni-paths Pi = (pi0, . . . , p
i
ni
) with supi∈N Len(Pi) < +∞ and which converges to a curve

γ : [0, 1] → ℓ∞, it holds that

ˆ

γ

g ds ≤ lim
i→+∞

ni−1∑

k=0

gi(p
i
k)d(p

i
k, p

i
k+1).

Proof of Theorem 6.16.

Step 1. First of all, we notice that it is enough to prove the statement for functions f ∈ N1,p(X)

such that 0 ≤ f ≤M for someM > 0 and f |X\BR(x0) = 0 for some x0 ∈ X and R > 0. As standard

truncation and cut-off techniques provide the statement for an arbitrary element ofN1,p(X). Thus,

we fix M > 0, x0 ∈ X and R > 2 until the end of the proof.

Step 2. Fix ε > 0. Denote by ρ1 : X → [0,+∞] a lower semicontinuous upper gradient of f

such that ρ1 ≥ |Df |N and ‖ρ1 − |Df |N‖pLp(m) ≤ ε4−2p. Its existence is provided by the Vitali-

Carathéodory Theorem. We may, without loss of generality, assume that ρ1 = ρf = 0 on X\BR(x0)

for some ρf ∈ π
−1
m

(|Df |N ).

Choose now an increasing sequence (Kn)n of compact sets in X so that Kn ⊆ B2R(x0) and

m(B2R(x0) \ Kn) ≤ εn−p4−n−2p and f |Kn is continuous. Fix σ > 0 such that m(B2R(x0))σ
p ≤

ε4−2p. Define ψ2R(x) := max
{
0,min{1, 2R− d(x, x0)}

}
for every x ∈ X. Finally, set

ρε(x) := ρ1(x) + σψ2R(x) +

+∞∑

n=1

1B2R(x0)\Kn
(x), for every x ∈ X.

It can be verified that ρε is lower semicontinuous and satisfies ‖ρε − |Df |N‖pLp(m) ≤ ε.

Step 3. Pick an increasing sequence of bounded continuous functions (ρ̃n)n converging to ρ1
pointwise. Define further

ρn(x) := ρ̃n(x) + σψ2R(x) +

n∑

k=1

min
{
nd(x,Kk),1B2R(x0)(x)

}
, for every x ∈ X.
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The sequence (ρn)n is increasing, converges to ρε pointwise and for every n ∈ N it holds that 0 ≤
ρn ≤ ρε. Choose an N > 0 such that m(B2R(x0)\KN) ≤ ε(2M)−p and set A := KN ∪X\BR(x0).

Note that f |A is continuous.

Step 4. Now, given n ∈ N and the corresponding data (f, ρn, A,M, n−1) introduced above, we

define

fn(x) := min

{
M, inf

P∈Adm(n−1,A,x)
f(p0) +

NP−1∑

k=0

ρn(pk)d(pk, pk+1)

}
, for every x ∈ X.

We observe the following properties of each function fn and of the sequence (fn)n. From Lemma

6.18 we have that the function fn is Lipschitz and satisfies lipa(fn) ≤ ρn ≤ ρε, 0 ≤ fn|A ≤ f |A and

fn(x) = 0 for every x ∈ X \ BR(x0). Also, fn(x) ≤ f(x) for all x ∈ A. Since ρn ≥ ρm whenever

n ≥ m and since for each x ∈ X an (n−1, A, x)-admissible path is also (m−1, A, x)-admissible, the

sequence (fn(x))n is increasing.

In particular, it follows from the above observations that for every x ∈ KN ⊆ A the sequence

(fn(x))n has a limit. We claim that limn fn(x) = f(x) for every x ∈ KN . To prove it, we argue by

contradiction: suppose there exists x ∈ KN and δ > 0 such that limn fn(x) ≤ f(x)− δ. From the

definition of fn we get the sequence of discrete (n−1, A, x)-admissible paths Pn = (pn0 , . . . , p
n
Nn

)

with the property

f(pn0 ) +

Nn−1∑

k=0

ρn(p
n
k )d(p

k
n, p

n
k+1) < f(x)− δ

2
≤M.

Further, we denote by Qn = (qn0 , . . . , q
n
Mn

) the largest sub-path of Pn with qMn
n = x and Qn ⊆

B3R/2(x0). One can check that Qn is (n−1, A, x) admissible and satisfies the estimate

f(qn0 ) +

Mn−1∑

k=0

ρn(q
n
k )d(q

n
k , q

n
k+1) ≤ f(pn0 ) +

Nn−1∑

k=0

ρn(p
n
k )d(p

n
k , p

n
k+1) < f(x)− δ ≤M.

Using those properties, one can verify that the sequence (Qn)n∈N satisfies the assumptions of

Lemma 6.21. Thus, taking a (non-relabeled) subsequence, we have that (Qn)n∈N converges to

some γ : [0, 1] → ℓ∞.

Now, notice that qn0 ∈ A for all n ∈ N. Thus, as A is closed we get that limn q
n
0 = γ(0) ∈ A.

One can show in a similar way that γ(1) = x. Recall that f |A is continuous and that (ρn)n is

an increasing sequence pointwise converging to ρε. Thus, we may apply the lower semicontinuity

result for discrete paths in Lemma 6.22 and get that

f(γ0) +

ˆ

γ

ρε ds ≤ lim
n→+∞

f(qn0 ) +

Mn−1∑

k=0

ρn(q
n
k )d(q

n
k , q

n
k+1) ≤ f(γ1)−

δ

2
.

It follows that f(γ1) − f(γ0) >
´

γ ρε ds, contradicting the fact that ρε is an upper gradient of f .

Thus, the claim is proven.

Step 5. Thanks to the previous step and the fact that A \KN ⊆ X \ BR(x0) we have fn(x) =

f(x) = 0 on A \KN . Thus, by Dominated Convergence Theorem we may find n0 ∈ N such that

ˆ

A

|fn − f |p dm =

ˆ

KN

|fn − f |p dm ≤ ε

2
for all n ≥ n0.

Taking into account the choice of KN and the fact that X = A ∪ (BR(x0) \ KN ), we may find
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n1 ≥ n0 so that

ˆ

X

|fn − f |p dm =

ˆ

A

|fn − f |p dm+

ˆ

BR(x0)\KN

|fn − f |p dm ≤ ε

2
+Mp

m(BR(x0) \KN ) ≤ ε,

for all n ≥ n1. Thus, taking into account that ρfn ≤ lipa(fn) ≤ ρn ≤ ρε, ‖ρε − |Df |N‖Lp(m) ≤ ε

and that ρn → ρε pointwise as n → +∞, we deduce from Lemma 6.15 that the statement of the

theorem is satisfied by the sequence (fn)n≥n1 ⊆ LIPbs(X).

6.4 Bibliographical notes

• The results in Section 6.1 are new and extend the validity of the calculus rules for Newtonian

Sobolev functions proven e.g. in [42] to the case of Dirichlet functions.

• The results about the Sobolev p-capacity and Capp-representatives of Sobolev functions can

be found in [42]; for some recent results see also [27].

• Lemma 6.15 and the proof of the equivalence are taken from [26].

6.5 List of symbols

Capp Sobolev p-capacity; (6.10)

diam(P ) diameter of a discrete n-path P ; (6.12)

Mesh(P ) mesh of a discrete n-path P ; (6.13)

Len(P ) length of a discrete n-path P ; (6.14)

Adm(δ, C, x) set of (δ, C, x)-admissible paths; Section 6.3

γP linearly interpolating curve of a discrete n-path P ; Definition 6.19

7 Equivalence of the four approaches

In this section we show, as a consequence of all considerations made up to this point, that the four

notions of metric Sobolev space presented in Section 5 coincide. We then discuss several functional

properties of the Sobolev space.

7.1 Proof of the equivalence

In the next theorem we state and prove the main result of this paper, namely the equivalence

between different notions of metric Sobolev space presented in Section 5.

Theorem 7.1. Let (X, d,m) be a metric measure space and let p ∈ [1,∞). Then

H1,p(X) =W 1,p(X) = B1,p(X) = N1,p(X)

and, for every f ∈ W 1,p(X), the equalities |Df |H = |Df |W = |Df |B = |Df |N hold in Lp(m).

Proof. The strategy of proof is the following: we will prove in the first three steps the natural

inclusions

H1,p(X) ⊆W 1,p(X) ⊆ B1,p(X) ⊆ N1,p(X)
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with the corresponding inequalities between the relaxed gradients associated to the various def-

initions. Eventually, the circle will be closed in Step 4, proving the inequality |Df |H ≤ |Df |N
associated to the most technical inclusion N1,p(X) ⊆ H1,p(X).

Step 1. H1,p(X) ⊆W 1,p(X) with |Df |W ≤ |Df |H .

Let f ∈ H1,p(X). Pick a sequence (fn)n ⊆ LIPbs(X) such that fn → f and lipa(fn) → |Df |H in

Lp(m) as n→ +∞. Then, given b ∈ Derqq(X), for every h ∈ LIPbs(X) we set

Lf (b)(h) := −
ˆ

f div(hb) dm = lim
n→+∞

−
ˆ

fndiv(hb) dm = lim
n→+∞

ˆ

hb(fn) dm.

Then, it holds that

|Lf (b)(h)| ≤ lim
n→+∞

ˆ

|hb(fn)| dm ≤ lim
n→+∞

ˆ

|h||b|lipa(fn) dm =

ˆ

|h||b||Df |H dm.

We further define a finite measure µ := |b||Df |Hm ∈ M+(X). Notice that

|Lf (b)(h)| ≤ ‖h‖L1(µ), for every h ∈ LIPbs(X).

Since h 7→ Lf (b)(h) is linear, the above estimate implies that the existence of L̃f (b) ∈ L∞(µ) with

‖L̃f (b)‖L∞(µ) ≤ 1 such that
ˆ

hL̃f (b) dµ = Lf (b)(h).

Finally, we set Lf (b) := L̃f (b)|b||Df |H ∈ L1(m). The LIPbs(X)-linearity is a consequence of the

following observation: pick ψ ∈ LIPbs(X) and note that ψb ∈ Derqq(X). Then

ˆ

hLf (ψb) dm =

ˆ

hL̃f (ψb) dµ = Lf (ψb)(h) = Lf (b)(hψ) =

ˆ

hψL̃f (b) dµ =

ˆ

hψLf (b) dm

holds for every h ∈ LIPbs(X), and thus ψLf (b) = Lf (ψb) is satisfied m-a.e. on X. We now check the

validity of the integration-by-parts formula (5.6). Again, for every ψ ∈ LIPbs(X) and b ∈ Derqq(X)

we have that
ˆ

ψLf (b) dm = Lf (b)(ψ) = −
ˆ

fdiv(ψb) dm.

Now fix x̄ ∈ X and let (ψn)n ⊆ LIPbs(X; [0, 1]) be a sequence of 1-Lipschitz functions satisfying

ψn = 1 on Bn(x̄). In particular, ψn → 1 and lipa(ψn) → 0 everywhere on X. Thus, the m-a.e.

estimate |fdiv(ψnb)| ≤ |f |(|ψndiv(b)| + |b(ψn)|) ≤ |f |(|div(b)| + |b|) ∈ L1(m) and the dominated

convergence theorem imply that

ˆ

Lf (b) dm = lim
n→+∞

ˆ

ψnLf (b) dm = lim
n→+∞

−
ˆ

fdiv(ψnb) dm = −
ˆ

fdiv(b) dm,

proving (5.6). To verify the continuity of the map Derqq(X) ∋ b 7→ Lf (b) ∈ L1(m) with respect to the

Derq(X) topology, by the very definition of Lf (b), the inequality |Lf (b)| ≤ |b||Df |H is satisfied m-

a.e. in X. This shows that ‖Lf(b)‖L1(m) ≤ ‖b‖Derq(X)‖|Df |H‖Lp(m), proving the desired continuity

and therefore that f ∈W 1,p(X). At the same time, the m-a.e. inequality |Lf (b)| ≤ |b||Df |H proves

that |Df |W ≤ |Df |H .

Step 2. W 1,p(X) ⊆ B1,p(X) with |Df |B ≤ |Df |W .

Let f ∈ W 1,p(X). To prove that f ∈ B1,p(X) we will show that |Df |W ∈ WUGB(f). To this aim,

fix a q-test plan π on X and assume with no loss of generality that π is supported in a family
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of curves supported in a bounded set. Recall from Proposition 4.11 that π induces a derivation

bπ ∈ Derq∞(X), which also belongs to Derqq(X) by our boundedness assumption on π. Thus,

recalling (5.6) and (5.7), we have

ˆ

f div(bπ) dm = −
ˆ

bπ(f) dm ≤
ˆ

|bπ||Df |W dm.

Taking into account that (e0)#π − (e1)#π = div(bπ) and the inequality |bπ| ≤ Bar(π) we get

ˆ

f(γ1)− f(γ0) dπ(γ) =

ˆ

fdiv(bπ) dm ≤
ˆ

|bπ ||Df |W dm ≤
ˆ ˆ

γ

|Df |W dsπ(γ).

Since the same holds for any restricted plan π|Γ/π(Γ) as in Proposition 3.16, we obtain that the

characterisation of B1,p(X) given in Theorem 5.18 is satisfied with G = |Df |W . This proves that

f ∈ B1,p(X) and that |Df |B ≤ |Df |W .

Step 3. B1,p(X) ⊆ N1,p(X) with |Df |N ≤ |Df |B.

Let f ∈ B1,p(X). Pick Borel representatives f̄ ∈ Lp(m) and Ḡ ∈ Lp(m)+ of f and |Df |B,

respectively. Then by Theorem 5.17 and the definition of the family Γq

f̄ ,Ḡ
in (3.13) we have that

π(Γq

f̄ ,Ḡ
) = 0 holds for every q-test plan π on X. Then, Lemma 3.24 grants Mod1p(Γ

q

f̄ ,Ḡ
) = 0. Hence,

by Corollary 3.26, there exists an m-measurable representative f̂ of f such that for Modp-a.e. curve

γ ∈ LIP([0, 1]; X) it holds that

f̂ ◦ γ ∈ AC([0, 1]; X) and |(f̂ ◦ γ)′t| ≤ Ḡ(γt)|γ̇t| for L1-a.e. t ∈ (0, 1).

Taking into account that the integrals over the curves are independent on the reparametrizations

(cf. Lemma 2.25), the above implies that

|f̂(γ1)− f̂(γ0)| ≤
ˆ

γ

Ḡ ds, for Modp-a.e. γ ∈ R(X),

and consequently that f̂ ∈ N̄1,p(X) with Ḡ ∈ WUGN (f̂). Therefore, we have that f ∈ N1,p(X)

and |Df |N ≤ G = |Df |B holds m-a.e. in X.

Step 4. N1,p(X) ⊆ H1,p(X) with |Df |H ≤ |Df |N .

Let f ∈ N1,p(X). By Theorem 6.16, there exists a sequence (fn)n ⊆ LIPbs(X) such that fn → f

and lipa(fn) → |Df |N in Lp(m), as n → +∞, and thus f ∈ H1,p(X). Moreover, |Df |N is a

p-relaxed slope of f and thus |Df |H ≤ |Df |N , which concludes the proof.

Remark 7.2. 1) It is straightforward to check that also via relaxation of upper gradients one

obtains the space H1,p(X), namely: a function f ∈ Lp(m) belongs to the space H1,p(X)

if and only if it admits (ug, p)-relaxed slope. Indeed, it follows from Lemma 5.10 that

H1,p(X) ⊆ H1,p
ug (X), where H1,p

ug (X) is defined via relaxation of any upper gradient of f ,

in place of lipa(f). By means of Proposition 6.13, one can prove that H1,p
ug (X) ⊆ N1,p(X).

Then the equality H1,p(X) = H1,p
ug (X) = N1,p(X) follows from Step 4 in the above proof.

2) Note that one can also prove directly that B1,p(X) = N1,p(X) by using the result about

Borel representative with respect to capacity (see Proposition 6.13).
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7.2 Functional properties of metric Sobolev spaces

In what follows we will use the notation W 1,p(X) to indicate the space of p-Sobolev functions with

p ∈ [1,∞), being defined via any of the above presented equivalent approaches. The set of all

weak p-upper gradients of a given p-Sobolev function f will be denoted by WUG(f), while the

minimal weak p-upper gradient of f will be denoted by |Df | := |Df |N . Notice, indeed, that

the monotonicity property of the WUG notions we introduced, together with the coincidence of

the minimal ones proved in Theorem 7.1, show that the notation we use in this section, both for

the space and for WUG, are not ambiguous.

Remark 7.3. Even if we do not keep track of it in the notation |Df |, we point out the important

fact that, in general, minimal weak p-upper gradients are dependent on the exponent p. A proof

of this phenomenon is given in [22], showing that for any given any n ≥ 1 and α > 0 one can

find a density w on Rn so that the minimal p-weak upper gradient of any Sobolev function f on

(Rn, dEucl, wLn) equals 0 for every p ≤ 1 + α, while for p > 1 + α it equals lipf for any Lipschitz

function f . There are however instances in which |Df | is p-independent:

• In PI spaces the equality |Df | = lip(f) holds m-a.e. for every p ∈ [1,∞) (see [16]), thus

guaranteeing the independence of p.

• The above is true in the setting of RCD(K,∞) spaces, due to [35].

• In the paper [36], a first-order condition on the metric-measure structure – called bounded

interpolation property – has been shown to be sufficient for having the independence of the

exponent p.

The linearity properties follow directly from Theorem 6.1 (valid even for Dirichlet functions):

|D(λf)| = |λ||Df | for every λ ∈ R and f ∈W 1,p(X), (7.1a)

|D(f + g)| ≤ |Df |+ |Dg| for every f, g ∈W 1,p(X). (7.1b)

We recall from Remark 5.3 (or Proposition 6.13) the conclusion that W 1,p(X) is complete.

Combined with (7.1a) and (7.1b), we conclude the following.

Lemma 7.4. The Sobolev spaces W 1,p(X) are Banach spaces for p ∈ [1,∞).

We also obtain the following stability result.

Lemma 7.5. Let (X, d,m) be a metric measure space and p ∈ [1,∞). Let (fn)n ⊆ W 1,p(X) and

f,G ∈ Lp(m) be such that fn → f strongly in Lp(m) and |Dfn| ⇀ G weakly in Lp(m). Then we

have that f ∈ W 1,p(X) and |Df | ≤ G holds m-a.e. on X.

Proof. Given any n ∈ N, there exists a sequence (fk
n)k ⊆ LIPbs(X) such that fk

n → fn and

lipa(f
k
n) strongly converges to |Dfn| as k → ∞. Therefore, by a diagonalisation argument we can

find (kn)n ⊆ N such that the elements f̃n := fkn
n satisfy f̃n → f and lipa(f̃n)⇀ G. It follows that

G ∈ RS(f), so that f ∈ W 1,p(X) and |Df | ≤ G holds m-a.e., as desired.

Corollary 7.6 (Lower semicontinuity properties of the Sobolev norms). Let (X, d,m) be a metric

measure space. Then the following properties hold:

i) Let (fn)n ⊆ W 1,1(X) and f ∈ L1(m) be such that fn → f in L1(m). Suppose there exists

h ∈ L1(m) such that |Dfn| ≤ h holds m-a.e. on X for every n ∈ N. Then f ∈W 1,1(X) and

‖f‖W 1,1(X) ≤ lim
n→∞

‖fn‖W 1,1(X).
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ii) Given any p ∈ (1,∞), it holds that ‖ · ‖W 1,p(X) : L
p(m) → [0,∞] is lower semicontinuous,

where we adopt the convention that ‖f‖W 1,p(X) := +∞ for every f ∈ Lp(m) \W 1,p(X).

Proof.

i) First, notice that limn ‖fn‖W 1,1(X) ≤ ‖f‖L1(m)+‖h‖L1(m) < +∞. Take a subsequence (ni)i ⊆ N

such that limi ‖fni‖W 1,1(X) = limn ‖fn‖W 1,1(X). An application of the Dunford–Pettis theorem

ensures that, up to a further non-relabelled subsequence, it holds that |Dfni | ⇀ G weakly for

some G ∈ L1(m). Hence, Lemma 7.5 implies that f ∈ W 1,1(X) and |Df | ≤ G m-a.e. on X. Since

the Lp-norm is weakly lower semicontinuous, we thus conclude that

‖f‖W 1,1(X) ≤ ‖f‖L1(m) + ‖G‖L1(m) ≤ lim
i→∞

‖fni‖W 1,1(X) = lim
n→∞

‖fn‖W 1,1(X).

ii) Given a converging sequence fn → f in Lp(m), we claim that ‖f‖W 1,p(X) ≤ limn ‖fn‖W 1,p(X).

If limn ‖fn‖W 1,p(X) = +∞, then there is nothing to prove. If limn ‖fn‖W 1,p(X) < +∞, then we can

argue as for i), by just using the reflexivity of Lp(m) instead of the Dunford–Pettis theorem.

The following calculus rules are immediate from the calculus rules for Dirichlet functions in

Theorem 6.1, after we are mindful of the integrability of the function.

Theorem 7.7 (Calculus rules for minimal weak upper gradients). Let (X, d,m) be a metric mea-

sure space and p ∈ [1,∞). Then the following properties are verified:

i) Let f ∈ W 1,p(X) be given. Let N ⊆ R be a Borel set with L1(N) = 0. Then it holds that

|Df | = 0 m-a.e. on f−1(N).

ii) Chain rule. Let f ∈W 1,p(X) and ϕ ∈ LIP(R) with ϕ(0) = 0. Then ϕ ◦ f ∈W 1,p(X) and

|D(ϕ ◦ f)| = (lip(ϕ) ◦ f)|Df | m-a.e. on X.

iii) Locality property. Let f, g ∈ W 1,p(X) be given. Then it holds that

|Df | = |Dg| m-a.e. on {f = g}.

iv) Leibniz rule. Let f, g ∈W 1,p(X) ∩ L∞(m) be given. Then it holds that fg ∈ W 1,p(X) and

|D(fg)| ≤ |f ||Dg|+ |g||Df | m-a.e. on X.

Remark 7.8. Suppose that f ∈ W 1,p(X) and ϕ ∈ LIP(R) with ϕ(0) = 0. Then, as a Corollary

of i) and ii) in Theorem 7.7, we get that

|D(ϕ ◦ f)| = (|ϕ′| ◦ f)|Df | m-a.e. on X,

where we adopt the convention that |ϕ′| ◦ f ≡ 0 on the set f−1({t ∈ R : ϕ′(t) does not exist}).
Lemma 7.9 (Localisation of the Sobolev space). Let (X, d,m) be a metric measure space and let

p ∈ [1,∞). Let (Ωn)n be an increasing sequence of open subsets of X with X =
⋃

n∈N Ωn. Define

mn := m|Ωn for every n ∈ N. Given any f ∈ Lp(m) and n ∈ N, we denote by fn ∈ Lp(mn) the

equivalence class of the function f up to mn-a.e. equality. Then it holds that

f ∈W 1,p(X, d,m) ⇐⇒ fn ∈ W 1,p(X, d,mn) for all n ∈ N and sup
n∈N

‖fn‖W 1,p(X,d,mn) < +∞.
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Moreover, if f ∈W 1,p(X, d,m), then for every n ∈ N it holds that

|Df | = |Dfn| m-a.e. on Ωn. (7.2)

Proof. Assume f ∈ W 1,p(X, d,m). Fix n ∈ N. Since mn ≤ m, one can see that fn ∈W 1,p(X, d,mn)

and |Dfn| ≤ |Df | m-a.e. on Ωn. In particular, supn ‖fn‖W 1,p(X,d,mn) ≤ ‖f‖W 1,p(X,d,m) < +∞.

Conversely, assume that fn ∈ W 1,p(X, d,mn) for every n ∈ N and supn ‖fn‖W 1,p(X,d,mn) < +∞.

Define g ∈ Lp(m)+ as g := |Dfn| m-a.e. on Ωn for every n ∈ N. The well-posedness of g follows

from a cut-off argument, by taking into account the locality properties of minimal weak upper

gradients. Now fix a q-test plan π on X. Given any n ∈ N and q ∈ (0, 1)∩Q, we consider the Borel

set Γn,q :=
{
γ ∈ C([0, 1]; X) : γ([0, q]) ⊆ Ωn

}
and the q-test plan πn,q := π(Γn,q)

−1
π|Γn,q (when

n, q are such that π(Γn,q) > 0). For any k ≥ n we have that πn,q is a test plan on (X, d,mk), thus

|(f ◦ γ)′t| = |(fk ◦ γ)′t| ≤ |Dfk|(γt)|γ̇t| = g(γt)|γ̇t| for πn,q ⊗ L1-a.e. (γ, t).

Since C([0, 1]; X) =
⋃

n∈N

⋃
q∈(0,1)∩Q Γn,q, we obtain |(f ◦ γ)′t| ≤ g(γt)|γ̇t| for π ⊗ L1-a.e. (γ, t),

whence it follows that f ∈W 1,p(X, d,m) and |Df | ≤ g. Consequently, also (7.2) is proved.

7.2.1 Reflexivity and Hilbertianity of metric Sobolev spaces

Metric Sobolev spaces of exponent p ∈ (1,∞) are not necessarily reflexive Banach spaces. Indeed,

examples of (compact) metric measure spaces (X, d,m) for which W 1,p(X) is not reflexive are

known, see [40, Subsection 12.5] or [4, Proposition 44]. Nevertheless, many metric measure spaces

of interest are known to have reflexive Sobolev spaces. For example:

• p-PI spaces, i.e. doubling spaces supporting a weak local (1, p)-Poincaré inequality [16].

• More generally, all those metric measure spaces for which (spt(m), d) is metrically doubling

[4]. Ideas from [4] have been later adapted to provide simpler proofs of the reflexivity of

W 1,p(X) on p-PI spaces, see [25] and [3].

• Finsler [54] and sub-Finsler manifolds [50] endowed with a Radon measure.

• Metric measures spaces that can be expressed as a countable union of Lipschitz differentia-

bility spaces, cf. [45]. This includes e.g. rectifiable spaces [11] and p-PI spaces [16].

• Metric measure spaces admitting a p-weak differentiable structure [28, Corollary 6.7]. This

class of spaces includes all spaces of finite Hausdorff dimension [28, Theorem 1.5], thus in

particular all those classes of spaces discussed in the first three previous bullet points. It

also contains the spaces from the fourth bullet-point.

• All separable reflexive Banach spaces endowed with a boundedly-finite Borel measure [61]

(see also [59]).

• Weighted p-Wasserstein spaces defined over a reflexive Banach space, equipped with a finite

Borel measure [67].

• In the case where p = 2, all infinitesimally Hilbertian spaces. The concept of infinitesimal

Hilbertianity, introduced in [33], amounts to requiring that W 1,2(X) is a Hilbert space.

The distinguished subclass of infinitesimally Hilbertian spaces includes the following spaces:

• Euclidean spaces equipped with a Radon measure [37] (see also [21] and [56]).
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• Riemannian manifolds equipped with a Radon measure [54].

• Sub-Riemannian manifolds equipped with a Radon measure [50].

• Separable Hilbert spaces equipped with a boundedly-finite Borel measure [61] (see also [20]

and [59]).

• Weighted 2-Wasserstein spaces defined over the Euclidean space, a Riemannian manifold, or

a Hilbert space, equipped with a finite Borel measure [31].

• Locally CAT(κ)-spaces equipped with a boundedly-finite Borel measure [20].

Moreover, if the dual of a separable Banach space B is uniformly convex, then p-Sobolev spaces

defined on B (or on the p-Wasserstein space over B) are uniformly convex as well [67].

7.2.2 Separability of metric Sobolev spaces

Reflexive metric Sobolev spaces have two important features: they are separable (Corollary 7.11)

and boundedly-supported Lipschitz functions are strongly dense in them (Theorem 7.12).

Lemma 7.10. Let (X, d,m) be a metric measure space and p ∈ (1,∞). Suppose that W 1,p(X) is

reflexive. Let f ∈ W 1,p(X) and (fn)n ⊆ W 1,p(X) be such that fn ⇀ f and |Dfn| ⇀ |Df | weakly

in Lp(m). Then fn ⇀ f weakly in W 1,p(X).

Proof. Since fn ⇀ f and |Dfn| ⇀ |Df | weakly in Lp(m), we know from the Banach–Steinhaus

theorem that (‖fn‖W 1,p(X))n is bounded. Hence, from any subsequence (ni)i we can extract a

further subsequence (nij )j such that fnij
⇀ g weakly in W 1,p(X) for some function g ∈W 1,p(X).

In particular, fnij
⇀ g weakly in Lp(m), whence it follows that g = f and thus fnij

⇀ f weakly

in W 1,p(X). We can finally conclude that fn ⇀ f weakly in W 1,p(X), proving the statement.

Corollary 7.11. Let (X, d,m) be a metric measure space and p ∈ (1,∞). Suppose that W 1,p(X)

is reflexive. Then W 1,p(X) is separable.

Proof. Since Lp(m)×Lp(m) is separable in the product topology, we can find a countable subset D

of W 1,p(X) such that {(f, |Df |) : f ∈ D} ⊆ Lp(m)×Lp(m) is dense in {(f, |Df |) : f ∈W 1,p(X)}.
This means exactly that D is dense in energy in W 1,p(X), in the sense that for every f ∈W 1,p(X)

there exists (fn)n ⊆ D such that fn → f and |Dfn| → |Df | strongly in Lp(m). Hence, Lemma

7.10 implies that D is weakly dense in W 1,p(X). The strong density of D in W 1,p(X) then follows

thanks to Mazur’s lemma.

In many cases of interest, also the 1-Sobolev space W 1,1(X) is known to be separable (even if

it is typically not reflexive), for example when (X, d,m) is a 1-PI space [3].

Theorem 7.12 (Strong density of LIPbs(X) in W 1,p(X)). Let (X, d,m) be a metric measure space

and p ∈ (1,∞). Suppose that W 1,p(X) is reflexive. Let f ∈ W 1,p(X) be given. Then there exists

a sequence (fn)n ⊆ LIPbs(X) such that

lim
n

‖fn − f‖W 1,p(X) = 0 and lim
n

‖lipa(fn)− |Df ||‖Lp(m) = 0.

Proof. Thanks to Theorem 7.1 and Lemma 5.4, we can find a sequence (gn)n ⊆ LIPbs(X) such

that gn → f and lipa(gn) → |Df | strongly in Lp(m).

Since |Dgn| ≤ lipa(gn) for all n ∈ N, we deduce that (gn)n is bounded with respect to

the W 1,p(X)-norm. Being W 1,p(X) reflexive by assumption, up to passing to a non-relabeled
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subsequence we have that gn ⇀ g weakly in W 1,p(X) for some g ∈ W 1,p(X). In particu-

lar, we have that gn ⇀ g weakly in Lp(m), so that g = f . By Mazur’s lemma, for every

n ∈ N we can choose kn ∈ N with kn ≥ n and (αn
i )

kn

i=n ⊆ [0, 1] with
∑kn

i=n α
n
i = 1 such that

fn :=
∑kn

i=n α
n
i gi → f strongly in W 1,p(X). In particular, |Dfn| → |Df | strongly in Lp(m). Given

that |Dfn| ≤ lipa(fn) ≤
∑kn

i=n α
n
i lipa(gi) for every n ∈ N and

∥∥∥∥
kn∑

i=n

αn
i lipa(gi)− |Df |

∥∥∥∥
Lp(m)

≤
kn∑

i=n

αn
i ‖lipa(gi)− |Df |‖Lp(m) ≤ sup

i≥n
‖lipa(gi)− |Df |‖Lp(m)

n→ 0,

we can finally conclude that lipa(fn) → |Df | strongly in Lp(m). The statement is achieved.

We are not aware of any example of a metric measure space whose p-Sobolev space is separable

but not reflexive. Moreover, we do not know whether on every metric measure space Lipschitz

functions are strongly dense in the Sobolev space.

7.3 Bibliographical notes

• The proof of the inclusions H1,p(X) ⊆ W 1,p(X) ⊆ B1,p(X) follows the approach from [18],

where the equivalence has been proven in the case p > 1, by using the density in energy of

Lipschitz functions in the space B1,p(X) proven in [6, 7]. The inclusion B1,p(X) ⊆ N1,p(X) is

based on the relation modulus–plans contained in Section 3, and is inspired by the approach

in [5], where the equivalence between B1,p(X) and N1,p(X) is proven in the case p > 1. In

order to cover p = 1, we appeal to the density result in [26], which gives N1,p(X) ⊆ H1,p(X).

• Several notions of Sobolev space in the case p = 1 have been studied in [9] and the equivalence

between some of them has been proven in the case of PI spaces.

• In addition to the list of papers mentioned above, let us mention that reflexivity and separa-

bility properties of the Sobolev space have been investigated in [34], in relation to the same

properties of the associated (co)tangent modules. We will elaborate on the latter in [8].
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