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Abstract

The crystallographic texture is a key organization feature of many
technical and biological materials. In these materials, especially hierarchi-
cally structured ones, the preferential alignment of the nano constituents
is heavily influencing the macroscopic behaviour of the material. In or-
der to study local crystallographic texture with both high spatial and
angular resolution, we developed Texture tomography (TexTOM). This
approach allows to model the diffraction data of polycrystalline materials
by using the full reciprocal space of the ensemble of crystals and describe
the texture in each voxel via a orientation distribution function. This
means, it provides 3D reconstructions of the local texture by measur-
ing the probabilities of all crystal orientations. The TexTOM approach
addresses limitations associated with existing models: It correlates the in-
tensities from several Bragg reflections, thus reduces ambiguities resulting
from symmetry. Further, it yields quantitative probability distributions
of local real space crystal orientations without further assumptions on
the sample structure. Finally, its efficient mathematical formulation en-
ables reconstructions faster than the time-scale of the experiment. In this
manuscript, we present the mathematical model, the inversion strategy
and its current experimental implementation. We show characterizations
of simulated data as well as experimental data obtained from a synthetic,
inorganic model sample, the silica-witherite biomorph. In conclusion, Tex-
TOM provides a versatile framework to reconstruct 3D quantitative tex-
ture information for polycrystalline samples. In this way, it opens the door
for unprecedented insights into the nanostructural makeup of natural and
technical materials.
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1 Introduction

The properties of many materials rely on their arrangement on the nano- and
crystal structural level. While this organization has shown to be of great im-
portance for a wide host of both technical and biological materials such as
concrete, steel or bone, wood, shells and tendons to give but a few examples, its
actual characterization poses a problem up to the current day. The challenge
for a successful characterization during in-situ and in-operando studies is to
enable a high spatial and angular resolution whilst maintaining a large field of
view and ideally providing a non-destructive imaging modality. While electron
microscopy based techniques can boast impressive spatial resolution and with
focused-ion beam tomography supplies the possibility of 3D characterization,
the investigations are restricted to destructive sampling and in most cases in-
vacuum operation. X-rays however lend themselves to the task as they easily
penetrate millimeters, even centimeters in the case of hard X- rays for most
technical materials. Recent advances in nanofocusing [1] has enabled the rou-
tine operation with beam sizes of 50 nm or less. The advent of 4th generation
synchrotron sources such as MaxIV [2] or ESRF-EBS [3] has further unlocked
the potential for in-situ studies due to the impressive boost in flux that these
machines deliver.

X-ray-based tomography methods have a long history of successful materi-
als characterization. Following the routine implementation of full-field X-ray
tomography and phase tomography [4], X-ray holo tomography [5] and ptycho-
graphic tomography [6] have enabled spatial resolution on a single digit nanome-
ter scale. The coupling of tomography of X-ray diffraction further opened the
possibility to obtain orientation information, which is of high interest for poly-
crystalline materials with a non-random orientation distribution of crystallites.
This property is called the crystallographic texture [7]. A whole class of 3D
techniques exists to obtain local orientations of crystals from the position of
Bragg-peaks such as X-ray Bragg ptychography [8], Bragg CDI [9], 3D-XRD
[10] or DFXM [11]. All these techniques boast impressive angular resolution
given, however, that the diffraction patterns show clearly distinguishable Bragg
reflections. Hierarchically structured materials such as biominerals (e.g. bone,
tendon, shell, cuticle) but also technical ceramics and some deformed metals
can be composed of a high number of crystallites whose crystal axes are lo-
cally distributed around a common mean orientation. This leads to azimuthally
overlapping diffraction peaks and yields images resembling powder diffraction
patterns with azimuthal variations in intensity, which are no longer possible
to describe by a model that specifically addresses each individual crystallite or
grain.

Another way to approach the problem is to consider first scattering tomog-
raphy without orientation information, e.g. diffraction tomography approaches
[12, 13] or SAXS tomography [14]. All these approaches assume a random
orientation of the sample crystalline or nanostructural feature. In order to re-
construct directions based on nanostructural orientation required new ways to
probe the reciprocal space and a parametrization for the orientation informa-
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tion, first shown by Georgiadis et al. [15] for serial 2D slices This lead to the
development of tensor tomography, for which the seminal papers of Liebi et al
[16, 17, 18] have shown approaches to reconstruct orientation tensors from the
small-angle scattering signal of nanostructures (SASTT), which have since found
a wide host of scientific applications. The technique has also been extended into
the wide-angle regime by Grünewald et al. for investigating Bragg peaks [19]
and used to study material properties of cartilage [20], tendon [21], nervous tis-
sue [22] and bone [23], to give a non-exhaustive overview. Recent developments
in the field have seen the introduction of more flexible reconstruction approaches
that aim at overcoming some of the isotropy and sampling assumptions of the
original approach as well as improving reconstruction speed [24, 25]. In partic-
ular Nielsen et al. have presented significant performance improvements as well
as an enhanced model flexibility by introducing band-limited spherical functions
for the reconstruction.

All the aforementioned methods aim to reconstruct features in the diffrac-
tion pattern by modelling their intensity directly in reciprocal space. By re-
constructing the position of a Bragg-peak in 3D reciprocal space, for example,
they obtain the preferred direction of a lattice plane or axis of a crystal. This
leaves, however, one rotational degree of freedom to the orientation of the crys-
tal, which could be obtained by independent reconstructions on several peaks
and subsequent relation to the full crystal orientation tensor, in analogy to [26].
The approach neglects however the interconnection between the positions of the
Bragg-peaks during the reconstruction, which is given by the crystal symmetry,
which in many cases is a priori well known. Motivated by classical texture anal-
ysis, a full implementation of the orientation distribution function (ODF) [27]
is used to tackle this problem. This means, we directly model the real space
texture by assigning a probability to each unambiguous orientation of the crys-
tal. The ODF fully determines the position of all Bragg peaks at once, allowing
the reconstruction of full diffraction patterns with a single model.

Orientations of 3D objects have three degrees of freedom, which are tra-
ditionally described by Euler angles. A framework using a series expansion of
generalized spherical harmonics [28, 29] is often used to build the ODF and finds
it use in state-of-the art software packages [30]. The use of spherical harmonics
ensures a low number of adjustable parameters while providing the flexibility
to model probabilities all possible orientations. Other approaches building on
alternative ODF implementations and direct inversion strategies [31, 32, 33] ex-
ist, but are geared more towards sharp textures usually obtained in metals and
geological samples and are not reviewed here in detail.

There are however shortcomings to the Euler angle parametrization, such
as the degeneracy of orientations [34, 35, 36], a distortion of the metric ten-
sor [37] and singularities in the equations of motion [35]. To overcome these
problems, we use an 3D harmonic expansion, which uses an axis-angle rotation
parametrization to describe orientations[38]. This framework of hyperspheri-
cal harmonics (HSH) offers additional advantages such as computationally effi-
cient rotation operations and the possibility of symmetrization according to the
proper point group, which drastically reduces the number of parameters and
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opens the possibility to use only the fundamental zone of the orientation space.
Coupling this versatile model for describing crystallographic textures to ten-

sor tomography, we are presenting texture tomography (TexTOM) as a com-
putationally efficient framework to reconstruct full crystallographic texture in-
formation in 3D based on scanning X-ray diffraction patterns. This lays the
foundation for quantifying local texture by ODFs using the full information
available in the diffraction patterns simultaneously. The outlined method will
be described in details in terms of its mathematical underpinning and the ac-
tual implementation of the code in python. Numerical simulations to benchmark
the performance of the method will be shown alongside the first experimental
characterization of a helicoidal silica-witherite biomorph as an example of a
hierarchically textured material.

2 Materials and Methods

2.1 Biomorph sample

Silica-carbonate biomorphs are a hierarchically structured, polycrystalline ma-
terial. They are generated by the precipitation of barium carbonate in silicate-
rich media at elevated pH [39, 40]. During the formation crystalline witherite
(BaCO3) nanorods are formed and embedded in a silica matrix. Together, the
biomorphs can take a variety of complex, curved shapes. The exact process gov-
erning the final shape is not fully understood yet[41]. By modifying the prop-
erties of either the crystalline fraction [42] or functionalizing the silica matrix
[43, 44, 45] new functionalities can be added, making biomorphs an attractive
material system from a material chemistry point of view. The biomorph sample
employed here was produced a one-pot co-precipitation method[46]. For this, in
each field of a 6-field well plate 5 mL of a 10 mM barium chloride solution were
added to 5 mL of a 16.8 mM sodium meta silicate solution. The starting pH was
adjusted to 11 using 1 mM NaOH. The gradual diffusion of atmospheric CO2

into the solution then yielded silica-witherite biomorphs of varying shapes at
the bottom of the well-plate. After 15 h the residual solution was removed and
the structures were subsequently washed with water and ethanol before they
were carefully detached from the bottom of the wells using a silicone brush.
After transferring the biomorphs to a centrifuge vial using a pipette they were
sedimented in a centrifuge using 9000 rpm for 10 min. After decanting the
supernatant the structures were dried. For the synchrotron experiments, a ∼
60 µm long piece was mounted on a thin (∼ 10 µm) glass capillary with epoxy
glue.

2.2 Synchrotron experiments

For the experimental characterization, X-ray diffraction experiments were car-
ried out at the ESRF-EBS beamline ID13 EH3 nanobranch. A 15.2 keV X-ray
beam was produced by a channel-cut Si(111) monochromator and pre-focused
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by a set of compound beryllium lenses onto the final focusing optics, a set of
multi-layer Laue lenses (MLL), producing a beam of 300x300 nm with a flux of
1012 photons/s on the sample position. The sample was mounted on a custom-
designed goniometer [19] based on Smaract actuators and scanned by a piezo
stage. The diffraction signal was recorded with an Eiger X 4M and 157.78 mm
sample- detector distance. The primary beam was blocked by a 500µm lead
beamstop. The setup gave access to a usable q-range of 0.5 – 32 nm−1 and
detector edges extending up to 40 nm−1. For each projection, the full sample
was scanned with a step-size of 500 nm in a continuous scanning mode and an
adaptive field of view that enabled to catch the full sample (maximum size 90
x 70 µm) while avoiding excessive air regions around the sample. Diffraction
patterns were recorded with 2 ms exposure time. Subsequently, the sample
was rotated around the z′ axis and tilted around the y′ axis. A total of 260
projections were collected for 10 tilt angles between 0 and 45°. At the 0° tilt
angle, rotation angles were collected between 0 and 180°, for all other tilt an-
gles between 0 and 360°. The number of rotation angles in every tilt angle was
reduced with a factor cosκ. In total, the data acquisition took 6 hours (with
motor movement overheads). The total time of data acquisition was 3.6 h (6.5
Mio. diffraction patterns × 0.002 s) hours The dose deposited on the sample
was calculated according to Howells et al. [47] as follows:

d =
µN0ϵ

ρ
(1)

Where µ = 269.58 cm−1 is the linear absorption coefficient for BaCO3 at 15.2
keV, N0 = 2.3040 × 10−15 m2 is the incident flux per unit area, ϵ = 2.4370 ×
10−15 J is the photon energy and ρ = 4.3 g cm−3 the mass density. Thus, the
dose imparted on the sample during the full scan is 3.4× 1010 J/kg. Under the
assumption that each voxel absorbs an equal amount of radiation, this equates
to a dose of 1.3 x 106 J/kg per voxel.

2.3 Simulated sample

To test the overall functioning of the analysis, we generated data from a sample
of 20×20×20 voxels and placed a Gaussian ODF in each voxel. That is, we
defined a mean orientation gµ and calculated the probability for each orientation
the angular distance dg (see appendix Eq. 33) from gµ:

ρ(g) =
1

N
exp

(
−dg(g, gµ)

2

2σ2

)
(2)

The normalization N was adjusted so that
∫
ρ(g)dΩ = 1 (volume element dΩ

defined in Eq. 13). Standard deviations σ were set to 40°. These distributions
were then mimicked by HSHs of order n = 12 to facilitate rotations in the
laboratory frame. The sample was generated with stripes of equal distributions
in x-direction and random orientations along the other axes. We generated
images according to Eq. 20 with a BaCO3 structure factor and produced 108
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projections for 4 tilt angles from 0 to 45° and rotation angles in an equidistant
matter as described above. Data was renormalized to a maximum number of
200 counts per bin, then Poisson noise was added to simulate the conditions of
a typical measurement.

2.4 Texture tomography inversion

The data was regrouped into 120 azimuthal and 50 q bins over a range from
10 to 35 nm−1 using the PyFAI package [48]. q-regions between the Bragg-
peaks were masked before refinement. To correct for deviations from the true
rotation center of the sample, the individual projections were aligned using
the tomographic self-consistency method [49]. The regular grid of 140x140x180
voxels was constructed, of which 26425 voxels were identified as sample based
on the scattering intensity in the SAXS region (q 0.5 - 1 nm−1). Gaussian beam
intensities were calculated as described in sec. 3.2 and voxels receiving < 1%
of the maximum intensity were excluded from the simulation of the respective
diffraction pattern. BaCO3 single crystal diffraction patterns were simulated
using a published witherite crystal structure [50], using the lattice parameters
a = 5.3072 Å, b = 8.8928 Å, c = 6.4245 Å and space group Pmcn. Rotation
symmetry generators for fundamental zone and HSH symmetrization were 2001
and 2010 as for the 222-point group.

All reconstructions were carried out on a standard compute node, equipped
with a double CPU setup (2x AMD Epyc 7662 64 core) and 2 TB of RAM. The
TexTOM reconstruction code is written in python, using numpy and numba for
just in time compilation and parallelization of the essential parts of the code.
No further code optimization has been carried out and we expect that GPU
portation of the code will enable a further massive speed-up of the computations,
owing to the small memory footprint of the actual inversion problem. Further
information on the reconstruction times are given in Table 1. A damping factor
of k = 2 was used to ensure positivity of the ODF.

3 Texture tomography

3.1 Overview

The general idea of Texture tomography is to provide a reconstruction scheme to
extract quantitative, local crystallographic texture information in 3D from a se-
ries of X-ray diffraction patterns of a sample containing polycrystalline domains
in various orientations.

A brief overview of the experimental configuration is given in Fig. 1a. A
sample is mounted on a goniometric stage that enables scanning (y′/z′ direc-
tion), rotation and tilting (ϕ/κ) of the sample. The sample is raster scanned
with a focused X-ray beam and 2D diffraction patterns are collected at each
scan position. This procedure is repeated for various tilt and rotation angles,
in strict analogy to tensor tomography [16].
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Figure 1: Schematics of acquiring experimental and simulated diffraction pat-
terns. a) The sample is raster-scanned using a focused X-ray beam in the y′/z′

direction for various rotation (ϕ) and tilt (κ) angles. At each point, a full
diffraction pattern is collected, parametrized by the momentum transfer q and
the azimuthal component χ of diffraction. b) A simulated diffraction pattern
originates from an ODF and a crystal structure. The ODF is parametrized
by orientations the three angles (ω, θ, ϕ), which describe axis-angle rotations
in the sample coordinate system (x, y, z). The shown ODF is color-coded so
that brighter colors mean higher probability of the respective orientation. Each
crystal orientation yields a different single crystal diffraction pattern and the
resulting image is the sum over all of them weighted by the ODF.

The reconstructed quantity is a 3-dimensional orientation distribution func-
tion (ODF), representing the local arrangement of the crystallites via probabili-
ties of all unambiguous orientations. Given that the structure of a single crystal
is known, we can simulate the diffraction pattern of a polycrystalline sample by
an ODF-weighted sum over the diffraction patterns of all crystal orientations.
The challenge in this approach is that a faithful reconstruction of the diffraction
pattern requires a high angular resolution, to ensure not to miss contributions
from Bragg reflections from orientations between the sampling points. Sum-
ming over the single crystal patterns for all orientations can therefore become
computationally expensive, when it comes to parameter optimization of large
samples.

We therefore choose to build up our diffraction patterns from a basis set
of elementary images, further labelled diffractlets, which originate in a set of
orthogonal functions used to model the ODF. The basis is given by a series
expansion of hyperspherical harmonics (HSH)[38], similar to a Fourier expan-
sion in 1D and spherical harmonics in 2D. This model therefore encodes the
ODF in expansion coefficients, which are optimized in an iterative process. The
calculation is roughly divided into the following steps:

• The sample is partitioned into cubic voxels, whose dimensions correspond
to the stepsize of the raster scan.

• Each voxel contains an ODF, given by a set of coefficients of the HSH
expansion.
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• We calculate the projected expansion coefficients by summing them over
all voxels, weighted by the respective beam intensity.

• A diffraction pattern is simulated by summing over the diffractlets multi-
plied by the projected coefficients.

• The discrepancy between simulation and data is calculated by an error
metric, which is minimized iteratively by optimizing the voxel-specific co-
efficients.

3.2 Sample Translations and Rotations

The sample center is located at x′
0 in the laboratory coordinate system (CS) as

shown in Fig. 1 and we call x′
i the position of voxel i in laboratory coordinates.

We assign a central voxel around which the rotations are performed, located
at x′

0, and surround it by a cubic lattice with edge length ∆x, which is the
distance between two neighboring measurements. When we rotate the sample
by the angles ϕ and κ, we can calculate the position of voxel i in the sample
CS with origin at x′

0 by:

xi = x′
0 + R̂ (x′

i − x′
0) (3)

using the rotation matrix for Euler angle rotations around z′ and y′

R̂(ϕ,κ) =

 cosϕ cosκ − sinϕ cosϕ sinκ
sinϕ cosκ cosϕ sinϕ sinκ
− sinκ 0 cosκ

 . (4)

Rotating the sample mathematically comprises the challenge of rotating all voxel
positions and interpolating their values on a new grid of coordinates. This
process is slow and prone to produce numerical errors. For calculating the
relative positions of sample and X-ray beam, we therefore keep the sample CS
static and rotate the function describing the beam by the transposed rotation
matrix R̂⊺(ϕ,κ). In addition, we have to include translations of the sample
within the y′-z′ plane (given by displacement indices ty, tz and voxel size ∆x).
In the sample CS the translation of the beam is the negative sample displacement
in the laboratory CS.

To calculate the beam path, we define 2 points traversed by the beam in
sample coordinates: t is the point, where the beam traverses the y′-z′ plane:

t(ϕ,κ) = −R̂⊺(ϕ,κ)t′ = −∆x R̂⊺(ϕ,κ)

 0
ty
tz

 (5)

b is another point on the beam path, resulting from adding the beam direction
unit vector b′ = x̂′:

b(ϕ,κ) = R̂⊺(ϕ,κ)(b′ − t′) = R̂⊺(ϕ,κ)

10
0

−∆x

 0
ty
tz

 (6)
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The beam intensity B(xi) at each voxel position is calculated from the cu-
mulative distribution function of the beam profile (e.g. Gaussian) in function of
the normal distance w between beam axis and voxel center. Note that any kind
of experimentally determined beam profile can be used here. Using ∆x/2 − w
as an argument gives the intensity until the voxel border, assuming that the
beam width is equal or smaller than the voxel. For a Gaussian beam profile
with standard deviation σ this gives

B(xi) =
1

2

[
1− erf

(
∆x/2− w(xi)√

2σ

)]
(7)

The distance w(xi) is calculated from the from the normal distance the line
traversing points t and b and the voxel center xi:

w(xi) =
|(xi − t)× (xi − b)|

|b− t|
. (8)

In order to account for the orientation-dependent absorption of the diffracted
beam in the sample, an implementation of the absorption correction outlined
in [23] can be used. Due to the low absorption of the samples employed in this
study, it was currently not implemented.

3.3 Single Crystal Diffraction Patterns

The diffraction pattern of a single crystal Isc(q) is calculated from all the atom
positions Rj from the structure factor S(q).

Isc(q) ∝ S(q) =
1∑
i fi

∑
j

∑
k

fj(q)fk(q)e
iq(Rj−Rk), (9)

We use atomic form factors f(q) as tabulated in [51].
The crystal is created from a known crystal structure and the unit cell is

repeated in 3 dimensions to resemble the expected crystal size. We would like
to note that the interface is open to accept other input sources for S(q) such
as Discus [52] in order to provide a more detailed modelling of the crystalline
parameters in the future. The q-vectors corresponding to X-ray wavelength λ
and experimental setup are calculated using the surface of the Ewald sphere
[53]. With the beam oriented along x̂′ (see Fig. 1), the origin of the sphere in
reciprocal space is at (−2π/λ, 0, 0) and its radius is 2π/λ. We express these
points in terms of the momentum exchange q = 4π

λ sin θ and the angle in the
detector plane χ

q =

 q cos(θ′)
−q sin(θ′) sin(χ)
q sin(θ′) cos(χ)

 , θ′ = π/2 + θ, (10)

with q and χ corresponding to the polar coordinates on the detector, defined in
Fig. 1.
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In the construction of textured diffraction patterns, it is necessary to com-
pute the contribution from each unambiguous orientation of the crystal. The
diffraction pattern Igsc(q, χ) of a crystal in orientation g is calculated by rotating
all atom positions and using the structure factor (Eq. 9).

3.4 Orientation Distribution Functions

An orientation distribution function (ODF) ρ(g) assigns a probability to a ro-
tation g from a reference orientation and is expedient to describe properties
of an ensemble of objects with different orientations. We use it to model the
scattering intensity I(q, χ) produced by an ensemble of crystallites, assuming
all of them have the same crystal structure in different orientations. The ODF
connects single crystal diffraction patterns Igsc to an image resulting from an
ensemble by an integration over all crystallite orientations g:

I(q, χ) =

∫
ρ(g) Igsc(q, χ) dΩ. (11)

3.4.1 Hyperspherical Harmonic Expansion

We model the ODF as a series expansion of hyperspherical harmonics (HSH)
Zn
lm(g) (see appendix and [54]). These are complex functions that are naturally

written using the axis-angle rotation parametrization. We use these rotations
to describe crystal orientations with respect to the fixed sample CS. The axis-
angle parameterization expresses a 3D rotation using a single rotation by an
angle ω ∈ [0, π] around a unit vector axis â, which we define by polar angle
ϑ ∈ [0, π] and azimuthal angle φ ∈ [0, 2π):

â =

 sin(ϑ) cos(φ)
sin(ϑ) sin(φ)

cos(ϑ)

 . (12)

The volume element for this parametrization is given by:

dΩ = sin(ω/2) sinϑdωdϑdφ. (13)

Since the HSHs form an orthonormal basis for functions of rotations, it is possi-
ble to construct an ODF as a linear combination of HSHs, where Z0

0,0 provides
the probability mass and higher order HSHs redistribute this probability mass as
a function of g. The total ODF depends on a set of complex complex coefficients
cnl,m as:

ρ(g) =
∑
n,l,m

cnlmZn
lm(g) (14)

Furthermore, the ODF of a rotated sample can also be written in the form of
Eq. 14 with a different set of coefficients. The transformation of the coefficients
depends on the rotation to which the sample is subject. This is described by

the matrix R
n/2
l′m′lm(gl, gr) [55], which allows one to write the effect of a rotation
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of a HSH Zn
l,m as a linear combination of other HSHs Zn

l′,m′ of the same order
n (see appendix A)

ρ′(glggr) =
∑
n,l,m

∑
l′m′

cnlmZn
l′m′(g)R

n/2
l′m′lm(gl, gr). (15)

The variable g of the initial ODF defined in Eq. 14 is related to the variable
g′ = glggr of the rotated ODF, where gr is one of the point symmetry opera-
tions of the crystal and gl is a rotation of the sample in the laboratory frame.
This rotation gl will be used to simulate sample rotations in the course of the
tomography experiment. The other rotation gr will always be the null rotation
g0.

3.4.2 Symmetrized Hyperspherical Harmonics

HSHs, as defined in Eq. 29, are complex valued functions and require certain
combinations of complex coefficients to produce a real-valued ODF. We there-
fore use symmetrized hyperspherical harmonics (sHSHs) Z̊n

λ (g), which obey this
constraint by definition. The sHSHs, as functions of rotations, can also be writ-
ten as linear combinations of the HSHs of the same order n:

Z̊n
λ (g) =

∑
l,m

Zn
lm(g)Xn

lm;λ. (16)

The symmetrization procedure to obtain Xn
lm;λ is outlined in Mason & Schuh

[38]. This strategy additionally allows selecting sHSHs with the same proper
point group as the crystal structure. This reduces the number of adjustable
parameters, and the crystal orientations that need to be evaluated are limited
to the fundamental zone of the point group [56]. The matrix for the effect of a
single rotation on the coefficients c̊nλ,k of the expansion over the sHSHs is then
given by:

R̊n
λ′,λ(g) =

∑
l′m′

∑
l,m

Xn†
l′m′;λ′R

n/2
l′m′lm(g, g0)X

n
lm;λ. (17)

3.5 Full forward model

Let us first derive the forward model for a sample made of a single voxel, located
in x1. We can directly use the sHSH model above to calculate the diffraction
patterns expected in that case: let us expand the ODF in Eq. 11 using sHSHs,
the expected scattering intensity in any reciprocal space coordinates q and χ
reads then

Ī(q, χ; c(x1)) =
∑
n,λ

cnλ(x1)

∫
Z̊n
λ (g) I

g
sc(q, χ) dΩ (18)

where c(x1) := {cnλ | (n, λ) ∈ N × N} is the set of sHSH coefficients associated
with the single voxel. Here, we isolate the contribution to the diffraction pattern
by a single sHSH, further labeled diffractlet (see Fig. 2 b), which reads

dnλ(q, χ) :=

∫
Z̊n
λ (g) I

g
sc(q, χ) dΩ. (19)
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Figure 2: a) A sample with HSH expansion coefficients in each voxel, repre-
sented by bar diagrams. These are weighted by the beam intensity for a given
configuration and result in a projection of these coefficients. A summation of
diffractlets weighted by these coefficients results in a diffraction pattern. b) is
a selection of diffractlets of order 4 sHSHs with a BaCO3 structure factor.

Obviously, any realistic sample should be defined over a mesh, with a series of
P voxels located in {xp}Pp=1. It is then natural to associate any voxel p with its
specific series of sHSH coefficients, hence resulting in a set of parameters in the
model that reads

c := {cnλ(xp) | p = 1, · · · , P} with (n, λ) ∈ N× N.

In order to account for the effect of the tomographic measurement, we introduce
another index k = 1 · · ·Nϕ × Nκ × Nt that refers to a given sample rotation
ϕ, tilte κ and translation t. The total diffraction pattern (i.e., the expected
measurement) is a weighted sum of the contribution of each voxel in the sample,
with the weights computed from the local beam intensity Bk(xp), as given by
Eq. 7 (illustrated in Fig. 2 a). For a single measurement k, we note that most
of the weights are zero as only a small fraction of the voxels in the sample are
actually illuminated by the beam. The sHSH coefficients cnλ(xp) are agnostic to
any rotation and tilt in the sample and we need to explicitly account for it in the
forward model. To that end, we introduce first the sample rotation gk that is
associated with the k-th tomographic measurement. Then, we use the rotation
matrix given by (Eq. 17) to define the corresponding rotated diffractlets

δnλ,k(q, χ) :=
∑
λ′

dnλ′(q, χ) R̊n
λ′,λ(gk).

It is then straightforward to define the expected intensity for the k-th tomo-
graphic measurement

Īk(qℓ, χm; c) =
∑
p

∑
n

∑
λ

Bk(xp)δ
n
λ,k(q, χ)c

n
λ(xp) (20)
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where (qℓ, χm) define the measurement mesh in the reciprocal space coordinates.
Clearly, this relation is a linear model that we write now in a convenient matrix-
vector form: i) first, we wrap the measurement-related indices k, ℓ,m into a
single index j = 1 · · ·NkNqNχ, then ii) we use a single index ν in place of the
3 model-related parameters p, n, λ. The relation Eq. 20 now reads

Īj(c) =
∑
ν

Bj,νδj,νcν = a†jc (21)

and if we stack the expected measurements Īj into a single vector, we obtain

Ī = Ac (22)

where A is the texture-tomography matrix that can be pre-computed before we
perform the iterative inversion.

3.6 TexTOM reconstruction strategy

We use a standard quadratic metric

L(c) = ||Ac− I ||2 (23)

to compute the discrepancy between the output of the forward model (Eq. 22)
and the texture-tomographic experimental measurements I := vect(Ij). The
reconstruction is defined as the minimization of the following constrained least-
square criterion

ĉ = arg min
c∈RN

L(c) subject to {c00(xp) ≥ 0}Pp=1. (24)

We note that the positivity constraint over the zero-order sHSH coefficients
is required to produce a physically meaningful results. This constraint can be
fulfill by projecting any negative c00(xp) to zero after each update of the following
gradient-base iteration

c(n+1) ← c(n) − γ(n)∇L(c(n)), n = 1 · · ·∞. (25)

The gradient of the least-square function ∇L is easily derived from Eq. 23

∇L(c) = 2A†(Ac− I) (26)

The stepsize γ(n) is adjusted in each iteration with a backtracking technique to
ensure a strict decrease in the criterion [57, p. 29]. We note that the fitting-
function Eq. 23 is strictly convex whenever A is a full-column rank matrix
(which is expected to be the case here). In this context, the solution of the
constrained optimization problem Eq. 24 exist and is unique [57, Prop. 1.1.2],
and the convergence of the iteration Eq. 25 toward ĉ is granted, whatever the
initial-guess c(0). The convergence of the iteration is monitored via the norm
of the gradient, and we stop the iterative reconstruction when∣∣∣∣ ||∇L(c(n+1))|| − ||∇L(c(n))||

||∇L(c(0))||

∣∣∣∣< ϵ (27)

where ϵ is a predefined parameter (typically, it is set to 10−3).
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3.7 Data post-processing

A known limitation of the harmonic expansion approach is that it hard to ensure
positivity of the ODF[30], in particular without explicitly calculating the ODF in
every iteration, which can be computationally extremely costly for large samples.
We therefore post-process our data using a kernel that ensures non-negativity
[58]. This means we modify the obtained coefficients by a prefactor K that
depends on the order n, the highest used order N and an exponent k, whose
value is empirically chosen to be between 1 and 2 according to the situation.

K =

(
1− n

N + 1

)k

. (28)

It was observed however that this kernel slightly spreads out the ODF, therefore
the presented standard deviations are possibly over-estimated.

4 Results and Discussion

4.1 Reconstruction of simulated data

0 5 10
dg [°]

a) b)

c)

Figure 3: a) TexTOM reconstruction of the simulated sample for testing the
reconstruction algorithm. The sticks represent the reconstructed preferred ori-
entation of the crystal c-axis in each voxel, color coded by the angular deviation
dg from the simulation. A corner was cut out for showing the interior of the sam-
ple. b) histogram of dg for the same sample. The distribution of the standard
deviations is shown in c).

The reconstruction of ODFs of the simulated sample was performed in two
steps: First is the retrieval of the mean orientation using a HSH-expansion cut at
the lowest order, second the estimation of the variance by including higher orders
as necessary. Figure 3 presents a summary of the inversion results: Panel a)
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shows a cut-off view of the reconstruction. Note that this representation shows
only the orientation of one crystal axis, thus does not represent the full texture
information. The colour scale is the angular distance metric (see appendix B)
between the simulation and the reconstruction, which is shown as a histogram
in panel b). The deviations are distributed around an average of 2.8° and
show no clear spatial distribution at the interface between differently oriented
layers of the sample. The irregular shape in this histogram is connected to the
distribution of sampling points in orientation space, which was constructed with
an angular resolution of 3°. This part of the reconstruction was done with the
expansion truncated at order 4, where the point group 222 possesses 10 sHSHs,
and demonstrates that the lowest order already suffices for the estimating the
most likely orientations.

An expansion up to order 8 was used to estimate standard deviations sigma
of the ODFs. As discussed in section 3.7, our current model over-estimates the
spread of the distribution as a consequence of ensuring non-negativity of the
ODF. We find σ distributed around 47.9° with a standard deviation of 2.6°, as
shown in panel c) of Fig 3.

4.2 Biomorphs

In order to test the performance of TexTOM on experimental data, a dataset
of silica biomorph was collected. The sample consisted of a helicoidal silica-
witherite biomorph of 60 µm length and 15 µm diameter. An exemplary SEM
image can be seen in Fig. 4a. The arrangement of BaCO3 nanorods of about
20×100 nm embedded in an amorphous silica matrix is shown in the TEM-
image, Fig. 4b. Different morphologies can be obtained by varying the local
synthesis conditions [40, 41]. In the context of this manuscript, no in-depth
analysis of different growth conditions or their texture has been carried out.
Shown data server as a sample to demonstrate the performance of TexTOM.

A dataset containing 260 projections was collected, with an equal angular
sampling in ϕ and κ based on the reasoning of Liebi et al. [18] to create a ’gold
standard’ measurement. From the reconstructions, the most likely orientation
of the a, b and c-axis was determined within in the fundamental zone and
the variance was extracted as a metric for the degree of orientation/angular
dispersion within each voxel and plotted as the colour scale of Fig. 4c. In order
to facilitate the interpretation of the data, cross sections of the volume are
presented in Fig. 4c. The reconstructions show an angular dispersion consistent
with TEM observations. The red circle indicated the beam size in comparison
to the TEM image. In the slice of the c-axis the two distinct strands of the helix
can be identified. An interesting observation is the presence of a gradient of the
variance along the two helix strands, visible in the cuts of the sample showing a
and b-axes of Fig. 4c. These possibly correspond to a core-skin architecture in
the arrangement of the nanorods. This could be caused by local concentration
and pH gradients during the synthesis. A more detailed study, encompassing
an in-depth, comparative analysis of different morphologies is envisaged for the
future. The reconstruction strategy (described in more detail in the Materials
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b-axis
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for a- and b-axis
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1 μm 60 65 70 75

Figure 4: a) SEM image of a helicoidal silica biomorph. b) Arrangement of
BaCO3 nanorods (black) in amorphous silica (white) as seen by TEM. For refer-
ence, size of the shown region is given by the red rectangle in a). The red circle
corresponds to the dimension of the X-ray beam. c) TexTOM reconstructions
of a 60 µm long piece of a helix. Sticks represent the preferred orientation of the
indicated crystal axes. The volume is cut in transverse (c-axis) and longitudinal
(a- and b-axes) directions, thus showing the interior of the sample. Images were
produced by Paraview [59]

and Methods section) is split into two major parts, one is the precalculation of
single crystal diffraction patterns and the beam trajectories corresponding to
the scan. The rational here is that these time consuming steps can be re-used
for different reconstructions. The actual reconstructions are carried out with
sequentially increasing order, which allows the selection of an optimal order via
a Minimum Description Length (MDL) criterion [60]. In our case, the MDL
criterion is clearly selecting the order 8 (see Fig. 5). A more detailed account
of the timing is given in Tab. 1.

M
D
L

Figure 5: Plot of the minimum description length (MDL) for the reconstruction
of the helicoidal biomorph in function of the HSH order n.
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Table 1: Duration t of different steps of TexTOM reconstructions and total
number of adjustable parameters Npar.

Pre-calculations t [min]
Single crystal diffraction patterns 770
Beam trajectories 5
260 projections t [min] Npar

Reconstruction n = 4 35 290675
Reconstruction up to n = 8 100 1189125
Reconstruction up to n = 12 305 3144575
41 projections t [min] Npar

Reconstruction n = 4 5 290675
Reconstruction up to n = 8 24 1189125
Reconstruction up to n = 12 60 3144575

4.3 Benchmarking

In order to test the performance of our code and see how under-sampling af-
fected our results, two further datasets were selected from the existing data.
One being all 41 projections at κ=0 and another being 41 projections, equally
sampled in ϕ and κ orientation space. The sampling with 41 projections cor-
responds roughly to a Nyquist-Shannon sampling [61]. Reconstructions were
carried out and compared by calculating the angular distance between the most
likely orientations for each voxel, shown in Fig. 3a. The histogram in Fig. 6b
shows amount of voxels for each distance. It is visible that the 41 equidistant
projections reproduce the orientation very well with a mean angular distance of
22° and a decrease in quality that can be expected from the sampling reduction.
Here, there are no visible regions with a worse reconstruction quality, it rather
adds a general noise on the results. A similar, but slightly worse trend is visible
for the κ=0 dataset. Here, the mean angular distance is 35° and the histogram
(blue bars, Fig 6b) shows a higher tail at larger angles. Furthermore, the large
orientation differences seem to be linked to regions where the crystallites have
a wide ODF (compare red zones in top panel of Fig. 6 a and blue zones in
Fig. 4) hence, a weak texture, whereas voxels with a strong texture are in good
agreement. Together with the very fast reconstruction time (5 min) for n=4
for the reduced datasets, the strategy of online reconstruction and information-
driven sampling comes into reach. This strategy entails that continuous online
reconstructions are carried out and that projections are added in zones of the
reciprocal space where the fit shows larger deviations between reconstructed and
measured data.
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dg [°]
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No tilt1 μm

Figure 6: Comparison of reconstructions using all 260 projections and either
41 projections with κ = 0 or 41 projections with an equidistant distribution
over orientation space. a) shows how the angular deviations dg from the full
reconstruction are distributed over the interior of the sample, using the same
sectional plane as in Fig. 4. b) shows the distribution of dg for both cases.

5 Conclusions and Outlook

In summary, this manuscript presents TexTOM as a new inversion framework
to recover quantitative ODF information in a tomographic fashion from X-ray
diffraction data using hyperspherical harmonics and derived diffractlets. We
present a detailed description of the experiment, the forward model including
the parametrization of the HSH expansion as well as our inversion strategy.We
show the results of an inversion on both simulated and experimental data with
sub µm resolution and benchmark the reconstruction strategy with reduced
angular sampling.

The presented method presents a large step forward from state-of-the-art
tensor tomography methods [16, 24, 25] by enabling a fully quantitative recon-
struction of the real-space ODF compared to the reconstruction of the position
of a single SAXS or WAXS reflection. Furthermore TexTOM does not rely on
regularization parameters and associated assumptions on local smoothness, but
uses the inherent constraints given by the crystal symmetry. Due to the na-
ture of the harmonic decomposition, the recovery of mean orientations is given
by the lowest order and therefore allows very fast reconstructions, even when
compared to the actual data acquisition. The estimation of the spread of the
ODF requires the inclusion of higher orders and the use of a damping kernel
also enables to enforce strict positivity of each component of the ODF. This
method currently overestimates the true variance and and we envisage further
tuning if the model to retrieve better estimates.

The joint-optimization of several Bragg-peaks also enables the concurrent
refinement of multiple crystalline phases within one inversion as well as adding
a strain component. For the future, the direct extraction of crystalline phase
information prior to a TexTOM inversion via e.g. a Pawley extraction can
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also be envisaged, requiring less prior information on the crystalline phases
present. In this way, TexTOM aims at reconstructing the full crystalline state
tensors for each voxel with high, essentially beam-size limited resolution. One
challenge arising from the wealth of information contained in the ODF is to
find ways to visualize the retrieved data. Further challenges are arising when
trying to push the experimental resolution down into the range of 100 nm or less.
Firstly, the data acquisition becomes more challenging as both the scanning and
rotation need to provide a positioning accuracy better than the target resolution.
Secondly, the alignment of the data during the pre-processing is subject to equal
constraints and factors such as imperfections in the tilt and rotation axis as well
as the coaxiality of the scanning stages becomes more and more important and
might approach the limit of current mechanical solutions. One way to overcome
this challenge could be the use of nonrigid tomography approaches [62]

Through the efficient use of the collected diffraction information, a signifi-
cant speed-up of the experiment can be expected, bringing in-situ experiments
on dynamically changing samples into reach as well as providing an avenue for
measuring radiation sensitive samples with a largely reduced deposited X-ray
dose. Future work will be directed towards accurately benchmarking the perfor-
mance in terms of spatial, angular and multi-phase resolution with specifically
designed benchmark samples. A further of development is implementation of live
reconstructions and information-driven sampling to realize the quickest-possible
experiments whilst achieving the desired angular and spatial resolution.

A Equations related to hyperspherical harmon-
ics

Definition of hyperspherical harmonics [54]:

Zn
lm

(
g(ω, ϑ, φ)

)
= (−i)l 2

l+1/2l!

2π

√
(2l + 1)

(l −m)!(n+ 1)(n− l)!

(l +m)!(n+ l + 1)![
sin(ω/2)

]l
Cl+1

n−l

[
cos(ω/2)

]
Pm
l

(
cosϑ

)
eimφ

(29)

The Cl+1
n−l are the Gegenbauer polynomials and the Pm

l are the associated Leg-
endre polynomials with the Condon–Shortley phase. Their integer indices are
restricted to n ≥ 0, 0 ≥ l ≥ n, −l ≥ m ≥ l.

The hyperspherical harmonic rotation matrix is given by:

R2l
λ′µ′λµ(g2, g1) =

∑
m′

2

∑
m2

∑
m′

1

∑
m1

Cλ′µ′

lm2lm′
1
U l∗
m′

2m2
(g2)U

l
m′

1m1
(g1)C

λµ
lm′

2lm1
(30)

where U l
m,m′ is the irreproducible representative of SO(3)

U l
m,m′(g) =

∑
λ

∑
µ

√
2(2λ+ 1)π

2l + 1
Clm

lm′λµZ
2l
λµ(g) (31)
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and Clm
lm′λµ being the Clebsch-Gordon coefficient for SO(3).

B Angular distance between orientations

We define the distance between two orientations g, g′ via the quaternion formal-
ism. Unit quaternions are related to rotation angle ω and axis â by:

q = q0 + q1i+ q2j+ q3k = cos
ω

2
+ sin

ω

2
(axi+ ayj+ azk) (32)

The angular distance between two unit quaternions is then given by [63]

dg(g, g′) = arccos(2⟨q,q′⟩ − 1) (33)

Here, q,q′ are the quaternions corresponding to rotations g, g′, respectively.
⟨q,q′⟩ denotes the inner product of the quaternions:

⟨q,q′⟩ = q0q
′
0 + q1q

′
1 + q2q

′
2 + q3q

′
3 (34)

This however, does not yet take into account the crystal symmetry. To find the
effective minimal distance between two orientations, the therefore rotate q by
the symmetry generators of the point group and choose the smallest distance of
all possible combinations.

C Preferred orientation and standard deviation
of ODFs

We examined the resulting ODFs resulting from the sHSH-expansion and found
that the ODF truncated at the lowest order (n = 4 for point group ’222’)
generally shows a single maximum within the fundamental zone. We define
this orientation as the mean orientation gµ of the distribution. To calculate a
standard deviation of an ODF given by a set of coefficients c, we rotate the
distribution by −gµ using relation 15, thus obtaining a distribution centered
at the center of the fundamental zone (where ω = 0). Then we calculate the
standard deviation σ in the conventional way from the rotation angle ω:

σ2 =

∫
ω2ρ(g)dΩ (35)
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switchable anchors on magnetized biomorphic microcarriers,” Journal of
Materials Chemistry B, vol. 8, no. 22, pp. 4831–4835, 2020.

[46] J. Opel, M. Hecht, K. Rurack, J. Eiblmeier, W. Kunz, H. Cölfen, and
M. Kellermeier, “Probing local pH-based precipitation processes in self-
assembled silica-carbonate hybrid materials,” Nanoscale, vol. 7, no. 41,
pp. 17434–17440, 2015.

[47] M. Howells, T. Beetz, H. Chapman, C. Cui, J. Holton, C. Jacobsen, J. Kirz,
E. Lima, S. Marchesini, H. Miao, D. Sayre, D. Shapiro, J. Spence, and
D. Starodub, “An assessment of the resolution limitation due to radiation-
damage in X-ray diffraction microscopy,” Journal of Electron Spectroscopy
and Related Phenomena, vol. 170, pp. 4–12, Mar. 2009.

[48] G. Ashiotis, A. Deschildre, Z. Nawaz, J. P. Wright, D. Karkoulis, F. E.
Picca, and J. Kieffer, “The fast azimuthal integration Python library: py-
FAI,” Journal of Applied Crystallography, vol. 48, pp. 510–519, Apr. 2015.

[49] M. Guizar-Sicairos, J. J. Boon, K. Mader, A. Diaz, A. Menzel, and O. Bunk,
“Quantitative interior x-ray nanotomography by a hybrid imaging tech-
nique,” Optica, vol. 2, p. 259, Mar. 2015.

[50] C. M. Holl, J. R. Smyth, H. M. S. Laustsen, S. D. Jacobsen, and R. T.
Downs, “Compression of witherite to 8 GPa and the crystal structure of
BaCO 3 II,” Physics and Chemistry of Minerals, vol. 27, pp. 467–473, Aug.
2000.

[51] B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: Pho-
toabsorption, Scattering, Transmission, and Reflection at E = 50-30,000
eV, Z = 1-92,” Atomic Data and Nuclear Data Tables, vol. 54, no. 2,
pp. 181–342, 1993.

25



[52] T. Proffen and R. B. Neder, “DISCUS : a program for diffuse scattering and
defect-structure simulation,” Journal of Applied Crystallography, vol. 30,
pp. 171–175, Apr. 1997.
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