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Abstract
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1 Introduction

Panel data sets on economic and financial variables are widely available at individual, firm, industry,
regional, and country granularities and have been extensively used for estimation and inference.
Yet, panel estimation methods have had a comparatively lower impact on common practices in
economic forecasting, which remain dominated by unit-specific forecasting models or low-dimensional
multivariate models such as vector autoregressions (Hsiao, 2022). The relative shortage of panel
applications in the economic forecasting literature is, in part, a result of the absence of a deeper
understanding of the determinants of forecasting performance for different panel estimation methods
and the absence of guidelines on which methods work well in different settings.

In this paper, we examine existing approaches and develop novel forecast combination methods
for panel data with possibly correlated heterogeneous parameters and conduct a systematic compari-
son of their predictive accuracy in settings with different cross-sectional (N) and time (7") dimensions
and varying degrees of parameter heterogeneity, whether correlated or not. Our analysis provides a
deeper understanding of the determinants of the performance of these methods across a variety of
settings chosen for their relevance to economic forecasting problems. This includes the important
choice of whether to use pooled versus individual estimates, or perhaps a combination of the two
approaches, with a focus on forecasting rather than parameter estimation and inference.

We begin by exploring analytically the bias-variance trade-off between individual, fixed effects
(FE), and pooled estimation for forecasting. Our analysis is conducted in a general setting that allows
for weakly exogenous regressors and correlated heterogeneity, consistent with the type of dynamic
panel models commonly used in empirical applications. We show how such effects contribute to the
mean squared forecast error (MSFE) of forecasts based on individual, FE, and pooled estimates.

We next examine two forecast combination methods. Estimation errors are well-known to lead
to imprecisely estimated combination weights for data with a small time-series dimension. Our
combination schemes assume homogeneous weights across individual variables, which allows us to
use cross-sectional information to reduce the effect of estimation error on the combination weights and
stabilizes our combination weights compared to a scheme that lets the weights be individual-specific.
Our first scheme combines forecasts from individual and pooled models. To handle cases where the

pooling estimator imposes too much homogeneity, we propose a second combination scheme based



on forecasts from the individual-specific and fixed effect estimators.

Finally, we consider forecasts based on Bayesian estimators, namely the empirical Bayes approach
of Hsiao et al. (1999) and the hierarchical Bayesian approach of Lindley and Smith (1972) using the
Gibbs sampler of Gelfand et al. (1996). These are related to forecast combination and we show for
the empirical Bayes estimator that it can be thought of as a weighted average of an estimator that
allows for full heterogeneity and a pooled mean group estimator. The empirical Bayes scheme assigns
greater weight to the pooled estimator, the lower the estimated degree of parameter heterogeneity and
so adapts to the degree of parameter heterogeneity characterizing a given data set. The hierarchical
Bayesian model has also been used by Lee and Griffith (1979) and Maddala et al. (1997).

We evaluate the predictive accuracy of these alternative panel forecasting methods through Monte
Carlo simulations of a set of first-order autoregressive (ARX) panel models. These simulations
explore the importance to forecasting performance of the degree of parameter heterogeneity, along
with how correlated it is, whether it affects intercepts or slopes, and the dimensions of NV and T'. In
the scenario with homogeneous parameters, forecasts based on pooled estimates are most accurate.
Forecasts based on fixed or random effect estimates perform well, relative to other methods, when
parameter heterogeneity is confined to the intercepts and does not affect slopes. Outside these cases,
combination and Bayesian forecasts produce the most accurate forecasts since they are better able
to handle parameter heterogeneity, whether correlated or not, while being more robust in cases with
a small T than the individual-specific approach.

Next, we consider two empirical applications selected to represent varying degrees of heterogene-
ity and predictive power of the underlying forecasting models. We characterize the center of the
cross-sectional loss distribution of the forecasts through the ratio of their average MSFE values rel-
ative to the average MSFE of the unit-specific benchmark. We also study the quantiles and the tail
features of the loss distributions through the proportion of units for which the predictive accuracy
of each approach is either best or worst among all methods considered.

Our first application considers predictability of house prices across 362 US metropolitan statistical
areas (MSAs). The forecasting models for this application have a high pooled R? value above 0.8.
In this application, individual-specific forecasts perform quite poorly, producing the highest MSFE
values among all methods for up to 60% of the MSAs and the lowest MSFE values for less than

7% of MSAs. Forecasts based on pooled estimates perform notably better and reduce the average



MSFE value by 3% relative to the forecasts based on individual estimates. Forecast combinations
and Bayesian forecasts work even better in this application, beating forecasts based on individual
estimates for nearly 90% of MSAs while rarely generating the least accurate forecasts for individual
series.

Our second application considers forecasts for a panel containing 187 subcategories of CPI infla-
tion. Our forecasting models for this data have a substantially lower pooled R? in the range of 0.1 to
0.3. In this application, forecasts based on individual estimates generate the highest MSFE-values
for 40% of the series and the lowest MSFE-values for less than 2% of the series. Forecasts based on
pooled estimates also produce the highest MSFE-values for around 40% of the individual series but,
conversely, generate the lowest MSFE-values for nearly 20% of the series. Combination forecasts
are again more accurate than either of these methods as they improve on the average MSFE per-
formance and reduce the MSFE of the individual-specific forecasts for 80% of the series. They also
do not produce the largest MSFE for a single individual variable. Even better inflation forecasts
are produced by the empirical Bayes method which is more accurate (in an MSFE sense) than the
individual forecasts for 98% of the series, generates the lowest MSFE values for 35% of the individual
variables, and never produces the worst MSFE performance among our methods.

Overall, forecasts that use only the information on a given unit tend to have loss distributions
with wide dispersions across units. Their associated forecasts are therefore sometimes the best
but far more often the worst, and their distribution of MSFE performance is often shifted to the
right, implying larger losses on average than for other methods. Forecasts based on pooling, random
effects (RE), or FE estimation tend to perform better, on average, than the individual-specific model
whose forecast accuracy they beat for the majority of series. However, relative to the MSFE-values
of the individual-specific forecasts, these approaches also tend to have a right-skewed distribution,
suggesting a high risk of poor forecasting performance for individual series whose model parameters
are very different from the average. Combinations and Bayesian forecasts have much narrower MSFE
distributions across units, often shifted to the left as they are centered around a smaller average loss.
These methods rarely produce the largest squared forecast error among all methods that we consider.

While the literature on forecasting with panel data has focused on panel data models developed
for inference rather than forecasting, there are some notable exceptions. The review articles by

Baltagi (2008, 2013) consider the forecasting performance of the best linear unbiased predictor



(BLUP) of Goldberger (1962) in models with either fixed effects or random effects. The BLUP
estimator gives rise to a generalized least squares (GLS) predictor which Baltagi compares to models
that allow for autoregressive moving average (ARMA) dynamics in innovations as well as models
with spatial dependencies in the errors.

Trapani and Urga (2009) use Monte Carlo simulations to assess the forecasting performance
of pooled, individual, and shrinkage estimators and find that the degree of heterogeneity is a key
determinant of the accuracy of different forecasts. Briickner and Siliverstovs (2006) consider a similar
group of methods to forecast migration data and find that fixed effects and shrinkage estimators
perform best.

Wang et al. (2019) also propose forecast combination methods. However, their analysis does not
allow for correlation of regressors and parameters or dynamics in the model. Additionally, their
combination weights are determined from in-sample test statistics rather than the expected out-of-
sample performance that we propose. In this sense, our approach is closer to the forecast based test
for a structural break of Pesaran et al. (2013) and Boot and Pick (2020), where the target is also
significant improvements in forecast accuracy rather than a significant change in parameters.

Liu, Moon and Schorfheide (2020) study forecasting for dynamic panel data models with a short
time-series dimension. Though T exceeds the number of parameters that have to be estimated for
each series, such estimates are typically very noisy and not consistent under large IV, fixed T asymp-
totics. To handle estimation noise, like Lee and Griffith (1979), they adopt a Bayesian approach
that shrinks the heterogeneous parameters to their mean, thus also exploiting cross-sectional infor-
mationH This is closely related to the idea of using forecast combinations to reduce the effect on
the forecasts of noisy estimates of individual-specific parameters.

The outline of the rest of the paper is as follows. Section 2 introduces the model setup and
our assumptions, while Section 3 derives analytical results on the predictive accuracy of individual,
pooled, and FE forecasting schemes. Section 4 introduces our forecast combination schemes. Our
theoretical results are summarized in four propositions. Section 5 describes the empirical and hi-
erarchical Bayes estimators. Section 6 presents a set of Monte Carlo experiments designed to shed

light on the determinants of the (relative) forecasting performance of the methods introduced in Sec-

1Qur theoretical analysis focuses on the case with finite T and N — oo and does not require that v N/T — 0 as N
and T" — oo, jointly, which is often assumed in the literature.



tions 3 and 4. Section 7 reports results for our empirical applications. Finally, Section 8 concludes.

Technical details are provided in appendices at the end of the paper and an online supplement.

2 Setup and assumptions

We begin by describing the panel regression setup and assumptions used in our analysis.

2.1 Panel regression model

Our analysis considers the following linear panel regression model:
Yit = o + Bii + e = Owiy + e, € ~ (0,07), (1)

where i = 1,2,..., N refers to the individual units and t = 1,2,...,T refers to the time period, y;;
is the outcome of unit ¢ at time ¢, x;; is a k x 1 vector of regressors—or predictors—used to forecast
Yit, B; is the associated vector of regression coeflicients, and ¢;; is the disturbance of unit ¢ in period
t. The second equality in (1)) introduces the notations 8; = («;,3;)" and wy = (1,«},)" which have
dimensions K x 1, with K = k+ 1. For simplicity, we use the time subscript ¢ for x;; and w;;, but it
is important to emphasize that this refers to the predicted time for the outcome variable, y;;. For a
forecast horizon of h periods, all variables in ;; must therefore be known at time ¢ —h. Our notation
avoids explicitly referring to h everywhere, but it should be recalled throughout the analysis that
x;; includes suitably lagged predictors. We will focus on the case of h = 1 but extensions to larger
h are straightforward.

Notations: Stacking the time series of outcomes, regressors and disturbances, define y, =
(Wit Yiz, - yir)'s Xi = (2}, @y, ..., xlp), Wi = (71,X;), where 77 is a T' x 1 vector of ones,
and €, = (gi1,€i2,...,&7). Further, let y = (¥}, 95,...,9y), X = (X1, X5,.... X)), W =
(Wi, Wh,...,W,), and € = (¢],€},...,€)y) . Generic positive finite constants are denoted by C
when large and ¢ when small. They can take different values at different instances. Apax (A) and
Amin (A) denote the maximum and minimum eigenvalues of matrix A. A > 0 and A > 0 denote
that A is a positive definite and a non-negative definite matrix, respectively. | A| = )\Iln/aQX(A’ A)

and [|Al|; denote the spectral and column norms of matrix A, respectively. ||z||, = [E (||ac||p)]1/p. If

{fn}or, is any real sequence and {g,},-,

el is a sequence of positive real numbers, then f, = O(gyn),



if there exists a C such that |f,| /gn < C for all n and f,, = o(gy) if fn/gn — 0 as n — oco. Similarly,
fn = Op(gn) if fn/gn is stochastically bounded and f, = 0,(gn) if frn/gn % 0. The operator %
denotes convergence in probability, and % denotes convergence in distribution.

2.2 Assumptions

Our theoretical analysis builds on a set of standard assumptions about the underlying data generating

process.

Assumption 1. ¢;; is serially independent with mean zero, a fized variance 02 (0 < c < o0? < C <

o0, and with sup; ; E leu|* < C < .

Assumption 2. For all i and t, the following orthogonality conditions hold:
E (it |wis) =0, fort>s, fort=1,2,...,T,T + 1.

Assumption 3. (a) {wy} for i = 1,2,...,N are covariance stationary with E(w;w},) = Q;,

SUp; 1—f1,2,.. 71 E Hwit||4 < C, sup; r |lwirl < C, and

SUp Amax (Q; ) < C < o0, and SUP Amax (Qi_l) <C <. (2)

K3 7

(b) The sample covariance matrices Qup = T 'W'W,; = T~ ST wyw),, fori=1,2,...,N are

positive definite.

Assumption 4. There exists a fived Ty such that for oll T > Ty

4
sup E HT—U?WQ& < (<o, (3)
sup B [Ahax (Qur )] < € < o0, and supE (A, (Q;7 )] < C < o (4)

Under Assumption (I the optimal forecast of y; 741, in a mean squared error sense, is given by

E (yir+1 |lwiri1, W) = 0w, r41. Note that w; 41 is known at time 7', and is bounded under



Assumption [3] Assumption [2] allows the regressors to be weakly exogenous with respect to g; and
therefore permits the inclusion of lagged dependent variables such as y; 7 in w; 741. Assumption
is an identification assumption that allows consistent estimation of individual slope coefficients,
0;. Assumption [4 is required when we compare average MSFEs based on individual and pooled
estimators. It provides sufficient conditions under which (see Lemma [A.1))

o (o)

)2 —E HQ;Tl (T‘1/2W§si) ‘2 < C <, (5)

where 6; = (W;Wi)fl W'y, is the least squares estimator of ;. The moment conditions in Assump-
tion [4] can be relaxed when w;; is strictly exogenous. From covariance-stationarity in Assumption
we have ||Q;;7 — Q;|| = O,(T~/?) and it is possible to show that there exists a finite Tp such that
for all T' > T} conditions and will be met.

We next introduce assumptions that are required primarily for establishing the properties of

pooled and fixed effects predictors.

Assumption 5. (a) 0; = 0 +n; with |0 < C, E|n;|| < C, E(n;) = 0, E(nn}) = Q,, and
[2[| < C. (b) Let q; = wiwn;, then E(q;) = q; (fived), sup; [|q;| < C, sup; ; E ||Qit||2 <C, and
2

<C.

sup; E Hw;Tﬂm
Assumption 6. n; is distributed independently of €;, for all 7.

Assumption 7. €y =N"1YN €. =0, (N=Y2), where & =T 'Wie; =T} ST wiei.

Assumption 8. There exists a fixed Ty such that for all T > Ty and N = 1,2,..., the pooled
covariance matrices Qnr and Q , defined in terms of Q;r =T *WIW,; and Q; = E (Q,;r ),
N
Qnr =N Qir, and Qy =E(Qnr) =N"" Z Q;, (6)
i=1

are positive definite,

ilflgE[ max (QNT)} < (C < o0, and ?\lflgE[ max (QN )} < C < o0.

Assumption 9. (g;, W;,n,) are distributed independently over i.



For pooled estimation of 8, the conditions on @, can be relaxed and it is sufficient that Q
is positive definite, and supy r E HQ;TH2 < C. Assumptions [5| and |§| identify the population mean
of 8; denoted by 8, but allow for correlated heterogeneityﬂ The degree of parameter heterogeneity
is measured by the norm of £2,, and the extent to which heterogeneity is correlated is measured by
the norm of qiE|

Assumptions are not required for forecasts based on the individual estimates and the associ-
ated MSFE. The assumption of cross-sectional independence for €;; (or w;;) is not needed to establish
results on the MSFE of individual forecasts. However, we do require some degree of uncorrelatedness
over ¢ when the objective is to compute the MSFE averaged across all IV units under consideration or
over a sub-group of the units. In particular, to ensure that the cross-sectional average MSFE tends
to a non-random limit, the units under consideration must satisfy the law of large numbers. To this
end, we need the units to be cross-sectionally weakly correlated, possibly conditional on known (or
estimated) common factors. The situation is different when we consider pooled or Bayesian forecasts.
Optimality of these forecasts does depend on the assumption of cross-sectional independence, or at
least some form of weak cross-sectional dependence. A comprehensive analysis of the implications
of cross-sectional dependence for forecast combinations and comparisons of predictive accuracy are

beyond the scope of the present paper, however.

2.3 Correlated heterogeneity

We measure the degree of correlated heterogeneity for unit ¢ at time ¢ by g; = E (w;w},m;) and, on

average, by

N N T
qnr=N"'T7! Z WiWn, = N'T~! Z Z Wi Wi 1);.- (7)
i=1 i=1 =1

Taking expectations,

N
E(gnr) =ay=N"' Z q;- (8)
i=1

2Here we are simplifying the notations and use 0, rather than 8y, to denote the population mean which is technically
more appropriate.

3Under Assumption E(&r) =T/, E(wiein) =0and E (€ yy) = 0. Note that &;; and w;; are uncorrelated
but not independently distributed. We also note that under Assumption [3| ||@y+|| < sup, [Q;r|l < C, and ||Qy|| <
sup; |Q;|l < C.



Assumptions|[5|and|[6]accommodate correlated heterogeneity and allow for non-zero values of E (W;W;n,).
In the context of fixed effects models, the intercepts «; in are allowed to have non-zero cor-
relation with the regressors, but optimality of forecasts based on pooled estimates of 3 requires
Assumption @ and the condition lim, seen !> | E (X;MTme) = 0, where ;53 = 8, — B,

Mpr=Ir—17 (Tr,T’TT)il T, T is a T x 1 vector of ones, and Ir is a T' x T identity matrix

3 Theoretical results on forecasting performance

We next use the setup and assumptions from Section [2]to establish theoretical results on the forecast-
ing performance of different modeling approaches. Section [3.1]discusses forecasts based on individual
and pooled estimation and, building on this, Section covers fixed effects forecasts.

We note that our theoretical framework can also be applied to forecasts across groups instead of
individuals, when there are a priori known groups such as industries or states within a given country.
Pooled regressions can be applied to any given, a priori known group, so long as the number of units
within the group is sufficiently large and the cross-sectional dependence of units within the group is
sufficiently weak. Failure of the latter assumption implies that there are missing pervasive (strong)
common factors that must also be taken into account. Such extensions are beyond the scope of the

present paper and are topics for future research.

3.1 Forecasts based on individual and pooled estimation

Suppose we are interested in forecasting y; 741 conditional on the information known at time 7" which
we denote by w; 741 to clarify the correspondence to y; 741. Without loss of generality, given the
conditional nature of the forecasting exercise, we are assuming that sup; r [|w;r1]| < C E| Forecasts

based on individual estimators take the form

A~ A/ .
yi,T—l-l = Bi'w,-,TH, 1= 1, 2, e ,N, (9)

4See Pesaran and Yang (2023). Note that E (X;MTXmlﬂ) = 0, is sufficient but not necessary for the validity of
fixed effects estimation. This condition is not met if x;; includes lagged values of y;+, even if T' — oo.
®See part (a) of Assumption



where 0; = (WiW,;)"'W'y,, is the least squares estimator of @;. Similarly, forecasts based on the

pooled estimator are given by
- 1 ,
YiT+1 = 0wi,T+1a 1= 1)27"'5N7 (10)

where 8 = (W'W)~'W'y. Using @, , and the definition of €y, in Assumption

0—-0;,=-n,+ QX/%F(TNT + Q]_V%Z“éNT' (11)

Forecast errors from these schemes take the form

A~

éir+1 = Yir+1 — Vir+1 = cirt1 — (0i — 0;) w; 141, (12)

€1 = Yir+1 — Uir+1 = €ir+1 — (0 — 0;) w; 741 (13)

Forecasts based on individual estimation

Noting that (0} —0,) w1 = eiW,;(WIW ;)" lw,; 111, it is easily seen that the forecasts based on

the individual estimates result in the following average MSFE:

N

N
N_lzézz,T-i-l = N_IZE?7T+1 +T_ISNT _2RNT7 (14)
i=1 i=1

where Sy = N~1 Zf\il sit, Ryr = N7t ZZJL ry7 , with elements

riv = (EiWi(WiW,) " \w; r41) €541, (15)

SiT = w;TJrlQi_Tl (T71W§€i€;WZ‘) Q;lei;mrl. (16)

It is now easily seen that, under Assumptions and E (rir ) = 0 and sup, 7 E [ry7| < C. Similarly,

sup; r E |si7| < C and

. (W'he,elW; _
E(sir ) =E |:w;,T+1QiT1 (ZZTH> QiTl'wi,T—H:| .

10



Therefore, under cross-sectional independence (Assumption @, Ryt = Op(N -1/ 2), and Sy =
E (Snt) + Op(N ~1/2) and we obtain the results summarized in the following proposition for the

average MSFE of the forecasts based on the individual estimates (for a detailed proof see Section

of the Appendix):

Proposition 1. Suppose that Assumptions and@ hold. Then for a fized Ty such that T > Ty: (a)

the average MSFE resulting from individual-specific estimation of the parameters has the following

representation
N N
NS = NS+ T M+ O,N) 1 0, (N2, 1
i=1 i=1
where
N W'ee!W,
— — 1 &1 y 1 —
hvy = N7! ZE [w;7T+1Qi7“1 (sz> Qz‘lei,TJrl] ’ (18)
i=1

Q,r = T_1W;Wi, hyt > 0, and hyp = O(1).

(b) If W, is strictly exogenous, hyt simplifies to
N
hynT = N_IZO'?E (w;7T+1Q,i?Z:‘vlwi7T+1) . (19)
i=1

The hyr term captures the cost associated with the error in estimation of éz For typical
panel data sets, T' is not large and parameter estimation uncertainty captured by the O (T _1) term
T 'hyr in can therefore be important. Parameter heterogeneity, in contrast, does not affect
the accuracy of the forecast in . The magnitude of Ayt plays an important role in comparisons
of forecasts based on individual and pooled estimates and depends on how far the predictors are
from their mean. As an example, consider the simple case where w; = (1, ;)" and x; is strictly

exogenous. Then

al (@i 1_«'1_7‘T)2
hyr =65+ N1 ofE |20 == ,
i=1 SiT

_9 AN 2 2 1T — N2 - 1T :
where o5, = N™" Y .0 07, sip =T ) (@i — Tyr)?, and Zyp = T~ >, wy. It is clear that

11



hyt is minimized when x; 741 = Z;7, for all ¢. But in general where z; 711 # Z;7 for most ¢, then

we must have T sufficiently large such that sup;E|(x; 741 — @T)2 / S?T] < C.

Forecasts based on pooled estimation

While the forecast accuracy results for the individual regressions do not depend on the degree of
parameter heterogeneity, whether correlated or not, the degree of correlated heterogeneity does
matter for consistency of the pooled estimator. Using in we can express the squared

forecast error when pooled estimates are used as follows:
~2 _ 2 / d. d/ . 2dl . .
€ir1 = €irt1 + Wi r i NTAdy NpWi 41 — 2d; NPWi T 1€ T4,

where d; N7 = —1n; + Q_fvlleNT + Q;VlTENT, QNT and gy are defined by @ and, and ENT is

defined under Assumption [7] After some algebra, and averaging over 4, we have

N N N
~1 2 | 2 —1 / /
N § éiry1 = N E giry1+ N § W; 74177 Wi, T+1 (20)
i—1 i=1 im1

+SN1+1 + 2RN 141,

where S N, T+1, and RN,TH are defined by equations 1D and 1} in Section of the
Appendix. It can be shown that RN7T+1 = Op(Nfl/Q), and §N7T+1 = —q&Q]quN + O, (N*1/2),
where Q and §y are defined by @ and , respectively. The limiting properties of the average

MSFE based on pooled estimates are summarized in the following proposition.

Proposition 2. (a) Under Assumptions ﬂ the MSFFE for the forecasts based on pooled estimation

of the parameters is

N N
Ny @i =N elr + Anr + O (N2, (21)
i=1 i=1
where
N
_ =1 _
Anr=N"" Z E (w;,T—an‘n;wi,T-&-l) —qnQy dn- (22)
i=1

12



(b) In the special case of uncorrelated heterogeneity, the MSFE simplifies to

N N
NI &r =N elr + Q) + Op(NTH2). (23)
=1 =1

(c) Parameter heterogeneity (whether correlated or uncorrelated) increases the MSFE of the forecasts

based on the pooled estimator, namely Ayt > 0.

Parts (a) and (b) of Proposition [2| are established in Appendix To establish part (c) note

2
that the first term of Anp, N7! Efil E (w;Tﬂnmgwi,TH) = N1 Ef\;l E <w;7T+1m) > 0, and
arises irrespective of whether heterogeneity is correlated or not. The second term, q NQI\,ltj’N, enters
only if heterogeneity is correlated. The balance of the two terms, namely Ay, can be signed under

stationarity where E (wg’T+1nin;wi7T+1) = E (w),n;n}w;). In this case, we have

N
~—1_

Ay=N"" Z E (wimniwi) — AvQy - (24)
=1

To establish that the net effect of the two terms in Ay7 is non-negative, we first show that the
sample estimate of Ay7 can be obtained as the sum of squares of the residuals from the pooled
panel regression of njw;; on w;;. Consider the panel regression njw;; = ¥'w; + 4, and note that

the pooled estimator of v is given by
N T -1 N T )
= (3T S ) Y i Qi
i=1 t=1 i=1 t=1
which yields the residual sum of squares

N T T
-1 .9 -1 / o 2 ]
N—'T E Z vy =N""T E (Mwir — Yyrwir)” = Anr,
i=1 t=1 i=1 t=1

and, by construction, Ay is non-negative and is given by

T N

. L o A—1 _

Any =T 'NTDY S wimmjwi — @yrQurdnr > 0.
t=1 i=1

13



This result also holds for a fixed T and as N — oo (applying Slutsky’s theorem to the second term):

lim Ayy = plim N7'T7'> 3 "% > 0.
N—oo N—oo —1 =1
1= =

The impact on the MSFE from neglected heterogeneity, A ~NT, does not vanish even if both N and
T — oo. This is in line with the early results obtained in Pesaran and Smith (1995) who established
the large N and T inconsistency of fixed effects estimators of heterogeneous dynamic panels because

heterogeneity is always correlated in dynamic panelsﬁ

A comparison of forecasts based on individual and pooled estimates

Next, we consider the difference in the average MSFE performance of the forecasts based on the
pooled versus individual parameter estimates. Proposition [I|shows that the MSFE from the forecasts
based on the individual estimates will be affected by an estimation error term of the form
N
_ 1 [(WieielW;\
hyp = N1 ZE |:w;,T+1QZ'T1 <l,}zz> Qﬂ«lwiv"r+1:| > 0. (25)
i=1
While the forecasts from the pooled estimates are more robust to estimation errors, they are in turn

affected by correlated and uncorrelated heterogeneity as captured by the term

N
_ -1 A1 _
Ayp=N"1 E E (w; rymmwiri1) — GnvQy - (26)
i—1

We compare the difference in the average MSFE of the forecasts from the pooled versus individual
estimates as a ratio measured relative to the MSFE of the forecasts from the individual estimates
as a benchmark:
_ N -~ _ N .
N1 D1 6?,T+1 - Nt dim1 6?,T+1
_ N ~9
N-1Y 00 € T+1

ANt — T vy + Op(N~V2) 4 O, (N~Y2T-1),
NTTYEL, 512,T+1 + T thnr + Op(N-V2)

5This latter property is illustrated by a simple example in Section of the Appendix.
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Hence, there exists a Ty such that, for a fixed T' > Ty, and as N — oo

1N 52 1N 2 _
N7 i€y — N D€ p A—T  hy
—1\NV 22 52 —1p,.°
N Y € o=+ T hr

where hy = limy oo AT > 0, A = limpy 00 Ay > 0, and 2 = limy oo N1 Zf\;l o? > 0. It follows
that when T is fixed and N is large, generally it will not be possible to rank the two forecasting
schemes. The outcome will depend on the sign and the magnitude of A — TflhTE

For large values of T, however, we can show that the individual forecasts generate the lowest

MSFE values. Specifically, for a fixed N and as T — oo

—1 N <2 —1 N 22
N 2121 €T+l N Zz’:l €T+l p AN

L =X L 0,(NTY.
1N 4 p
N-1Y5 6?,T+1

52
Similarly, when both N and 7" — oo (in any order)

— N =2 —1 N A2
=1 T+1 =1 T+1 _
=1l =Lt BA/G? >0,

N-1Y N 2
i=1%,T+1

where A = limp_, o (Ar). Therefore, on average, individual-specific estimates lead to more accurate
forecasts as compared to the pooled estimates when T is sufficiently large.
3.2 Forecasts based on fixed effects estimation

The comparison of forecasts based on individual or pooled estimates can be extended to intermediate
cases where a sub-set of the parameters are allowed to vary across units. A prominent example is

the FE forecast

~FE ~ 5/
Ui 741 = Qi FE + Bpp®iT+1, (27)

n comparing Ar with T_lhT, it is also important to bear in mind that hr is well defined if moments of 02 (at
least up to second order) exist (see the moment condition ) This in turn requires that T' > Ty for some finite To.
The value of Ty depends on the nature of the (wi,e;:) process and its distributional properties.
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-1
where ;. pp = 7/-(y; — BppX:)/T and Bpg = (Zz X' M7X; ) SN X! Myy,. The associated

FE forecast error is given by
~FE ~ - -
éity1 = Eirr1 — (Brr — By) Tiri1, (28)

~ _ = ~ _ ~ = _ =17 —~ 1T
where & 711 = €741 — &1, TiT+1 = TiT41 — TiT, &7 = T thl git, and &;p =T thl Lit-

Following the derivations for the pooled estimates, it is easily seen that
. 1 _ 1 =
Bre — Bi = —Mip + QnrsAnT s + QN1 8ENT 85

where n; 3 = 8; — B, €np s = NN T X[ Mre;,

N N
Qnrg=N") T XMrX;, and qurg=N""Y (T X;MrX:)n, 5.
i=1 =

With one exception, the derivation of the average MSFE for the FE estimation closely parallels
the case of the pooled estimator with n; g in place of n;, Q ~NT,8 Teplacing Qnrs G ~NT,8 Teplacing
anT, E NT,3 replacing E N7s and T 741 = Ti7+1 — &7 in place of x;741. The exception arises
due to the fact that in the case of weakly exogenous regressors, & (and hence & 741) is not
distributed independently of (Bpp — 8;) Z;7+1. To account for this dependence, we first note that,
under Assumption |7} & Nt.g = Op (N -1/ 2), and

!/

N N

_ — ~—1 _ ~—1 = ~ _

Nt Z (ﬂFE - z) &ip & =N Z (—m,ﬁ + QN1 sANT,S T QNT,gﬁNTﬂ) i, T+1&iT
i=1 i=1

N N
= N mls@irncr + dvrsQurs (N_l > iz‘,Tng'T) +0p (N_1/2> :

i=1 i=1
Also, under Assumptions [4 and [9] we have

N

1 - I _ _
¥ 2 (B = 8:) @irncin = o +O,(N ), (20)
=1
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The expression for c snnphﬁes somewhat by noting that under Assumption l (xir118i7) = 0,

and using Lemma we have qlNTﬁQ&T,B = ‘_IEVﬁQJ_V,ﬁ + Oy (N—1/2), Hence,

N N
ey = =N E (0 s®ir &) + ‘_I/NWBQ&},B [N_l > E(zireir)
=1 =1

(30)

CNT tends to zero for T sufficiently large or if a;; is strictly exogenous. Note that under Assumption
|§|7 n; and €;; are independently distributed. Using these results, the MSFE under fixed effects

estimation is

N
NS (@R) = NTYY @+ ARG — 200G + 0,(N 1), (31)
i=1 i=1

N
_ ~ ~ _ ~—1 _
ANT = ! Z E(w;,TJrlni,Bn;,ﬂwi,TJrl) - q/NﬁQN,ﬁQN,B' (32)
i=1

A comparison of forecasts based on individual and fixed effects estimates

To compare the FE forecast to the individual forecasts, rewrite (12)) as ;741 = ;741 — (& — ;) —

T; T+1(5 B;), and note that &; — o; = & — T (Bl - ,@Z> Therefore,

€iT+1 = EiT+1 — T T+1(5 Bi) (33)

The derivation of the average MSFE, N~! sz\i 1 éiT 41 can now proceed as before, except that under
weak exogeneity the two components of €; 741, in , are no longer independently distributed and,

as in the FE estimation, we need to consider the additional term

=

Z &1 (B — Bi)éirs1 =N szT+1 XMy X;) ' X|Mrei&ir

= N 1szT+1 X;MTXi)_lX;MTEZ@T+Op(N_1/2).
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Using this, we have

- Z &} 11 (B; — Bi)éirs1 = enrp + Op(N712), (34)
where
N
entg =N E(& (XM X,) ' X[ Mreigir| . (35)
i=1

Taking this term into account we obtain

N
- Z &y =N &+ hnrs — 2enmp + Op(NTH2), (36)
i=1
where
N
_ - _ X Mree,MpX;
hnTp =N ! ZE [wi,T+1QiT1,5 < L T a ) Qﬂ}g% T+1] ) (37)
i=1

and Q;rp = T-H(X[M7rX;). As with the term ck%. in the average MSFE of the FE forecasts,
cnt,3 = 0 when x; is strictly exogenous. To see why this is so, note that in this case, E (e;&;r | X;) =

(02/T)T7 and
E (&7 (X{M7X:) ' X{Mreigir | Xi] = &7 (X;M7p X)) X{M1E [ei6ir | Xi, &i711] = 0,

so unconditionally E [:E;’TH(X;MTXi)_ngMTsiéiT] =0, and eny7 g = 0.

Apart from the error term, ;741 — &7, which is common to the individual and FE forecasts, the
squared forecast errors are analogous to those in the comparison of individual and pooled forecasts
except that we work with demeaned data and allow for the additional terms ck NT and cyt g if the
regressors are weakly exogenous. Further, similar to the case of the individual and pooled forecasts,
for T finite and N large, the ranking of the two forecasts will depend on the relative magnitudes of
AFVET + c]FVET and hnt g + cnT,8. Also, for T — oo the individual forecasts will be more precise than

the FE forecasts.
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4 Forecast combinations

We next consider approaches that combine the forecasts from Section 3 to minimize the MSFE.

4.1 Combinations of individual and pooled forecasts

Given the MSFE trade-off associated with the forecasts in @ and , combining the forecasts
based on the individual and pooled estimates, 9; 741 and @; 741, may be desirable. As noted in
the literature (e.g., Timmermann, 2006), forecast combinations tend to perform particularly well,
relative to the underlying forecasts, if the forecast errors are weakly correlated and have MSFE
values of a similar magnitude. Correlations between forecast errors based on the individual and
pooled estimation schemes tend to be lower for (i) greater differences in the estimates of 8; resulting
from larger estimation errors (small T'); (ii) greater heterogeneity (large [|€2,]|), and (iii) greater bias
of the pooled estimator due to correlated heterogeneity.

If the level of parameter heterogeneity is either very large or very small, one of the individual or
pooled estimation approaches will be dominant, reducing potential gains from forecast combination.
Similarly, if T is very small but NV is large and there is little parameter heterogeneity, we would expect
pooled estimation to dominate individual estimation by a sufficiently large margin that forecast
combination offers small, if any, gains. Conversely, if T is very large, forecasts using individual
estimates will dominate forecasts using pooled estimates by a sufficient margin that renders forecast
combination less attractive. Building on these observations, consider combining the two forecasts

¥i 7+1 and g; 741 using common weights, w, to obtainlﬂ

Yiri1(W) = wiiri1 + (1 — w)Firi1, (38)

with associated forecast error € i1 (w) = wé; 741+ (1—w)é; 741. The average MSFE of the combined

8We focus here on a simple constant-coefficient linear combination scheme. Lahiri, Peng, and Zhao (2017) discuss a
broader range of combination methods and Elliott (2017) provides an analysis of the effect on the combination weights
and forecasting performance from having a large common component in the forecast errors.
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forecast is given by
N N
N~ Z erii(w) = W (N_l Z é12,T+1> +(1-w)? (N_l Z ézZ,T—H)
; i=1

=1
N
—|—2w(1 — w) <N1 Z éi,T+1éi,T+1> .

i=1
The value of w that minimizes the average MSFE is therefore given by
_ N ~ _ N ~
Nt dic ezz,TJrl - (N ! D im1 ei,T+1€i,T+1)

Wy = ~ ~ ~ . (39)
(Nfl Dic e?,T—i—l) + <N71 >int 612,T+1> -2 (Nfl Dic ei,T+1€i,T+1)

Approximate expressions for N1 ZZ]\L L€ r 4 and N -1 Ef\; 1€ 41 are given by {) and {) re-
spectively. We obtain a similar expression for N—! Zf\il €i T+1€;,7+1, With N -1 Zf\il 5?T 41 can-
celling out from wy;. The result is summarized in the following proposition with proofs provided

in Section of the Appendix.

Proposition 3. (a) Under Assumptions ﬂ the optimal combination weight that minimizes the

MSFE of the forecast combination in @ s given by

Ant — T~V 2Nr

* _ N—1/2 N_1/2T_1/2 4

where hyr and An7 are defined in equations and (@, respectively, and YT 1S given by
al 1
Ut = [N T)E (T1/2e;WiQ;T1wi,T+lw;,m)] Qn'an (41)
i=1

N
_ N—l Z E <T_1/2€;W7;Q2-_lei7T+1wg7T+l7]i> .
=1

(b) Under uncorrelated heterogeneity, Wyt = 0, and Anr and hyr will be affected accordingly.

For small to moderate values of 1" and large N, we expect wy; < 1, with a non-zero weight
placed on the forecasts based on the pooled estimate.

Our forecast combination scheme does not attempt to estimate weights specific to the individual
units, w; which require estimation of E (éﬁT +1) , E(é?}T +1> , and E(é; 741€;741) for each i separately,

and their estimates will depend on on the individual estimates such as 6; and 62 and thus require
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large T for consistency. Instead, we use the cross-section to estimate wy . This requires consistent
estimation of Ay, Anr, and ¥y which is achieved under Assumption [9] and requires large N as

long as T' > Tp, where Ty is finite. See Sub-section [4.3] below.

4.2 Combining individual and fixed effect forecasts

Combination weights can also be determined for the case where the pooled forecast is replaced with

the FE forecasts. In this case, the combined forecast is given by

Yiri1(WrE) = wrEYi 41 + (1 — WFE)Ji T+1,FE, (42)

yielding the optimal weight

2
-1 N ~FE -1 N AFE ~
N7 (%Tﬂ) - <“ >ic1 81,T+1ei,T+1>

. .
—1\NV 42 -1V (sFE _ -1\ LFE 5.
N1y oL 6i,T+1> + N1y (ei,T—i—l) 2 (N Dic1 € 716,741

W}E,NT = ( (43)

2
The expressions for N1 ZZ]\; 1 (éf% +1> and N~! ZZ]\L 162 41 are given by || and , respec-
tively, and the expression for N~! Zf\i 1 éf % +1€i,7+1 can be similarly obtained. In this case, the

shared term Zf\; (gim+1 — &1)?/N cancels out and we have the result summarized in the following

proposition with proofs provided in Section of the Appendix.

Proposition 4. (a) Under Assumptions ﬂ the optimal combination weight that minimizes the
MSFE of the forecast combination in is given by

e AN TR — (e~ en)
PN AR+ T vy — 2T 2

+ Op(N72) 4 Op(NTV2T71/2), (44)
where Aﬁ,]% is defined in and hyt g in , respectively. Moreover,
N
_ _ 1 /= - =1 _
]FVL% = N1 ZE [(T 1/2€;'MTXi> Qle,B (CCZ'7T+1:13;7T+1)} QNﬁqN?B
i=1
N
NTYE [(T—1/2€;MTX1-) Qi (Zirs1, 741 nw] : (45)

=1

and cf,}% and cnt,g are defined by (@) and , respectively.
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(b)Under uncorrelated heterogeneity, wﬁ% =0, and Af/% and hyt g will be affected accordingly.

4.3 Estimation of combination weights

To compute the weights for the forecast combination in Proposition [3] we need estimates of hyr,
Apnr, and ¢¥np. Under Assumption [9] these terms can be estimated by their sample means with

unknown parameters replaced by their estimates. Specifically, we have

N
TS ST S 10
i=1
where H;p = T! Zle €2 (wyw!,), and &; = yi — égwit, t=1,2,...,T,
N
Ayr=N"" Z w;,TJrlﬁiﬁ;wi,TJrl (47)
i=1

where 7); = él —0. Finally, we set ¥y = 0. We do this because errors in estimating ¢y are or
order T2 so0 we cannot expect to obtain accurate estimates of this term in cases with small 7.
Since Y7 = 0 in the absence of correlated heterogeneity, effectively this means that we ignore such
effects when estimating ¢n7 although, of course, our theory captures such effects. We also provide
Monte Carlo results that show our estimated weights are quite close to the oracle weights that make

use of true parameters values, under heterogeneity. Accordingly, we use the following estimate of
WNT

_ Anr
Anr + T Thyy

A~k

WNT

(48)

which is guaranteed to lie in the range (0,1].
Similarly, when estimating the weight in Proposition |4| we set w}z}% =0 and CRET —cnt,3 =0 and
estimate wpp yp as

AFE
ANT

AR + T hyrp

. .
WFENT —
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where

N
. 1 ~ o
A?VET =N Z w;,T+177i,,8"7;,5wi,T+17 (50)
i=1

Nig = Bi — Bre, Ti,r+1 = Tir41 — TiT,

N
2 A1\ A -1
hnrpg =N Z mi,TJrlQiT,g
=1

X! MréeilMpX; 1 -
( VLT ifz T Z) Qz'Tlﬁmi’TJrl’ (51)

~
and & = yir — 0, w;;.

5 Bayesian Forecasts

Bayesian panel forecasts are becoming increasingly common in empirical applications and constitute
an alternative approach to the frequentist forecasts discussed so far. We consider two such approaches
here, namely empirical Bayes and hierarchical Bayesian forecasts. The empirical Bayes (EB) forecast
uses the estimator of Hsiao et al. (1999) and takes the form

~EB _ p
YiT+1 = 9¢,EBwi,T+17

where

0: 55 = (672WIW, + Q) )L (62 Why, + 9, 0), (52)

~ N ~

=N"'> 0, o7=(T-K) &g,
=1
and
1 5 5
A _ a M N AN/
Qy = ~ Z}(ez —0)(0;, —0),

where & = y; — W8;, and 8, = (WiW,) " Wiy, ]

The EB estimator can also be written as a weighted average of 9i, which allows for full hetero-

Mt is necessary that N > T for Qg to be positive definite.
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geneity, and the mean group estimator, 0:

0; 55 = Wirb; + (I, — War) 0, (53)
where, recalling that Q,; = T~ 'W/,W,, the weight matrix W;r is given by

Wir = (Ik +T7162Q) Q;l) o (54)

The weights on the heterogeneous estimates are larger, the greater the degree of heterogeneity, as
measured by the norm of flg, with éi,EB — 9Z as HQ(;H — o0o. Also, since &?Q;Tl Qg_l is bounded
inT, 92 EB converges numerically to éi, as T'— oo. Hence, one would expect the EB estimator to
perform well when T is relatively small and the degree of heterogeneity is not too large. Note that
the EB weights vary across ¢ unlike our forecast combination schemes which assume homogeneous
weighting across all seriesm

We also consider forecasts from the hierarchical Bayesian model of Lindley and Smith (1972).

These assume ¢;; ~ i9dN(0, 0?) with the following priors:

>
2

N(0,Xy),
é ~ N(d7 Sé):
251 ~  Wishart(vy, (1/252)_1)»

0? ~ invGamma(v,/2,vs5%/2).

Draws from the parameter distribution are generated using the Gibbs sampler. We use proper priors
that are weakly informative: d =0, S5 = I510% Sy =1Ik, vy, =K, v, = 0.1, and s> = 0.1. This
avoids the use of uninformative priors that appear to be difficult to attain in hierarchical models

(Gelman, 2006). Further details are provided in Section in the Online Supplement.

10VVhileAthe EB estimator in is fully parametric, other studies pursue a non-parametric approach to the distri-
bution of 6;; see, e.g., Brown and Greenshtein (2009) and Gu and Koenker (2017) and, more recently, Liu (2023) and
Liu, Moon, and Schorfheide (2023).
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6 Monte Carlo experiments

Having developed theory for the determinants of the predictive performance of the individual, pooled,
FE, and combined forecasts, we next use Monte Carlo simulations to examine their finite-sample
performance. We do so in the context of a dynamic heterogeneous panel data model. We begin with
a pure panel autoregressive model and then move on to a dynamic heterogeneous panel model with
an additional regressorﬂ We allow for dynamics, parameter heterogeneity, and correlations between
the regressors and coefficients. We also consider the nature of the trade-off between heterogeneity
and estimation uncertainty under different degrees of fit of the underlying panel regressions.

For each data generating process (DGP) we use the following forecasting methods: (1) pooled es-
timation, (2) individual estimation, (3) random effects, (4) fixed effects, (5) combination of individual
and pooled forecasts, (6) combination of individual and FE forecasts, (7) empirical Bayes forecasts,
and (8) hierarchical Bayes forecasts. We add the random effects forecasts to the experiments given
their widespread use in applied WorkB

Given our focus on large N panels, we set N = {50,100,1000} and consider different time
dimensions, namely T' = {20, 50,100}, for all MC experiments. The values of the parameters used

in the simulations are reported in Table in Appendix

6.1 Panel AR model

Our first DGP is a panel autoregressive model given by

yit:ai—l—ﬁiyi’t,l—i—sm 1=1,2,...,N, t=1,2,...., T+ 1, (55)

where ;1 = 0;(22 — 1)/V2 with z ~ iidN(0, 1), 02 ~ 0.5+ 0.5x3, a; ~ N(ag;,02), Bi = Bo + i85
nig ~ Uniform(—ag/2,as/2), and ag, together with N and T', are parameters that are varied over

the Monte Carlo experiments. We examine four settings:

e og; =1, and ¢ = ag = 0 (homogeneous case);

o ag; =2/3ifi < N/2, ap; =4/3if i > N/2, 02 = 0.5, ag = 0 (heterogeneous fixed effects);

"Further analytical results for the panel AR(1) model is provided in Section of the Appendix.
12 Additional results for equal weighted combinations and oracle weights are in Sectionof the Online Supplement.
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e ag; =2/3ifi < N/2, ap; =4/3 if i > N/2, 62 = 0.5, and ag = 0.5 (medium heterogeneity);
o ag; =2/3ifi < N/2, ap; =4/3if i > N/2, 02 =1, and ag = 1 (strong heterogeneity).

The values of 3y (reported in Table are calibrated such that we achieve values of the pooled

R? (PR?) (further described in Section S.2 of the Online Supplement) of approximately 0.2 and 0.6.

To ensure that E <1j52) < C, it is required that 0 < ag < 2(1 — \50])
We initialize the DGP at T = 0 and draw y;p from a normal distribution with mean kq; and
variance 01-2 /(1 — Biz), where k is a constant. When & is not unity, departures from a stationary

distribution of ;; could be important especially when T is small. Results for k # 1 are provided in

the Online Supplement as they remain qualitatively identical to those for k = 1.

6.2 Panel ARX model

Our second DGP adds a regressor, x;;, to the panel AR(1) model:

Yit = i + Bivit—1 + ViTit + it (56)
Again ey = 0(24 — 1)/v/2 with z; ~ #dN(0,1), and o7 ~ iid(1 + x}) /2. The DGP for z; is

Tit = i + &it, (57)
where

1/2 ..
Eit = puilii—1 + 0w (1 — p2) / vit, vyt ~1idN(0,1),

toi = (22 —1)/V?2, z ~ iidN (0,1), and 02, ~ iid(1 + x3) /2, for individual units i = 1,2,..., N,
and observation periods ¢t. The autocorrelation coefficient of x;; is pg; ~ iid Uniform(0,0.95), thus
allowing for a high degree of dynamic heterogeneity in the regressors.
As for the pure panel AR model, the coefficients of the lagged dependent variables, y;¢—1, are
generated as (; = o+ nig, with 7;3 ~ iildUniform(—ag/2,ag/2), and as before 0 < ag < 2(1—|fo|).
'3See equations(S.9) and in Section [A.3]of the Appendix. Also note that E (8;) = o and Var () = a3/24.
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To allow for correlated heterogeneity, we set
Q; = Qi + Pz + ogni, and vy = Yoi + Thei + 0c G, (58)

where 7;, (; ~ iidN(0,1) and ap = E (i) = ag; + ¢E (pai) = ;. Again, we examine four settings:

e agi=1,7; =0.1and 02 = 03 = ag = 0 (homogeneity);

o api =2/3if i < N/2, agi = 4/3if i > N/2, 02 = 0.5, 70; = 0.1, and 02 = ag =0

® (p; — 2/3 if ¢ S N/2, ap; = 4/3 if ¢ > N/Q, 0'(21 = 05, Yoi = 02/3 if ¢ S N/Q, Yoi = 04/3 if
i>N/2,02=0.1,and ag = 0.5

® (o; — 2/3 if 4 S N/Q, ap; — 4/3 if 4 > N/Q, Jgé = 1, Yoi = 02/3 if 4 S N/Q, Yoi = 04/3 if

i>N/2,02=02, and ag = 1

Note that non-zero correlations need not bias the pooled estimates. What matters for these is

the correlation between yztfl and % and the individual coefficients.

Using and we have

E [zit (vi — 70)] = E [(ttai + &it) (Tpiai + 0¢G)] = 7B (u3;) # 0,

E 22 (vi—7)] = E[(ttei +&1)* (Tpai + 0¢G)]

= 7E (1)

Therefore, E [3’312,1571 (v — 70)] = 0 if pyy; are draws from a symmetric distribution around 0. To rule
out this possibility, we draw p,; from a chi-square distribution.
To control the degree of correlated heterogeneity, we first note that (taking expectations with

respect to both ¢ and )

E(yi) =9, Var(y)=r"+o0¢,

E (i) = E (ttai + &) = 0,  Var (zi4) = E (24t — piai)” = o,
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and E [Var (z;¢)] = E(1+ x37) /2 = 1. Also, since vy is distributed independently of n; and ¢; for

~1/2
all ¢,i and j, Cov (vi,zi) = m and Corr (y;,xi4) = 7 (o? + 712) . To achieve a given level of
Corr(vs, Tit) = prya, We set
PryaC
T = % (59)
(1 B pv:v)

Similarly, to achieve Corr(ag, Zit—1) = paz, We set

o= Letn_ (60)

(1—p2,)"*

Defining O',QY = Var(y;) = 72 + O'g, we can use to see that m = py,0,. An equivalent result
emerges for ¢ where, for 02 = Var(a;), we have ¢ = paz04. We thus use the parameters o2, ag, and
ag to vary the degree of parameter heterogeneity in o, ; and 3;, respectively.

For comparability, we use the values of ag from the pure panel AR model in Section Note,

however, that PR,y > PR% whenever E(vy?) # 0 since

E(h7)(1 — PRY p)
1+ E(y])

PR%px = PRYp +

for details see Section [S.2] of the Online Supplement.
We initialize y;0 as y;0 ~ iidN </‘Wiy0, agy()), with
(1350 = Qi + Yifbai o2 — 7120;%@ + 01'2
1y0 1— @2 ; iy0 1_ 612 )
and set &9 = 0. We consider initialization schemes both with x = 1 and « # 1. When s # 1, we
depart from the stationary distribution of y;;, which could be important when T is small. Since the

results are qualitatively unchanged for these initialization schemes, we relegate them to the online

supplement.
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6.3 Forecasts and measures of forecast performance

The following panel models are fitted in the simulations to compute forecasts of y; 741:
Yy =Wibi +e;,

where y; = (yi1, ¥i2, ¥i3, - - - vir)'s Wi = (7,9, 1) in the case of the panel AR model and W; =
(t1,Y; —1, i) in the case of the panel ARX model, ¢7 is a T'x1 vector of ones, y; _y = (¥i0, ¥i1; - - -, vir—1),
x; = (i1, Ti2, ..., 1), € = (€i1,€i2, ..., &), and 0; = (i, Bi, Vi)' -

The resulting forecasts are evaluated using the ratio of the average MSFE of each method mea-

sured relative to that of the reference individual forecasts

N R ~
NE Yoict Dore1 Wi T 41 — Ui 1,j0)?

rMSFE; =
N R N
NlR Zz’:l Z’r:l(yi,T+1,T - yi,T+1,ref,r)2

)

where j denotes the methods—pooling, fixed effects, random effects, combination—and ref denotes
the reference forecast which is the individual forecast. Replications are denoted by » = 1,2,..., R,
where R = 10,000. An exception is the results for the hierarchical Bayesian forecasts which are
based on R = 500 replications due to the computational intensity of this approach.

Additionally, we report quantiles o = (0.01,0.05,0.1,0.5,0.9,0.95,0.99) of the relative forecast

accuracy over the IV units in the panel

R A~
% Zrzl(yi,T+1,r - yi,TJrLjﬂ“)Q

S Wi — GiT41,ref )2

quantile;(a) =

[e7

6.4 Results

The results for the ratio of average MSFEs from the panel AR and ARX models are reported in
Tables|l|and [2l In each table, we vary the cross-sectional dimension (V) across three blocks of results
and the time-series dimension (7') along the columns. Each row assumes a different combination
of the two hyperparameters that determine heterogeneity, ag and o2, with the homogeneous case
(ag = 02 = 0) in the top row. The top part of the table sets PR? to approximately 0.2 while the
bottom part sets PR? to approximately 0.6.

With no heterogeneity and a small time-series dimension, T', consistent with Propositions
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Table 2: Monte Carlo results for panel ARX

ag o2 Pooled

RE

FE

Empirical Bayes

Hier. Bayes*

Comb. (pool)

Comb. (FE)

T 20 50

100

20

50 100

20

50

100

20

50

100

20

50

100

20

50

100

20

50

100

PR?=0.2

N =50, ppy =0

0.0 0.0 0.799 0.934
0.0 0.5 0.995 1.160
0.5 0.5 1.082 1.257
1.0 1.0 1.316 1.528
N =50, pyy = 0.5
0.0 0.5 0.984 1.148
0.5 0.5 1.089 1.268
1.0 1.0 1.329 1.543
N =100, pyz =0
0.0 0.0 0.792 0.931
0.0 0.5 0.955 1.120
0.5 0.5 1.073 1.249
1.0 1.0 1.344 1.553
N =100, pyz = 0.5
0.0 0.5 0.951 1.115
0.5 0.5 1.104 1.285
1.0 1.0 1.395 1.613
N = 1000, pyz =0
0.0 0.0 0.786 0.931
0.0 0.5 0.971 1.149
0.5 0.5 1.093 1.284
1.0 1.0 1.374 1.603
N = 1000, pye = 0.5
0.0 0.5 0.959 1.135
0.5 0.5 1.119 1.315
1.0 1.0 1.406 1.642

0.969
1.208
1.308
1.592

1.195
1.321
1.611

0.969
1.169
1.302
1.617

1.164
1.339
1.679

0.968
1.196
1.335
1.666

1.181
1.367
1.707

0.835
0.837
0.921
1.049

0.837
0.917
1.045

0.823
0.830
0.936
1.106

0.830
0.943
1.116

0.819
0.824
0.930
1.098

0.824
0.929
1.093

0.950 0.978
0.952 0.979
1.044 1.075
1.189 1.227

0.952 0.979
1.040 1.071
1.182 1.220

0.944 0.975
0.949 0.979
1.068 1.102
1.258 1.299

0.950 0.979
1.074 1.107
1.267 1.307

0.945 0.975
0.949 0.978
1.067 1.100
1.257 1.296

0.949 0.978
1.065 1.097
1.252 1.291

0.843
0.843
0.929
1.060

0.843
0.924
1.055

0.836
0.836
0.946
1.120

0.836
0.951
1.127

0.830
0.830
0.940
1.110

0.830
0.937
1.104

0.953
0.953
1.045
1.191

0.953
1.041
1.184

0.951
0.951
1.071
1.261

0.951
1.076
1.270

0.950
0.950
1.069
1.261

0.950
1.066
1.254

0.979
0.979
1.075
1.228

0.979
1.071
1.221

0.979
0.979
1.103
1.300

0.979
1.108
1.308

0.978
0.978
1.101
1.297

0.978
1.098
1.291

0.849
0.866
0.893
0.918

0.866
0.889
0.916

0.843
0.856
0.884
0.914

0.857
0.883
0.913

0.840
0.852
0.879
0.908

0.853
0.878
0.906

0.953
0.962
0.980
0.989

0.962
0.979
0.988

0.952
0.960
0.978
0.988

0.960
0.978
0.988

0.952
0.960
0.977
0.987

0.960
0.977
0.987

0.978
0.984
0.995
0.998

0.984
0.995
0.998

0.978
0.983
0.994
0.997

0.984
0.994
0.997

0.978
0.983
0.994
0.997

0.983
0.994
0.997

0.854
0.868
0.900
0.927

0.869
0.896
0.924

0.857
0.878
0.902
0.930

0.878
0.901
0.928

0.812
0.843
0.885
0.922

0.844
0.884
0.921

0.971
0.976
0.984
0.990

0.976
0.983
0.990

0.966
0.974
0.983
0.990

0.974
0.982
0.989

0.946
0.959
0.981
0.991

0.960
0.980
0.990

0.991
0.993
0.996
0.998

0.994
0.996
0.998

0.987
0.991
0.996
0.998

0.991
0.996
0.998

0.978
0.984
0.995
0.998

0.984
0.995
0.998

0.870
0.924
0.938
0.957

0.923
0.938
0.958

0.865
0.914
0.934
0.957

0.913
0.938
0.960

0.859
0.914
0.934
0.957

0.911
0.937
0.959

0.954
0.988
0.991
0.995

0.987
0.992
0.995

0.952
0.985
0.990
0.995

0.985
0.991
0.996

0.951
0.986
0.990
0.995

0.985
0.991
0.995

0.978
0.997
0.998
0.999

0.997
0.998
0.999

0.978
0.997
0.998
0.999

0.996
0.998
0.999

0.977
0.997
0.998
0.999

0.996
0.998
0.999

0.900
0.900
0.928
0.949

0.900
0.926
0.948

0.895
0.895
0.929
0.954

0.895
0.930
0.954

0.889
0.889
0.925
0.951

0.889
0.924
0.950

0.967
0.967
0.986
0.993

0.967
0.986
0.992

0.966
0.966
0.987
0.994

0.966
0.988
0.994

0.965
0.965
0.987
0.994

0.965
0.987
0.994

0.985
0.985
0.996
0.998

0.985
0.996
0.998

0.985
0.985
0.997
0.999

0.985
0.997
0.999

0.984
0.984
0.997
0.999

0.984
0.997
0.999

PR?=0.6

N =50, pyp =0

0.0 0.0 0.788 0.931
0.0 0.5 0.874 1.031
0.5 0.5 0.986 1.151
1.0 1.0 1.207 1.400
N =50, pye = 0.5
0.0 0.5 0.870 1.026
0.5 0.5 0.980 1.145
1.0 1.0 1.189 1.382
N =100, pr =0
0.0 0.0 0.781 0.927
0.0 0.5 0.860 1.020
0.5 0.5 0.994 1.168
1.0 1.0 1.256 1.461
N =100, pyz = 0.5
0.0 0.5 0.857 1.016
0.5 0.5 1.004 1.180
1.0 1.0 1.276 1.484
N =1000, py; =0
0.0 0.0 0.779 0.927
0.0 0.5 0.863 1.027
0.5 0.5 0.995 1.176
1.0 1.0 1.247 1.461
N = 1000, pyy = 0.5
0.0 0.5 0.858 1.021
0.5 0.5 0.996 1.176
1.0 1.0 1.243 1.456

0.967
1.073
1.200
1.461

1.068
1.195
1.445

0.967
1.067
1.221
1.526

1.062
1.232
1.548

0.967
1.072
1.226
1.521

1.065
1.227
1.517

0.834
0.828
0.925
1.069

0.827
0.920
1.061

0.826
0.822
0.941
1.128

0.822
0.946
1.139

0.823
0.818
0.935
1.121

0.818
0.932
1.114

0.950 0.977
0.949 0.977
1.057 1.091
1.230 1.281

0.949 0.977
1.053 1.087
1.224 1.274

0.946 0.976
0.946 0.977
1.085 1.124
1.314 1.378

0.946 0.977
1.091 1.129
1.330 1.394

0.945 0.976
0.945 0.976
1.084 1.122
1.317 1.378

0.945 0.976
1.081 1.119
1.311 1.372

0.839
0.839
0.940
1.089

0.839
0.936
1.082

0.832
0.832
0.956
1.151

0.832
0.961
1.162

0.829
0.829
0.951
1.146

0.829
0.948
1.139

0.952
0.952
1.062
1.238

0.952
1.058
1.232

0.948
0.948
1.091
1.325

0.948
1.096
1.340

0.948
0.948
1.089
1.328

0.948
1.087
1.321

0.978
0.978
1.092
1.284

0.978
1.088
1.277

0.978
0.978
1.126
1.383

0.978
1.131
1.399

0.977
0.977
1.124
1.383

0.977
1.121
1.377

0.851
0.867
0.897
0.924

0.867
0.895
0.919

0.844
0.857
0.883
0.911

0.858
0.884
0.912

0.846
0.857
0.881
0.911

0.857
0.882
0.912

0.953
0.962
0.980
0.988

0.963
0.979
0.987

0.951
0.959
0.977
0.985

0.959
0.977
0.986

0.952
0.959
0.976
0.985

0.959
0.976
0.986

0.977
0.983
0.994
0.997

0.983
0.994
0.997

0.978
0.983
0.994
0.996

0.983
0.994
0.996

0.978
0.982
0.993
0.996

0.982
0.993
0.996

0.858
0.864
0.886
0.915

0.864
0.880
0.914

0.853
0.865
0.889
0.921

0.865
0.886
0.918

0.814
0.842
0.884
0.917

0.843
0.883
0.916

0.968
0.974
0.982
0.989

0.974
0.981
0.989

0.964
0.971
0.980
0.987

0.971
0.979
0.986

0.947
0.957
0.979
0.988

0.957
0.978
0.987

0.989
0.992
0.994
0.997

0.992
0.994
0.997

0.986
0.991
0.994
0.997

0.991
0.995
0.997

0.979
0.984
0.995
0.997

0.984
0.994
0.997

0.864
0.897
0.925
0.953

0.896
0.923
0.951

0.858
0.888
0.922
0.953

0.887
0.923
0.954

0.853
0.886
0.920
0.950

0.884
0.920
0.950

0.952
0.977
0.987
0.994

0.977
0.987
0.994

0.949
0.975
0.987
0.994

0.974
0.988
0.994

0.948
0.975
0.987
0.993

0.974
0.987
0.993

0.976
0.994
0.997
0.998

0.993
0.997
0.998

0.976
0.993
0.997
0.999

0.993
0.997
0.999

0.976
0.993
0.997
0.998

0.993
0.997
0.998

0.897
0.897
0.929
0.953

0.897
0.928
0.951

0.891
0.891
0.928
0.955

0.891
0.929
0.955

0.886
0.886
0.925
0.953

0.886
0.924
0.952

0.966
0.966
0.987
0.994

0.966
0.986
0.993

0.964
0.964
0.988
0.995

0.964
0.988
0.995

0.963
0.963
0.987
0.994

0.963
0.987
0.994

0.984
0.984
0.997
0.999

0.984
0.996
0.999

0.984
0.984
0.997
0.999

0.984
0.997
0.999

0.983
0.983
0.997
0.999

0.983
0.997
0.999

Note: The DGP is given in Section See the footnote of Table for further details.



and [2| pooling yields MSFE-values around 15% lower than those of the individual forecasts. This
finding is quite robust to the values of N and PR?, though the advantage of pooling over individual
estimation improves by a further 1-2% as these parameters are increased from their lowest to their
highest values in our setting. Conversely, the advantage of pooling over the benchmark is rapidly
reduced once T increases from 7" = 20 (improvement of 15%) to 7" = 50 (improvement of 4-5%) and
T = 100 (improvement of only 2%).

Even modest degrees of heterogeneity in the intercept or persistence parameter of the autoregres-
sive process in result in a substantial deterioration in the predictive accuracy of the forecasts
based on the pooled estimator relative to individual estimation. Outside special cases such as T' = 20,
PR? = 0.6 and heterogeneity only in the intercept, the individual forecasts dominate the pooled es-
timator along the MSFE ratio metric in most scenarios with parameter heterogeneity, particularly
when T is relatively large.

The RE approach produces the best overall predictive accuracy only for a narrow subset of cases
with heterogeneity only in the intercept and homogeneous slopes (o2 = 0.5, ag = 0). The predictive
accuracy of the FE approach is similar to that of the RE approach with MSFE ratios typically less
than 0.5% higher. Both approaches perform quite poorly under strong parameter heterogeneity,
however, with MSFE-values around 7-18% higher than the benchmark for T" = 50, 100.

Combining the forecasts from the pooled and individual-specific estimators leads to good overall
performance, reducing the MSFE of the benchmark by about 10% under homogeneous parameters
when T' = 20. Strong parameter heterogeneity reduces the gain of this combination to 3-4%, again
assuming T = 20. The scope for improvements in MSFE-ratios is markedly smaller for T = 50 or
T = 100 but, in contrast with the pooled, RE, and FE approaches, this forecast combination never
generates MSFE-ratios that exceed one.

Under parameter homogeneity, the standard pooled-individual specific combination also performs
better than the combination of forecasts from the FE and individual-specific models. However, in the
presence of parameter heterogeneity, the FE-individual forecast combination performs even better
than the baseline combination of pooled and individual-specific forecasts with additional MSFE
reductions of 0-2%. Such gains arise because the FE forecasts are more accurate than the pooled

forecasts in this case[']

!4These findings are sensitive to the assumed value for PR? and in some cases reverse when PR? is raised to 0.6.
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The EB estimator produces the best overall performance with many MSFE values substantially
lower than the individual-specific approach. Relative to this baseline, the EB approach reduces the
MSFE ratio by 6-13% when T = 20, with smaller improvements for higher degrees of parameter
heterogeneity. Improvements in MSFE-values for the EB estimator over the baseline shrink to 0.8—
3.5% for T' = 50 and are further reduced to 0.2-1.6% when T" = 100. Like the forecast combinations,
the EB approach also does not produce an MSFE ratio above unity in any of our simulations.

The hierarchical Bayes approach generates MSFE ratios that are typically a little worse than for
the EB approach, though differences are quite small (O—2%)l§| Given the higher computational cost
of implementing the hierarchical approach, the empirical Bayes forecasts appear to be preferable
based on these results.

MSFE ratios for the pooled combination approaches are generally 1-5% higher that those of the
EB approach when T = 20, 0-3% higher when T = 50, and less than 1% higher when 7' = 100. In
the majority of the simulations, the hierarchical Bayes approach also tends to be a little better than
the forecast combinations, though differences are very small for the larger sample sizes T" = 50, 100.

Consistent with Proposition [1} in the setting with the largest time-series dimension (7" = 100),
although some of the panel-based forecasting models generate mean MSFE ratios less than one,
improvements in the predictive accuracy tend to be small, rarely exceeding 1.5%, and typically
being much smaller outside the scenario with homogeneous parameters.

Table [2| shows results for the ARX case with first-order autoregressive dynamics and an additional
regressor, x;;, included. Though heterogeneity is also correlated in the AR panel (Pesaran and
Smith, 1995), this setup allows us to study further the role of correlated heterogeneity by varying
the correlation between the coefficient ~; and z;; as measured by p,,. Every second block of results
in the table assume p,, = 0 interchanged with blocks raising this parameter to p,, = 0.5—the latter
only contains the three rows with results for heterogeneous parameters as homogenous parameters
are non-random and therefore have zero correlation with the regressors.

In the scenario where p,, = 0, the results from Table 1 continue to hold: The pooled estimator
produces the most accurate forecasts in the absence of any parameter heterogeneity, while the RE

approach is best with heterogeneity only in the intercept but not in the slope parameter. We also

1511 a few of the simulations, forecasts from the hierarchical approach are marginally more accurate than forecasts
based on the EB approach. However, this is likely attributable to simulation errors given the smaller simulation size
used for the hierarchical Bayes model.
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note that the RE and FE approaches now underperform by an even bigger margin relative to the
benchmark under the highest degrees of parameter heterogeneity considered here (ag =1, o2 =1).

Raising the level of correlated parameter heterogeneity (p,, = 0.5) leads to a marginal deteriora-
tion in the performance of the pooled estimation approach in the scenario with the highest values of
ag and o2 when PR? = 0.2, though the opposite holds in some cases for PR = 0.6. The value of Pz
only has a modest impact on the predictive accuracy of the combination, RE, and FE approaches.

Table [2] also shows that the EB and hierarchical Bayesian approaches continue to produce the
best overall predictive accuracy in most scenarios for the panel ARX simulations followed by the
combination approaches.

Tables [3| to [p| report the quantiles of the ratios of MSFEs over the individual units. For brevity,
we focus on the case of N = 1000 and 7' = 50. The quantiles for the panel AR model in Table [3]
show that under parameter homogeneity all methods have distributions of forecasts that are below
unity for all quantiles so that even the 99th percentile of the MSFE ratio distribution favors a panel-
based forecast over the individual forecastE Unsurprisingly, under homogenous parameters the
distribution of MSFE ratios is furthest to the left for the pooled forecasts. For this scenario, the EB
forecasts deliver the second largest gains after the pooled forecast although the pooled combination
forecasts reduce MSFE ratios the most in the right tail regardless of the goodness of fit of the model.

Introducing parameter heterogeneity in the intercept only (ag = 0, 02 = 0.5), the pooled esti-
mator now produces larger MSFE values than the individual approach across all quantiles. For this
case, the RE and FE forecasts generate smaller MSFE values than the individual forecasts across
all quantiles and provide the most precise forecasts at any quantile with the RE marginally more
precise than the FE forecast. The EB forecasts are the second most accurate across all quantiles
closely followed by the combination of individual and FE forecasts.

When also the slope parameter is heterogeneous, the RE and FE forecasts are less precise than the
individual forecasts in the right quantiles but still more precise in the left quantiles. The combination
and EB forecasts improve over the individual forecasts for all but the very largest quantiles. Even at
the 99th percentile of the MSFE ratio distribution, these approaches only perform marginally worse

than the individual forecasts and so offer insurance against large forecast errors.

16Results for the hierarchical Bayes forecasts are somewhat erratic particularly for the tail quantiles due to the much
smaller number of replications used for this method and so are omitted from here.
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The quantiles of the MSFE ratios for the panel ARX model are reported in Tables (PR2 =0.2)
and [5| (PR? = 0.6). Columns on the left assume the parameters and regressors are uncorrelated
while columns on the right are for the correlated case. With homogeneous parameters, the results
are identical. In this case, the pooled forecasts are again most precise across all quantiles followed
by the RE and FE forecasts. Combination and EB forecasts continue to be more precise than the
individual forecasts for all quantiles.

When the intercept varies across individuals, the pooled forecasts again produce larger MSFE-
values than the individual forecasts, whereas the RE and FE estimators generate the most precise
forecasts across all quantiles. When also the slope coefficient is heterogeneous, the RE and FE
forecasts have a larger MSFE than the individual forecast for quantiles to the right of the median.
The RE and FE estimators can produce very poor forecasts with MSFE ratios between 2.2 and almost
5 at the 99th quantile. In contrast, the combination and EB forecasts continue to generate MSFE
ratios below unity for most quantiles and only marginally underperform the benchmark forecasts in
the right tail of the distribution of MSFE ratios.

In Section S.4 of the Supplementary Appendix (Tables S.5-S.8) we also report a complete suite
of Monte Carlo simulation results based on an equal-weighted combination scheme for our two com-
bination schemes. The predictive accuracy of the equal-weighted combination scheme is comparable
to that of the combinations based on estimated weights in the presence of modest levels of parameter
heterogeneity. Conversely, equal-weighted combinations underperform forecast combinations with
estimated weights when the level of parameter heterogeneity is either very low or very high. In
either case, one approach (individual estimation or pooling) dominates the other by a sufficiently
large margin that equal-weighting becomes sub-optimal.

We also considered the performance of an (infeasible) oracle combination scheme that uses the
true parameter values to compute the optimal combination weights. Compared against our feasible
estimates of the combination weights, this oracle scheme shows the impact of parameter estimation
error on forecasting performance. We find that the cost of estimation error is only sizeable if T’
is small (7" = 20) and the parameters are homogeneous. For this case, the oracle scheme reduces
the MSFE of the pooled-individual combination by 0.051 (0.906 versus 0.856) and by 0.037 for the
FE-individual combination. Differences are much smaller (0.005 and 0.011) in the heterogeneous

case even when 7" = 20 and are further reduced for T' = 100 where, in many cases, only the third
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decimal of the MSFE ratio is affected.

We also considered combination schemes that allow the weights to vary across individual series.
These schemes perform marginally better in the case with completely homogeneous parameters
but worse in many cases under parameter heterogeneity. Increasing the correlation between the
coefficients and regressors also leads to a deterioration in the performance of these combinations

relative to the cross-sectionally pooled combination schemes.

7 Empirical applications

We next apply our set of panel forecasting methods to two empirical applications on house price
inflation in U.S. metropolitan areas and inflation in CPI sub-indices. These applications represent
quite different levels of in-sample fit: For the CPI data the pooled R? (PR?) of our models is around

0.2 while for house prices it exceeds 0.8.

7.1 Measures of forecasting performance

Our empirical applications compute the out-of-sample MSFE as

T-1

1 N
MSFE;; = ﬁ E (Vi1 — .%',j,t+1)27
t=T1

where ¢; j+41 is the forecast of y;41 using method j and information known at time ¢. Each
forecast in the test sample, 7; ji+1, is generated using a rolling estimation window of observations
t—w+1,t—w,...,t, where w is the length of the rolling window. Details of the size of these samples
are reported with each application.

We report the ratio of the average MSFE of method j relative to

the average MSFE for the reference forecasts from the individual-specific model

& Siey MSFEy
L SN  MSFE,

i,ref

rMSFE; =

We also report the proportion of units in the cross-section for which a given method produces a

smaller MSFE than the reference forecast. Letting I(-) be the indicator function that equals unity
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if the expression inside the operator is true and is zero otherwise, we have
1N
N > T[MSFE;; < MSFE; ;1] .
i=1

Next, we report the proportion of units in the cross-section for which a given method has the

smallest or largest MSFE value computed as

I [MSFEZ] = mlin MSFEll:| y

2|~

1

.
Il

2|~

=1

These measures help us understand both the risk of underperformance and, on the upside, the possi-
bility of superior predictive accuracym Finally, we report the quantiles o = (0.01,0.05,0.1,0.5,0.9,0.95,0.99)

of the relative forecast accuracy over the N units in the panel

MSFE;;
quantilej(a):{ Sy ] .

To give more detailed insights into the distribution of the forecast performance across different units,
we also provide density plots of the individual ratios of MSFEs.

We examine the significance of any differences in forecast accuracy using the Diebold and Mariano
(1995) (DM) test of predictive accuracy both for the panel as a whole and for the individual series.
First, we use the panel version of the DM test proposed by Pesaran et al. (2013). This tests the
null that the MSFE generated by the individual forecasts, averaged both across time and units, is
equal in expectation to the equivalent MSFE generated by the panel models. Second, we apply the
DM test to the N forecasts for individual units in the sample and report the number of significant
values in either direction and the number of insignificant test statistics. The tests are set up so that
negative values indicate that the panel forecasts are more accurate than the individual forecasts,

while positive values of the DM tests indicate that the individual forecasts are more accurate.

" These proportions can add up to more than one due to ties between forecasting methods.
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7.2 U.S. house prices

Our first application uses quarterly data on real house price inflation in 377 U.S. Metropolitan
Statistical Areas (MSAs) from the first quarter of 1975 to the first quarter of 2023, which we obtain
from the Freddie Mac website[l] Our forecasts focus on the one-quarter-ahead MSA-level rate of
house price changes. Forecasts start in 2000Q1 and end in 2023Q1, a total of 93 quarterly periods.
We use a rolling window of 60 quarters to estimate the model parameters.

Our prediction model for the house price inflation rate in quarter ¢ for MSA i, y;;, takes the form

* ok (R _(C
Yit = + BiYig—1+ B Yir—1 + ’sz‘yi(,tzl + VCiyi_} + €it, (61)

where i = 1,2,..., N denotes individual MSAs and ¢t = 1,2,...,T refers to the time period,

Y = Z,ivzl ki Wik Ykt 18 the spatial effect for a set of spatial weights w;y, ng(tR )

price inflation in the region of unit i, and yﬁc) is the country-wide average house price inflation.

is the average house

The weights, w;, measure the spatial effect of house prices in MSA % on house prices in MSA 1
and are based on geographic distance, that is w;r = v/ chvzl v and v, = 1 if MSAs (i, k) are at
most 100 miles apart and is zero otherwise. We obtain the weights from the data set of Yang (2021)
and exclude MSAs that do not have any neighbors within 100 miles, which leaves 362 MSAs in our
sample.

We consider two forecasting models. The first, denoted SAR, is a spatial autoregressive model
that excludes the regional and country-wide averages, such that in (61]) vz = y¢; = 0. The second,
denoted SARX, is the model in (61]) with all coefficients left unrestricted.

Table [6] reports the results. In the first two columns, the first row shows the cross-sectional
average MSFE value for the forecasts based on individual estimates. Subsequent rows report ratios
of the mean of the individual MSFE for the respective methods relative to the benchmark forecasts.
Values below unity show that the ratio of average MSFE performance (across MSAs) is better for
the method listed in the row than for the benchmark while values above unity indicate the opposite.
The next two columns headed ‘freq. beating benchmark’ report the proportion of MSAs for which

the respective methods have a smaller MSFE than the benchmark, while the columns headed ‘freq.

18For each MSA house prices are calculated by deflating the Freddie Mac house price index by the CPL
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Table 6: House price inflation forecasts

Ratio of Freq. beating Freq. smallest Freq. largest
Forecast ave. MSFE benchmark MSFE MSFE
methods SAR SARX SAR SARX SAR SARX SAR SARX
Individual 3.253 3.248 - - 0.069 0.047 0.613 0.384
Pooled 0.969 0.990 0.660 0.417 0.229 0.127 0.202 0.365
RE 0.973 0.993 0.685 0.428 0.110 0.058 0.014 0.014
FE 0.983 1.002 0.682 0.450 0.221 0.080 0.160 0.229
Emp.Bayes 0.961 0.935 0.884 0.878 0.163 0.260 0.000 0.003
Hier.Bayes 0.984 0.967 0.859 0.840 0.047 0.169 0.008 0.006
Comb. (pool) 0.963 0.944 0.865 0.859 0.108 0.171 0.003 0.000

Comb. (FE)  0.970 0.948 0.867 0.865 0.052 0.088 0.000 0.000

Note: SAR denotes the spatial autoregressive model and SARX the same model with regional and
nationwide house price averages added. Under ‘Ratio of ave. MSFE’, the entry under ‘Individual’ is
the average MSFE of forecasts based on individual estimates and the remaining rows are the ratios of
MSFEs for the methods listed in the first column (given in the footnote of Table. The columns ‘Freq.
beating benchmark’ report, for the particular model, the proportions of MSAs for which the method
in the row has a lower MSFE than the benchmark. Under ‘Freq. smallest (largest) MSFE’ are, for
the particular model, the proportions of MSAs for which the method in the row has a lowest (highest)
MSFE of all methods. The results in this table are for geographic spatial weighting (within a 100km
neighborhood) and are based on estimation windows of 60 observations.

smallest MSFE’ and ‘freq. largest MSFE’ show the proportion of MSAs for which the respective
methods have the smallest or largest MSFE among all forecasting methods.

For the SAR model fitted to house prices, the panel-based forecasting approaches reduce MSFE
values by 2-4% over the individual-specific forecasts. The combination and Bayesian approaches
deliver the best results with the RE and FE approaches being slightly worse, though differences in
average MSFE ratios are quite small.

We find greater variation in the rates at which the different forecasting approaches produce more
accurate forecasts than the baseline individual-specific approach. While the pooled, RE, and FE
approaches are more accurate than the baseline forecasts for roughly two-thirds of the housing price
series, the Bayesian and combination approaches improve on the baseline for 86-88% of the series.

For the SAR model, the pooled and FE approaches lead the way when it comes to the highest
frequency of cases with the smallest MSFE values (22%) followed by the EB approach (16%) and
the RE and pooled-individual combination approaches (10%).

The ability of the pooled and FE forecasts to be most accurate for the highest proportion of
individual series comes at the expense of also producing a higher risk of being the least accurate

forecast for 20% and 16% of the series, respectively. In contrast, the Bayesian and combination
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approaches rarely (or never for combinations) produce the worst forecasts for the individual series.

These results point to a much lower cross-sectional dispersion in (relative) MSFE values for the
Bayesian and combination approaches compared with the pooled and FE approaches. In contrast,
the individual-specific approach produces by far the highest frequency of forecasts with the highest
MSFE values (61%), while only producing the lowest MSFE values for 7% of the series. This
unattractive risk profile highlights significant scope for improvements in forecast accuracy by using
panel information.

For the SARX model, the average of the MSFE ratios exceeds unity for the FE approach while
conversely the Bayesian and combination approaches reduce average MSFE values by 5-7% relative
to the baseline. Further, the Bayesian and combination approaches reduce the MSFE value of the
baseline forecasts for a much greater proportion of series (84-88%) than the pooled, RE, and FE
approaches (41-45%). The Bayesian approaches produce particularly high proportions of cases with
the most accurate forecasts (17% and 26%, respectively) while rarely producing the worst forecasts
for individual series.

The pooled-individual combination approach produces the best forecasts for 17% of the series
while never producing the worst forecasts. Pooling alone generates the worst forecasts for 36% of the
series while the individual-specific forecasts are the worst for 38% of the series, vividly illustrating
the benefits from forecast combination.

Table[7|reports quantiles of the ratio of MSFE values for the housing price data. First consider the
results for the SAR model (upper panel). Consistent with the results in Table |§|, the cross-sectional
distribution is more dispersed for the pooled, RE, and FE approaches with a spread between the
1st and 99th quantiles around 0.40 versus 0.15 for the Bayesian and combination approaches. While
the distribution of MSFE ratios for the pooled, RE and FE approaches is right-skewed — with higher
values above unity (worse MSFE performance) than below unity (better performance) — the opposite
holds for the Bayesian and combination approaches. For the latter, we see improvements in MSFE
performance of 10-13% at the first percentile versus deterioration in (relative) performance of 3-6%
at the 99th percentile. Our results for the 90th quantile show that while close to 90 percent of the
Bayesian and combination forecasts are as accurate as the individual specific forecasts (MSFE ratios
at one), at this percentile the pooled, RE, and FE forecasts produce MSFE ratios that are 8-10%

worse than the baseline.
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Table 7: Quantiles of ratio of MSFEs for house price inflation over MSAs

Quantiles 0.01 0.05 010 0.50 090 095 0.99
House prices: SAR

Pooled 0.821 0.865 0.879 0.970 1.079 1.135 1.226
RE 0.830 0.866 0.884 0.966 1.085 1.130 1.220
FE 0.851 0.880 0.893 0.967 1.097 1.143 1.224

Emp.Bayes 0.876 0.925 0.933 0971 1.002 1.017 1.031
Hier.Bayes 0.939 0.952 0.964 0987 1.004 1.012 1.032
Comb. (pool) 0.872 0.918 0.935 0.974 1.004 1.014 1.038
Comb. (FE) 0.881 0.931 0.946 0.976 1.004 1.011 1.032

House prices: SARX

Pooled 0.764 0.821 0.854 1.024 1.198 1.241 1.420
RE 0.769 0.825 0.856 1.016 1.195 1.237 1.406
FE 0.777 0.833 0.855 1.015 1.200 1.252 1.441

Emp.Bayes 0.830 0.877 0.902 0.963 1.004 1.015 1.066
Hier.Bayes 0.900 0.915 0.934 0972 1.007 1.019 1.051
Comb. (pool) 0.873 0.896 0.912 0.965 1.006 1.015 1.033
Comb. (FE) 0.885 0.901 0.916 0.967 1.003 1.011 1.027
Note: The table reports the quantiles of the distribution MSFE ratios computed
across individual MSAs. SAR denotes the spatial autoregressive model and

SARX the same model with regional and nationwide house price averages added.
The forecasting methods are listed in the footnote of Table

These results show that the Bayesian and combination approaches offer the attractive feature
of not only improving on the MSFE values of the baseline “on average” but, equally importantly,
rarely producing markedly worse forecasts than the baseline and very often generating substantially
better results.

Qualitatively similar but even stronger results are obtained for the SARX model (lower panel).
For this model we find an even larger spread around 0.65 between the 1st and 99th quantiles of
the MSFE ratio distribution among the pooled, RE, and FE forecasts versus values ranging from
0.15 to 0.23 for the Bayesian and combination approaches. Again, we see the same asymmetries in
the MSFE ratio distribution which is heavily right-tailed for the pooled, RE, and FE forecasts but
left-tailed for the Bayesian and combination approaches. For the latter, MSFE ratios at the 99th
quantile exceed unity only by 2-7% which is far lower than for the pooled, RE, and FE approaches
(40-44%). Interestingly, the combination approaches perform notably better than the Bayesian
forecasts at the 99th percentiles for the SARX model["]

YEqual-weighted combination also performs very well in both of the empirical applications, although they do not
reduce the risk of generating high MSFE-values for individual units in the cross-section to the same extent as our
optimal forecast combination scheme.
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Our findings are summarized visually in Figure[I] which shows probability density and cumulative
density plots fitted to the cross-sectional distribution of MSFE ratios for our forecasting methods.
The figure shows a widely dispersed, right-skewed distribution of MSFE ratios for the pooled, RE
and FE forecasting approaches compared to the Bayesian and combination approaches whose distri-
butions are far more peaked and centered just below unity. The right skew for the pooled, FE, and
RE forecasts is particularly clear for the SARX model displayed in the right panels. This feature is
highly undesirable as it raises the likelihood of very poor forecasts for an individual housing price
series compared with that of the Bayesian and combination approaches@

Table [§] reports DM test statistics for our two empirical applications. In each panel, the first
row shows the outcome of the panel DM test while the subsequent three rows show the number of
cross-sectional units with a DM test below —1.96 (panel forecasts are significantly more accurate),
the number of insignificant cases with a DM test statistic within (—1.96;1.96), and the number of
variables with a DM test above 1.96 (individual-specific forecasts are significantly more accurate).

For the panel DM test applied to the SAR model, the null of equal predictive accuracy is strongly
rejected for all panel forecasts, suggesting that the panel forecasts are significantly more accurate,
on average, than the individual forecasts. Test statistics are particularly large for the combination
and Bayesian forecasts. Conversely, for the SARX model, we fail to reject the null of equal (average)
predictive accuracy of the individual forecasts versus the pooled, RE, and FE forecasts. In contrast,
the combination and Bayesian forecasts lead to strong rejections of the null of equal forecast accuracy.

Turning to the SAR forecasts of the individual house price series, although the DM test fails to
reject the null of equal predictive accuracy for at least 70% of the variables, we find many more cases
in which the combination and Bayesian forecasts are significantly more accurate than the baseline
(89-95 cases) than cases where the pooled, RE, or FE forecasts beat the baseline forecasts by a
significant margin (24-27 cases). The individual forecasts are significantly more accurate than the
combination or Bayesian forecasts for only two or fewer of the MSAs versus up to nine MSAs for
the FE forecasts.

For the SARX model, there are only slightly more cases for which the pooled, RE, and FE

forecasts significantly improve on the benchmark (17) than MSAs where the opposite holds (11-14).

20The impressive performance of the EB approach for the tail groups is consistent with Efron (2011) and is a point
that may carry over to the forecast combinations.
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Figure 1: Distributions of ratios of MSFE for house price inflation across MSAs
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Table 8: Diebold-Mariano test statistics for equal predictive accuracy

Pooled RE FE Emp.Bay. Hier.Bay. Comb(pool) Comb(FE)
House Prices: SAR
Panel DM —4.69 —-4.04 -2.60 —16.73 —18.66 —19.08 —17.08
DM< —1.96 25 27 24 95 93 94 89
Insign. 330 327 329 267 267 267 272
DM> 1.96 7 8 9 0 2 1 1
House Prices: SARX
Panel DM —-1.06 -0.71 0.23 —15.31 —16.83 —22.08 —21.57
DM< —1.96 17 17 17 116 87 107 109
Insign. 331 332 334 242 274 255 253
DM> 1.96 14 13 11 4 1 0 0
CPIL: AR
Panel DM -3.82 -3.75 -3.44 —6.75 —15.41 —7.75 —6.12
DM< —1.96 8 5) 1 50 44 24 9
Insign. 7 92 96 51 55 73 92
DM> 1.96 16 4 4 0 2 4 0
CPI: AR-PC
Panel DM —-3.95 —-391 -3.61 —6.90 —14.11 —8.00 —6.38
DM« —1.96 ) 1 1 55 42 31 19
Insign. 82 97 96 46 59 70 82
DM> 1.96 14 3 4 0 0 0 0
CPI: ARX
Panel DM —-7.95 —7.78 —7.56 —11.25 —17.85 —13.41 —12.22
DM< —1.96 24 24 24 71 68 59 95
Insign. 57 61 63 30 33 41 46
DM> 1.96 20 16 14 0 0 ) 0

Note: The row “Panel DM” reports the results of the panel version of the Diebold-Mariano test of Pesaran,
Pick and Pranovich (2013). Remaining rows report unit by unit Diebold-Mariano test results. The row
“DM< —1.96” reports the number of units with a DM test statistic smaller than —1.96; the row “Insign.”
reports the number of units with a DM test statistic between —1.96 and 1.96, and the row “DM> 1.96”
shows the number of units whose test statistic exceeds 1.96. Each test is for the null hypothesis that
the forecasting method in the columns has equal forecast accuracy as the forecasts based on individual
estimates. The forecasting methods are listed in the footnote of Table
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In contrast, there are between 87 and 116 MSAs for which the Bayesian or combination forecasts are

significantly more accurate than the baseline forecasts and only 0-4 cases where the reverse holds.

7.3 CPI inflation of sub-indices

Our second application covers inflation rates for up to 187 sub-indices of the US consumer price index
(CPI) obtained from the FRED database. The data is measured at the monthly frequency and spans
the period from January 1967 to December 2022. Again, we use rolling estimation windows with 60
observations and require each estimation sample to be balanced, excluding individual series without
a complete set of observations in a given window. After accounting for the necessary pre-samples,
we generate 599 forecasts for each series, with the first forecast computed for February 1973.

We consider three forecasting models: (i) a purely autoregressive specification with lags 1, 2,
and 12, denoted AR; (ii) the same AR specification augmented with the lagged value of the first
principal component of the data, denoted AR-PC; and (iii) the AR-PC model augmented with the
lagged default yield and lagged term spread, denoted ARX.

The first three columns of Table [9] show that the ratio of average MSFEs of the individual
forecasts are beaten by all methods. The pooled forecasts are 6-12% more accurate and beat the
baseline forecasts for 44-46% of the series. Pooled forecasts are most accurate for 19-20% of the
series but least accurate for 40-44% of the series, which is clearly an unattractive performance.

Individual forecasts of CPI inflation also perform very poorly and generate the most accurate
forecasts for less than 2% of the inflation series while conversely generating the least accurate fore-
casts for more than 40% of the series.

RE and FE forecasts perform similarly to the pooled forecasts on average. They produce more
accurate forecasts than the benchmark model for 50-60% of the CPI series and produce the best
overall performance for 5% or fewer of the series. While the RE forecasts are the worst overall for
0.5% or fewer of the CPI series, the FE forecasts produce the highest MSFE ratios for 13-17% of
the series.

The EB approach records the best performance with improvements in MSFE ratios between
7 and 11%, a 98% frequency of beating the baseline forecasts for the individual series, and the
highest frequency (37-48%) with the smallest MSFE values while never producing the least accurate

forecasts.
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Forecasts from the hierarchical Bayesian and combination schemes beat the benchmark for 78 %—
94% of the individual series. Forecasts from the pooled combination approach are most accurate
for 9-14% of the series versus 4-9% for the FE combination scheme and 10-14% for the hierarchical
Bayes approach. These forecasts do not produce the least accurate forecasts for any of the series.

Table shows the quantiles of the distribution of MSFE ratios for the CPI inflation series.
The range between the right-most and left-most quantiles is again much wider for the pooled,
RE, and FE forecasts than for the EB and combination approaches. The key difference from the
housing price application is that the hierarchical Bayes approach now performs very poorly for
some of the individual CPI inflation series as witnessed by its right-skewed MSFE ratio distribution.
The EB approach is the clear standout model for the CPI inflation data as it improves on the
forecasting performance of the baseline approach for more than 95% of the series and underperforms
the benchmark by a very small margin even at the 99th percentile of the MSFE ratio distribution.

Our evidence is summarized in Figure [2| which, for the AR model, shows probability density
and cumulative density plots of the MSFE ratios across the different CPI sub-indices. The figure
clearly highlights the pronounced dispersion and thick right tails of the MSFE-ratio distribution for
the pooled, RE, FE, and hierarchical Bayes forecasts. The distributions of MSFE ratios of the EB
and combination approaches are far more concentrated and less asymmetrical. The EB approach
stands out as having, by far, the thinnest right tail and, hence, the lowest probability of generating
forecasts less accurate than those from the individual-specific benchmark.

The DM test results for the CPI data in Table [§] show qualitatively similar findings as for the
house price data. All panel models generate significantly negative DM panel test statistics and so
their associated CPI inflation forecasts are significantly more accurate, on average, than the baseline
forecasts. For the Bayesian and combination approaches, we continue to see many instances with
significant improvements in forecast accuracy for individual CPI series relative to the baseline and
only five or fewer series for which the reverse holds. In contrast, for the AR and AR-PC model
specifications, the baseline forecasts are significantly more accurate than the pooled, RE, and FE

forecasts for even more of the individual CPI series than instances where the reverse holds.
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Figure 2: Distributions of ratios of MSFE for CPI subindices
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Note: These graphs show density (left panels) and cumulative density plots (right
panels) of the ratios of MSFEs for the panel AR model in the top row, the panel AR
with principal components added in the second row, and the model with all regres-
sors in the third row. The density estimates use a normal kernel with a bandwidth
0.04. The cumulative densities are normalized to 1 at the right tail. The forecasting
methods are listed in the footnote of Tables [1l
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Table 10: Quantiles for ratios of MSFEs for CPI inflation over subindices

Quantiles 0.01 005 010 050 090 095 0.99
CPIL: AR

Pooled 0.713 0.833 0.912 1.025 1.517 2.081 2.575
RE 0.722 0.832 0.891 0.984 1.230 1.360 2.036
FE 0.727 0.842 0.893 0.985 1.196 1.347 1.647

Emp.Bayes 0.726 0.852 0.891 0.962 0.982 0.995 1.011
Hier.Bayes 0.863 0.896 0.931 0.984 0.999 1.061 1.521
Comb. (pool) 0.763 0.902 0916 0972 1.049 1.156 1.359
Comb. (FE) 0.773 0.902 0.927 0976 1.018 1.042 1.193

CPIL: AR-PC

Pooled 0.711 0.845 0.906 1.020 1.447 2.101 2.514
RE 0.720 0.851 0.892 0.985 1.238 1.355 1.900
FE 0.725 0.861 0.890 0.984 1.211 1.322 1.490

Emp.Bayes 0.725 0.853 0.878 0.956 0.983 0.993 1.001
Hier.Bayes 0.875 0.911 0.928 0.984 0.997 1.029 1.446
Comb. (pool) 0.773 0.894 0.914 0.970 1.054 1.164 1.290
Comb. (FE) 0.782 0.900 0.918 0.970 1.009 1.037 1.113

CPIL: ARX

Pooled 0.681 0.826 0.874 1.032 1.543 2.412 3.098
RE 0.691 0.832 0.886 0.996 1.370 1.796 2.850
FE 0.694 0.843 0.891 0.996 1.387 1.627 2.921

Emp.Bayes 0.729 0.837 0.866 0.935 0.981 0.990 1.004
Hier.Bayes 0.863 0.896 0.907 0.963 0.987 1.005 1.340
Comb. (pool) 0.786 0.850 0.893 0.940 1.091 1.255 1.450
Comb. (FE) 0.810 0.856 0.902 0.945 1.020 1.079 1.353
Note: The table reports the quantiles of the distribution of the ratios of MSFEs

for subindices. The models are listed in the footnote of Table[J]and the forecasting
methods are listed in the footnote of Table

8 Conclusion

We provide a comprehensive examination of the out-of-sample predictive accuracy of a large set of
novel and existing panel forecasting methods, including individual estimation, pooled estimation,
random effects, fixed effects, empirical and hierarchical Bayes, and forecast combination. Our anal-
ysis characterizes analytically the determinants of squared error performance as it relates to bias
and estimation error variance components. We provide insights into how parameter heterogeneity,
predictive power, and sample sizes regulate the bias-variance trade-off that determines predictive
accuracy. To quantify the importance of these theoretical points in practice, we study Monte Carlo

simulations and consider two empirical applications to house prices and CPI inflation.
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Our main findings can be summarized in three points. First, we find that many panel forecasting
approaches perform systematically better than forecasts based on individual estimates. For panels
with a small or medium-sized time-series dimension T—a setting relevant to many empirical appli-
cations in economics—our Monte Carlo simulations and empirical applications demonstrate sizeable
gains from exploiting panel information to obtain forecasts that are more accurate than forecasts
from individual-specific models both on average and also for the majority of individual units.

Second, our analytical results and Monte Carlo simulations show that one should not expect a
single forecasting approach to be uniformly dominant across applications that differ in terms of the
cross-sectional and time-series dimensions, strength of predictive power, and degree of heterogeneity
in intercept and slope coefficients along with how correlated this heterogeneity is.

Forecasts based on pooled estimates are most accurate only in situations with little or no param-
eter heterogeneity and a small T dimension, while forecasts based on FE and RE estimates perform
relatively well mainly when heterogeneity is confined to model intercepts and 7" is small. Neither of
these approaches perform well in settings with high levels of heterogeneity where individual-specific
forecasts tend to perform better, particularly if T' is relatively large. By over-weighting forecasts that
perform well and underweighting forecasts that perform poorly, forecast combination and empirical
Bayes methods manage to produce the most accurate forecasts across a broad range of settings.

Third, the panel forecasting methods clearly differ in terms of their risk profiles, particularly their
ability to reduce the probability of generating very poor forecasts for individual units in a cross-
section. While the individual, pooled, random and fixed effect estimation methods perform poorly
in some of the simulations and empirical applications, the forecast combination and empirical Bayes
methods rarely generate the least accurate forecasts for individual units and retain some probability
of being the best forecasting method. These panel forecasting approaches therefore come out on top
of our analysis.

In a nutshell, our simulations and empirical applications suggest that forecast combinations and
Bayesian panel methods offer insurance against poor performance. Compared to the alternative
forecasting methods we consider, this better “risk-return” trade-off makes the combination and

Bayes methods attractive in forecast applications with panel data.
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Mathematical Appendix

A.1 Lemmas

Lemma 1 Suppose that Assumptions [§ and [9] hold, then for a fixed T' > Tj we have

Qnr —E(Qnr) = Op(N7Y?), and @ny — E(Gnr) = Oy (N_1/2> ; (A1)

and
Qnr —E(Qur) ™' = 0,(N7V2), (A.2)

= 1N _ 1N 1T
where Qnp = N 121‘:1 Qi dnr = N 1Zi:1 qir, Qir = T 1Zt:1 wipw}, and g;p =

71 ZZ;I wjw),n;. Further, under Assumptions (3 and

E(Qn7) = Q. and E (gn7) = Gy, (A.3)

where Q = N1 Zi]\il Qi dv=N" Zi]L 4;, Q; = E(wyw},), and q; =E(wiwjn;) .
Proof Note that
N N
Qnt—E (Qn7) =N~" Z [Qir — E(Qi7)], and gnr—E (qyr) = N~ Z [air — E(qi7)]-

=1 i=1

Under Assumptions [3|and[9] the elements of Q;7—E (Q;7) and g;—E (g;7) are independently
distributed with mean zero and finite variances. Therefore, (A.1)) follows. Also

|@xr —E@uo) 7| = [ Qv [@ur — B(Qur)] E(@ur) |
< |@vt]I@sr — B @)l [ @)

A

and, by Assurnption HQ]_VlTH = Amax (Q]_VlT> < C, and HE (QNT)_lH = HQ]_VlH = 0(1).
‘QI\,}AF—E(QNT)AH has the same order as HQ;\,}[—E(QNT)AH = O,(N71/?),
as required. Result (A.3)) follows from the stationarity properties, Q; = E(w;w},) and

Hence,
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q; :E(witwémz‘)-

Lemma 2 Under Assumptions

sup E H\/T (GAZ — 9i> ‘S <C, s=1,2, (A4)
i, T
where 0; — 8; = (W'W ;)" 'W'e;, and

<c, (A.5)

-1 _ —_1 -
0—0;,=-n,+Qnrdnr + QnréNnT-

Proof Since H\/T (éz — 91’)

< [|Qir [[|T71/2Wies]|, then

V7 (8- )] < @ [ we

and by the Cauchy—Schwarz inequality

IN

supEH\F(a —0)

4) 1/2

1/2
= {supE [)\fnax (Q;Tl)]} <supEHT 12wWie,

0T

(supE HQ H ) (supE HT*1/2W§EZ-
i,T

)1/2

Both of the terms on the right hand side of the above are bounded under Assumption[4 and we
have supLTEH\/T (él - 0i>
and result 1' follows. Regarding 6 — 6;, we first note that

2 .
< C. This result in turn implies supi’TEH\/T (Oi — Oi)

‘<C,

I+ ||@xt | lanrl + | @ 1€

and

<l + (xan ) (sra) s (s ) (Blewl?)”
(A.6)
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Under Assumption [5, E|[n;|| < C' and supz-’tEHwitwgthz < C. Also by the Cauchy-Schwarz

inequality
1/2 1/2
B lfwaeil” < (Ellwall*) ™ (leul')
and, under Assumptions |1| and |3| we have supi,tE||witeitH2 < C. Then, applying Minkowski’s
inequality to &y = N71T71 Zf\;l Zzzl WitEit,

_ o 1/2 R N\ 1/2
Ellénrll, = (EllEnrll’) ™ < N7 303 TE fwicully < sup (B fwasall”)
i=1 t=1 ’

and it follows that EHE_NTHZ < C. Similarly, since gyp = N7} Zf\il Zthl wirw},mn,;

2
and sumeHwitw;thz < C, then EH(jNTH2 < C. Also, by Assumption HQN%Z‘H =

Amax (Q&?) < C. Using these results in (A.6) now yields ({A.5)).

A.2 Proofs of the propositions

A.2.1 Proof of Proposition

Let P; = W (W/W,)~!. Using (15, note that

E (riv lei, Wi, wiri1) = (ejPiwir41) E (ir41 |€, Wi, wiri),

and, under Assumptions (1| and [2, E (¢; 741 |€;, Wi, wir41) = 0, for all i. Hence, unconditionally

E (ryr ) = 0. Furthermore, |rir| < ||e;P;]| ||w;r+1] |ei,7+1| and |e; 741]is distributed independently

of w; 41 and T _1€;Pi. Hence by the Cauchy—Schwarz inequality

911/2 1/2
Blrir| < [Bl|eiPil*] " (Bllwiral®) © Bleiral .
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Again, under Assumption !7 sup; r E|e; 741 < C and sup; r E |w;.ri1]|> < C. Also, since Q7 is

H =\ ( ;Tl) and we have
ePl? = | lew r wiw) P < QP [T ewe | A7
&34 [T~ eiWi(T ¥ e’ i (A7)
< Max (Qir) HT‘1W2&~H :

By the Cauchy-Schwarz inequality and under Assumption [4]

1/2 1/2
supE HE;PiHQ < {supE [A?nax (Qz_Tl)] } sup HT_1W;.€1~H4] < C,
i, T i, T 0T

1y 2

and sup; r E |rir| < C. Finally, under Assumption @ r;7 are independently distributed over ¢. Then,

by the law of large numbers for independently distributed processes with zero means we have

Ryt = O,(N71/2), (A.8)
Consider now Syt and note that

Syt =N 1ZESZT )+ N— 12 sit — E(sir)]

where s;7 is given by . Under Assumption @I, s;7 is distributed independently across ¢, and the

second term of Sy7 will be O,(N~/2) if sup; r E |si7| < C. Also

i

Isir] < llwira || Qi) HT‘l/QW’sl

and sup; r ||lw; 41| < C. Hence, sup; r E |s;7| < C follows if

sk || @z | 1w ] < c
1y

This condition is satisfied by Assumptions [I] and [d] noting that by the Cauchy—Schwarz inequality

4:| 1/2

Q) 7w,

| < [e@at)” [e]rewe
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=)\

4
‘ ‘ max

and HQ;TI (QZ_T1 ). Therefore, Sy = E (SnT)+O0,(N~1/2), where E (Syr) = N~} Zf\;lE(siT) =
hnT, and the result in equation follows, with Ay given by . When the regressors w;; are

strictly exogenous, using , we have (under Assumption

_ W;E E?iE?; Wi _
Blsir) = B(E(sr fwirsn, W)l = B @t (TS0 @l

W' W,
_ 2 ../ —1 7 7 —1 2 / —1
= B [Uz' w; 711 Q;r ( T Qrwirs1| =0 E(wir  Qpwiri1),

and the result in equation follows.

A.2.2 Proof of Proposition

The average MSFE of forecasts based on pooled estimates is given by which we reproduce here

for convenience.

N N N
N~ Z ézZ,TJrl =N"! Z 522,T+1 + N1 Z wi p MWt 41 + SN+ 2RN i, (A.9)
) i1 i=1
where
~ o o~ A ~ 1 _ o ~—1 ~ ~_1 =
Snr+1 = AntQNTRNT11QNTANT + ENTRNTRN T 1QNTENT (A.10)

A1 o =1 _ o =1 ~ 1 _
—2qn7QNT GnTi1 — 26NTRNTAN 111 + 26 NTRNTR N 741QNTANT

N N

= _ — ~—1 ey ~—1 _

Byra =N miwirieiri — (q,NTQNT + E/NTQNT) (N ! Zwi,T+15z’,T+1) , (A11)
=1 =1

and
N

N
8 —1 ! — —1 /
QN1 =N E W r1W; i, and @y = N Zwi,T-i-l'wi,TJrlni‘ (A.12)
i—1 i—1
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Under Assumption (7, &y = O, (N_l/Q). Using Lemma we have Q]_VlT = Q]_Vl + 0y (N_I/Q) =
Op(1), and similarly gy = Op(1) and gy 141 = Op(1). Using these results in (A.10) we now have

~ P ~ 1 _ A1 _
Snr+1 = AnTQNTQNT+1QNTANT — 2ANTQNTANT+1 + Op (N 1/2) . (A.13)

Note that under stationarity (see Assumptionsand, E (w@TJrlw;,T-&-lni) =gq;,E (winHw;’TH) =

Q;, and consider

o =1 = ~_1 _ _ ~—1\ /A = =
q/NTQNTQN,T-HQNTqNT =(AynNT + ay) (AQ,NT +QyN ) (QN,T+1 —Qy+ QN)

X (AQWT + Q]_V1> (@vre1—dn +an),
where (by Lemma [A.1])
~~1  A-1 _ _ ~ -
Agnt = Qnr — QN = Op(N 2y, Ay Nt = qnr — N = Op(N /2,

and Q and Gy are defined by @ and , respectively. Also note that

N
Qury = N7 ZE (wirwiri) + Op(N71%) = Qn + Op(N7/2),

=1
N

v = N7 E(wirnwirm) + Op(N71%) = @y + Op(N7172).
i=1

Hence, it readily follows that
— ~—1 = ~—1 _ = ~—1_ O N—1/2 A 14
dnTQNTRNT+1QNTANT = ANQN AN + Op . (A.14)
Similarly, GQVTQ]_VITGN,TJA = (7’]\,6_2;[1@]\[ + 0, (N_l/z) , and as a result

Snri1 = —anQN @y + O, (N_m) -
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Finally, since ¢; 741 (which has zero mean) is distributed independently of w; 41 and n;, under

Assumption [9]
N N
Nt Z niw; 711 = Op(N~Y2), and N1 Z wiri1giri1 = Op(N7Y?),
=1 i=1

and Ry7y1 = Op(N~'/2), noting that (QNTQ;T%—.’E_INTQ;V}[) = Oy(1). Using this result and
(A.14) in now yields

N N N
_ . - _ _, A—1_ -
Nt Z &r=N" Z erp+N! Z wi p MW r41 —AnQn Ay +O0p (N 1/2> . (A.15)
i=1 i=1 i=1

Also, under Assumption@ wj 1 M;M;wi 1 is independently distributed over i and we have, noting

2
that under Assumption Supi,TE‘w;,T+177i77;wi,T+1‘ = SuPi,TEHw;,T-&-lni <,
N N
NTUY wippmmiwirg = N7 B (Wipamimiwiri) + Oy (Nflm) :
i=1 i=1

Using this result in (A.15) now yields equation (21). To establish , note that when the het-
erogeneity is uncorrelated, gy = 0, and E(w;,THnmgwi,TH) =E [tr (wi7T+1w;7T+1nm;)} =
tr [E (wi,TJrl'w;’TH) E (nln;)} Also, under Assumptions |3 and E('win“'w;’Tﬂ) E(nm,) =
Q;Q,, and N1 ZfilE(w;Tﬂnm;wi,Tﬂ> = tr (Qn€2;,) , as required.

A.2.3 Proof of Proposition

Using and ,
N N N )
N7 Z éirsibiryn = N7 Z%%TH +N7! Z(az —0;)'wi 1w 1(0 — 6;) (A.16)
N N 3
-N~! Z(az —0,)w; r118i 741 — N1 Z(G —0,))w; 71181741,
=1 i=1

where @ — 0; = —n; + Qnrdnt + Qnr€ny, and 0; — 0; = (W, W ;)" 1W'e;. Noting that the third
term in the above, apart from the minus sign, is the same as Ry defined below , by (A.8) it
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follows that

N N
N~! Z(Oi —0)wiry1gim41 = N1 Z riv = Ryt = Op(N~1/2). (A.17)
i=1 i=1
Further,
N N N
—_ P - __1 =~ -
N 2(9 —0)wiryieiry1 = —N ! Z NWw; r+1€,7+1 + QnNrdnT (N ! Z wi,T+15i,T+1>
i=1 i=1 i=1

N
=—1 = _
+Qn7rENT (N ! Zwi,T+15i,T+1> -
i=1
By Lemma (A1) @y = Op(1) and @yy = Op(1), and by Assumption [1,&yr = Op(N~Y2).
Also, under Assumptions |1{ and @ n;wi,T+1€i7T+1 and w; 711€; 741 have mean zero and first order

moments. Hence, given Assumption [J] we have

N

N Z(é —0,)'w; i1 = Op (me) : (A.18)
=1

Consider now the second term of (A.16)):

N (6i - 6:)wirw)y (6 — 6;)

N
=1

N
/
= N Z ( n; + QNTCINT + QNTENT) Wi T4+1W; T+1(WIWZ‘)71W;€Z‘
=1

T—1/2

N

_ — ~—1 _ _ _

N 1Z<_Tl;+q/NTQNT) w; 1w (T WIW3)TIT 1/2W;5i]

i=1
N

TR [N—l S wir g (T IWIW) IT—wasz] |
=1

where, as noted above, E’ Q_l = 0, (N~1/2). Also, under stationarity (Assumption |3) and using
NTWNT D

and (See Lemma , dnt =an+ 0, (N*1/2) and Q]_VlT = Q]_Vl +0, (N*1/2), and we

have
N

NS (6: — 6 wig w1 (8~ 0) = T (guur — ganr) + Op(T /2N 12),
i=1
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where

N

1 —1/2 / -1_
g1,NT = [N E / ) Q,T Wi T4+1W; T+1] QN an,

i=1
N
-1 —1/2 W -1 /

gont = N> ( / ) Qi Wi, T 1 Wi 7117

=1

We also note that under Assumptions and [9]

gl,NT — E (gLnT) + Op <N_1/2> y and 92,NT = E (g2,NT) + Op <N—1/2> .

Hence,

N

N Z(éi_ei),wi,T—&-l'w;,T—H(9_01') = T_1/2 [E (gl,nT) —E (92,NT)]+OP (N_1/2)+OP (T_I/QN_1/2> '
i=1

Substituting this result together with (A.17)) and (A.18) in (A.16|), we obtain

N N
NS iz = NV 2 + TV 20nr + 0)(N7V2) + 0, (T*1/2N*1/2) , (A.19)
=1 i=1

where YN =E(g1.n7) —E(92,n7), or more specifically,

N
Yyt = N1 ZE [T_I/Q WQjp w; r1W) T+1} Qn' (A.20)

N
-N"! Z E [Tﬁl/2€;Wz‘Qi_Tl'wi,T+1w;,T+1ni} :
Using (A.19), together with and , in now yields .

A.2.4 Proof of Proposition

Recall from (33) and (28) that & 741 = .11~ 141 (8;—0;) and &7y = & 141~ (Bre—B:) ®i 741,

where €; 741 = €; 741 — &7 and ;741 = TiT41 — TiT,

Bi=Bi = (XiIMrX:) ' X{Mre; = Q. 5€imp,

. _ _
Brr —Bi = Mg+ Qnrpsdnrs+ QnrsENT s
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N
Qirg = (T XiMr X)), &ip g =T 2 X Mre;, and €y g =N"'> &5 = Op(N~1/2).
i—1

Hence,
N N
Ny efftir = NV &y (A.21)
i=1 =1
N
+N Z(ﬁi — B:) @i 125 141 (Bre — B)
i=1

—-N—1 i(ei,prl — ET)& 1y [(BFE - 5i) +(8; - ﬁz)] .

i=1
Using and , we have
N A~ A
N Zéi,TJrlig,T—l-l [(ﬂFE - @) +(B; — By)| = cNr + entyp + Op(N7Y2). (A.22)
i=1
Also
N ~ A
Nt Z(ﬁi —B) (@ir1®i141) (Bre — B;)
i=1

N
. _ _ 1. - 1 1 <
712N Z (T 1/2€;MTX1‘> QZ-Tlﬁ (Zi, 1%} 711) (‘ﬂi,ﬁ + QnrsaANTs T QNT,ﬁENTﬁ) '
=1

First, £y = O,(N~/2) and Q;\;lTﬁ = Q;\;}ﬂ + O,(N~1/2), where Qns =E (Qnrp), (see Lemma
A.1). Hence, for a fixed T' > Tj
N

N1 Z (T*l/QEQMTXz) Qz_Tl,ﬁ (53@7’+1i‘2j+1)] Q&lT,BENT’B = Op(N*1/2)'
=1

Also, under Assumption [9]

N

NS (T2 M X ) Qi (imi1@ i) i
=1
N

= NI Z E |:(T_1/2€;~MTX1') Q;Tlﬁ (®i 712, 711) T,w] + O, (N2,
=1
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and

N
N1 Z (T—l/Qs;MTXi) Q;Tlﬂ (iz’,T+1i;7T+1)
=1

N
= NS E[(TTV2MrX) Qs (#ir1@ ) | + Op(N ).
1=1

Then

N

Nt Z(@Z - 51)/531',T+153§,T+1(BFE - B;) =T 2k + Op(T_1/2N_1/2)7

=1

where
N
_ _ 1 - - =1 _
nro= NTU)E [(T I/QEQMTXZ) Qirs ($i7T+1m;,T+1)} QN pangs
i=1
N
N1 Z E [(T*1/2€;MTX1‘> Qz_Tlﬁ (531'7T+153;’T+1) niwg] .
i=1
Using (A22) and (A23) in (A2I) yields

N N
—1 JFE 4 _ —1 )
N E € T+16,T+1 = N E & T+1
i=1 i=1

(A.23)

(A.24)

+T7V2RE — (BB + enrp) + Op(NTV2) + O, (T2N1/2),

Substituting this result together with and in now yields equation .

A.3 Panel AR(1): An example of correlated heterogeneity

Correlated heterogeneity can arise in many contexts. One important example is dynamic panel data

models where, barring special cases, heterogeneity is correlated by design. As a simple example,

consider the stationary panel AR(1) case where y;s = Biyi1—1 +¢€i, fort =...—2—-1,0,1,..

LT, T+

1,...,and sup; | 5| < ¢ for some positive ¢ < 1, and j3; follows a random coefficient model ; = Bo+n;,

where 5y = E(f;), and n; is suitably truncated such that the stationary condition sup; |3;| < ¢ is

met.

Suppose our objective is to forecast y;r+1 based on the observations {y;,t =0,1,2,... ,T}E In

21The assumption that the process for y;; has started a long time prior to date 0, is equivalent to assuming that ;o
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the context of the general linear model analyzed in the paper, w;; = y;;—1 and 8; = S;. It is easily
verified that our Assumptions cover the dynamic case where one or more elements of w;; are
lagged values of y;;. Forecasts based on pooled estimates, which incorrectly assume 3; = 5y generate

a heterogeneity bias, Ay, given by . In the present example ¢; = E(yzt_an), Q; = E(yzt_1>,

and

N —-1\\N 2 2
9 9 [N Ei:l E (yi,tﬂm)}
2 02\ _ - ~
i=1 N1 B (yzz,t—l)

where ¢; measures the degree of correlated heterogeneity. To derive g; for the AR model, note that

oo o
yir = Bieirs =) (Bo+m) eirs (A.25)
s=0 s=0

SO y; is a non-linear function of 7;, and, in general, ¢; = E <yi27t7117i) # 0. This shows that
heterogeneity in panel AR models generates correlated heterogeneity as is also implicit in the analysis

of Pesaran and Smith (1995). Using (A.25) we have

2
E(yit) = 0, Qi=E<yi>=E(th_1)=E(1_ 52> for all ¢,
2s ;07 2.9 o}
@ =E (y2,_1mi) ZEB nioy) = 1_@2 , and E (y2n?) = E )

In this simple example, heterogeneity is uncorrelated only if Sy = 0 and 7; is symmetrically dis-

tributed around 0. This follows since when S35 = 0 we have ¢; = E (m 7;2> and under symmetry

i

771‘01'2/ (1 - 772-) is an odd function of 7;, which yields ¢; = 0. But when Sy # 0, then ¢; # 0 even if
n; has a symmetric distribution. The expression for Ay is strictly positive irrespective of whether

¢; = 0 or not. Under stationarity, Ay simplifies to

E (i)
E({%)E (10222 -[E (1770;2)}2 (A.26)
B (%)

is drawn from a distribution with zero mean and variance o?/(1 — 7).

AAr = E(yinf)—
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Let fi = omi/+/1 — 61-2 and g; = 0;/4/1 — iz’ and note that the numerator of Apr can be written as
E(f?)E(g?) — [E(fig:))* > 0, which establishes that Ay > 0, in line with part (c) of Proposition

The magnitude of Ayg depends on the joint distribution of 8; and o?. As an example, consider
the case where o2 and f3; are independently distributed, E(0?) = 02 and 7; ~ Uniform(—a/2,a/2),
for a > 0] Then,

2 i _Oj i m
ql_aE<1—5¢2> 2 [E<15077¢>+E<1+50+77¢>}

To derive the expectation in this above expression note that for a given B, such that B? —a?/4 > 0,

we have

(s25) -1 (- () (32)

Using this result, and setting B = 1+ 35, we have, for (1 + 39)? > a?/4,

i _ . (145 1+ Bo+a/2
*(rrir) = (50 (E5 R

Similarly, again for (8o — 1)% > a?/4,

(i) et = () ()]

Overall, assuming that a/2 < 1 — ||, we have

() Gerin) - ) (55

[ (1 - Bo)In (%) — (14 Bo)In (Wﬂ - (A28)

E (yf,tflm) =

BN %

To ensure that |3;| = |80 + ni| < 1, we require that a is sufficiently small relative to Sy and |SBy| < 1.

A sufficient condition for this to hold is that

1Bl = |Bo +nil <1Bol + |mil = [Bol +a/2 < 1.

22Note in this case 7; is symmetrically distributed around 0.
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Table A.2: Numerical values for E (yit_lm> and A for the panel AR(1) model

Bo E(yZ,_1m) Aar
0.3 0.100 0.116
0.45 0.316 0.163
0.49 0.657 0.211

0.4999 1.830 0.322

Note: The numerical values are

based on a = o2 = 1.

We can now calculate E (yi%tflm) for a range of values for By < 1/2. Using a = 1 and 0% = 1,
we obtain the values given in Table

In general for a > 0, E <yi2,t—177i) # 0, and for any |By| < 1, it follows that E (y?’t71771-> — 0
as a — 0. Since n; ~ #dUniform(—a/2,a/2) is symmetrically distributed, then E (y?’t_lm> =0
for Bp = 0. But Cov(yi%t_l, 773) # 0, even under symmetry and ygt_l and 7); are not independently

distributed. For example, when 8y = 0, we have

1
1 — 1

2
BAn) = o8 (17 ) # BOAEGR) = o°8

)

) B02)

When f; and o2 are independently distributed, using 1 , we have

E(Z)E(L,) - [B(2,)]
v2nn - AeE) Bl =5

1
E (1—ﬁ3)

We can derive an analytical expression for E (ﬁ), noting that

1 1?01 1. (B+a/2
E = — —)dp=-In(=—"=).
<B+77z‘> a /—a/2 <B+77> an o <B—a/2)

Hence,

1 1 1 1
E<1—ﬁ¢2> T2 [_E<—1+50+77i> +E<1+5o+m)}

_1ln(6o—1+a/2> L1 ln(ﬁo+1+a/2>7

20 \Bo—1—a/2) 2a \Bo+1—a/2
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or

1 1 1+ﬂ0—}-a/2 1—,80—0,/2
Elo—m ) =5 Mo —0n) M3 .5/ A2
<1_/8i2) 2“[n<1+50—a/2> n<1—50+a/2 (A.29)
. 2
Using (A.29) and simulated values of E (11]152) and E (1ﬁi62), we obtain the values of Aagr for

a =1 and 02 = 1 that are reported in Table
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S.1 Introduction

This supplementary appendix provides additional material underpinning the analysis in the main
paper along with a set of extensions to the Monte Carlo simulations and empirical results. We
begin by deriving in Section the pooled R-squared, PR?V, used in the Monte Carlo simulations to
target the predictive power of our panel forecasting models. We characterize PR?V as a function of the
underlying parameters of the DGPs and use this to calibrate the parameters used in the simulations.
Next, Section provides details of how we implement the estimators used in our analysis. Section
[S-4) provides additional simulation and empirical results from equal-weighted forecast combination
schemes, while Section examines the robustness of our Monte Carlo simulation results with

regards to how we set the initial condition of the autoregressive processes.

S.2 Derivation of the pooled R-squared PR?V

Consider the panel data model

Yit = oG + BiYii—1 + Yi%it + it (S.1)

Tit = Pai + ity &t = Paibit—1 + Ozin/ 1 — p2Vit.

Further, Var(e;) = 1, and Var(v;) = 1 as set out in further detail in Section [6] To simplify
the derivations, we treat z; as strictly exogenous (no feedback from y;;—1) and assume that y; is
stationary and started a long time in the past. To deal with the heterogeneity across the different

equations in the panel, we use the following average measure of fit, for a given N,

N_l Zfil Var (Eit ’02‘, a:it)

PR% =1-— : (S.2)
N-UYY, Var(yie 65, @it, )
where as before 6; = («;, 8;,7;)". For the numerator we have
Var (eit‘ 0;, Uiz, Tit ) = 01-2. (S.3)
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To derive Var(y;; |0;, x;t ), we note that

Var(yit [05,07,24) = E [Var(yi |0, 07 yii—1,21)] + Var [E(yie [0i, 07, yig—1, zit)]
E(yit ‘91‘7 0L Yit—1,%it) = i+ BiYit—1 +Yi%i, Var(yu ‘91'7 02 Yit—1,Tit) = 07
Var [E(yzt ‘9i7 02'27 Yit—1, xzt)] = 51-2Var(yit ‘91‘7 02'2, Tit) + 'yZ-QVar (wit) -
Hence,

%ZVar(fl-t) + 01'2

Var(y;¢ |0,~, o2, 1) = - 52

79

Now using (S.3) and (S.4) in (S.2)), we obtain

-1 N 2
2 4 N> lio;
PR3 =1 55— | >
N-1 ZN Yi9%i+o;
i=1 1751,2

where o2, = Var(§;;). After some simplifications we have

PR _ by + (eny —an)
by + cn

_ N _ N 202, _ N
where ay = N"13°" 02, by=N"1Y1, ?_5”_2” and ey = N7 Y000,
2

o2
1-p2°
When these parameters are distributed independently, as N — oo, we obtain
1
ov % B, by B EGAEE (= ).

1— 32
o B E(af)E(ljBZZ).

Hence, using (S.5)), we note that (as N — c0)

E(GAE(2)E (25) + [BODE (Z5) — E?)]
E(GPE(@2)E () + BOE (25)

PRy — PR* =
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Under our design E(c7) = 1, E(062,) = 1, and the above expression simplifies to

E(77)E (1_15§> T [E (ﬁ) B 1]

PR? = . . (S.6)
B0 () + B ()
For the pure panel AR model , where v; = 0, V7, this reduces to
9 1
PR} =1- (S.7)

e
B ()

When g; is homogeneous such that 8, = 8y, E <1j,g?> = 1/(1 — B2), this simplifies to the familiar

condition PRR = B2.

Additionally, we can now write

E(/)(1 — PR}g)
1+E(7})

PR? = PR3R + (S.8)

2

In the general case where o is not distributed independently of 3; and N is finite we have

N—l N 2
PR?V>1—aN/cN:1— %:1‘;3
N1 T-57

In the case where 3; = By + 1i3, and n;g ~iidUniform(—ag/2,a5/2), ag > 0, we have (see also
(A.29)) in the Appendix to the paper):

1 _ 1 rag/2 1
B (1—5?> ~oap f—“ﬁ/2 lf(ﬁow;s)anB
_ 1 rap/2 1 1
2ag ffag/Z [1+ﬁ0+n5 + 1*50*776} dmj (S_9)
ag/2
= 5 In(1+ o+ ) — In(1 = fo — 1))/,

— 1 1+,30+ag/2 l—ﬂo—aﬂ/Q
T 24 [ln <1+ﬂo—aﬂ/2) —in (1—ﬂo+a5/2)} ’

assuming that

(14 Bo+as/2) (1+ By —ag/2) >0 and (1 — By —ap/2) (1 — Bo+ ap/2) > 0,
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or if

0<ap<2(1-|Bl). (5.10)

It is easily established that E (1—1ﬁi2> — ﬁ, as ag — 0.

Now using (S.9)) in (S.7)) we have

2ag

1+B0+aﬁ/2 17,307(15/2 '
b (FEtes) - (FRes)|

PR (ag, o) = 1 - | (S.11)

Numerical values for PR%R in 1) for different values of ag and 3y are given in Table Note

that under heterogeneity (ag > 0), PRZAR exceeds its homogeneous counterpart.

Table S.2: Values of PR3 (ag, Bo)

Bo  PRip(as =0,5) PRig(as=0.5,5) PRig(as=1,05)

0 0 0.021 0.090
0.1 0.01 0.021 0.105
0.2 0.04 0.065 0.150
0.3 0.09 0.202 0.232
0.4 0.16 0.199 0.364
0.49 0.25 0.292 0.624
Note: The table reports numerical values for PR4y in @D for different values
of ag and fo.

Our Monte Carlo simulations target two values of PR?, namely 0.2 and 0.6, for the panel AR
model. We do so by calibrating the values of the ag and 3y parameters. The values of the parameters
used to this end are reported in Table For the same parameters, the PR? for the panel ARX

model are similar, albeit somewhat higher.

S.3 Details of the estimators

This section provides details on the implementation of the estimators and forecasts used in the
Monte Carlo experiments and empirical applications. Recall that the DGP, , in the Monte Carlo

experiments is

Yit = i + BiYit—1 + vivie + it = i + BiXi + eir = 0w + e, e ~ (0,07), (S.12)
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Table S.3: PR? for parameters of Monte Carlo models

PR?AR PR%RX(p’Yx =0)

PR?LXRX(p’Yl“ = 0.5)

ag  Po

0 0.447
0.5 0.401
1 0.267
0 0.775
0.5 0.688
1 0.486

0.200
0.200
0.200
0.601
0.600
0.599

0.209
0.280
0.340
0.605
0.640
0.669

0.209
0.301
0.374
0.605
0.651
0.686

Note: The table reports the parameters for ag and Sy in the first two
columns and the implied values for PR? in the remaining columns. The
values of PR? are obtained by simulation using the DGP in Section @
with 10.000 replications.

for t = 1,2,...,T and i = 1,2,...,N, where 8; = (8;,7), 6; = (a;,3)), xit = (Yi—1,7it)’, and

w;; = (1,x},)’. Here we consider a more general case where the dimension of x;; is k x 1 and that of

wj; is K x 1, where K = k+ 1. In principle, x;; could include highered lags of y;; and x;;, and other

covariates. As in the main analysis, for simplicity we do not explicitly refer to the forecast horizon,

h, but it is assumed that x;; contains information known at time ¢ — h. Below we assume a forecast

horizon of h = 1.

Individual forecasts The individual-specific forecasts based on the data of a given cross-sectional

unit are

R R ~/
Uir+1 = &1+ B pTiry1 =

0, rwi T+

(S.13)

The parameters are estimated using the estimation sample containing T' observations: y, =

(yi1, Yizs - -, yir)" and X; = (241, T2, - -

yi=otr+ X6 + e, =W,0; + &,

where 7 is a T'x 1 unit vector, W; = (w1, w;2,

The parameters are estimated as

Bir = (XiMrX;) ™ X;Mry;,
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N / -1 _y
dir = (TpMigTr) TrMiyy;,

MT = IT —TT (T/TTT)_l TIT, Miz = IT — Xi (XQXZ')—I X;

Written in more compact form, we have

0,7 = (WW,)" Wiy,

(S.14)

The “individual” forecasts in (S.13)), for i = 1,2,..., N, will be used as the reference forecast

and the MSFE of all other methods are reported as ratios relative to the MSFE of this forecast,

defined by

N

_ A1 2

MSFE,¢ = N~* § (yi,T+1 - oi,Twi,T+1> .
i1

(S.15)

Pooled forecasts The forecasts that use the pooled information of all units in the panel are

- ~/
Uir+1 = 000 Wi T+1,

where

N -1 N
épool = (W,W)il Wy = (Z W;WZ> Z W;yza
=1 =1

and W = (W1, W5, ..., W) and y = (¢}, v5, ..., yy)-

Fixed effects forecast The FE forecasts are given by
N N ~/
yl%%—l = Qi FE + BrE®i,T+1,

where

i=1

N -1 N
Brr = (Z XQMTXz) > XiMry,,
=1
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and
. N
O FE = T/T(yi - ﬁFEXi)/T

Goldberger’s random effects BLUP This forecast uses the best linear unbiased predictor (BLUP)

of Goldberger (1962). For this forecast, the model is assumed to be as follows:

/
Yitrl = ¢+ B xipr1 + €itt1,

where €;441 = 7 + u; t4+1. The BLUP forecasts are given as

A T2
~RE . ! n_ =
YiT+ = Grg + B TiT+1 T 5 5 i S.19
3, T+1 RE*%1 TU% O_?L ) ( )

where &; = T~} EZ;I it and &y = yit — GrE — ,,BrE- GRrE, and Bry are estimated by GLS

using

S =672 (M7 + pPr)

where PT:IT—MT, /3:5'u/(T6,27+(A75),

N
A 1 A 3 o) ¢
61 = NT-1)-K ;(yi —a;re — Xifrp) M1(y; — dire — XiBrg)
. /
67 = N & ;(yi — Brr®i)” — 0,/T,
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and
A _ s
QRE = Y — BRET,

where

T N N
zi=T"'> @y, 2=N'> 2 5=T"> yu, §=N"'D>
t=1 i=1 i
See Baltagi (2013, pp. 999-1001) and Pesaran (2015, pp. 646-649) for further details.

Combination of individual and pooled forecasts
Yiry1 = Onr¥ir+1 + (1 — ONp)Tir+1,

where @; 741 and g; 741 are the individual and pooled forecasts in (S.13) and (S.16) with

weights

 Awr
Ant 4+ T hyr

Ak
WNT

where A N7 and h NT are given by and .

Combination of individual and FE forecasts

* Ak Ak ~ Ak ~
yi,T+1(wFE,NT) = WrE NTYi,T+1 + (1- WFE,NT)yZ,T-O-LFE?

where ¢; 741 and §; 741 FE are the individual and FE forecasts in (S.13) and ([S.18) with the

weight

AFE
ANT

AFV}% + T_lilNTyg‘

. .
WFENT —

ARET are iLNTyﬁ are given by and .

Empirical Bayes forecast The empirical Bayes forecast using the estimator of Hsiao et al. (1999)
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is
~EB _@’ )
Yi1+1 = Vi EpWi,T+1,

where

/

- A=l _1,._ A—1 7
imB = (0; WWi+Qy ) (6,7 Wiy, + 991 0),

D>

Q:”

N
1 PPN
= E 62 =¢g; /(T - K),

N
~ 1 o T oA =
Qy = ~ 2(9” ~0)(0, 7 —06),

and € =y, — WlézT with éz’,T given in (S.14).

Hierarchical Bayesian forecast We apply the hierarchical Bayesian model of Lindley and Smith

(1972) which assumes g5 ~ iidN(0, 0%), using the following priors:

N
2

N(8,Xp),

SN
2

N(dase_)’
%, ~ Wishart(ve, (vsSx) ™),

0? ~ invGamma(v,/2,v,5%/2).

The Gibbs sampler uses the conditional posteriors (Gelfand et al., 1990) as set out below, where
|- denotes conditional on the other parameters in the Gibbs sampler, for r, = 1,2, ..., Ry, where
Ry denotes the number of random draws used in the Gibbs sampler:
o 0:,,| ~N(b;, S;), where b; = si( 2 Wiy + 3, 19”,_1),
and 8; = (07,2, WiW, + 351, 1)71
o 0|~ invGamma ([NT +v,)/2, 5 [SX (4 = Wibin, ) (i = Wibi,) + 105 )
-1

o 0,,|- ~N(h,Sp), where h = S, (Een, SN 0, + 55 1d) and S, = (Nzg Lo +59;1)

— _ —1
o 2;7ib|- ~ Wishart (N + vy, |:Zi]i1 (0i, — 6r,) (05, — arb)’ + VESE} )
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Table S.4: Results for alternative priors in the applications

House price CPI
Priors: a,b,s> SAR SARX AR AR-PC ARX
2,2,0.1 0.995 0.987 0.998 0.999 0.987
4,4,0.1 1.000 1.000 1.000 1.000 1.000
6,0,1 0.970 0.946 0.981 0.980 0.951

Note: The table reports the ratio of MSFEs for the hierarchical
Bayesian model for different priors. In the first columns are the priors,
where the first number is the exponent a for S5 = I'x10%, the second
number the exponent b for S5 = I'x10°, and the final number the prior
for s2. For further details see the footnote of Table |§I and @

The Gibbs sampler draws iteratively from the conditional posterior distributions, starting with

the following initial values (r, = 0)
04 =€8/(NT - K), &= (E1,8s,....6n), EGi=y,— Wibir

(8i.7 — 00)(0:1 — 80)'.

DI
o

I
=2~
[]=
$>
3

o

=

(oW

M

)
OH

|
an

Estimates from the Gibbs sampler are obtained from 1500 iterations with the first 500 discarded

as a burn-in sample. In each iteration, we calculate

~HB h'
Uit 1y = 05 WiT+1, (S.20)

fori=1,2,..., N and the forecast is then yl T+1 ]%b 2713:1 @fﬁ_“b.

We use the following hyperpriors: d = 0, S5 = Ix10% Sy = Ik, vy = K, v, = 0.1, and
52 = 0.1, which are proper priors that are weakly informative and avoid the use of uninformative
priors that appear to be difficult to attain in hierarchical models (Gelman, 2006). Results for
alternative priors are reported in Table The results suggest that the choice of prior for
the error variance has relatively little influence, whereas the prior choices for the parameter

covariances can substantially alter the forecast accuracy.
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S.4 Additional Monte Carlo applications and empirical results

As a practical alternative to the combination forecasts in Section |4 which are based on estimates of
the optimal combination weights, forecast combinations using equal weights have a long history in
the literature (Timmermann, 2006). We therefore considered how this forecast combination scheme
performs both in the Monte Carlo simulations and for the empirical applications. As in the paper, we
separately consider combination schemes for the individual-pooled forecasts and for the individual-
FE forecasts.

Columns 3-8 of Tables and report results for the two DGPs in our Monte Carlo ex-
periments. Relative to the benchmark individual forecasts, the equal-weighted combination of the
individual-pooled forecasts performs well at lower levels of heterogeneity when the time-series di-
mension T is small. However, forecasts from this scheme quickly become inferior to the individual
forecasts as the level of parameter heterogeneity rises. This result is unsurprising: As the level of pa-
rameter heterogeneity increases, the pooled forecasts start to be dominated by the rising bias term
induced by parameter heterogeneity. The more sophisticated optimal combination scheme intro-
duced in the paper can adjust to this by reducing the weight on the pooled forecasts. However, the
equal-weighted forecast cannot adapt to the increasingly poor performance of the pooled forecasts
which is why we see the rise in the MSFE ratios for this scheme at higher levels of parameter het-
erogeneity. Moreover, comparing the results in Tables and to those from the main paper, we
see that even for the case with homogeneous parameters, the optimal combination scheme performs
better than the equal-weighted individual-pooled combination. The reason is that when the param-
eters are homogeneous, it is actually optimal to put a much higher weight on the pooled forecasts
than the equal-weighted scheme does and this is achieved by our optimal combination scheme.

The equal-weighted combination of the individual and FE forecasts performs a little worse than
the individual-pooled combination only under the scenario with homogenous parameters which of
course favors the pooled forecasts. However, as the level of parameter heterogeneity increases, the
equal-weighted individual-FE combination adapts much better than the individual-pooled combi-
nation and avoids MSFE-ratios that are notably higher than unity. This happens because the FE
forecasts can adapt to parameter heterogeneity in a way that the forecasts based on the pooled

estimates fail to do. Still, compared to the optimal combination weights introduced in the paper,
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using equal-weights leads to a notable deterioration in the performance of the individual-FE forecast
combination as the level of parameter heterogeneity goes up.

Tables [S.7] and report the quantiles of the MSFE ratios. In the scenario with homogeneous
parameters, the quantiles are comparable, if slightly worse in the sense that the quantiles are shifted
to the right, than those of the forecasts based on estimated combination weights. However, as the
level of parameter heterogeneity increases, the distributions of ratios become relatively wider for the
equal-weighted combination scheme and the performance of these forecasts, particularly in the right
tail, is notably worse than that of the optimal combination scheme.

Overall, we conclude from these Monte Carlo simulations that the optimal forecast combination
scheme introduced in our paper produces more accurate forecasts that are notably more robust to
parameter heterogeneity than the equal-weighted combination schemes considered here.

Table shows the performance of the equal-weighted forecasts for the application to house price
inflation. For comparison, we also show the forecasting results for our optimal combination scheme.
In this application pooling beats individual forecasts, which suggests a low degree of parameter
heterogeneity. The equal-weighted forecast combinations perform correspondingly well. In fact, the
combination of individual and pooled forecasts has the lowest average MSFE, offers the most precise
forecasts for 10.2% (SAR model) and 14.9% (SARX) of MSAs and never produces the worst forecast.
This performance is marginally better than that of the optimal combination schemes with estimated
weights.

The quantiles of the ratios of MSFEs in Table reveal that the equal-weighted combined fore-
casts have a wider distribution than the forecasts based on the optimal combinations with estimated
weights. Hence, compared to our optimal forecast combinations the equal-weighted combination has
a higher chance of producing either very good forecasts (low MSFE ratios) or very poor forecasts(high
MSFE ratios) for individual units in the cross-section.

The results for the CPI application in Table show that in a similar fashion the equal-
weighted combination provides precise forecasts, which are more accurate, on average, than the
optimal forecast combination, though beaten by a small margin by the empirical Bayes forecasts.
Further, Table shows that, again, the distribution of MSFE ratios is wider that the correspond-
ing distribution using estimated weights.

Table shows the results from the panel and individual DM test statistics. For both applica-
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Table S.5: Monte Carlo results: panel AR, equal and oracle weighted combinations

ag o2 Eq. w. (pool) Eq. w. (FE) Oracle w. (pool) Oracle w. (FE)
T 20 50 100 20 50 100 20 50 100 20 50 100

PR* =0.2

N =50

0.0 0.0 0.892 0.968 0.985 0.928 0.982 0.992 0.856 0.957 0.980 0.904 0.976 0.990
0.0 0.5 0.938 1.019 1.035 0.928 0.982 0.992 0.939 0.993 0.998 0.904 0.976 0.990
0.5 0.5 0.957 1.039 1.055 0.934 0.988 0.998 0.950 0.995 0.999 0.923 0.988 0.997
1.0 1.0 1.011 1.099 1.116 0.954 1.008 1.017 0.968 0.997 0.999 0.954 0.996 0.999
N =100

0.0 0.0 0.887 0.967 0.985 0.922 0.981 0.992 0.849 0.955 0.980 0.897 0.975 0.990
0.0 0.5 0.941 1.024 1.043 0.922 0.981 0.992 0.940 0.993 0.998 0.897 0.975 0.990
0.5 0.5 0.956 1.040 1.059 0.929 0.988 0.999 0.949 0.995 0.999 0.917 0.988 0.997
1.0 1.0 1.013 1.100 1.121 0.951 1.009 1.020 0.968 0.997 0.999 0.952 0.996 0.999

N = 1000

0.0 0.0 0.886 0.966 0.985 0.921 0.981 0.992 0.838 0.952 0.978 0.893 0.973 0.989
0.0 0.5 0.939 1.023 1.042 0.921 0.981 0.992 0.903 0.987 0.997 0.893 0.973 0.989
0.5 0.5 0.952 1.038 1.057 0.927 0.988 0.999 0.927 0.991 0.998 0.921 0.990 0.998
1.0 1.0 1.009 1.098 1.119 0.949 1.009 1.020 0.958 0.996 0.999 0.955 0.997 0.999
PR*=10.6

N =50

0.0 0.0 0.883 0.965 0.984 0.923 0.981 0.992 0.843 0.954 0.979 0.900 0.975 0.989
0.0 0.5 0.910 0.991 1.008 0.923 0.981 0.992 0.904 0.986 0.996 0.900 0.975 0.989
0.5 0.5 0.932 1.010 1.027 0.934 0.992 1.002 0.932 0.991 0.998 0.928 0.991 0.998
1.0 1.0 0.977 1.060 1.077 0.959 1.021 1.032 0.959 0.997 0.999 0.958 0.997 0.999
N =100

0.0 0.0 0.879 0.964 0.984 0.918 0.980 0.991 0.848 0.955 0.979 0.895 0.975 0.989
0.0 0.5 0.909 0.991 1.011 0.918 0.980 0.991 0.938 0.993 0.998 0.895 0.975 0.989
0.5 0.5 0.927 1.010 1.029 0.927 0.992 1.004 0.947 0.994 0.999 0.915 0.988 0.997
1.0 1.0 0.976 1.060 1.081 0.956 1.025 1.042 0.967 0.997 0.999 0.949 0.996 0.999
N = 1000

0.0 0.0 0.878 0.963 0.984 0.917 0.979 0.991 0.838 0.951 0.978 0.893 0.973 0.989
0.0 0.5 0.908 0.991 1.010 0.917 0.979 0.991 0.902 0.986 0.997 0.893 0.973 0.989
0.5 0.5 0.926 1.009 1.029 0.927 0.992 1.004 0.927 0.991 0.998 0.920 0.990 0.998
1.0 1.0 0.974 1.061 1.081 0.954 1.024 1.040 0.957 0.996 0.999 0.953 0.997 0.999
Note: ‘Eq. w.” refer to combinations with equal weights. ‘Oracle w.” refer to combinations

where the weights use the true parmeters 8; in the DGP. For further details see the footnote
of Table

tions, the panel DM test show significant improvements over the individual forecasts. For the house
price applications, somewhat fewer forecasts for MSAs are significantly better than the individual
forecast compared to what we find for the optimal combination scheme. For the CPI application,
in contrast, the pooled forecast with equal weights is significantly more precise than the benchmark

for slightly more series than under the optimal combination scheme.
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Table S.6: Monte Carlo results: panel ARX, equal weights combinations

ag o2 Eq. w. (pool) Eq. w. (FE) Oracle w. (pool) Oracle w. (FE)
T 20 50 100 20 50 100 20 50 100 20 50 100
PR? =0.2
N =50, pyz =0
0.0 0.0 0.849 0.950 0.977 0.882 0.964 0.984 0.799 0.934 0.969 0.843 0.953 0.979
0.0 0.5 0.903 1.008 1.036 0.882 0.964 0.984 0.903 0.986 0.996 0.843 0.953 0.979
0.5 0.5 0.927 1.033 1.061 0.906 0.988 1.008 0.925 0.990 0.997 0.903 0.985 0.996
1.0 1.0 0.988 1.101 1.132 0.941 1.025 1.046 0.952 0.994 0.999 0.942 0.993 0.998
N =50, pyz = 0.5
0.0 0.5 0.900 1.005 1.033 0.882 0.964 0.984 0.900 0.985 0.996 0.843 0.953 0.979
0.5 0.5 0.928 1.036 1.064 0.904 0.987 1.007 0.926 0.990 0.997 0.900 0.984 0.996
1.0 1.0 0.991 1.105 1.137 0.940 1.023 1.044 0.953 0.994 0.999 0.940 0.993 0.998
N =100, pyz =0
0.0 0.0 0.844 0.949 0.977 0.876 0.963 0.984 0.792 0.931 0.969 0.836 0.951 0.979
0.0 0.5 0.888 0.997 1.027 0.876 0.963 0.984 0.888 0.983 0.996 0.836 0.951 0.979
0.5 0.5 0.921 1.030 1.060 0.907 0.993 1.015 0.920 0.989 0.998 0.904 0.986 0.997
1.0 1.0 0.991 1.106 1.139 0.953 1.041 1.064 0.951 0.994 0.999 0.945 0.994 0.999
N =100, pyz = 0.5
0.0 0.5 0.887 0.996 1.026 0.876 0.963 0.984 0.887 0.983 0.996 0.836 0.951 0.979
0.5 0.5 0.929 1.039 1.070 0.908 0.995 1.016 0.925 0.990 0.998 0.906 0.987 0.997
1.0 1.0 1.004 1.121 1.155 0.955 1.044 1.066 0.954 0.995 0.999 0.946 0.994 0.999
N = 1000, pyz =0
0.0 0.0 0.840 0.948 0.976 0.872 0.963 0.984 0.786 0.931 0.968 0.830 0.950 0.978
0.0 0.5 0.891 1.005 1.034 0.872 0.963 0.984 0.892 0.985 0.996 0.830 0.950 0.978
0.5 0.5 0.926 1.039 1.068 0.903 0.993 1.014 0.922 0.990 0.998 0.900 0.986 0.997
1.0 1.0 0.999 1.119 1.151 0.948 1.041 1.063 0.953 0.994 0.999 0.942 0.993 0.999
N = 1000, pyz = 0.5
0.0 0.5 0.888 1.001 1.030 0.872 0.963 0.984 0.888 0.984 0.996 0.830 0.950 0.978
0.5 0.5 0.933 1.047 1.077 0.902 0.992 1.013 0.927 0.991 0.998 0.898 0.985 0.997
1.0 1.0 1.008 1.129 1.162 0.947 1.039 1.062 0.955 0.995 0.999 0.941 0.993 0.999
PRZ=106
N =50, pyz =0
0.0 0.0 0.841 0.948 0.975 0.877 0.963 0.983 0.788 0.931 0.967 0.839 0.952 0.978
0.0 0.5 0.870 0.975 1.002 0.877 0.963 0.983 0.855 0.973 0.993 0.839 0.952 0.978
0.5 0.5 0.904 1.006 1.034 0.908 0.991 1.011 0.904 0.985 0.996 0.904 0.985 0.996
1.0 1.0 0.963 1.069 1.099 0.949 1.036 1.059 0.944 0.993 0.998 0.945 0.993 0.999
N =50, pyz = 0.5
0.0 0.5 0.869 0.973 1.001 0.877 0.963 0.983 0.853 0.972 0.992 0.839 0.952 0.978
0.5 0.5 0.902 1.004 1.033 0.906 0.990 1.010 0.902 0.985 0.996 0.902 0.985 0.996
1.0 1.0 0.957 1.064 1.095 0.945 1.034 1.058 0.941 0.994 0.998 0.941 0.993 0.999
N =100, pyz =0
0.0 0.0 0.835 0.946 0.975 0.871 0.961 0.983 0.781 0.927 0.967 0.832 0.948 0.978
0.0 0.5 0.862 0.971 1.001 0.871 0.961 0.983 0.844 0.971 0.993 0.832 0.948 0.978
0.5 0.5 0.901 1.009 1.040 0.906 0.997 1.020 0.901 0.986 0.997 0.904 0.986 0.997
1.0 1.0 0.971 1.083 1.116 0.958 1.056 1.085 0.945 0.993 0.998 0.946 0.994 0.999
N =100, pyz = 0.5
0.0 0.5 0.861 0.970 1.000 0.871 0.961 0.983 0.842 0.970 0.992 0.832 0.948 0.978
0.5 0.5 0.904 1.012 1.043 0.907 0.999 1.022 0.904 0.986 0.997 0.906 0.987 0.997
1.0 1.0 0976 1.089 1.122 0.961 1.060 1.089 0.947 0.994 0.998 0.948 0.994 0.999
N = 1000, pyz =0
0.0 0.0 0.834 0.945 0.975 0.869 0.960 0.983 0.779 0.927 0.967 0.829 0.948 0.977
0.0 0.5 0.863 0.973 1.002 0.869 0.960 0.983 0.846 0.972 0.993 0.829 0.948 0.977
0.5 0.5 0.902 1.011 1.041 0.903 0.996 1.019 0.902 0.986 0.997 0.901 0.986 0.997
1.0 1.0 0.969 1.083 1.115 0.955 1.056 1.084 0.944 0.993 0.998 0.944 0.994 0.999
N = 1000, pyz = 0.5
0.0 0.5 0.861 0.971 1.001 0.869 0.960 0.983 0.843 0.971 0.992 0.829 0.948 0.977
0.5 0.5 0.902 1.011 1.041 0.902 0.996 1.018 0.902 0.986 0.997 0.900 0.986 0.997
1.0 1.0 0.967 1.082 1.114 0.953 1.055 1.082 0.944 0.994 0.998 0.943 0.994 0.999

Note: See footnotes of Tables and for details.
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Table S.9: House price inflation forecasts, including equal-weighted combinations

Ratio of Freq. beating Freq. smallest Freq. largest
Forecast ave. MSFE benchmark MSFE MSFE
methods SAR SARX SAR SARX SAR SARX SAR SARX
Individual 3.253 3.248 - - 0.066 0.047 0.613 0.384
Pooled 0.969 0.990 0.660 0.417 0.213 0.086 0.202 0.365
RE 0.973 0.993 0.685 0.428 0.105 0.041 0.014 0.014
FE 0.983 1.002 0.682 0.450 0.191 0.061 0.160 0.229
Emp.Bayes 0.961 0.935 0.884 0.878 0.130 0.215 0.000 0.003
Hier.Bayes 0.984 0.967 0.859 0.840 0.025 0.135 0.008 0.006
Comb. (pool) 0.963 0.944 0.865 0.859 0.039 0.069 0.003 0.000
Comb. (FE) 0.970 0.948 0.867 0.865 0.033 0.030 0.000 0.000
Comb. (eq.weight,pool) 0.949 0.923 0.845 0.768 0.105 0.157 0.000 0.000

Comb. (eq.weight,FE)  0.957 0.930 0.862 0.757 0.094 0.157 0.000 0.000

Note: See the footnotes of Tables @ and for further details.

Table S.10: Quantiles of ratio of MSFEs for house price inflation over MSAs, equal-weighted com-
binations

Quantiles 0.01 0.05 0.10 050 090 095 0.99
House prices: SAR

Comb. (eq.weight,pool) 0.853 0.884 0.906 0.962 1.010 1.025 1.065
Comb. (eq.weight,FE)  0.861 0.899 0.914 0.963 1.010 1.033 1.052
House prices: SARX

Comb. (eq.weight,pool) 0.796 0.835 0.862 0.957 1.031 1.053 1.101
Comb. (eq.weight,FE)  0.811 0.840 0.866 0.959 1.025 1.047 1.097

Note: The table reports the quantiles of the distribution of MSFE ratios across MSAs. See
Tables [7] and @ for further details.

S.5 Choice of initial condition

Tables to repeat the Monte Carlo experiments reported in Tables [I] to [2] for alternative
values of k to check whether initializing the DGP out of equilibrium matters for the results. We
consider two values, namely x = 1/2 and k = 2. For efficiency, we restrict ourselves to N = 50 and
100 and omit the hierarchical Bayesian forecasts. The results indicate that the choice of k has a
mild influence on the MSFE mainly when 7' = 20 but that the choice of initial condition does not

have a large impact on the overall conclusions from the Monte Carlo experiments.
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Table S.12: Quantiles of ratio of MSFEs for CPI inflation over subindices, equal-weighted combina-

tions
Quantiles 0.01 0.05 0.10 050 090 0.95 0.9
CPI: AR
Comb. (eq.weight,pool) 0.745 0.838 0.900 0.970 1.055 1.195 1.367
Comb. (eq.weight,FE) 0.759 0.843 0.904 0.968 1.011 1.054 1.169
CPI: AR-PC
Comb. (eq.weight,pool) 0.731 0.834 0.891 0.968 1.079 1.201 1.312
Comb. (eq.weight,FE) 0.743 0.839 0.892 0.962 1.007 1.030 1.095
CPI: ARX
Comb. (eq.weight,pool) 0.719 0.793 0.852 0.935 1.062 1.263 1.433
Comb. (eq.weight,FE) 0.733 0.809 0.867 0.935 1.022 1.108 1.439

Note: The table reports the quantiles of the distribution of ratios of MSFEs across subindices.
See Tables [10] and for further details.

Table S.13: Diebold-Mariano test statistics: equal-weighted combinations

Comb(eq.weights,Pool) Comb(eq.weights,FE)
House Prices: SAR
Panel DM —14.876 —12.825
DM< —1.96 7 7
Insign. 283 283
DM> 1.96 2 2
House Prices: SARX
Panel DM —15.674 —14.525
DM< —1.96 72 69
Insign. 289 292
DM> 1.96 1 1
CPI: AR
Panel DM —6.606 —5.665
DM< —1.96 28 23
Insign. 71 78
DM> 1.96 2 0
CPI: AR-PC
Panel DM —6.793 —5.887
DM< —1.96 30 32
Insign. 70 69
DM> 1.96 1 0
CPI: ARX
Panel DM —11.529 —10.762
DM< —1.96 59 59
Insign. 41 42
DM> 1.96 1 0

Note: See footnotes of Table [§] and for details.



H 9[qR], JO 9)0U00] d1[ 99S S[IRIOD IOYIIN IO quﬁomw 908 ‘G'() = ¥ sosT JH(J YT, 210N

000 T 866°0 6960 666°0 8S66'0 696°0 866°0 ¢66'0 ¢E60 80&T 9821 FOTI'T GOET GLZ'T OFT'T 69€T SE€'T L0Z'T 0T 01
8660 G66°0 8¥6'0  666°0 ¥66°0 0S6°0 9660 986°0 €16°0 €FOT TE0'T GS6'0 €FOT 0S0°'T €P6'0 SST'T 61T FI0'T S0 S0
3660 €86°0 ¥E6'0 660 066°0 9£6°0 T66°0 8L6°0 F06'0 6860 SL6'0 £68°0 8860 TL6'0 988°0 €80T 950°T £¥6°0 G0 00
366°0 T86'0 TE6'0 S86°0 L96'0 G680 S86°0 996°0 LLS0  686°0 FL6'0 88%°0 8860 TL6'0 T88°0  6L6°0 £56°0 S€8°0 0°0 0°0
00T = N
6660 L66°0 0L6'0 666°0 866°0 €L6'0 866°0 166°0 9860 6LT'T SLT'T 00T 0ST'T 6L1°T 160°T F¥SET 8T 20T 0T 0T
8660 T66°0 GS6°0 666°0 S66°0 FS6'0 966°0 986°0 616°0 FEOT SZO'T €56°0 SEOT SGOT LP6'0 SST'T OST'T S10°T S0 S0
€660 ¥86°0 8€6°0 1660 066°0 LE6'0 T66°0 6L6°0 L06'0 6860 9.6°0 868°0 6860 FL6'0 1680 9L0°T TS0'T 6£6°0 S0 00
T66°0 €86°0 £E6°0 S86°0 896°0 L68'0 P80 L96°0 6L8°0 686°0 GL6'0 1680 G860 TL6°0 T88°0 6L6°0 SS6°0 6£8°0 0°0 0°0
0¢ = N
90 = Hd
666°0 966°0 €96'0 000'T 866°0 ¥L6'0 8660 £66°0 L£6'0 TOT'T €80°'T 600°T TOT'T $80°'T 900'T SGS'T 98F'T €¥€T 0T 0T
8660 166°0 LV6'0 666°0 966°0 6S6°0 966°0 986°0 ¥16'0 9T0°'T 00T GZ6'0 9T0°'T TO0'T 0260 8LZ'T SPE'T LIT'T G0 S0
€66°0 ¥86°0 8€6'0  666°0 S66°0 €S6°0 T166°0 8L6°0 €060 066°0 9L6°0 0060 6860 FL6°0 V680 GIZT IST'T 9S0°T S0 0°0
€66'0 €86°0 LE6'0 S86°0 696°0 €06°0 S86°0 996°0 LLS0  066°0 GL6'0 868°0 6360 €460 688°0 0860 956°0 0S8°0 0°0 0°0
00T = N
666°0 966°0 996°0 000'T 666°0 960 8660 T66°0 8€6'0 630°'T LL0'T G0O'T 680°T LL0'T T00'T S0S'T SLF'T T€ET 0T 0T
8660 166°0 1S6°0 666°0 L66°0 ¢96'0 966°0 986°0 616°0 €I0°'T T00'T 626'0 €I0°T 000'T 260 €92 T LE&'T 60T'T G0 S0
€66°0 ¥86'0 €V6°0 666°0 S66°0 €S6°0 T66°0 6L6°0 606°0 066°0 9L6°0 L06°0 0660 SL6°0 0060 TST'T 9ST'T 980°'T S0 0°0
€66°0 ¥86'0 TF6'0  986°0 0L6°0 L06'0 S86°0 L96°0 €380 066°0 9.6°0 €060 ¥86°0 996°0 ¥88'0 0860 LS6°0 SS8°0 0°0 0°0
0¢ = N
¢0 = gdd

00l 05 0z 00L 0S 0%z 00T 0S 0z 00 0S 0z 00T 0S5 0c 00L 05 0% .
(dd) quop (1ood) "quiop sodeg] [eotdury K| L] pa[ood 7o v

G0 =% “Yy Pued :s)nsol o[1e)) U0 F°S o[qR],

S-21



‘s[rejop ég 9[qR], JO 9J0U)00] dY) 939G :9J0N

6660 G660 856'0 666°0 G660 836°0 L66°0 L86°0 ¢16°0 9I¥'T ¢LE'T 0¢c'T GIP'T L9¢'T TOC'T 09G'T 687'T ¥6¢'T O'T O'T
L66°0 8860 T€6'0 8660 686°0 0E6'0 7660 6,60 988°0 <CET'T O0T'T €2L6°0 TET'T L60°'T €960 €EC'T ¥YT'T 0CO'T G0 G0
786°0 G960 €680 T66°0 9.6°0 G680 €860 0960 T98°'0 8L6°0 0960 €€8°0 8L6°0 8¥6°0 9680 €90°'T 610°T 0L8°0 G0 0°0
g0 =" ‘001 = N
6660 G660 L96°0 666°0 G660 LG6°0 L66°0 986°0 €160 OIV'T #9&€'T 00T 6071 LSE'T 6LT'T LgS'T ¥9¥'T 69¢'T O°'T O'T
L66°0 886°0 0€6°0 L66°0 686°0 Lc6'0 V660 8L6°0 988°0 LZT'T €60°T G96°0 9¢I'T 060°'T ¥56'0 Tcc'T TLT'T 900°T G0 S0
786°0 G960 €68°0 T66°0 LL6°0 G680 €860 0960 698°'0 8L6°0 0960 ¢ER'0 8L6°0 L¥6'0 G280 8IO'T €¢0'T ¢L80 G0 00
786°0 G960 068°0 LL6°0 0960 89G80 8L6'0 ¢S6°0 I¥8'0 8L6°0 6760 8280 9.6°0 9¥6°0 1680 8960 8¢6°0 I8L0 00 0°0
0=""d ‘001 =N
8660 7660 956°0 666°0 ¥66'0 996°0 L66°0 8860 €¢6'0 €0€'T ¢Lc'T 6ET'T ¥OET TLC'T LeT'l LVP'T 06€'T ¥IC'T OT O'T
9660 9860 0€6°0 2L66°0 8860 T€6°0 G660 086°0 L68°0 680°T ¢90°T 6¥6°0 060°T ¢90°T I¥6°0 961°T OST'T 8660 G0 G0
786°0 L96°0 668°0 7660 6.6°0 €06'0 €860 ¥96°0 0L8°0 8L6°0 €560 0¥V8°0 LL6°0 TS6°0 ¢E8'0 690°T 6¢0°T €880 G0 0°0
g0 =" ‘0g =N
666°0 7660 856°0 666°0 G660 836°0 866°0 686°0 9660 TCET L6C'T ¢ST'T €¢ET ¢6¢'T €ET'T ¥IV'T LOV'T €¢¢'T OT O'T
L66°0 L86°0 T€6°0 L66°0 886°0 0£6'0 9660 186°0 6680 €60°T 990°'T 676°0 €60'T ¥90°'T 6660 TOZ'T SST'T L66'0 G0 S0
786°0 L96°0 663°0 7660 6.6°0 ¥06'0 €860 ¥96°0 698°'0 8L6°0 €960 6€8°0 LL6°0 1960 ¢€80 VLO'T ¥EO'T L8880 G0 00
786°0 L96°0 968°0 LL6°0 ¢S6°0 ¥98°0 8L6'0 ¥46°0 L¥8'0 8L6'0 €960 ¥ER'0 LL6°0 TS6°0 6680 L96°0 €€6°0 L8L'O 00 0°0
0="d0¢= N
9'0 = 4d
6660 7660 956°0 666°0 966°0 ¢96°0 L66°0 8860 9160 80€'T TL¢'T OET'T LOET 69¢'T ¢cl'l 69T ¥I9°T ¢O¥V'T O'T O'T
L66°0 8860 T€6'0 8660 ¢66°0 OV6'0 V660 8L6°0 988°'0 8OT'T LLO'T €46°0 LOT'T GL0°'T 9¥6°0 6€ET 98¢'T 601T°'T G0 G0
G86°0 996°0 L68°0 L66°0 G86°0 916°0 ¥86°0 T96°0 6980 6,60 196°0 6E€8°0 6.6°0 0960 €€8°0 G9T'T 9TIT'T G960 G°0 0°0
§0 =" ‘001 =N
6660 7660 7S6°0 666°0 G660 696°0 L66°0 8860 LT16°0 00€'T ¢9¢'T €CI'T 66¢'T 69¢'T TIT'T 8191 $S4°T 6¥€'T O'T O'T
L66°0 8860 0€6°0 866°0 T66°0 9€6'0 7660 8L6°0 9880 €OT'T TLO'T 876°0 €0T'T 690°T 6660 <OE'T 04T LLO'T G0 G0
0860 9960 L68°0 2L66°0 G860 916°0 €860 096°0 8480 6460 196°0 6£8°0 6L6°0 0560 ¢€8°0 69T'T T¢I'T 6560 S°0 0°0
086°0 9960 968°0 8L6°0 CS6°0 S98°0 8L6°0 ¢S6°0 €¥V80 6460 196°0 LES'0 9L6°0 G¥6°0 €¢8°0 6960 ¢€6°0 €640 0°0 0°0
0= " 001 = N
8660 €660 TS6°0 6660 966°0 €96°0 8660 886°0 €¢6'0 Tcc'T S8T'T T90°'T TCC'T ¥RT'T LS0'T €191 ¥¥4°T IvE€'T OT O'T
9660 9860 6¢6°0 866°0 €660 €76'0 G660 6.6°0 G680 TLO'T ¢V0'T 6¢6'0 TLO'T IVO'T ¥#¢6°0 T1CE'T 69¢°T L60'T G0 G0
G86°0 896°0 ¢06'0 L66°0 8860 S26°0 ¥86°0 €96°0 898'0 6460 €96°0 G¥8'0 6L6°0 560 0¥V8°0 G6I'T 6VI'T 8860 G°0 0°0
¢o=""d05=N
8660 €660 €56°0 6660 966°0 ¢96°0 8660 066°0 9¢6'0 8¢E'T ¢6T'T L90'T Lgg'T 061°T 090°T €6S°T 6¢G°T LgE€'T 0T O'T
9660 9860 0€6°0 866°0 1660 T¥6°0 G660 T86°0 968'0 GLO'T 9¥0'T ¢€6'0 GLO'T ¥PO'T G26°0 80E'T 8GC'T L80'T G0 G0
G86°0 896°0 €060 L66°0 886°0 L26°0 ¥86°0 €96°0 L98'0 6460 €96°0 G¥80 6L6°0 ¢S6°0 6€8°0 80C'T TIT'T 8660 G0 0°0
G860 896°0 TO6'0 8L6°0 ¥96°0 0L8°0 8L6°0 €960 8¥V80 6460 €96°0 €¥8°0 8L6°0 1960 G€8°0 6960 V€60 6640 0°0 0°0
0=""d0¢= N
T0=g4d

00T 0g 0¢ 00T 0S 0¢ 00T 0g 0¢ 00T 0S 0¢ 00T 0g 0¢ 00T 08 0 .L
(49) "quiop (tood) ~quiop sofeq reotdwy aq cell parood )

G0 =% ‘XYV eued :s3nsol ofIe)) 9JUOIN :GT'S 9[qRT,

S-22



H 9[qR], JO 9)0UJ00J OY[} S S[ILIAP ISYLINJ IO . UOT1909G 998 ‘g = ¥ S9SN JOH(J YL, @I0N

000°T 666°0 ¥86'0 000'T 866°0 LL6'0 866°0 G660 6¥6°0 SET LPE'T 6821 68€'T 61€T Sec'T TLET SEE'T Va1 0T 01
666'0 S66°0 160 666°0 S66'0 F96°0 L66'0 636'0 L86'0 VSO'T ¥SO'T 1Z0T  SSO'T TSO'T 000'T S9T'T 9FI'T S90°'T €0 G0
766°0 L86°0 S6'0 866°0 66°0 6560 T66°0 €86°0 SE6'0 1660 I86'0 636°0 066°0 6L6°0 ¥26'0 6307 SLO'T LIOT €0 0°0
€66°0 L86'0 6S6'0 9860 TL6'0 FG6'0 986°0 GL6'0 ¥T6'0 1660 18S6°0 6860 066'0 086'0 €£6°0 I86°0 196°0 168°0 0°0 0°0
001 = N
000°T 666°0 86'0 666°0 866'0 LL6'0 866°0 Z66°0 SF6'0 VETT Tkl €81'T GEG'T G821 SST'T 0981 ohe'l ¥£€6'T 0T 01
866'0 S66'0 160 666°0 966'0 S96°0 966°0 $36'0 LE6'0 E€VOT GFO'T S00'T FFOT gFO'T 1660 T9T'T SPI'T €90°T €0 0
766°0 L86'0 SS6'0 866°0 T66°0 LS6°0 T66°0 €86°0 PEE'0 1660 I86'0 T€6°0 T66°0 6L6°0 S26'0 080T L90°'T TOO'T €0 0°0
€66°0 L86'0 6S6'0 9860 TL6'0 FG6'0 S86'0 GL6'0 0260 1660 1S6'0 8€6°0 L8SG'0 9L6°0 8260 0836°0 196°0 888°0 0°0 0°0
05 =N
90 = Hd
666'0 L66'0 SL6'0 000'T 8660 086'0 866'0 ¥66'0 £56'0 OT'T 060'T €F0'T TOT'T 060'T 6£0'T LgS'T T6F'T ¢8ET 0T 0’1
866°0 €660 1960 666°0 966°0 696°0 966°0 836°0 9£6°0 LIOT $OO'T 0S6°0 9T0'T €00°T SV6'0 6LZT 6V¢T €ST'T €0 0
£66'0 S86'0 TS6'0 666°0 S66'0 FI6'0 T66'0 186'0 956°0 0660 8L6°0 GG6'0 066°0 LL60 0260 €11 S8T'T 260°'T S0 0°0
€66'0 S86'0 £S6'0 986°0 0L6'0 6I6'0 G36'0 896'0 S06'0 066°0 8L6'0 826'0 6860 SL6'0 6160 086'0 86°0 0880 0°0 0°0
001 = N
666'0 L66'0 9260 000'T 6660 ¢86'0 866°0 £66'0 £96'0 060°T T80T €80T 060°'T 28O'T T€0'T 60S'T F8F'T L9ET 0T 0T
866°0 €660 F96'0 666°0 L66'0 TL6°0 966°0 L86°0 8€6'0 FIOT €00°'T €660 €I0°T 00T LV6'0 ¥92'T 1¥gT ghI'T €0 S0
£66'0 986'0 9S6'0 666°0 S66'0 £96°0 66'0 186'0 086'0 1660 6160 1€6°0 066°0 8L6°0 S26'0 €8T'T 09T'T 890°'T S0 0°0
€66'0 S86'0 SS6'0 986°0 TL6'0 1360 G36'0 896'0 906'0 066°0 8L6°0 0£6'0 ¥86'0 8960 T16°0 086'0 6S6°0 2880 0°0 0°0
05 =N
T0=ld

00  0S 0z 00 0¢ 0z 00L 0SS 0% 00T 0S 0 00L 05 0% 00T 08 0 .
(@d) "quop (100d) quiop sodeq Teotidury CEl el pojooq 7o v

¢ =" “gV 1eued :sjmsel o[re)) 9IUOIN :91°S 9[qRL,

S-23



‘s[rejop ASWE 9[qR], JO 9J0UY00] 91} 99G 90N

666'0 9660 0L6'0 666'0 S66'0 €960 L66°0 9860 0T6°0 VSV’ GTF'T LZ&'T SVF'T SOF'T LLTT €9G°T 8671 82€T 0T 01
866'0 066'0 6¥6°0 866'0 066'0 T¥6'0 S66°0 086°0 €06'0 9ET'T €IT'T 080'T SGET'T SOT'T 600'T 8€Z'T 6611 6901 S0 G0
G86°0 696'0 0T6'0 F¥66'0 6,60 9160 V860 7960 G880 086'0 GG6'0 £I98'0 6L6°0 £56°0 LG8°0 890°'T ¥€0'T 9260 S0 00
¢0= "% ‘00T = N
666'0 966'0 6960 666°0 S66'0 TI6'0 L66'0 9860 TT60 ESH'T TSH'T 66¢°T €¥F'T L6€'T TS¢'T 82S'T 89%'T 9621 0T 0T
866'0 066'0 8¥6'0 866'0 686'0 6£6'0 G66°0 086°0 €06°0 6ZT'T FOI'T €10T 62T'T 860°'T 266°0 STZ'T IST'T 9F0'T S0 G0
G86'0 696'0 TI6°0 F¥66°0 086'0 ST6'0 T86'0 F96°0 988°0 086'0 GG6'0 ¥98°0 6L6°0 FS6'0 8G8°0 ¢L0'T 80T 0£60 S0 00
¢86'0 696'0 ¥I6°0 8L6'0 FS6'0 Z88°0 6.6°0 9960 6180 086'0 SG6'0 698°0 8L6°0 2S6°0 2980 6960 SE60 ¥280 0°0 00
0="" ‘001 =N
666'0 G66'0 G96°0 866°0 S66'0 096'0 L66°0 8860 6360 6FET €281 808’ T 6VET SIET 6LT'T ¥S¥'T SOV'T SFE'T 0T O°1
L66°0 886°0 9F6°0 L66'0 686'0 T¥6'0 S66°0 I86°0 6060 960°'T GL0'T L66°0 860°T GLO'T 0860 F0Z'T OLT'T ZHO'T G0 S0
686'0 0L6'0 ¥I6°0 ¥66°0 T86'0 €260 G86°0 996°0 2680 0860 LG6'0 L98°0 6.6°0 996°0 €98°0 V0T ¥FO'T 060 S0 00
=" ‘06=N
666'0 G66'0 6960 666'0 S66'0 TI6'0 866°0 066°0 V€60 TLET 09€'T S¥E'T FTLE'T OVE'T T0T'T 99%°T 8OV OFZ'T 0T O°1
L66°0 6860 8F6°0 L66'0 686'0 TF6'0 G66°0 386°0 €160 860°'T LL0'T L66°0 00T'T GLO'T LL6°0 SOZ'T L9T'T 9€0°'T G0 G0
986°0 0L6'0 916°0 S66'0 T86'0 926'0 G860 L960 V680 086'0 8G6'0 0.8°0 6L6°0 9S6°0 G98°0 080T 1G0T 1S6°0 S0 00
986'0 TL6°0 0Z6'0 8L6'0 LG6°0 S88°0 6L6°0 6960 LS80 086'0 6G6°0 8.8°0 6L6°0 LG6°0 €.8°0 0L6°0 0F6°0 ¥€80 0°0 00
0="2d‘oc=N
90 = 4d
666'0 G660 1960 666'0 966'0 996'0 L66°0 886°0 GT6'0 80L'T €Z'T OST'T S0ET TLZT TPT'T 1891 09T Z€¥'1 01 O°1
L66°0 6860 IF6'0 866'0 €66'0 LV6'0 S66°0 086°0 0060 SOT'T 620°'T 2,60 SOT'T LLO'T 9960 TPET 1621 6ST'T G0 G0
G86°0 896°0 806'0 L66°0 986'0 926°0 V860 £96°0 8L8'0 086'0 ¥S6'0 098°0 6L6°0 £56°0 ¥G80 S9T'T 0TI €860 S0 00
¢0="d ‘01 =N
666'0 G66'0 1960 666'0 S66'0 €960 L66°0 686°0 926°0 TOST ¥9Z'T OPT'T 66¢'T 09T 92T'T SI9T 8G'T 28T 0T 01
L66°0 886°0 0F6'0 866'0 T66°0 €¥6'0 G66°0 086°0 0060 FOT'T €20°'T L96°0 €0T'T TLO'T 8S6'0 TOE'T €531 ZOT'T G0 S0
G86°0 896'0 606'0 L66°0 986°0 LZ6'0 ¥86°0 2960 LL80 086°0 ¥S6'0 098°0 6.6°0 TS6°0 ¥G8'0 O0LI'T STI'T L86'0 S0 00
¢86'0 896'0 606'0 8L6'0 £S6°0 8L8°0 6L6°0 €960 ¥980 086'0 £G6'0 098°0 9L6°0 L¥6'0 L¥R0 0L6°0 ¥€60 9180 0°0 00
0="" ‘001 =N
866'0 £66'0 LG6'0 666'0 966'0 L96'0 866°0 686°0 1€6°0 Tg¢’T LST'T ISO'T €Z¢'T L8T'T 8L0'T €I9°T TSGT $2€T 0T 01
966'0 L86'0 8€6'0 866'0 T66'0 0S6'0 SG66°0 1860 8060 CLO'T FFO'T L¥6'0 TLO'T €F0'T V60 T€T V221 LZI'T S0 G0
G86°0 696'0 £16°0 L66'0 886°0 9€6'0 860 F96°0 988°0 086'0 GG6'0 998°0 6L6°0 FG6°0 g98°0 96T°T ZST'T LIOT S0 00
go="2‘gc =N
666'0 £66'0 6S6'0 666°0 966'0 996'0 866°0 066°0 986'0 8ZZ'T ¥6T'T L8O'T 8ZT'T T6T'T 8L0'T €6G°T €8G°T SS€'T 0T 0°1
L66°0 L86°0 IF6'0 866'0 T66'0 6V6'0 G66°0 286°0 €160 9.0°T 80T ¥S6'0 GLO'T LVO'T L¥6'0 60€T 2921 LIT'T G0 S0
686'0 696'0 FI6°0 L66'0 636'0 SE6'0 860 F96°0 8880 086'0 GG6'0 898°0 6L6°0 FG6'0 €98°0 60¢T S9T'T I€0T S0 00
G86°0 696'0 9T6°0 8L6'0 SG6'0 G88°0 8L6°0 SS6°0 V280 086'0 GG6°0 T.8°0 6L6°0 £56°0 €98°0 0L6°0 LE60 LZ80 0°0 00
0= ‘06 =N
T0=4d

00T 05 0% 00T 0% 0% 00T 0OS 0% O00I 0% 0Oz 00T 0% 0Z 00T 0% 0 .I
(@d) "quop (100d) quiop sokeq reorudugy A4 eR| po[oog )

¢ =" ‘XY [oued :sjmsal of1e)) 9YUOIN :LT°S 9[qRI,

S-24



References

Baltagi, B.H. (2013) “Panel data forecasting” Ch. 18 in Elliott, G. and A. Timmermann, Handbook

of Economic Forecasting, volume 2B. North Holland: Elsevier.

Gelfand, A.E., S.E. Hills, A. Racine-Poon, A.F.M. Smith (1996). Illustration of Bayesian inference
in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85,

972-985.

Goldberger, A.S. (1962) “Best linear unbiased prediction in the generalized linear regression model”

Journal of the American Statistical Association 57, 369-375.

Hsiao C., M.H. Pesaran and A.K. Tahmiscioglu (1999) Bayes estimation of short-run coefficients in
dynamic panel data models. Ch.11 in C. Hsiao, K. Lahiri, L.-F. Lee and M.H.Pesaran Analysis of

panels and limited dependent variable models, Cambridge: Cambridge University Press.

Lindley D.V. and A.F.M. Smith (1972) Bayesian estimates for the linear model. Journal of the Royal

Statistical Society, Series B 34, 1-41.
Pesaran, M.H. (2015) Time Series and Panel Data Econometrics, Oxford University Press.

Pesaran, M.H., R. Smith (1995) “Estimating long-run relationships from dynamic heterogeneous

panels” Journal of Econometrics 68, 134—152.

Timmermann, A. (2006) “Forecast combinations” Ch. 4 in G. Elliott, C. W. J. Granger and A. Tim-

mermann (Eds.) Handbook of Economic Forecasting, volume. 1, North Holland: Elsevier.

S-25



	Introduction
	Setup and assumptions
	Panel regression model
	Assumptions
	Correlated heterogeneity

	Theoretical results on forecasting performance
	Forecasts based on individual and pooled estimation
	Forecasts based on fixed effects estimation

	Forecast combinations
	Combinations of individual and pooled forecasts
	Combining individual and fixed effect forecasts
	Estimation of combination weights

	Bayesian Forecasts
	Monte Carlo experiments
	Panel AR model
	Panel ARX model
	Forecasts and measures of forecast performance
	Results

	Empirical applications
	Measures of forecasting performance
	U.S. house prices
	CPI inflation of sub-indices

	Conclusion
	Lemmas
	Proofs of the propositions
	Proof of Proposition 1 
	Proof of Proposition 2
	Proof of Proposition 3 
	Proof of Proposition 4 

	Panel AR(1): An example of correlated heterogeneity
	Introduction
	Derivation of the pooled R-squared PRN2
	Details of the estimators
	Additional Monte Carlo applications and empirical results
	Choice of initial condition


