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Abstract

We provide a comprehensive examination of the predictive accuracy of panel forecasting meth-

ods based on individual, pooling, fixed effects, and Bayesian estimation, and propose optimal

weights for forecast combination schemes. We consider linear panel data models, allowing for

weakly exogenous regressors and correlated heterogeneity. We quantify the gains from exploiting

panel data and demonstrate how forecasting performance depends on the degree of parameter

heterogeneity, whether such heterogeneity is correlated with the regressors, the goodness of fit

of the model, and the cross-sectional (N) and time (T ) dimensions. Monte Carlo simulations

and empirical applications to house prices and CPI inflation show that forecast combination and

Bayesian forecasting methods perform best overall and rarely produce the least accurate forecasts

for individual series.
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1 Introduction

Panel data sets on economic and financial variables are widely available at individual, firm, industry,

regional, and country granularities and have been extensively used for estimation and inference.

Yet, panel estimation methods have had a comparatively lower impact on common practices in

economic forecasting, which remain dominated by unit-specific forecasting models or low-dimensional

multivariate models such as vector autoregressions (Hsiao, 2022). The relative shortage of panel

applications in the economic forecasting literature is, in part, a result of the absence of a deeper

understanding of the determinants of forecasting performance for different panel estimation methods

and the absence of guidelines on which methods work well in different settings.

In this paper, we examine existing approaches and develop novel forecast combination methods

for panel data with possibly correlated heterogeneous parameters and conduct a systematic compari-

son of their predictive accuracy in settings with different cross-sectional (N) and time (T ) dimensions

and varying degrees of parameter heterogeneity, whether correlated or not. Our analysis provides a

deeper understanding of the determinants of the performance of these methods across a variety of

settings chosen for their relevance to economic forecasting problems. This includes the important

choice of whether to use pooled versus individual estimates, or perhaps a combination of the two

approaches, with a focus on forecasting rather than parameter estimation and inference.

We begin by exploring analytically the bias-variance trade-off between individual, fixed effects

(FE), and pooled estimation for forecasting. Our analysis is conducted in a general setting that allows

for weakly exogenous regressors and correlated heterogeneity, consistent with the type of dynamic

panel models commonly used in empirical applications. We show how such effects contribute to the

mean squared forecast error (MSFE) of forecasts based on individual, FE, and pooled estimates.

We next examine two forecast combination methods. Estimation errors are well-known to lead

to imprecisely estimated combination weights for data with a small time-series dimension. Our

combination schemes assume homogeneous weights across individual variables, which allows us to

use cross-sectional information to reduce the effect of estimation error on the combination weights and

stabilizes our combination weights compared to a scheme that lets the weights be individual-specific.

Our first scheme combines forecasts from individual and pooled models. To handle cases where the

pooling estimator imposes too much homogeneity, we propose a second combination scheme based
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on forecasts from the individual-specific and fixed effect estimators.

Finally, we consider forecasts based on Bayesian estimators, namely the empirical Bayes approach

of Hsiao et al. (1999) and the hierarchical Bayesian approach of Lindley and Smith (1972) using the

Gibbs sampler of Gelfand et al. (1996). These are related to forecast combination and we show for

the empirical Bayes estimator that it can be thought of as a weighted average of an estimator that

allows for full heterogeneity and a pooled mean group estimator. The empirical Bayes scheme assigns

greater weight to the pooled estimator, the lower the estimated degree of parameter heterogeneity and

so adapts to the degree of parameter heterogeneity characterizing a given data set. The hierarchical

Bayesian model has also been used by Lee and Griffith (1979) and Maddala et al. (1997).

We evaluate the predictive accuracy of these alternative panel forecasting methods through Monte

Carlo simulations of a set of first-order autoregressive (ARX) panel models. These simulations

explore the importance to forecasting performance of the degree of parameter heterogeneity, along

with how correlated it is, whether it affects intercepts or slopes, and the dimensions of N and T . In

the scenario with homogeneous parameters, forecasts based on pooled estimates are most accurate.

Forecasts based on fixed or random effect estimates perform well, relative to other methods, when

parameter heterogeneity is confined to the intercepts and does not affect slopes. Outside these cases,

combination and Bayesian forecasts produce the most accurate forecasts since they are better able

to handle parameter heterogeneity, whether correlated or not, while being more robust in cases with

a small T than the individual-specific approach.

Next, we consider two empirical applications selected to represent varying degrees of heterogene-

ity and predictive power of the underlying forecasting models. We characterize the center of the

cross-sectional loss distribution of the forecasts through the ratio of their average MSFE values rel-

ative to the average MSFE of the unit-specific benchmark. We also study the quantiles and the tail

features of the loss distributions through the proportion of units for which the predictive accuracy

of each approach is either best or worst among all methods considered.

Our first application considers predictability of house prices across 362 US metropolitan statistical

areas (MSAs). The forecasting models for this application have a high pooled R2 value above 0.8.

In this application, individual-specific forecasts perform quite poorly, producing the highest MSFE

values among all methods for up to 60% of the MSAs and the lowest MSFE values for less than

7% of MSAs. Forecasts based on pooled estimates perform notably better and reduce the average
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MSFE value by 3% relative to the forecasts based on individual estimates. Forecast combinations

and Bayesian forecasts work even better in this application, beating forecasts based on individual

estimates for nearly 90% of MSAs while rarely generating the least accurate forecasts for individual

series.

Our second application considers forecasts for a panel containing 187 subcategories of CPI infla-

tion. Our forecasting models for this data have a substantially lower pooled R2 in the range of 0.1 to

0.3. In this application, forecasts based on individual estimates generate the highest MSFE-values

for 40% of the series and the lowest MSFE-values for less than 2% of the series. Forecasts based on

pooled estimates also produce the highest MSFE-values for around 40% of the individual series but,

conversely, generate the lowest MSFE-values for nearly 20% of the series. Combination forecasts

are again more accurate than either of these methods as they improve on the average MSFE per-

formance and reduce the MSFE of the individual-specific forecasts for 80% of the series. They also

do not produce the largest MSFE for a single individual variable. Even better inflation forecasts

are produced by the empirical Bayes method which is more accurate (in an MSFE sense) than the

individual forecasts for 98% of the series, generates the lowest MSFE values for 35% of the individual

variables, and never produces the worst MSFE performance among our methods.

Overall, forecasts that use only the information on a given unit tend to have loss distributions

with wide dispersions across units. Their associated forecasts are therefore sometimes the best

but far more often the worst, and their distribution of MSFE performance is often shifted to the

right, implying larger losses on average than for other methods. Forecasts based on pooling, random

effects (RE), or FE estimation tend to perform better, on average, than the individual-specific model

whose forecast accuracy they beat for the majority of series. However, relative to the MSFE-values

of the individual-specific forecasts, these approaches also tend to have a right-skewed distribution,

suggesting a high risk of poor forecasting performance for individual series whose model parameters

are very different from the average. Combinations and Bayesian forecasts have much narrower MSFE

distributions across units, often shifted to the left as they are centered around a smaller average loss.

These methods rarely produce the largest squared forecast error among all methods that we consider.

While the literature on forecasting with panel data has focused on panel data models developed

for inference rather than forecasting, there are some notable exceptions. The review articles by

Baltagi (2008, 2013) consider the forecasting performance of the best linear unbiased predictor
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(BLUP) of Goldberger (1962) in models with either fixed effects or random effects. The BLUP

estimator gives rise to a generalized least squares (GLS) predictor which Baltagi compares to models

that allow for autoregressive moving average (ARMA) dynamics in innovations as well as models

with spatial dependencies in the errors.

Trapani and Urga (2009) use Monte Carlo simulations to assess the forecasting performance

of pooled, individual, and shrinkage estimators and find that the degree of heterogeneity is a key

determinant of the accuracy of different forecasts. Brückner and Siliverstovs (2006) consider a similar

group of methods to forecast migration data and find that fixed effects and shrinkage estimators

perform best.

Wang et al. (2019) also propose forecast combination methods. However, their analysis does not

allow for correlation of regressors and parameters or dynamics in the model. Additionally, their

combination weights are determined from in-sample test statistics rather than the expected out-of-

sample performance that we propose. In this sense, our approach is closer to the forecast based test

for a structural break of Pesaran et al. (2013) and Boot and Pick (2020), where the target is also

significant improvements in forecast accuracy rather than a significant change in parameters.

Liu, Moon and Schorfheide (2020) study forecasting for dynamic panel data models with a short

time-series dimension. Though T exceeds the number of parameters that have to be estimated for

each series, such estimates are typically very noisy and not consistent under large N , fixed T asymp-

totics. To handle estimation noise, like Lee and Griffith (1979), they adopt a Bayesian approach

that shrinks the heterogeneous parameters to their mean, thus also exploiting cross-sectional infor-

mation.1 This is closely related to the idea of using forecast combinations to reduce the effect on

the forecasts of noisy estimates of individual-specific parameters.

The outline of the rest of the paper is as follows. Section 2 introduces the model setup and

our assumptions, while Section 3 derives analytical results on the predictive accuracy of individual,

pooled, and FE forecasting schemes. Section 4 introduces our forecast combination schemes. Our

theoretical results are summarized in four propositions. Section 5 describes the empirical and hi-

erarchical Bayes estimators. Section 6 presents a set of Monte Carlo experiments designed to shed

light on the determinants of the (relative) forecasting performance of the methods introduced in Sec-

1Our theoretical analysis focuses on the case with finite T and N → ∞ and does not require that
√
N/T → 0 as N

and T → ∞, jointly, which is often assumed in the literature.
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tions 3 and 4. Section 7 reports results for our empirical applications. Finally, Section 8 concludes.

Technical details are provided in appendices at the end of the paper and an online supplement.

2 Setup and assumptions

We begin by describing the panel regression setup and assumptions used in our analysis.

2.1 Panel regression model

Our analysis considers the following linear panel regression model:

yit = αi + β′
ixit + εit = θ′

iwit + εit, εit ∼ (0, σ2i ), (1)

where i = 1, 2, . . . , N refers to the individual units and t = 1, 2, . . . , T refers to the time period, yit

is the outcome of unit i at time t, xit is a k× 1 vector of regressors—or predictors—used to forecast

yit, βi is the associated vector of regression coefficients, and εit is the disturbance of unit i in period

t. The second equality in (1) introduces the notations θi = (αi,β
′
i)
′ and wit = (1,x′

it)
′ which have

dimensions K×1, with K = k+1. For simplicity, we use the time subscript t for xit and wit, but it

is important to emphasize that this refers to the predicted time for the outcome variable, yit. For a

forecast horizon of h periods, all variables in xit must therefore be known at time t−h. Our notation

avoids explicitly referring to h everywhere, but it should be recalled throughout the analysis that

xit includes suitably lagged predictors. We will focus on the case of h = 1 but extensions to larger

h are straightforward.

Notations: Stacking the time series of outcomes, regressors and disturbances, define yi =

(yi1, yi2, . . . , yiT )
′, Xi = (x′

i1,x
′
i2, . . . ,x

′
iT )

′, W i = (τT ,Xi), where τT is a T × 1 vector of ones,

and εi = (εi1, εi2, . . . , εiT )
′. Further, let y = (y′

1,y
′
2, . . . ,y

′
N )′, X = (X ′

1,X
′
2, . . . ,X

′
N )′, W =

(W ′
1,W

′
2, . . . ,W

′
N )′, and ε = (ε′1, ε

′
2, . . . , ε

′
N )′. Generic positive finite constants are denoted by C

when large and c when small. They can take different values at different instances. λmax (A) and

λmin (A) denote the maximum and minimum eigenvalues of matrix A. A ≻ 0 and A ⪰ 0 denote

that A is a positive definite and a non-negative definite matrix, respectively. ∥A∥ = λ
1/2
max(A

′A)

and ∥A∥1 denote the spectral and column norms of matrix A, respectively. ∥x∥p = [E (∥x∥p)]1/p. If

{fn}∞n=1 is any real sequence and {gn}∞n=1 is a sequence of positive real numbers, then fn = O(gn),
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if there exists a C such that |fn| /gn ≤ C for all n and fn = o(gn) if fn/gn → 0 as n→ ∞. Similarly,

fn = Op(gn) if fn/gn is stochastically bounded and fn = op(gn) if fn/gn
p→ 0. The operator

p→

denotes convergence in probability, and
d→ denotes convergence in distribution.

2.2 Assumptions

Our theoretical analysis builds on a set of standard assumptions about the underlying data generating

process.

Assumption 1. εit is serially independent with mean zero, a fixed variance σ2i (0 < c < σ2i < C <

∞), and with supi,t E |εit|4 < C <∞.

Assumption 2. For all i and t, the following orthogonality conditions hold:

E (εit |wis ) = 0, for t ≥ s, for t = 1, 2, . . . , T, T + 1.

Assumption 3. (a) {wit} for i = 1, 2, . . . , N are covariance stationary with E(witw
′
it) = Qi,

supi,t={1,2,...,T} E ∥wit∥4 < C, supi,T ∥wi,T+1∥ < C, and

sup
i
λmax (Qi ) < C <∞, and sup

i
λmax

(
Q−1

i

)
< C <∞. (2)

(b) The sample covariance matrices QiT = T−1W ′
iW i = T−1

∑T
t=1witw

′
it, for i = 1, 2, . . . , N are

positive definite.

Assumption 4. There exists a fixed T0 such that for all T > T0

sup
i

E
∥∥∥T−1/2W ′

iεi

∥∥∥4 < C <∞, (3)

sup
i

E
[
λ4max (QiT )

]
< C <∞, and sup

i
E
[
λ4max

(
Q−1

iT

)]
< C <∞. (4)

Under Assumption 1 the optimal forecast of yi,T+1, in a mean squared error sense, is given by

E (yi,T+1 |wi,T+1,W i ) = θ′
iwi.T+1. Note that wi.T+1 is known at time T , and is bounded under
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Assumption 3. Assumption 2 allows the regressors to be weakly exogenous with respect to εi and

therefore permits the inclusion of lagged dependent variables such as yi,T in wi,T+1. Assumption 3

is an identification assumption that allows consistent estimation of individual slope coefficients,

θi. Assumption 4 is required when we compare average MSFEs based on individual and pooled

estimators. It provides sufficient conditions under which (see Lemma A.1)

E
∥∥∥√T (θ̂i − θi

)∥∥∥2 = E
∥∥∥Q−1

iT

(
T−1/2W ′

iεi

)∥∥∥2 < C <∞, (5)

where θ̂i = (W ′
iW i)

−1
W ′

iyi is the least squares estimator of θi. The moment conditions in Assump-

tion 4 can be relaxed when wit is strictly exogenous. From covariance-stationarity in Assumption 3,

we have ∥QiT −Qi∥ = Op(T
−1/2) and it is possible to show that there exists a finite T0 such that

for all T > T0 conditions (2) and (4) will be met.

We next introduce assumptions that are required primarily for establishing the properties of

pooled and fixed effects predictors.

Assumption 5. (a) θi = θ + ηi with ∥θ∥ < C, E ∥ηi∥ < C, E (ηi) = 0, E (ηiη
′
i) = Ωη, and

∥Ωη∥ < C. (b) Let qit = witw
′
itηi, then E (qit) = qi (fixed), supi ∥qi∥ < C, supi,t E ∥qit∥

2 < C, and

supi E
∥∥∥w′

i,T+1ηi

∥∥∥2 < C.

Assumption 6. ηi is distributed independently of εi, for all i.

Assumption 7. ξ̄NT = N−1
∑N

i=1 ξiT = Op

(
N−1/2

)
, where ξiT = T−1W ′

iεi = T−1
∑T

t=1witεit.

Assumption 8. There exists a fixed T0 such that for all T > T0 and N = 1, 2, . . . , the pooled

covariance matrices Q̄NT and Q̄N , defined in terms of QiT = T−1W ′
iW i and Qi = E(QiT ),

Q̄NT = N−1
N∑
i=1

QiT , and Q̄N = E
(
Q̄NT

)
= N−1

N∑
i=1

Qi, (6)

are positive definite,
∥∥∥Q̄−1

N

∥∥∥ < C, and

sup
N,T

E
[
λ2max

(
Q̄NT

)]
< C <∞, and sup

N,T
E
[
λ2max

(
Q̄

−1
NT

)]
< C <∞.

Assumption 9. (εi,W i,ηi) are distributed independently over i.
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For pooled estimation of θ, the conditions on QiT can be relaxed and it is sufficient that Q̄NT

is positive definite, and supN,T E
∥∥Q−1

NT

∥∥2 < C. Assumptions 5 and 6 identify the population mean

of θi denoted by θ, but allow for correlated heterogeneity.2 The degree of parameter heterogeneity

is measured by the norm of Ωη, and the extent to which heterogeneity is correlated is measured by

the norm of qi.
3

Assumptions 5–8 are not required for forecasts based on the individual estimates and the associ-

ated MSFE. The assumption of cross-sectional independence for εit (or wit) is not needed to establish

results on the MSFE of individual forecasts. However, we do require some degree of uncorrelatedness

over i when the objective is to compute the MSFE averaged across all N units under consideration or

over a sub-group of the units. In particular, to ensure that the cross-sectional average MSFE tends

to a non-random limit, the units under consideration must satisfy the law of large numbers. To this

end, we need the units to be cross-sectionally weakly correlated, possibly conditional on known (or

estimated) common factors. The situation is different when we consider pooled or Bayesian forecasts.

Optimality of these forecasts does depend on the assumption of cross-sectional independence, or at

least some form of weak cross-sectional dependence. A comprehensive analysis of the implications

of cross-sectional dependence for forecast combinations and comparisons of predictive accuracy are

beyond the scope of the present paper, however.

2.3 Correlated heterogeneity

We measure the degree of correlated heterogeneity for unit i at time t by qi = E(witw
′
itηi) and, on

average, by

q̄NT = N−1T−1
N∑
i=1

W ′
iW iηi = N−1T−1

N∑
i=1

T∑
t=1

witw
′
itηi. (7)

Taking expectations,

E (q̄NT ) = q̄N = N−1
N∑
i=1

qi. (8)

2Here we are simplifying the notations and use θ, rather than θ0, to denote the population mean which is technically
more appropriate.

3Under Assumption 2, E (ξiT ) = T−1 ∑T
t=1 E (witεit) = 0 and E (ξNT ) = 0. Note that εit and wit are uncorrelated

but not independently distributed. We also note that under Assumption 3,
∥∥Q̄NT

∥∥ ≤ supi ∥QiT ∥ < C, and
∥∥Q̄N

∥∥ ≤
supi ∥Qi∥ < C.
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Assumptions 5 and 6 accommodate correlated heterogeneity and allow for non-zero values of E (W ′
iW iηi).

In the context of fixed effects models, the intercepts αi in (1) are allowed to have non-zero cor-

relation with the regressors, but optimality of forecasts based on pooled estimates of β requires

Assumption 6 and the condition limn→∞ n−1
∑n

i=1 E
(
X ′

iMTXiηiβ

)
= 0, where ηiβ = βi − β,

MT = IT − τT (τ ′
TτT )

−1 τ ′
T , τT is a T × 1 vector of ones, and IT is a T × T identity matrix.4

3 Theoretical results on forecasting performance

We next use the setup and assumptions from Section 2 to establish theoretical results on the forecast-

ing performance of different modeling approaches. Section 3.1 discusses forecasts based on individual

and pooled estimation and, building on this, Section 3.2 covers fixed effects forecasts.

We note that our theoretical framework can also be applied to forecasts across groups instead of

individuals, when there are a priori known groups such as industries or states within a given country.

Pooled regressions can be applied to any given, a priori known group, so long as the number of units

within the group is sufficiently large and the cross-sectional dependence of units within the group is

sufficiently weak. Failure of the latter assumption implies that there are missing pervasive (strong)

common factors that must also be taken into account. Such extensions are beyond the scope of the

present paper and are topics for future research.

3.1 Forecasts based on individual and pooled estimation

Suppose we are interested in forecasting yi,T+1 conditional on the information known at time T which

we denote by wi,T+1 to clarify the correspondence to yi,T+1. Without loss of generality, given the

conditional nature of the forecasting exercise, we are assuming that supi,T ∥wi,T+1∥ < C.5 Forecasts

based on individual estimators take the form

ŷi,T+1 = θ̂
′
iwi,T+1, i = 1, 2, . . . , N, (9)

4See Pesaran and Yang (2023). Note that E
(
X ′

iMTXiηiβ

)
= 0, is sufficient but not necessary for the validity of

fixed effects estimation. This condition is not met if xit includes lagged values of yit, even if T → ∞.
5See part (a) of Assumption 3.
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where θ̂i = (W ′
iW i)

−1W ′
iyi, is the least squares estimator of θi. Similarly, forecasts based on the

pooled estimator are given by

ỹi,T+1 = θ̃
′
wi,T+1, i = 1, 2, . . . , N, (10)

where θ̃ = (W ′W )−1W ′y. Using (6), (7), and the definition of ξ̄NT in Assumption 7,

θ̃ − θi = −ηi + Q̄
−1
NT q̄NT + Q̄

−1
NT ξ̄NT . (11)

Forecast errors from these schemes take the form

êi,T+1 = yiT+1 − ŷi,T+1 = εi,T+1 − (θ̂i − θi)
′wi,T+1, (12)

ẽi,T+1 = yiT+1 − ỹi,T+1 = εi,T+1 − (θ̃ − θi)
′wi,T+1. (13)

Forecasts based on individual estimation

Noting that (θ̂i − θi)
′wi,T+1 = ε′iW i(W

′
iW i)

−1wi,T+1, it is easily seen that the forecasts based on

the individual estimates result in the following average MSFE:

N−1
N∑
i=1

ê2i,T+1 = N−1
N∑
i=1

ε2i,T+1 + T−1SNT − 2RNT , (14)

where SNT = N−1
∑N

i=1 siT , RNT = N−1
∑N

i=1 riT , with elements

riT =
(
ε′iW i(W

′
iW i)

−1wi,T+1

)
εi,T+1, (15)

siT = w′
i,T+1Q

−1
iT

(
T−1W ′

iεiε
′
iW i

)
Q−1

iT wi,T+1. (16)

It is now easily seen that, under Assumptions 1 and 3, E (riT ) = 0 and supi,T E |riT | < C. Similarly,

supi,T E |siT | < C and

E (siT ) = E

[
w′

i,T+1Q
−1
iT

(
W ′

iεiε
′
iW i

T

)
Q−1

iT wi,T+1

]
.
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Therefore, under cross-sectional independence (Assumption 9), RNT = Op(N
−1/2), and SNT =

E(SNT ) + Op(N
−1/2), and we obtain the results summarized in the following proposition for the

average MSFE of the forecasts based on the individual estimates (for a detailed proof see Section

A.2.1 of the Appendix):

Proposition 1. Suppose that Assumptions 1–4 and 9 hold. Then for a fixed T0 such that T > T0: (a)

the average MSFE resulting from individual-specific estimation of the parameters has the following

representation

N−1
N∑
i=1

ê2i,T+1 = N−1
N∑
i=1

ε2i,T+1 + T−1hNT +Op(N
−1/2) +Op

(
N−1/2T−1

)
, (17)

where

hNT = N−1
N∑
i=1

E

[
w′

i,T+1Q
−1
iT

(
W ′

iεiε
′
iW i

T

)
Q−1

iT wi,T+1

]
, (18)

QiT = T−1W ′
iW i, hNT > 0, and hNT = O(1).

(b) If W i is strictly exogenous, hNT simplifies to

hNT = N−1
N∑
i=1

σ2i E
(
w′

i,T+1Q
−1
iT wi,T+1

)
. (19)

The hNT term captures the cost associated with the error in estimation of θ̂i. For typical

panel data sets, T is not large and parameter estimation uncertainty captured by the O
(
T−1

)
term

T−1hNT in (17) can therefore be important. Parameter heterogeneity, in contrast, does not affect

the accuracy of the forecast in (17). The magnitude of hNT plays an important role in comparisons

of forecasts based on individual and pooled estimates and depends on how far the predictors are

from their mean. As an example, consider the simple case where wit = (1, xit)
′ and xit is strictly

exogenous. Then

hNT = σ̄2N +N−1
N∑
i=1

σ2i E

[
(xi,T+1 − x̄iT )

2

s2iT

]
,

where σ̄2N = N−1
∑N

i=1 σ
2
i , s

2
iT = T−1

∑T
t=1(xit − x̄iT )

2, and x̄iT = T−1
∑T

t=1 xit. It is clear that
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hNT is minimized when xi,T+1 = x̄iT , for all i. But in general where xi,T+1 ̸= x̄iT for most i, then

we must have T sufficiently large such that supiE
[
(xi,T+1 − x̄iT )

2 /s2iT

]
< C.

Forecasts based on pooled estimation

While the forecast accuracy results for the individual regressions do not depend on the degree of

parameter heterogeneity, whether correlated or not, the degree of correlated heterogeneity does

matter for consistency of the pooled estimator. Using (11) in (13) we can express the squared

forecast error when pooled estimates are used as follows:

ẽ2i,T+1 = ε2i,T+1 +w′
i,T+1di,NTd

′
i,NTwi,T+1 − 2d′

i,NTwi,T+1εi,T+1,

where di,NT = −ηi + Q̄
−1
NT q̄NT + Q̄

−1
NT ξ̄NT , Q̄NT and q̄NT are defined by (6) and(7), and ξ̄NT is

defined under Assumption 7. After some algebra, and averaging over i, we have

N−1
N∑
i=1

ẽ2i,T+1 = N−1
N∑
i=1

ε2i,T+1 +N−1
N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1 (20)

+S̃N,T+1 + 2R̃N,T+1,

where S̃N,T+1, and R̃N,T+1 are defined by equations (A.10) and (A.11) in Section A.2.2 of the

Appendix. It can be shown that R̃N,T+1 = Op(N
−1/2), and S̃N,T+1 = −q̄′NQ̄

−1
N q̄N + Op

(
N−1/2

)
,

where Q̄N and q̄N are defined by (6) and (8), respectively. The limiting properties of the average

MSFE based on pooled estimates are summarized in the following proposition.

Proposition 2. (a) Under Assumptions 1–9, the MSFE for the forecasts based on pooled estimation

of the parameters is

N−1
N∑
i=1

ẽ2i,T+1 = N−1
N∑
i=1

ε2i,T+1 +∆NT +Op(N
−1/2), (21)

where

∆NT = N−1
N∑
i=1

E
(
w′

i,T+1ηiη
′
iwi,T+1

)
− q̄′NQ̄

−1
N q̄N . (22)
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(b) In the special case of uncorrelated heterogeneity, the MSFE simplifies to

N−1
N∑
i=1

ẽ2i,T+1 = N−1
N∑
i=1

ε2i,T+1 + tr(Q̄NΩη) +Op(N
−1/2). (23)

(c) Parameter heterogeneity (whether correlated or uncorrelated) increases the MSFE of the forecasts

based on the pooled estimator, namely ∆NT > 0.

Parts (a) and (b) of Proposition 2 are established in Appendix A.2.2. To establish part (c) note

that the first term of ∆NT , N
−1
∑N

i=1 E
(
w′

i,T+1ηiη
′
iwi,T+1

)
= N−1

∑N
i=1 E

(
w′

i,T+1ηi

)2
≥ 0, and

arises irrespective of whether heterogeneity is correlated or not. The second term, q̄NQ̄
−1
N q̄′N , enters

only if heterogeneity is correlated. The balance of the two terms, namely ∆NT , can be signed under

stationarity where E
(
w′

i,T+1ηiη
′
iwi,T+1

)
= E(w′

itηiη
′
iwit). In this case, we have

∆N = N−1
N∑
i=1

E
(
w′

itηiη
′
iwit

)
− q̄′NQ̄

−1
N q̄N . (24)

To establish that the net effect of the two terms in ∆NT is non-negative, we first show that the

sample estimate of ∆NT can be obtained as the sum of squares of the residuals from the pooled

panel regression of η′
iwit on wit. Consider the panel regression η′

iwit = γ ′wit + νit, and note that

the pooled estimator of γ is given by

γ̂NT =

(
N−1T−1

N∑
i=1

T∑
t=1

witw
′
it

)−1

N−1T−1
N∑
i=1

T∑
t=1

witw
′
itηi = Q̄

−1
NT q̄NT ,

which yields the residual sum of squares

N−1T−1
N∑
i=1

T∑
t=1

ν̂2it = N−1T−1
N∑
i=1

T∑
t=1

(
η′
iwit − γ̂ ′

NTwit

)2
= ∆̂NT ,

and, by construction, ∆̂NT is non-negative and is given by

∆̂NT = T−1N−1
T∑
t=1

N∑
i=1

w′
itηiη

′
iwit − q̄′NT Q̄

−1
NT q̄NT ≥ 0.

13



This result also holds for a fixed T and as N → ∞ (applying Slutsky’s theorem to the second term):

lim
N→∞

∆NT = plim
N→∞

N−1T−1
N∑
i=1

T∑
t=1

ν̂2it ≥ 0.

The impact on the MSFE from neglected heterogeneity, ∆̂NT , does not vanish even if both N and

T → ∞. This is in line with the early results obtained in Pesaran and Smith (1995) who established

the large N and T inconsistency of fixed effects estimators of heterogeneous dynamic panels because

heterogeneity is always correlated in dynamic panels.6

A comparison of forecasts based on individual and pooled estimates

Next, we consider the difference in the average MSFE performance of the forecasts based on the

pooled versus individual parameter estimates. Proposition 1 shows that the MSFE from the forecasts

based on the individual estimates will be affected by an estimation error term of the form

hNT = N−1
N∑
i=1

E

[
w′

i,T+1Q
−1
iT

(
W ′

iεiε
′
iW i

T

)
Q−1

iT wi,T+1

]
> 0. (25)

While the forecasts from the pooled estimates are more robust to estimation errors, they are in turn

affected by correlated and uncorrelated heterogeneity as captured by the term

∆NT = N−1
N∑
i=1

E
(
w′

i,T+1ηiη
′
iwi,T+1

)
− q̄′NQ̄

−1
N q̄N . (26)

We compare the difference in the average MSFE of the forecasts from the pooled versus individual

estimates as a ratio measured relative to the MSFE of the forecasts from the individual estimates

as a benchmark:

N−1
∑N

i=1 ẽ
2
i,T+1 −N−1

∑N
i=1 ê

2
i,T+1

N−1
∑N

i=1 ê
2
i,T+1

=
∆NT − T−1hNT +Op(N

−1/2) +Op(N
−1/2T−1).

N−1
∑N

i=1 ε
2
i,T+1 + T−1hNT +Op(N−1/2)

.

6This latter property is illustrated by a simple example in Section A.3 of the Appendix.
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Hence, there exists a T0 such that, for a fixed T > T0, and as N → ∞

N−1
∑N

i=1 ẽ
2
i,T+1 −N−1

∑N
i=1 ê

2
i,T+1

N−1
∑N

i=1 ê
2
i,T+1

p→ ∆− T−1hT
σ̄2 + T−1hT

,

where hT = limN→∞ hNT ≥ 0, ∆ = limN→∞∆N ≥ 0, and σ̄2 = limN→∞N−1
∑N

i=1 σ
2
i > 0. It follows

that when T is fixed and N is large, generally it will not be possible to rank the two forecasting

schemes. The outcome will depend on the sign and the magnitude of ∆− T−1hT .
7

For large values of T , however, we can show that the individual forecasts generate the lowest

MSFE values. Specifically, for a fixed N and as T → ∞

N−1
∑N

i=1 ẽ
2
i,T+1 −N−1

∑N
i=1 ê

2
i,T+1

N−1
∑N

i=1 ê
2
i,T+1

p→ ∆N

σ̄2
+Op(N

−1/2).

Similarly, when both N and T → ∞ (in any order)

N−1
∑N

i=1 ẽ
2
i,T+1 −N−1

∑N
i=1 ê

2
i,T+1

N−1
∑N

i=1 ê
2
i,T+1

p→ ∆/σ̄2 ≥ 0,

where ∆ = limT→∞(∆T ). Therefore, on average, individual-specific estimates lead to more accurate

forecasts as compared to the pooled estimates when T is sufficiently large.

3.2 Forecasts based on fixed effects estimation

The comparison of forecasts based on individual or pooled estimates can be extended to intermediate

cases where a sub-set of the parameters are allowed to vary across units. A prominent example is

the FE forecast

ŷFEi,T+1 = α̂i,FE + β̂
′
FExi,T+1, (27)

7In comparing ∆T with T−1hT , it is also important to bear in mind that hT is well defined if moments of θ̂i (at
least up to second order) exist (see the moment condition (5)). This in turn requires that T > T0 for some finite T0.
The value of T0 depends on the nature of the (wit, εit) process and its distributional properties.
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where α̂i,FE = τ ′
T (yi− β̂

′
FEXi)/T and β̂FE =

(∑N
i=1X

′
iMTXi

)−1∑N
i=1X

′
iMTyi. The associated

FE forecast error is given by

êFEi,T+1 = ε̃i,T+1 − (β̂FE − βi)
′x̃i,T+1, (28)

where ε̃i,T+1 = εi,T+1 − ε̄iT , x̃i,T+1 = xi,T+1 − x̄iT , ε̄iT = T−1
∑T

t=1 εit, and x̄iT = T−1
∑T

t=1 xit.

Following the derivations for the pooled estimates, it is easily seen that

β̂FE − βi = −ηi,β + Q̄
−1
NT,β q̄NT,β + Q̄

−1
NT,β ξ̄NT,β,

where ηi,β = βi − β, ξ̄NT,β = N−1
∑N

i=1 T
−1X ′

iMTεi,

Q̄NT,β = N−1
N∑
i=1

T−1X ′
iMTXi, and q̄NT,β = N−1

N∑
i=1

(
T−1X ′

iMTXi

)
ηi,β.

With one exception, the derivation of the average MSFE for the FE estimation closely parallels

the case of the pooled estimator with ηi,β in place of ηi, Q̄NT,β replacing Q̄NT , q̄NT,β replacing

q̄NT , ξ̄NT,β replacing ξ̄NT , and x̃i,T+1 = xi,T+1 − x̄iT in place of xi,T+1. The exception arises

due to the fact that in the case of weakly exogenous regressors, ε̄iT (and hence ε̃i,T+1) is not

distributed independently of (β̂FE − βi)
′x̃i,T+1. To account for this dependence, we first note that,

under Assumption 7, ξ̄NT,β = Op

(
N−1/2

)
, and

N−1
N∑
i=1

(
β̂FE − βi

)′
x̃i,T+1ε̄iT = N−1

N∑
i=1

(
−ηi,β + Q̄

−1
NT,β q̄NT,β + Q̄

−1
NT,β ξ̄NT,β

)′
x̃i,T+1ε̄iT

= −N−1
N∑
i=1

η′
i,βx̃i,T+1ε̄iT + q̄′NT,βQ̄

−1
NT,β

(
N−1

N∑
i=1

x̃i,T+1ε̄iT

)
+Op

(
N−1/2

)
.

Also, under Assumptions 4 and 9 we have

1

N

N∑
i=1

(
β̂FE − βi

)′
x̃i,T+1ε̄iT = cFENT +Op(N

−1/2). (29)
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The expression for cFENT simplifies somewhat by noting that under Assumption 2, E (xiT+1ε̄iT ) = 0,

and using Lemma A.1 we have q̄′NT,βQ̄
−1
NT,β = q̄′N,βQ̄

−1
N,β +Op

(
N−1/2

)
. Hence,

cFENT = −N−1
N∑
i=1

E
(
η′
i,βx̃i,T+1ε̄iT

)
+ q̄′N,βQ̄

−1
N,β

[
N−1

N∑
i=1

E (x̄iT ε̄iT )

]
. (30)

cFENT tends to zero for T sufficiently large or if xit is strictly exogenous. Note that under Assumption

6, ηi,β and εit are independently distributed. Using these results, the MSFE under fixed effects

estimation is

N−1
N∑
i=1

(
êFEi,T+1

)2
= N−1

N∑
i=1

ε̃2i,T+1 +∆FE
NT − 2cFENT +Op(N

−1/2), (31)

where

∆FE
NT = N−1

N∑
i=1

E(x̃′
i,T+1ηi,βη

′
i,βx̃i,T+1)− q̄′N,βQ̄

−1
N,β q̄N,β. (32)

A comparison of forecasts based on individual and fixed effects estimates

To compare the FE forecast to the individual forecasts, rewrite (12) as êi,T+1 = εi,T+1 − (α̂i − αi)−

x′
i,T+1(β̂i − βi), and note that α̂i − αi = ε̄iT − x̄′

iT

(
β̂i − βi

)
. Therefore,

êi,T+1 = ε̃i,T+1 − x̃′
i,T+1(β̂i − βi). (33)

The derivation of the average MSFE, N−1
∑N

i=1 ê
2
i,T+1 can now proceed as before, except that under

weak exogeneity the two components of êi,T+1, in (33), are no longer independently distributed and,

as in the FE estimation, we need to consider the additional term

N−1
N∑
i=1

x̃′
i,T+1(β̂i − βi)ε̃i,T+1 = N−1

N∑
i=1

x̃′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̃i,T+1

= −N−1
N∑
i=1

x̃′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT +Op(N

−1/2).
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Using this, we have

N−1
N∑
i=1

x̃′
i,T+1(β̂i − βi)ε̃i,T+1 = cNT,β +Op(N

−1/2), (34)

where

cNT,β = N−1
N∑
i=1

E
[
x̃′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT

]
. (35)

Taking this term into account we obtain

N−1
N∑
i=1

ê2i,T+1 = N−1
N∑
i=1

ε̃2i,T+1 + hNT,β − 2cNT,β +Op(N
−1/2), (36)

where

hNT,β = N−1
N∑
i=1

E

[
x̃′
i,T+1Q

−1
iT,β

(
X ′

iMTεiε
′
iMTXi

T

)
Q−1

iT,βx̃i,T+1

]
, (37)

and QiT,β = T−1 (X ′
iMTXi). As with the term cFENT in the average MSFE of the FE forecasts,

cNT,β = 0 when xit is strictly exogenous. To see why this is so, note that in this case, E (εiε̄iT |Xi ) =

(σ2i /T )τT and

E
[
x̃′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT |Xi

]
= x̃′

i,T+1(X
′
iMTXi)

−1X ′
iMTE [εiε̄iT |Xi, x̃i,T+1 ] = 0,

so unconditionally E
[
x̃′
i,T+1(X

′
iMTXi)

−1X ′
iMTεiε̄iT

]
= 0, and cNT,β = 0.

Apart from the error term, εi,T+1− ε̄iT , which is common to the individual and FE forecasts, the

squared forecast errors are analogous to those in the comparison of individual and pooled forecasts

except that we work with demeaned data and allow for the additional terms cFENT and cNT,β if the

regressors are weakly exogenous. Further, similar to the case of the individual and pooled forecasts,

for T finite and N large, the ranking of the two forecasts will depend on the relative magnitudes of

∆FE
NT + cFENT and hNT,β + cNT,β. Also, for T → ∞ the individual forecasts will be more precise than

the FE forecasts.
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4 Forecast combinations

We next consider approaches that combine the forecasts from Section 3 to minimize the MSFE.

4.1 Combinations of individual and pooled forecasts

Given the MSFE trade-off associated with the forecasts in (9) and (10), combining the forecasts

based on the individual and pooled estimates, ŷi,T+1 and ỹi,T+1, may be desirable. As noted in

the literature (e.g., Timmermann, 2006), forecast combinations tend to perform particularly well,

relative to the underlying forecasts, if the forecast errors are weakly correlated and have MSFE

values of a similar magnitude. Correlations between forecast errors based on the individual and

pooled estimation schemes tend to be lower for (i) greater differences in the estimates of θi resulting

from larger estimation errors (small T ); (ii) greater heterogeneity (large ∥Ωη∥), and (iii) greater bias

of the pooled estimator due to correlated heterogeneity.

If the level of parameter heterogeneity is either very large or very small, one of the individual or

pooled estimation approaches will be dominant, reducing potential gains from forecast combination.

Similarly, if T is very small butN is large and there is little parameter heterogeneity, we would expect

pooled estimation to dominate individual estimation by a sufficiently large margin that forecast

combination offers small, if any, gains. Conversely, if T is very large, forecasts using individual

estimates will dominate forecasts using pooled estimates by a sufficient margin that renders forecast

combination less attractive. Building on these observations, consider combining the two forecasts

ŷi,T+1 and ỹi,T+1 using common weights, ω, to obtain8

y∗i,T+1(ω) = ωŷi,T+1 + (1− ω)ỹi,T+1, (38)

with associated forecast error e∗i,T+1(ω) = ωêi,T+1+(1−ω)ẽi,T+1. The average MSFE of the combined

8We focus here on a simple constant-coefficient linear combination scheme. Lahiri, Peng, and Zhao (2017) discuss a
broader range of combination methods and Elliott (2017) provides an analysis of the effect on the combination weights
and forecasting performance from having a large common component in the forecast errors.
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forecast is given by

N−1
N∑
i=1

e∗2i,T+1(ω) = ω2

(
N−1

N∑
i=1

ê2i,T+1

)
+ (1− ω)2

(
N−1

N∑
i=1

ẽ2i,T+1

)

+2ω(1− ω)

(
N−1

N∑
i=1

êi,T+1ẽi,T+1

)
.

The value of ω that minimizes the average MSFE is therefore given by

ω∗
NT =

N−1
∑N

i=1 ẽ
2
i,T+1 −

(
N−1

∑N
i=1 êi,T+1ẽi,T+1

)
(
N−1

∑N
i=1 ê

2
i,T+1

)
+
(
N−1

∑N
i=1 ẽ

2
i,T+1

)
− 2

(
N−1

∑N
i=1 êi,T+1ẽi,T+1

) . (39)

Approximate expressions for N−1
∑N

i=1 ê
2
i,T+1 and N−1

∑N
i=1 ẽ

2
i,T+1 are given by (17) and (21), re-

spectively. We obtain a similar expression for N−1
∑N

i=1 êi,T+1ẽi,T+1, with N−1
∑N

i=1 ε
2
i,T+1 can-

celling out from ω∗
NT . The result is summarized in the following proposition with proofs provided

in Section A.2.3 of the Appendix.

Proposition 3. (a) Under Assumptions 1–9, the optimal combination weight that minimizes the

MSFE of the forecast combination in (38) is given by

ω∗
NT =

∆NT − T−1/2ψNT

∆NT + T−1hNT − 2T−1/2ψNT
+Op(N

−1/2) +Op(N
−1/2T−1/2), (40)

where hNT and ∆NT are defined in equations (25) and (26), respectively, and ψNT is given by

ψNT =

[
N−1

N∑
i=1

E
(
T−1/2ε′iW iQ

−1
iT wi,T+1w

′
i,T+1

)]
Q̄

−1
N q̄N (41)

−N−1
N∑
i=1

E
(
T−1/2ε′iW iQ

−1
iT wi,T+1w

′
i,T+1ηi

)
.

(b) Under uncorrelated heterogeneity, ψNT = 0, and ∆NT and hNT will be affected accordingly.

For small to moderate values of T and large N , we expect ω∗
NT < 1, with a non-zero weight

placed on the forecasts based on the pooled estimate.

Our forecast combination scheme does not attempt to estimate weights specific to the individual

units, ω∗
i which require estimation of E

(
ẽ2i,T+1

)
, E
(
ê2i,T+1

)
, and E(êi,T+1ẽi,T+1) for each i separately,

and their estimates will depend on on the individual estimates such as θ̂i and σ̂
2
i and thus require
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large T for consistency. Instead, we use the cross-section to estimate ω∗
NT . This requires consistent

estimation of hNT , ∆NT , and ψNT which is achieved under Assumption 9 and requires large N as

long as T > T0, where T0 is finite. See Sub-section 4.3 below.

4.2 Combining individual and fixed effect forecasts

Combination weights can also be determined for the case where the pooled forecast is replaced with

the FE forecasts. In this case, the combined forecast is given by

y∗i,T+1(ωFE) = ωFEŷi,T+1 + (1− ωFE)ŷi,T+1,FE, (42)

yielding the optimal weight

ω∗
FE,NT =

N−1
∑N

i=1

(
êFEi,T+1

)2
−
(
N−1

∑N
i=1 ê

FE
i,T+1êi,T+1

)
(
N−1

∑N
i=1 ê

2
i,T+1

)
+N−1

∑N
i=1

(
êFEi,T+1

)2
− 2

(
N−1

∑N
i=1 ê

FE
i,T+1êi,T+1

) . (43)

The expressions for N−1
∑N

i=1

(
êFEi,T+1

)2
and N−1

∑N
i=1 ê

2
i,T+1 are given by (31) and (36), respec-

tively, and the expression for N−1
∑N

i=1 ê
FE
i,T+1êi,T+1 can be similarly obtained. In this case, the

shared term
∑N

i=1(εi,T+1 − ε̄iT )
2/N cancels out and we have the result summarized in the following

proposition with proofs provided in Section A.2.4 of the Appendix.

Proposition 4. (a) Under Assumptions 1–9, the optimal combination weight that minimizes the

MSFE of the forecast combination in (42) is given by

ω∗
FE,NT =

∆FE
NT − T−1/2ψFE

NT −
(
cFENT − cNT,β

)
∆FE

NT + T−1hNT,β − 2T−1/2ψFE
NT

+Op(N
−1/2) +Op(N

−1/2T−1/2), (44)

where ∆FE
NT is defined in (32) and hNT,β in (37), respectively. Moreover,

ψFE
NT = N−1

N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

)]
Q̄

−1
N,β q̄N,β

−N−1
N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

)
ηi,β

]
, (45)

and cFENT and cNT,β are defined by (30) and (35), respectively.
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(b)Under uncorrelated heterogeneity, ψFE
NT = 0, and ∆FE

NT and hNT,β will be affected accordingly.

4.3 Estimation of combination weights

To compute the weights for the forecast combination in Proposition 3, we need estimates of hNT ,

∆NT , and ψNT . Under Assumption 9, these terms can be estimated by their sample means with

unknown parameters replaced by their estimates. Specifically, we have

ĥNT = N−1
N∑
i=1

w′
i,T+1Q

−1
iT Ĥ iTQ

−1
iT wi,T+1, (46)

where Ĥ iT = T−1
∑T

t=1 ε̂
2
it (witw

′
it) , and ε̂it = yit − θ̂

′
iwit, t = 1, 2, . . . , T ,

∆̂NT = N−1
N∑
i=1

w′
i,T+1η̂iη̂

′
iwi,T+1 (47)

where η̂i = θ̂i − θ̃. Finally, we set ψNT = 0. We do this because errors in estimating ψNT are or

order T−1/2 so we cannot expect to obtain accurate estimates of this term in cases with small T .

Since ψNT = 0 in the absence of correlated heterogeneity, effectively this means that we ignore such

effects when estimating ψNT although, of course, our theory captures such effects. We also provide

Monte Carlo results that show our estimated weights are quite close to the oracle weights that make

use of true parameters values, under heterogeneity. Accordingly, we use the following estimate of

ω∗
NT

ω̂∗
NT =

∆̂NT

∆̂NT + T−1ĥNT

, (48)

which is guaranteed to lie in the range (0,1].

Similarly, when estimating the weight in Proposition 4 we set ψFE
NT = 0 and cFENT − cNT,β = 0 and

estimate ω∗
FE,NT as

ω̂∗
FE,NT =

∆̂FE
NT

∆̂FE
NT + T−1ĥNT,β

, (49)
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where

∆̂FE
NT =

1

N

N∑
i=1

x̃′
i,T+1η̂i,βη̂

′
i,βx̃i,T+1, (50)

η̂i,β = β̂i − β̂FE, x̃i,T+1 = xiT+1 − x̄iT ,

ĥNT,β = N−1
N∑
i=1

x̃′
i,T+1Q

−1
iT,β

(
X ′

iMT ε̂iε̂
′
iMTXi

T

)
Q−1

iT,βx̃i,T+1, (51)

and ε̂it = yit − θ̂
′
iwit.

5 Bayesian Forecasts

Bayesian panel forecasts are becoming increasingly common in empirical applications and constitute

an alternative approach to the frequentist forecasts discussed so far. We consider two such approaches

here, namely empirical Bayes and hierarchical Bayesian forecasts. The empirical Bayes (EB) forecast

uses the estimator of Hsiao et al. (1999) and takes the form

ŷEBi,T+1 = θ̂
′
i,EBwi,T+1,

where

θ̂i,EB = (σ̂−2
i W ′

iW i + Ω̂
−1
θ )−1(σ̂−2

i W ′
iyi + Ω̂

−1
θ

¯̂
θ), (52)

¯̂
θ = N−1

N∑
i=1

θ̂i, σ̂2i = (T −K)−1ε̂′iε̂i,

and

Ω̂θ =
1

N

N∑
i=1

(θ̂i − ¯̂
θ)(θ̂i − ¯̂

θ)′,

where ε̂i = yi −W iθ̂i, and θ̂i = (W ′
iW i)

−1
W ′

iyi.
9

The EB estimator can also be written as a weighted average of θ̂i, which allows for full hetero-

9It is necessary that N > T for Ω̂θ to be positive definite.
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geneity, and the mean group estimator,
¯̂
θ:

θ̂i,EB = W iT θ̂i + (Ik −W iT )
¯̂
θ, (53)

where, recalling that QiT = T−1W ′
iW i, the weight matrix W iT is given by

W iT =
(
Ik + T−1σ̂2iQ

−1
iT Ω̂

−1
θ

)−1
, (54)

The weights on the heterogeneous estimates are larger, the greater the degree of heterogeneity, as

measured by the norm of Ω̂θ, with θ̂i,EB → θ̂i as
∥∥∥Ω̂θ

∥∥∥ → ∞. Also, since σ̂2iQ
−1
iT Ω̂

−1
θ is bounded

in T , θ̂i,EB converges numerically to θ̂i, as T → ∞. Hence, one would expect the EB estimator to

perform well when T is relatively small and the degree of heterogeneity is not too large. Note that

the EB weights vary across i unlike our forecast combination schemes which assume homogeneous

weighting across all series.10

We also consider forecasts from the hierarchical Bayesian model of Lindley and Smith (1972).

These assume εit ∼ iidN(0, σ2) with the following priors:

θi ∼ N(θ̄,Σθ),

θ̄ ∼ N(d,Sθ̄),

Σ−1
θ ∼ Wishart(νΣ, (νΣSΣ)

−1),

σ2 ∼ invGamma(νσ/2, νσs
2/2).

Draws from the parameter distribution are generated using the Gibbs sampler. We use proper priors

that are weakly informative: d = 0, Sθ̄ = IK106, SΣ = IK , νΣ = K, νσ = 0.1, and s2 = 0.1. This

avoids the use of uninformative priors that appear to be difficult to attain in hierarchical models

(Gelman, 2006). Further details are provided in Section S.3 in the Online Supplement.

10While the EB estimator in (52) is fully parametric, other studies pursue a non-parametric approach to the distri-
bution of θ̂i; see, e.g., Brown and Greenshtein (2009) and Gu and Koenker (2017) and, more recently, Liu (2023) and
Liu, Moon, and Schorfheide (2023).
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6 Monte Carlo experiments

Having developed theory for the determinants of the predictive performance of the individual, pooled,

FE, and combined forecasts, we next use Monte Carlo simulations to examine their finite-sample

performance. We do so in the context of a dynamic heterogeneous panel data model. We begin with

a pure panel autoregressive model and then move on to a dynamic heterogeneous panel model with

an additional regressor.11 We allow for dynamics, parameter heterogeneity, and correlations between

the regressors and coefficients. We also consider the nature of the trade-off between heterogeneity

and estimation uncertainty under different degrees of fit of the underlying panel regressions.

For each data generating process (DGP) we use the following forecasting methods: (1) pooled es-

timation, (2) individual estimation, (3) random effects, (4) fixed effects, (5) combination of individual

and pooled forecasts, (6) combination of individual and FE forecasts, (7) empirical Bayes forecasts,

and (8) hierarchical Bayes forecasts. We add the random effects forecasts to the experiments given

their widespread use in applied work.12

Given our focus on large N panels, we set N = {50, 100, 1000} and consider different time

dimensions, namely T = {20, 50, 100}, for all MC experiments. The values of the parameters used

in the simulations are reported in Table S.3 in Appendix S.2.

6.1 Panel AR model

Our first DGP is a panel autoregressive model given by

yit = αi + βiyi,t−1 + εit, i = 1, 2, . . . , N, t = 1, 2, . . . , T + 1, (55)

where εit = σi(z
2
it − 1)/

√
2 with zit ∼ iidN(0, 1), σ2i ∼ 0.5 + 0.5χ2

1, αi ∼ N(α0i, σ
2
α), βi = β0 + ηiβ,

ηiβ ∼ Uniform(−aβ/2, aβ/2), and aβ, together with N and T , are parameters that are varied over

the Monte Carlo experiments. We examine four settings:

• α0i = 1, and σ2α = aβ = 0 (homogeneous case);

• α0i = 2/3 if i ≤ N/2, α0i = 4/3 if i > N/2, σ2α = 0.5, aβ = 0 (heterogeneous fixed effects);

11Further analytical results for the panel AR(1) model is provided in Section A.3 of the Appendix.
12Additional results for equal weighted combinations and oracle weights are in Section S.4 of the Online Supplement.
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• α0i = 2/3 if i ≤ N/2, α0i = 4/3 if i > N/2, σ2α = 0.5, and aβ = 0.5 (medium heterogeneity);

• α0i = 2/3 if i ≤ N/2, α0i = 4/3 if i > N/2, σ2α = 1, and aβ = 1 (strong heterogeneity).

The values of β0 (reported in Table S.3) are calibrated such that we achieve values of the pooled

R2 (PR2) (further described in Section S.2 of the Online Supplement) of approximately 0.2 and 0.6.

To ensure that E
(

1
1−β2

i

)
< C, it is required that 0 ≤ aβ < 2(1− |β0|).13

We initialize the DGP at T = 0 and draw yi0 from a normal distribution with mean καi and

variance σ2i /(1 − β2i ), where κ is a constant. When κ is not unity, departures from a stationary

distribution of yit could be important especially when T is small. Results for κ ̸= 1 are provided in

the Online Supplement as they remain qualitatively identical to those for κ = 1.

6.2 Panel ARX model

Our second DGP adds a regressor, xit, to the panel AR(1) model:

yit = αi + βiyi,t−1 + γixit + εit. (56)

Again εit = σi(z
2
it − 1)/

√
2 with zit ∼ iidN(0, 1), and σ2i ∼ iid

(
1 + χ2

1

)
/2. The DGP for xit is

xit = µxi + ξit, (57)

where

ξit = ρxiξi,t−1 + σxi
(
1− ρ2xi

)1/2
νit, νit ∼ iidN (0, 1) ,

µxi = (z2i − 1)/
√
2, zi ∼ iidN (0, 1) , and σ2xi ∼ iid

(
1 + χ2

1

)
/2, for individual units i = 1, 2, . . . , N ,

and observation periods t. The autocorrelation coefficient of xit is ρxi ∼ iidUniform(0, 0.95), thus

allowing for a high degree of dynamic heterogeneity in the regressors.

As for the pure panel AR model, the coefficients of the lagged dependent variables, yi,t−1, are

generated as βi = β0+ηiβ, with ηiβ ∼ iidUniform(−aβ/2, aβ/2), and as before 0 ≤ aβ < 2(1−|β0|).
13See equations(S.9) and (S.10) in Section A.3 of the Appendix. Also note that E (βi) = β0 and Var (βi) = a2

β/24.
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To allow for correlated heterogeneity, we set

αi = α0i + ϕµxi + σηηi, and γi = γ0i + πµxi + σζζi, (58)

where ηi, ζi ∼ iidN(0, 1) and α0 = E(αi) = α0i + ϕE (µxi) = α0i. Again, we examine four settings:

• α0i = 1, γ0i = 0.1 and σ2α = σ2γ = aβ = 0 (homogeneity);

• α0i = 2/3 if i ≤ N/2, α0i = 4/3 if i > N/2, σ2α = 0.5, γ0i = 0.1, and σ2γ = aβ = 0

• α0i = 2/3 if i ≤ N/2, α0i = 4/3 if i > N/2, σ2α = 0.5, γ0i = 0.2/3 if i ≤ N/2, γ0i = 0.4/3 if

i > N/2, σ2γ = 0.1, and aβ = 0.5

• α0i = 2/3 if i ≤ N/2, α0i = 4/3 if i > N/2, σ2α = 1, γ0i = 0.2/3 if i ≤ N/2, γ0i = 0.4/3 if

i > N/2, σ2γ = 0.2, and aβ = 1

Note that non-zero correlations need not bias the pooled estimates. What matters for these is

the correlation between y2i,t−1 and x2it and the individual coefficients.

Using (57) and (58) we have

E [xit (γi − γ0)] = E [(µxi + ξit) (πµxi + σζζi)] = πE
(
µ2xi
)
̸= 0,

E
[
x2it (γi − γ0)

]
= E

[
(µxi + ξit)

2 (πµxi + σζζi)
]

= πE
(
µ3xi
)
.

Therefore, E
[
x2i,t−1 (γi − γ0)

]
= 0 if µxi are draws from a symmetric distribution around 0. To rule

out this possibility, we draw µxi from a chi-square distribution.

To control the degree of correlated heterogeneity, we first note that (taking expectations with

respect to both i and t)

E (γi) = γ0, Var(γi) = π2 + σ2ζ ,

E (xit) = E (µxi + ξit) = 0, Var (xit) = E (xit − µxi)
2 = σ2xi,
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and E [Var (xit)] = E
(
1 + χ2

1

)
/2 = 1. Also, since νit is distributed independently of ηj and ζj for

all t, i and j, Cov (γi, xit) = π and Corr (γi, xit) = π
(
σ2ζ + π2

)−1/2
. To achieve a given level of

Corr(γi, xit) = ργx, we set

π =
ργxσζ(

1− ρ2γx
)1/2 . (59)

Similarly, to achieve Corr(αi, xi,t−1) = ραx, we set

ϕ =
ραxση

(1− ρ2αx)
1/2

. (60)

Defining σ2γ = Var(γi) = π2 + σ2ζ , we can use (59) to see that π = ργxσγ . An equivalent result

emerges for ϕ where, for σ2α = Var(αi), we have ϕ = ραxσα. We thus use the parameters σ2α, σ
2
γ , and

aβ to vary the degree of parameter heterogeneity in αi, γi and βi, respectively.

For comparability, we use the values of aβ from the pure panel AR model in Section 6.1. Note,

however, that PR2
ARX > PR2

AR whenever E(γ2i ) ̸= 0 since

PR2
ARX = PR2

AR +
E(γ2i )(1− PR2

AR)

1 + E(γ2i )

for details see Section S.2 of the Online Supplement.

We initialize yi0 as yi0 ∼ iidN
(
κµiy0, σ

2
iy0

)
, with

µiy0 =
αi + γiµxi
1− β2i

, σ2iy0 =
γ2i σ

2
xi + σ2i

1− β2i
,

and set ξi0 = 0. We consider initialization schemes both with κ = 1 and κ ̸= 1. When κ ̸= 1, we

depart from the stationary distribution of yit, which could be important when T is small. Since the

results are qualitatively unchanged for these initialization schemes, we relegate them to the online

supplement.
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6.3 Forecasts and measures of forecast performance

The following panel models are fitted in the simulations to compute forecasts of yi,T+1:

yi = W iθi + εi,

where yi = (yi1, yi2, yi3, . . . , yiT )
′, W i = (ιT ,yi,−1) in the case of the panel AR model and W i =

(ιT ,yi,−1,xi) in the case of the panel ARXmodel, ιT is a T×1 vector of ones, yi,−1 = (yi0, yi1, . . . , yi,T−1)
′,

xi = (xi1, xi2, . . . , xi,T )
′, εi = (εi1, εi2, . . . , εiT )

′, and θi = (αi, βi, γi)
′.

The resulting forecasts are evaluated using the ratio of the average MSFE of each method mea-

sured relative to that of the reference individual forecasts

rMSFEj =
1

NR

∑N
i=1

∑R
r=1(yi,T+1,r − ŷi,T+1,j,r)

2

1
NR

∑N
i=1

∑R
r=1(yi,T+1,r − ŷi,T+1,ref ,r)2

,

where j denotes the methods—pooling, fixed effects, random effects, combination—and ref denotes

the reference forecast which is the individual forecast. Replications are denoted by r = 1, 2, . . . , R,

where R = 10, 000. An exception is the results for the hierarchical Bayesian forecasts which are

based on R = 500 replications due to the computational intensity of this approach.

Additionally, we report quantiles α = (0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99) of the relative forecast

accuracy over the N units in the panel

quantilej(α) =

[
1
R

∑R
r=1(yi,T+1,r − ŷi,T+1,j,r)

2

1
R

∑R
r=1(yi,T+1,r − ŷi,T+1,ref ,r)2

]
α

.

6.4 Results

The results for the ratio of average MSFEs from the panel AR and ARX models are reported in

Tables 1 and 2. In each table, we vary the cross-sectional dimension (N) across three blocks of results

and the time-series dimension (T ) along the columns. Each row assumes a different combination

of the two hyperparameters that determine heterogeneity, aβ and σ2α, with the homogeneous case

(aβ = σ2α = 0) in the top row. The top part of the table sets PR2 to approximately 0.2 while the

bottom part sets PR2 to approximately 0.6.

With no heterogeneity and a small time-series dimension, T , consistent with Propositions 1
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Table 2: Monte Carlo results for panel ARX

aβ σ2α Pooled RE FE Empirical Bayes Hier. Bayes∗ Comb. (pool) Comb. (FE)

T 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100 20 50 100

PR2 = 0.2
N = 50, ργx = 0
0.0 0.0 0.799 0.934 0.969 0.835 0.950 0.978 0.843 0.953 0.979 0.849 0.953 0.978 0.854 0.971 0.991 0.870 0.954 0.978 0.900 0.967 0.985
0.0 0.5 0.995 1.160 1.208 0.837 0.952 0.979 0.843 0.953 0.979 0.866 0.962 0.984 0.868 0.976 0.993 0.924 0.988 0.997 0.900 0.967 0.985
0.5 0.5 1.082 1.257 1.308 0.921 1.044 1.075 0.929 1.045 1.075 0.893 0.980 0.995 0.900 0.984 0.996 0.938 0.991 0.998 0.928 0.986 0.996
1.0 1.0 1.316 1.528 1.592 1.049 1.189 1.227 1.060 1.191 1.228 0.918 0.989 0.998 0.927 0.990 0.998 0.957 0.995 0.999 0.949 0.993 0.998

N = 50, ργx = 0.5
0.0 0.5 0.984 1.148 1.195 0.837 0.952 0.979 0.843 0.953 0.979 0.866 0.962 0.984 0.869 0.976 0.994 0.923 0.987 0.997 0.900 0.967 0.985
0.5 0.5 1.089 1.268 1.321 0.917 1.040 1.071 0.924 1.041 1.071 0.889 0.979 0.995 0.896 0.983 0.996 0.938 0.992 0.998 0.926 0.986 0.996
1.0 1.0 1.329 1.543 1.611 1.045 1.182 1.220 1.055 1.184 1.221 0.916 0.988 0.998 0.924 0.990 0.998 0.958 0.995 0.999 0.948 0.992 0.998

N = 100, ργx = 0
0.0 0.0 0.792 0.931 0.969 0.823 0.944 0.975 0.836 0.951 0.979 0.843 0.952 0.978 0.857 0.966 0.987 0.865 0.952 0.978 0.895 0.966 0.985
0.0 0.5 0.955 1.120 1.169 0.830 0.949 0.979 0.836 0.951 0.979 0.856 0.960 0.983 0.878 0.974 0.991 0.914 0.985 0.997 0.895 0.966 0.985
0.5 0.5 1.073 1.249 1.302 0.936 1.068 1.102 0.946 1.071 1.103 0.884 0.978 0.994 0.902 0.983 0.996 0.934 0.990 0.998 0.929 0.987 0.997
1.0 1.0 1.344 1.553 1.617 1.106 1.258 1.299 1.120 1.261 1.300 0.914 0.988 0.997 0.930 0.990 0.998 0.957 0.995 0.999 0.954 0.994 0.999

N = 100, ργx = 0.5
0.0 0.5 0.951 1.115 1.164 0.830 0.950 0.979 0.836 0.951 0.979 0.857 0.960 0.984 0.878 0.974 0.991 0.913 0.985 0.996 0.895 0.966 0.985
0.5 0.5 1.104 1.285 1.339 0.943 1.074 1.107 0.951 1.076 1.108 0.883 0.978 0.994 0.901 0.982 0.996 0.938 0.991 0.998 0.930 0.988 0.997
1.0 1.0 1.395 1.613 1.679 1.116 1.267 1.307 1.127 1.270 1.308 0.913 0.988 0.997 0.928 0.989 0.998 0.960 0.996 0.999 0.954 0.994 0.999

N = 1000, ργx = 0
0.0 0.0 0.786 0.931 0.968 0.819 0.945 0.975 0.830 0.950 0.978 0.840 0.952 0.978 0.812 0.946 0.978 0.859 0.951 0.977 0.889 0.965 0.984
0.0 0.5 0.971 1.149 1.196 0.824 0.949 0.978 0.830 0.950 0.978 0.852 0.960 0.983 0.843 0.959 0.984 0.914 0.986 0.997 0.889 0.965 0.984
0.5 0.5 1.093 1.284 1.335 0.930 1.067 1.100 0.940 1.069 1.101 0.879 0.977 0.994 0.885 0.981 0.995 0.934 0.990 0.998 0.925 0.987 0.997
1.0 1.0 1.374 1.603 1.666 1.098 1.257 1.296 1.110 1.261 1.297 0.908 0.987 0.997 0.922 0.991 0.998 0.957 0.995 0.999 0.951 0.994 0.999

N = 1000, ργx = 0.5
0.0 0.5 0.959 1.135 1.181 0.824 0.949 0.978 0.830 0.950 0.978 0.853 0.960 0.983 0.844 0.960 0.984 0.911 0.985 0.996 0.889 0.965 0.984
0.5 0.5 1.119 1.315 1.367 0.929 1.065 1.097 0.937 1.066 1.098 0.878 0.977 0.994 0.884 0.980 0.995 0.937 0.991 0.998 0.924 0.987 0.997
1.0 1.0 1.406 1.642 1.707 1.093 1.252 1.291 1.104 1.254 1.291 0.906 0.987 0.997 0.921 0.990 0.998 0.959 0.995 0.999 0.950 0.994 0.999

PR2 = 0.6
N = 50, ργx = 0
0.0 0.0 0.788 0.931 0.967 0.834 0.950 0.977 0.839 0.952 0.978 0.851 0.953 0.977 0.858 0.968 0.989 0.864 0.952 0.976 0.897 0.966 0.984
0.0 0.5 0.874 1.031 1.073 0.828 0.949 0.977 0.839 0.952 0.978 0.867 0.962 0.983 0.864 0.974 0.992 0.897 0.977 0.994 0.897 0.966 0.984
0.5 0.5 0.986 1.151 1.200 0.925 1.057 1.091 0.940 1.062 1.092 0.897 0.980 0.994 0.886 0.982 0.994 0.925 0.987 0.997 0.929 0.987 0.997
1.0 1.0 1.207 1.400 1.461 1.069 1.230 1.281 1.089 1.238 1.284 0.924 0.988 0.997 0.915 0.989 0.997 0.953 0.994 0.998 0.953 0.994 0.999

N = 50, ργx = 0.5
0.0 0.5 0.870 1.026 1.068 0.827 0.949 0.977 0.839 0.952 0.978 0.867 0.963 0.983 0.864 0.974 0.992 0.896 0.977 0.993 0.897 0.966 0.984
0.5 0.5 0.980 1.145 1.195 0.920 1.053 1.087 0.936 1.058 1.088 0.895 0.979 0.994 0.880 0.981 0.994 0.923 0.987 0.997 0.928 0.986 0.996
1.0 1.0 1.189 1.382 1.445 1.061 1.224 1.274 1.082 1.232 1.277 0.919 0.987 0.997 0.914 0.989 0.997 0.951 0.994 0.998 0.951 0.993 0.999

N = 100, ργx = 0
0.0 0.0 0.781 0.927 0.967 0.826 0.946 0.976 0.832 0.948 0.978 0.844 0.951 0.978 0.853 0.964 0.986 0.858 0.949 0.976 0.891 0.964 0.984
0.0 0.5 0.860 1.020 1.067 0.822 0.946 0.977 0.832 0.948 0.978 0.857 0.959 0.983 0.865 0.971 0.991 0.888 0.975 0.993 0.891 0.964 0.984
0.5 0.5 0.994 1.168 1.221 0.941 1.085 1.124 0.956 1.091 1.126 0.883 0.977 0.994 0.889 0.980 0.994 0.922 0.987 0.997 0.928 0.988 0.997
1.0 1.0 1.256 1.461 1.526 1.128 1.314 1.378 1.151 1.325 1.383 0.911 0.985 0.996 0.921 0.987 0.997 0.953 0.994 0.999 0.955 0.995 0.999

N = 100, ργx = 0.5
0.0 0.5 0.857 1.016 1.062 0.822 0.946 0.977 0.832 0.948 0.978 0.858 0.959 0.983 0.865 0.971 0.991 0.887 0.974 0.993 0.891 0.964 0.984
0.5 0.5 1.004 1.180 1.232 0.946 1.091 1.129 0.961 1.096 1.131 0.884 0.977 0.994 0.886 0.979 0.995 0.923 0.988 0.997 0.929 0.988 0.997
1.0 1.0 1.276 1.484 1.548 1.139 1.330 1.394 1.162 1.340 1.399 0.912 0.986 0.996 0.918 0.986 0.997 0.954 0.994 0.999 0.955 0.995 0.999

N = 1000, ργx = 0
0.0 0.0 0.779 0.927 0.967 0.823 0.945 0.976 0.829 0.948 0.977 0.846 0.952 0.978 0.814 0.947 0.979 0.853 0.948 0.976 0.886 0.963 0.983
0.0 0.5 0.863 1.027 1.072 0.818 0.945 0.976 0.829 0.948 0.977 0.857 0.959 0.982 0.842 0.957 0.984 0.886 0.975 0.993 0.886 0.963 0.983
0.5 0.5 0.995 1.176 1.226 0.935 1.084 1.122 0.951 1.089 1.124 0.881 0.976 0.993 0.884 0.979 0.995 0.920 0.987 0.997 0.925 0.987 0.997
1.0 1.0 1.247 1.461 1.521 1.121 1.317 1.378 1.146 1.328 1.383 0.911 0.985 0.996 0.917 0.988 0.997 0.950 0.993 0.998 0.953 0.994 0.999

N = 1000, ργx = 0.5
0.0 0.5 0.858 1.021 1.065 0.818 0.945 0.976 0.829 0.948 0.977 0.857 0.959 0.982 0.843 0.957 0.984 0.884 0.974 0.993 0.886 0.963 0.983
0.5 0.5 0.996 1.176 1.227 0.932 1.081 1.119 0.948 1.087 1.121 0.882 0.976 0.993 0.883 0.978 0.994 0.920 0.987 0.997 0.924 0.987 0.997
1.0 1.0 1.243 1.456 1.517 1.114 1.311 1.372 1.139 1.321 1.377 0.912 0.986 0.996 0.916 0.987 0.997 0.950 0.993 0.998 0.952 0.994 0.999

Note: The DGP is given in Section 6.2. See the footnote of Table 1 for further details.



and 2, pooling yields MSFE-values around 15% lower than those of the individual forecasts. This

finding is quite robust to the values of N and PR2, though the advantage of pooling over individual

estimation improves by a further 1-2% as these parameters are increased from their lowest to their

highest values in our setting. Conversely, the advantage of pooling over the benchmark is rapidly

reduced once T increases from T = 20 (improvement of 15%) to T = 50 (improvement of 4-5%) and

T = 100 (improvement of only 2%).

Even modest degrees of heterogeneity in the intercept or persistence parameter of the autoregres-

sive process in (55) result in a substantial deterioration in the predictive accuracy of the forecasts

based on the pooled estimator relative to individual estimation. Outside special cases such as T = 20,

PR2 = 0.6 and heterogeneity only in the intercept, the individual forecasts dominate the pooled es-

timator along the MSFE ratio metric in most scenarios with parameter heterogeneity, particularly

when T is relatively large.

The RE approach produces the best overall predictive accuracy only for a narrow subset of cases

with heterogeneity only in the intercept and homogeneous slopes (σ2α = 0.5, aβ = 0). The predictive

accuracy of the FE approach is similar to that of the RE approach with MSFE ratios typically less

than 0.5% higher. Both approaches perform quite poorly under strong parameter heterogeneity,

however, with MSFE-values around 7-18% higher than the benchmark for T = 50, 100.

Combining the forecasts from the pooled and individual-specific estimators leads to good overall

performance, reducing the MSFE of the benchmark by about 10% under homogeneous parameters

when T = 20. Strong parameter heterogeneity reduces the gain of this combination to 3-4%, again

assuming T = 20. The scope for improvements in MSFE-ratios is markedly smaller for T = 50 or

T = 100 but, in contrast with the pooled, RE, and FE approaches, this forecast combination never

generates MSFE-ratios that exceed one.

Under parameter homogeneity, the standard pooled-individual specific combination also performs

better than the combination of forecasts from the FE and individual-specific models. However, in the

presence of parameter heterogeneity, the FE-individual forecast combination performs even better

than the baseline combination of pooled and individual-specific forecasts with additional MSFE

reductions of 0-2%. Such gains arise because the FE forecasts are more accurate than the pooled

forecasts in this case.14

14These findings are sensitive to the assumed value for PR2 and in some cases reverse when PR2 is raised to 0.6.
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The EB estimator produces the best overall performance with many MSFE values substantially

lower than the individual-specific approach. Relative to this baseline, the EB approach reduces the

MSFE ratio by 6–13% when T = 20, with smaller improvements for higher degrees of parameter

heterogeneity. Improvements in MSFE-values for the EB estimator over the baseline shrink to 0.8–

3.5% for T = 50 and are further reduced to 0.2–1.6% when T = 100. Like the forecast combinations,

the EB approach also does not produce an MSFE ratio above unity in any of our simulations.

The hierarchical Bayes approach generates MSFE ratios that are typically a little worse than for

the EB approach, though differences are quite small (0-2%).15 Given the higher computational cost

of implementing the hierarchical approach, the empirical Bayes forecasts appear to be preferable

based on these results.

MSFE ratios for the pooled combination approaches are generally 1-5% higher that those of the

EB approach when T = 20, 0–3% higher when T = 50, and less than 1% higher when T = 100. In

the majority of the simulations, the hierarchical Bayes approach also tends to be a little better than

the forecast combinations, though differences are very small for the larger sample sizes T = 50, 100.

Consistent with Proposition 1, in the setting with the largest time-series dimension (T = 100),

although some of the panel-based forecasting models generate mean MSFE ratios less than one,

improvements in the predictive accuracy tend to be small, rarely exceeding 1.5%, and typically

being much smaller outside the scenario with homogeneous parameters.

Table 2 shows results for the ARX case with first-order autoregressive dynamics and an additional

regressor, xit, included. Though heterogeneity is also correlated in the AR panel (Pesaran and

Smith, 1995), this setup allows us to study further the role of correlated heterogeneity by varying

the correlation between the coefficient γi and xit as measured by ργx. Every second block of results

in the table assume ργx = 0 interchanged with blocks raising this parameter to ργx = 0.5—the latter

only contains the three rows with results for heterogeneous parameters as homogenous parameters

are non-random and therefore have zero correlation with the regressors.

In the scenario where ργx = 0, the results from Table 1 continue to hold: The pooled estimator

produces the most accurate forecasts in the absence of any parameter heterogeneity, while the RE

approach is best with heterogeneity only in the intercept but not in the slope parameter. We also

15In a few of the simulations, forecasts from the hierarchical approach are marginally more accurate than forecasts
based on the EB approach. However, this is likely attributable to simulation errors given the smaller simulation size
used for the hierarchical Bayes model.
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note that the RE and FE approaches now underperform by an even bigger margin relative to the

benchmark under the highest degrees of parameter heterogeneity considered here (aβ = 1, σ2α = 1).

Raising the level of correlated parameter heterogeneity (ργx = 0.5) leads to a marginal deteriora-

tion in the performance of the pooled estimation approach in the scenario with the highest values of

aβ and σ2α when PR2 = 0.2, though the opposite holds in some cases for PR = 0.6. The value of ργx

only has a modest impact on the predictive accuracy of the combination, RE, and FE approaches.

Table 2 also shows that the EB and hierarchical Bayesian approaches continue to produce the

best overall predictive accuracy in most scenarios for the panel ARX simulations followed by the

combination approaches.

Tables 3 to 5 report the quantiles of the ratios of MSFEs over the individual units. For brevity,

we focus on the case of N = 1000 and T = 50. The quantiles for the panel AR model in Table 3

show that under parameter homogeneity all methods have distributions of forecasts that are below

unity for all quantiles so that even the 99th percentile of the MSFE ratio distribution favors a panel-

based forecast over the individual forecast.16 Unsurprisingly, under homogenous parameters the

distribution of MSFE ratios is furthest to the left for the pooled forecasts. For this scenario, the EB

forecasts deliver the second largest gains after the pooled forecast although the pooled combination

forecasts reduce MSFE ratios the most in the right tail regardless of the goodness of fit of the model.

Introducing parameter heterogeneity in the intercept only (aβ = 0, σ2α = 0.5), the pooled esti-

mator now produces larger MSFE values than the individual approach across all quantiles. For this

case, the RE and FE forecasts generate smaller MSFE values than the individual forecasts across

all quantiles and provide the most precise forecasts at any quantile with the RE marginally more

precise than the FE forecast. The EB forecasts are the second most accurate across all quantiles

closely followed by the combination of individual and FE forecasts.

When also the slope parameter is heterogeneous, the RE and FE forecasts are less precise than the

individual forecasts in the right quantiles but still more precise in the left quantiles. The combination

and EB forecasts improve over the individual forecasts for all but the very largest quantiles. Even at

the 99th percentile of the MSFE ratio distribution, these approaches only perform marginally worse

than the individual forecasts and so offer insurance against large forecast errors.

16Results for the hierarchical Bayes forecasts are somewhat erratic particularly for the tail quantiles due to the much
smaller number of replications used for this method and so are omitted from here.
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The quantiles of the MSFE ratios for the panel ARX model are reported in Tables 4 (PR2 = 0.2)

and 5 (PR2 = 0.6). Columns on the left assume the parameters and regressors are uncorrelated

while columns on the right are for the correlated case. With homogeneous parameters, the results

are identical. In this case, the pooled forecasts are again most precise across all quantiles followed

by the RE and FE forecasts. Combination and EB forecasts continue to be more precise than the

individual forecasts for all quantiles.

When the intercept varies across individuals, the pooled forecasts again produce larger MSFE-

values than the individual forecasts, whereas the RE and FE estimators generate the most precise

forecasts across all quantiles. When also the slope coefficient is heterogeneous, the RE and FE

forecasts have a larger MSFE than the individual forecast for quantiles to the right of the median.

The RE and FE estimators can produce very poor forecasts with MSFE ratios between 2.2 and almost

5 at the 99th quantile. In contrast, the combination and EB forecasts continue to generate MSFE

ratios below unity for most quantiles and only marginally underperform the benchmark forecasts in

the right tail of the distribution of MSFE ratios.

In Section S.4 of the Supplementary Appendix (Tables S.5-S.8) we also report a complete suite

of Monte Carlo simulation results based on an equal-weighted combination scheme for our two com-

bination schemes. The predictive accuracy of the equal-weighted combination scheme is comparable

to that of the combinations based on estimated weights in the presence of modest levels of parameter

heterogeneity. Conversely, equal-weighted combinations underperform forecast combinations with

estimated weights when the level of parameter heterogeneity is either very low or very high. In

either case, one approach (individual estimation or pooling) dominates the other by a sufficiently

large margin that equal-weighting becomes sub-optimal.

We also considered the performance of an (infeasible) oracle combination scheme that uses the

true parameter values to compute the optimal combination weights. Compared against our feasible

estimates of the combination weights, this oracle scheme shows the impact of parameter estimation

error on forecasting performance. We find that the cost of estimation error is only sizeable if T

is small (T = 20) and the parameters are homogeneous. For this case, the oracle scheme reduces

the MSFE of the pooled-individual combination by 0.051 (0.906 versus 0.856) and by 0.037 for the

FE-individual combination. Differences are much smaller (0.005 and 0.011) in the heterogeneous

case even when T = 20 and are further reduced for T = 100 where, in many cases, only the third
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decimal of the MSFE ratio is affected.

We also considered combination schemes that allow the weights to vary across individual series.

These schemes perform marginally better in the case with completely homogeneous parameters

but worse in many cases under parameter heterogeneity. Increasing the correlation between the

coefficients and regressors also leads to a deterioration in the performance of these combinations

relative to the cross-sectionally pooled combination schemes.

7 Empirical applications

We next apply our set of panel forecasting methods to two empirical applications on house price

inflation in U.S. metropolitan areas and inflation in CPI sub-indices. These applications represent

quite different levels of in-sample fit: For the CPI data the pooled R2 (PR2) of our models is around

0.2 while for house prices it exceeds 0.8.

7.1 Measures of forecasting performance

Our empirical applications compute the out-of-sample MSFE as

MSFEij =
1

T − T1

T−1∑
t=T1

(yi,t+1 − ŷi,j,t+1)
2,

where ŷi,j,t+1 is the forecast of yi,t+1 using method j and information known at time t. Each

forecast in the test sample, ŷi,j,t+1, is generated using a rolling estimation window of observations

t−w+1, t−w, . . . , t, where w is the length of the rolling window. Details of the size of these samples

are reported with each application.

We report the ratio of the average MSFE of method j relative to

the average MSFE for the reference forecasts from the individual-specific model

rMSFEj =
1
N

∑N
i=1MSFEij

1
N

∑N
i=1MSFE

i,ref

We also report the proportion of units in the cross-section for which a given method produces a

smaller MSFE than the reference forecast. Letting I(·) be the indicator function that equals unity
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if the expression inside the operator is true and is zero otherwise, we have

1

N

N∑
i=1

I [MSFEij < MSFEi,ref ] .

Next, we report the proportion of units in the cross-section for which a given method has the

smallest or largest MSFE value computed as

1

N

N∑
i=1

I

[
MSFEij = min

l
MSFEil

]
,

1

N

N∑
i=1

I

[
MSFEij = max

l
MSFEil

]
.

These measures help us understand both the risk of underperformance and, on the upside, the possi-

bility of superior predictive accuracy.17 Finally, we report the quantiles α = (0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99)

of the relative forecast accuracy over the N units in the panel

quantilej(α) =

[
MSFEij

MSFEi,ref

]
α

.

To give more detailed insights into the distribution of the forecast performance across different units,

we also provide density plots of the individual ratios of MSFEs.

We examine the significance of any differences in forecast accuracy using the Diebold and Mariano

(1995) (DM) test of predictive accuracy both for the panel as a whole and for the individual series.

First, we use the panel version of the DM test proposed by Pesaran et al. (2013). This tests the

null that the MSFE generated by the individual forecasts, averaged both across time and units, is

equal in expectation to the equivalent MSFE generated by the panel models. Second, we apply the

DM test to the N forecasts for individual units in the sample and report the number of significant

values in either direction and the number of insignificant test statistics. The tests are set up so that

negative values indicate that the panel forecasts are more accurate than the individual forecasts,

while positive values of the DM tests indicate that the individual forecasts are more accurate.

17These proportions can add up to more than one due to ties between forecasting methods.
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7.2 U.S. house prices

Our first application uses quarterly data on real house price inflation in 377 U.S. Metropolitan

Statistical Areas (MSAs) from the first quarter of 1975 to the first quarter of 2023, which we obtain

from the Freddie Mac website.18 Our forecasts focus on the one-quarter-ahead MSA-level rate of

house price changes. Forecasts start in 2000Q1 and end in 2023Q1, a total of 93 quarterly periods.

We use a rolling window of 60 quarters to estimate the model parameters.

Our prediction model for the house price inflation rate in quarter t for MSA i, yit, takes the form

yit = αi + βiyi,t−1 + β∗i y
∗
i,t−1 + γRiȳ

(R)
i,t−1 + γCiȳ

(C)
t−1 + εit, (61)

where i = 1, 2, . . . , N denotes individual MSAs and t = 1, 2, . . . , T refers to the time period,

y∗it =
∑N

k=1,k ̸=i ωikykt is the spatial effect for a set of spatial weights ωik, ȳ
(R)
it is the average house

price inflation in the region of unit i, and ȳ
(C)
t is the country-wide average house price inflation.

The weights, ωik, measure the spatial effect of house prices in MSA k on house prices in MSA i

and are based on geographic distance, that is ωik = vik/
∑N

k=1 vik and vik = 1 if MSAs (i, k) are at

most 100 miles apart and is zero otherwise. We obtain the weights from the data set of Yang (2021)

and exclude MSAs that do not have any neighbors within 100 miles, which leaves 362 MSAs in our

sample.

We consider two forecasting models. The first, denoted SAR, is a spatial autoregressive model

that excludes the regional and country-wide averages, such that in (61) γRi = γCi = 0. The second,

denoted SARX, is the model in (61) with all coefficients left unrestricted.

Table 6 reports the results. In the first two columns, the first row shows the cross-sectional

average MSFE value for the forecasts based on individual estimates. Subsequent rows report ratios

of the mean of the individual MSFE for the respective methods relative to the benchmark forecasts.

Values below unity show that the ratio of average MSFE performance (across MSAs) is better for

the method listed in the row than for the benchmark while values above unity indicate the opposite.

The next two columns headed ‘freq. beating benchmark’ report the proportion of MSAs for which

the respective methods have a smaller MSFE than the benchmark, while the columns headed ‘freq.

18For each MSA house prices are calculated by deflating the Freddie Mac house price index by the CPI.
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Table 6: House price inflation forecasts

Ratio of Freq. beating Freq. smallest Freq. largest
Forecast ave. MSFE benchmark MSFE MSFE
methods SAR SARX SAR SARX SAR SARX SAR SARX

Individual 3.253 3.248 – – 0.069 0.047 0.613 0.384

Pooled 0.969 0.990 0.660 0.417 0.229 0.127 0.202 0.365
RE 0.973 0.993 0.685 0.428 0.110 0.058 0.014 0.014
FE 0.983 1.002 0.682 0.450 0.221 0.080 0.160 0.229
Emp.Bayes 0.961 0.935 0.884 0.878 0.163 0.260 0.000 0.003
Hier.Bayes 0.984 0.967 0.859 0.840 0.047 0.169 0.008 0.006
Comb. (pool) 0.963 0.944 0.865 0.859 0.108 0.171 0.003 0.000
Comb. (FE) 0.970 0.948 0.867 0.865 0.052 0.088 0.000 0.000

Note: SAR denotes the spatial autoregressive model and SARX the same model with regional and
nationwide house price averages added. Under ‘Ratio of ave. MSFE’, the entry under ‘Individual’ is
the average MSFE of forecasts based on individual estimates and the remaining rows are the ratios of
MSFEs for the methods listed in the first column (given in the footnote of Table 1). The columns ‘Freq.
beating benchmark’ report, for the particular model, the proportions of MSAs for which the method
in the row has a lower MSFE than the benchmark. Under ‘Freq. smallest (largest) MSFE’ are, for
the particular model, the proportions of MSAs for which the method in the row has a lowest (highest)
MSFE of all methods. The results in this table are for geographic spatial weighting (within a 100km
neighborhood) and are based on estimation windows of 60 observations.

smallest MSFE’ and ‘freq. largest MSFE’ show the proportion of MSAs for which the respective

methods have the smallest or largest MSFE among all forecasting methods.

For the SAR model fitted to house prices, the panel-based forecasting approaches reduce MSFE

values by 2–4% over the individual-specific forecasts. The combination and Bayesian approaches

deliver the best results with the RE and FE approaches being slightly worse, though differences in

average MSFE ratios are quite small.

We find greater variation in the rates at which the different forecasting approaches produce more

accurate forecasts than the baseline individual-specific approach. While the pooled, RE, and FE

approaches are more accurate than the baseline forecasts for roughly two-thirds of the housing price

series, the Bayesian and combination approaches improve on the baseline for 86–88% of the series.

For the SAR model, the pooled and FE approaches lead the way when it comes to the highest

frequency of cases with the smallest MSFE values (22%) followed by the EB approach (16%) and

the RE and pooled-individual combination approaches (10%).

The ability of the pooled and FE forecasts to be most accurate for the highest proportion of

individual series comes at the expense of also producing a higher risk of being the least accurate

forecast for 20% and 16% of the series, respectively. In contrast, the Bayesian and combination
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approaches rarely (or never for combinations) produce the worst forecasts for the individual series.

These results point to a much lower cross-sectional dispersion in (relative) MSFE values for the

Bayesian and combination approaches compared with the pooled and FE approaches. In contrast,

the individual-specific approach produces by far the highest frequency of forecasts with the highest

MSFE values (61%), while only producing the lowest MSFE values for 7% of the series. This

unattractive risk profile highlights significant scope for improvements in forecast accuracy by using

panel information.

For the SARX model, the average of the MSFE ratios exceeds unity for the FE approach while

conversely the Bayesian and combination approaches reduce average MSFE values by 5–7% relative

to the baseline. Further, the Bayesian and combination approaches reduce the MSFE value of the

baseline forecasts for a much greater proportion of series (84-88%) than the pooled, RE, and FE

approaches (41-45%). The Bayesian approaches produce particularly high proportions of cases with

the most accurate forecasts (17% and 26%, respectively) while rarely producing the worst forecasts

for individual series.

The pooled-individual combination approach produces the best forecasts for 17% of the series

while never producing the worst forecasts. Pooling alone generates the worst forecasts for 36% of the

series while the individual-specific forecasts are the worst for 38% of the series, vividly illustrating

the benefits from forecast combination.

Table 7 reports quantiles of the ratio of MSFE values for the housing price data. First consider the

results for the SAR model (upper panel). Consistent with the results in Table 6, the cross-sectional

distribution is more dispersed for the pooled, RE, and FE approaches with a spread between the

1st and 99th quantiles around 0.40 versus 0.15 for the Bayesian and combination approaches. While

the distribution of MSFE ratios for the pooled, RE and FE approaches is right-skewed – with higher

values above unity (worse MSFE performance) than below unity (better performance) – the opposite

holds for the Bayesian and combination approaches. For the latter, we see improvements in MSFE

performance of 10–13% at the first percentile versus deterioration in (relative) performance of 3–6%

at the 99th percentile. Our results for the 90th quantile show that while close to 90 percent of the

Bayesian and combination forecasts are as accurate as the individual specific forecasts (MSFE ratios

at one), at this percentile the pooled, RE, and FE forecasts produce MSFE ratios that are 8–10%

worse than the baseline.
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Table 7: Quantiles of ratio of MSFEs for house price inflation over MSAs

Quantiles 0.01 0.05 0.10 0.50 0.90 0.95 0.99

House prices: SAR

Pooled 0.821 0.865 0.879 0.970 1.079 1.135 1.226
RE 0.830 0.866 0.884 0.966 1.085 1.130 1.220
FE 0.851 0.880 0.893 0.967 1.097 1.143 1.224
Emp.Bayes 0.876 0.925 0.933 0.971 1.002 1.017 1.031
Hier.Bayes 0.939 0.952 0.964 0.987 1.004 1.012 1.032
Comb. (pool) 0.872 0.918 0.935 0.974 1.004 1.014 1.038
Comb. (FE) 0.881 0.931 0.946 0.976 1.004 1.011 1.032

House prices: SARX

Pooled 0.764 0.821 0.854 1.024 1.198 1.241 1.420
RE 0.769 0.825 0.856 1.016 1.195 1.237 1.406
FE 0.777 0.833 0.855 1.015 1.200 1.252 1.441
Emp.Bayes 0.830 0.877 0.902 0.963 1.004 1.015 1.066
Hier.Bayes 0.900 0.915 0.934 0.972 1.007 1.019 1.051
Comb. (pool) 0.873 0.896 0.912 0.965 1.006 1.015 1.033
Comb. (FE) 0.885 0.901 0.916 0.967 1.003 1.011 1.027

Note: The table reports the quantiles of the distribution MSFE ratios computed
across individual MSAs. SAR denotes the spatial autoregressive model and
SARX the same model with regional and nationwide house price averages added.
The forecasting methods are listed in the footnote of Table 1.

These results show that the Bayesian and combination approaches offer the attractive feature

of not only improving on the MSFE values of the baseline “on average” but, equally importantly,

rarely producing markedly worse forecasts than the baseline and very often generating substantially

better results.

Qualitatively similar but even stronger results are obtained for the SARX model (lower panel).

For this model we find an even larger spread around 0.65 between the 1st and 99th quantiles of

the MSFE ratio distribution among the pooled, RE, and FE forecasts versus values ranging from

0.15 to 0.23 for the Bayesian and combination approaches. Again, we see the same asymmetries in

the MSFE ratio distribution which is heavily right-tailed for the pooled, RE, and FE forecasts but

left-tailed for the Bayesian and combination approaches. For the latter, MSFE ratios at the 99th

quantile exceed unity only by 2–7% which is far lower than for the pooled, RE, and FE approaches

(40–44%). Interestingly, the combination approaches perform notably better than the Bayesian

forecasts at the 99th percentiles for the SARX model.19

19Equal-weighted combination also performs very well in both of the empirical applications, although they do not
reduce the risk of generating high MSFE-values for individual units in the cross-section to the same extent as our
optimal forecast combination scheme.
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Our findings are summarized visually in Figure 1 which shows probability density and cumulative

density plots fitted to the cross-sectional distribution of MSFE ratios for our forecasting methods.

The figure shows a widely dispersed, right-skewed distribution of MSFE ratios for the pooled, RE

and FE forecasting approaches compared to the Bayesian and combination approaches whose distri-

butions are far more peaked and centered just below unity. The right skew for the pooled, FE, and

RE forecasts is particularly clear for the SARX model displayed in the right panels. This feature is

highly undesirable as it raises the likelihood of very poor forecasts for an individual housing price

series compared with that of the Bayesian and combination approaches.20

Table 8 reports DM test statistics for our two empirical applications. In each panel, the first

row shows the outcome of the panel DM test while the subsequent three rows show the number of

cross-sectional units with a DM test below −1.96 (panel forecasts are significantly more accurate),

the number of insignificant cases with a DM test statistic within (−1.96; 1.96), and the number of

variables with a DM test above 1.96 (individual-specific forecasts are significantly more accurate).

For the panel DM test applied to the SAR model, the null of equal predictive accuracy is strongly

rejected for all panel forecasts, suggesting that the panel forecasts are significantly more accurate,

on average, than the individual forecasts. Test statistics are particularly large for the combination

and Bayesian forecasts. Conversely, for the SARX model, we fail to reject the null of equal (average)

predictive accuracy of the individual forecasts versus the pooled, RE, and FE forecasts. In contrast,

the combination and Bayesian forecasts lead to strong rejections of the null of equal forecast accuracy.

Turning to the SAR forecasts of the individual house price series, although the DM test fails to

reject the null of equal predictive accuracy for at least 70% of the variables, we find many more cases

in which the combination and Bayesian forecasts are significantly more accurate than the baseline

(89–95 cases) than cases where the pooled, RE, or FE forecasts beat the baseline forecasts by a

significant margin (24–27 cases). The individual forecasts are significantly more accurate than the

combination or Bayesian forecasts for only two or fewer of the MSAs versus up to nine MSAs for

the FE forecasts.

For the SARX model, there are only slightly more cases for which the pooled, RE, and FE

forecasts significantly improve on the benchmark (17) than MSAs where the opposite holds (11-14).

20The impressive performance of the EB approach for the tail groups is consistent with Efron (2011) and is a point
that may carry over to the forecast combinations.
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Figure 1: Distributions of ratios of MSFE for house price inflation across MSAs
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Note: The figure shows density (left panels) and cumulative density (right panels)
plots of the ratios of MSFE values for the SAR top panel) and SARX model (bottom).
The density estimates use a normal kernel with bandwidth 0.03. The cumulative
densities are normalized to 1 at the right tail. The forecasting methods are listed in
the footnote of Tables 1.
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Table 8: Diebold-Mariano test statistics for equal predictive accuracy

Pooled RE FE Emp.Bay. Hier.Bay. Comb(pool) Comb(FE)

House Prices: SAR

Panel DM −4.69 −4.04 −2.60 −16.73 −18.66 −19.08 −17.08
DM< −1.96 25 27 24 95 93 94 89
Insign. 330 327 329 267 267 267 272
DM> 1.96 7 8 9 0 2 1 1

House Prices: SARX

Panel DM −1.05 −0.71 0.23 −15.31 −16.83 −22.08 −21.57
DM< −1.96 17 17 17 116 87 107 109
Insign. 331 332 334 242 274 255 253
DM> 1.96 14 13 11 4 1 0 0

CPI: AR

Panel DM −3.82 −3.75 −3.44 −6.75 −15.41 −7.75 −6.12
DM< −1.96 8 5 1 50 44 24 9
Insign. 77 92 96 51 55 73 92
DM> 1.96 16 4 4 0 2 4 0

CPI: AR-PC

Panel DM −3.95 −3.91 −3.61 −6.90 −14.11 −8.00 −6.38
DM< −1.96 5 1 1 55 42 31 19
Insign. 82 97 96 46 59 70 82
DM> 1.96 14 3 4 0 0 0 0

CPI: ARX

Panel DM −7.95 −7.78 −7.56 −11.25 −17.85 −13.41 −12.22
DM< −1.96 24 24 24 71 68 55 55
Insign. 57 61 63 30 33 41 46
DM> 1.96 20 16 14 0 0 5 0

Note: The row “Panel DM” reports the results of the panel version of the Diebold-Mariano test of Pesaran,
Pick and Pranovich (2013). Remaining rows report unit by unit Diebold-Mariano test results. The row
“DM< −1.96” reports the number of units with a DM test statistic smaller than −1.96; the row “Insign.”
reports the number of units with a DM test statistic between −1.96 and 1.96, and the row “DM> 1.96”
shows the number of units whose test statistic exceeds 1.96. Each test is for the null hypothesis that
the forecasting method in the columns has equal forecast accuracy as the forecasts based on individual
estimates. The forecasting methods are listed in the footnote of Table 1.



In contrast, there are between 87 and 116 MSAs for which the Bayesian or combination forecasts are

significantly more accurate than the baseline forecasts and only 0-4 cases where the reverse holds.

7.3 CPI inflation of sub-indices

Our second application covers inflation rates for up to 187 sub-indices of the US consumer price index

(CPI) obtained from the FRED database. The data is measured at the monthly frequency and spans

the period from January 1967 to December 2022. Again, we use rolling estimation windows with 60

observations and require each estimation sample to be balanced, excluding individual series without

a complete set of observations in a given window. After accounting for the necessary pre-samples,

we generate 599 forecasts for each series, with the first forecast computed for February 1973.

We consider three forecasting models: (i) a purely autoregressive specification with lags 1, 2,

and 12, denoted AR; (ii) the same AR specification augmented with the lagged value of the first

principal component of the data, denoted AR-PC; and (iii) the AR-PC model augmented with the

lagged default yield and lagged term spread, denoted ARX.

The first three columns of Table 9 show that the ratio of average MSFEs of the individual

forecasts are beaten by all methods. The pooled forecasts are 6–12% more accurate and beat the

baseline forecasts for 44–46% of the series. Pooled forecasts are most accurate for 19–20% of the

series but least accurate for 40–44% of the series, which is clearly an unattractive performance.

Individual forecasts of CPI inflation also perform very poorly and generate the most accurate

forecasts for less than 2% of the inflation series while conversely generating the least accurate fore-

casts for more than 40% of the series.

RE and FE forecasts perform similarly to the pooled forecasts on average. They produce more

accurate forecasts than the benchmark model for 50–60% of the CPI series and produce the best

overall performance for 5% or fewer of the series. While the RE forecasts are the worst overall for

0.5% or fewer of the CPI series, the FE forecasts produce the highest MSFE ratios for 13–17% of

the series.

The EB approach records the best performance with improvements in MSFE ratios between

7 and 11%, a 98% frequency of beating the baseline forecasts for the individual series, and the

highest frequency (37-48%) with the smallest MSFE values while never producing the least accurate

forecasts.
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Forecasts from the hierarchical Bayesian and combination schemes beat the benchmark for 78%–

94% of the individual series. Forecasts from the pooled combination approach are most accurate

for 9–14% of the series versus 4-9% for the FE combination scheme and 10–14% for the hierarchical

Bayes approach. These forecasts do not produce the least accurate forecasts for any of the series.

Table 10 shows the quantiles of the distribution of MSFE ratios for the CPI inflation series.

The range between the right-most and left-most quantiles is again much wider for the pooled,

RE, and FE forecasts than for the EB and combination approaches. The key difference from the

housing price application is that the hierarchical Bayes approach now performs very poorly for

some of the individual CPI inflation series as witnessed by its right-skewed MSFE ratio distribution.

The EB approach is the clear standout model for the CPI inflation data as it improves on the

forecasting performance of the baseline approach for more than 95% of the series and underperforms

the benchmark by a very small margin even at the 99th percentile of the MSFE ratio distribution.

Our evidence is summarized in Figure 2 which, for the AR model, shows probability density

and cumulative density plots of the MSFE ratios across the different CPI sub-indices. The figure

clearly highlights the pronounced dispersion and thick right tails of the MSFE-ratio distribution for

the pooled, RE, FE, and hierarchical Bayes forecasts. The distributions of MSFE ratios of the EB

and combination approaches are far more concentrated and less asymmetrical. The EB approach

stands out as having, by far, the thinnest right tail and, hence, the lowest probability of generating

forecasts less accurate than those from the individual-specific benchmark.

The DM test results for the CPI data in Table 8 show qualitatively similar findings as for the

house price data. All panel models generate significantly negative DM panel test statistics and so

their associated CPI inflation forecasts are significantly more accurate, on average, than the baseline

forecasts. For the Bayesian and combination approaches, we continue to see many instances with

significant improvements in forecast accuracy for individual CPI series relative to the baseline and

only five or fewer series for which the reverse holds. In contrast, for the AR and AR-PC model

specifications, the baseline forecasts are significantly more accurate than the pooled, RE, and FE

forecasts for even more of the individual CPI series than instances where the reverse holds.
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Figure 2: Distributions of ratios of MSFE for CPI subindices
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Note: These graphs show density (left panels) and cumulative density plots (right
panels) of the ratios of MSFEs for the panel AR model in the top row, the panel AR
with principal components added in the second row, and the model with all regres-
sors in the third row. The density estimates use a normal kernel with a bandwidth
0.04. The cumulative densities are normalized to 1 at the right tail. The forecasting
methods are listed in the footnote of Tables 1.



Table 10: Quantiles for ratios of MSFEs for CPI inflation over subindices

Quantiles 0.01 0.05 0.10 0.50 0.90 0.95 0.99

CPI: AR

Pooled 0.713 0.833 0.912 1.025 1.517 2.081 2.575
RE 0.722 0.832 0.891 0.984 1.230 1.360 2.036
FE 0.727 0.842 0.893 0.985 1.196 1.347 1.647
Emp.Bayes 0.726 0.852 0.891 0.962 0.982 0.995 1.011
Hier.Bayes 0.863 0.896 0.931 0.984 0.999 1.061 1.521
Comb. (pool) 0.763 0.902 0.916 0.972 1.049 1.156 1.359
Comb. (FE) 0.773 0.902 0.927 0.976 1.018 1.042 1.193

CPI: AR-PC

Pooled 0.711 0.845 0.906 1.020 1.447 2.101 2.514
RE 0.720 0.851 0.892 0.985 1.238 1.355 1.900
FE 0.725 0.861 0.890 0.984 1.211 1.322 1.490
Emp.Bayes 0.725 0.853 0.878 0.956 0.983 0.993 1.001
Hier.Bayes 0.875 0.911 0.928 0.984 0.997 1.029 1.446
Comb. (pool) 0.773 0.894 0.914 0.970 1.054 1.164 1.290
Comb. (FE) 0.782 0.900 0.918 0.970 1.009 1.037 1.113

CPI: ARX

Pooled 0.681 0.826 0.874 1.032 1.543 2.412 3.098
RE 0.691 0.832 0.886 0.996 1.370 1.796 2.850
FE 0.694 0.843 0.891 0.996 1.387 1.627 2.921
Emp.Bayes 0.729 0.837 0.866 0.935 0.981 0.990 1.004
Hier.Bayes 0.863 0.896 0.907 0.963 0.987 1.005 1.340
Comb. (pool) 0.786 0.850 0.893 0.940 1.091 1.255 1.450
Comb. (FE) 0.810 0.856 0.902 0.945 1.020 1.079 1.353

Note: The table reports the quantiles of the distribution of the ratios of MSFEs
for subindices. The models are listed in the footnote of Table 9 and the forecasting
methods are listed in the footnote of Table 1.

8 Conclusion

We provide a comprehensive examination of the out-of-sample predictive accuracy of a large set of

novel and existing panel forecasting methods, including individual estimation, pooled estimation,

random effects, fixed effects, empirical and hierarchical Bayes, and forecast combination. Our anal-

ysis characterizes analytically the determinants of squared error performance as it relates to bias

and estimation error variance components. We provide insights into how parameter heterogeneity,

predictive power, and sample sizes regulate the bias-variance trade-off that determines predictive

accuracy. To quantify the importance of these theoretical points in practice, we study Monte Carlo

simulations and consider two empirical applications to house prices and CPI inflation.
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Our main findings can be summarized in three points. First, we find that many panel forecasting

approaches perform systematically better than forecasts based on individual estimates. For panels

with a small or medium-sized time-series dimension T–a setting relevant to many empirical appli-

cations in economics–our Monte Carlo simulations and empirical applications demonstrate sizeable

gains from exploiting panel information to obtain forecasts that are more accurate than forecasts

from individual-specific models both on average and also for the majority of individual units.

Second, our analytical results and Monte Carlo simulations show that one should not expect a

single forecasting approach to be uniformly dominant across applications that differ in terms of the

cross-sectional and time-series dimensions, strength of predictive power, and degree of heterogeneity

in intercept and slope coefficients along with how correlated this heterogeneity is.

Forecasts based on pooled estimates are most accurate only in situations with little or no param-

eter heterogeneity and a small T dimension, while forecasts based on FE and RE estimates perform

relatively well mainly when heterogeneity is confined to model intercepts and T is small. Neither of

these approaches perform well in settings with high levels of heterogeneity where individual-specific

forecasts tend to perform better, particularly if T is relatively large. By over-weighting forecasts that

perform well and underweighting forecasts that perform poorly, forecast combination and empirical

Bayes methods manage to produce the most accurate forecasts across a broad range of settings.

Third, the panel forecasting methods clearly differ in terms of their risk profiles, particularly their

ability to reduce the probability of generating very poor forecasts for individual units in a cross-

section. While the individual, pooled, random and fixed effect estimation methods perform poorly

in some of the simulations and empirical applications, the forecast combination and empirical Bayes

methods rarely generate the least accurate forecasts for individual units and retain some probability

of being the best forecasting method. These panel forecasting approaches therefore come out on top

of our analysis.

In a nutshell, our simulations and empirical applications suggest that forecast combinations and

Bayesian panel methods offer insurance against poor performance. Compared to the alternative

forecasting methods we consider, this better “risk-return” trade-off makes the combination and

Bayes methods attractive in forecast applications with panel data.
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Mathematical Appendix

A.1 Lemmas

Lemma 1 Suppose that Assumptions 8 and 9 hold, then for a fixed T > T0 we have

Q̄NT − E
(
Q̄NT

)
= Op(N

−1/2), and q̄NT − E (q̄NT ) = Op

(
N−1/2

)
, (A.1)

and

Q̄
−1
NT − E

(
Q̄NT

)−1
= Op(N

−1/2), (A.2)

where Q̄NT = N−1
∑N

i=1QiT , q̄NT = N−1
∑N

i=1 qiT , QiT = T−1
∑T

t=1witw
′
it, and qiT =

T−1
∑T

t=1witw
′
itηi. Further, under Assumptions 3 and 5

E
(
Q̄NT

)
= Q̄N , and E (q̄NT ) = q̄N , (A.3)

where Q̄N = N−1
∑N

i=1Qi, q̄N = N−1
∑N

i=1 qi, Qi = E(witw
′
it), and qi =E(witw

′
itηi) .

Proof Note that

Q̄NT −E
(
Q̄NT

)
= N−1

N∑
i=1

[QiT − E (QiT )] , and q̄NT −E (q̄NT ) = N−1
N∑
i=1

[qiT − E (qiT )] .

Under Assumptions 3 and 9, the elements of QiT −E (QiT ) and qiT −E (qiT ) are independently

distributed with mean zero and finite variances. Therefore, (A.1) follows. Also

∥∥∥Q̄−1
NT − E

(
Q̄NT

)−1
∥∥∥ =

∥∥∥Q̄−1
NT

[
Q̄NT − E

(
Q̄NT

)]
E
(
Q̄NT

)−1
∥∥∥

≤
∥∥∥Q̄−1

NT

∥∥∥∥∥Q̄NT − E
(
Q̄NT

)∥∥ ∥∥∥E (Q̄NT

)−1
∥∥∥ ,

and, by Assumption 8,
∥∥∥Q̄−1

NT

∥∥∥ = λmax

(
Q̄

−1
NT

)
< C, and

∥∥∥E (Q̄NT

)−1
∥∥∥ =

∥∥∥Q̄−1
N

∥∥∥ = O(1).

Hence,
∥∥∥Q̄−1

NT − E
(
Q̄NT

)−1
∥∥∥ has the same order as

∥∥∥Q̄−1
NT − E

(
Q̄NT

)−1
∥∥∥ = Op(N

−1/2),

as required. Result (A.3) follows from the stationarity properties, Qi = E(witw
′
it) and
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qi =E(witw
′
itηi).

Lemma 2 Under Assumptions 1-9

sup
i,T

E
∥∥∥√T (θ̂i − θi

)∥∥∥s < C, s = 1, 2, (A.4)

where θ̂i − θi = (W ′
iW i)

−1W ′
iεi, and

sup
i,T

E
∥∥∥θ̃ − θi

∥∥∥ < C, (A.5)

θ̃ − θi = −ηi + Q̄
−1
NT q̄NT + Q̄

−1
NT ξ̄NT .

Proof Since
∥∥∥√T (θ̂i − θi

)∥∥∥ ≤
∥∥Q−1

iT

∥∥∥∥T−1/2W ′
iεi
∥∥, then

∥∥∥√T (θ̂i − θi

)∥∥∥2 ≤ ∥∥Q−1
iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2 ,
and by the Cauchy–Schwarz inequality

sup
i,T

E
∥∥∥√T (θ̂i − θi

)∥∥∥2 ≤

(
sup
i,T

E
∥∥Q−1

iT

∥∥4)1/2(
sup
i,T

E
∥∥∥T−1/2W ′

iεi

∥∥∥4)1/2

=

{
sup
i,T

E
[
λ4max

(
Q−1

iT

)]}1/2(
sup
i,T

E
∥∥∥T−1/2W ′

iεi

∥∥∥4)1/2

.

Both of the terms on the right hand side of the above are bounded under Assumption 4, and we

have supi,TE
∥∥∥√T (θ̂i − θi

)∥∥∥2 < C. This result in turn implies supi,TE
∥∥∥√T (θ̂i − θi

)∥∥∥ < C,

and result (A.4) follows. Regarding θ̃ − θi, we first note that

∥∥∥θ̃ − θi

∥∥∥ ≤ ∥ηi∥+
∥∥∥Q̄−1

NT

∥∥∥ ∥q̄NT ∥+
∥∥∥Q̄−1

NT

∥∥∥∥∥ξ̄NT

∥∥ ,
and

E
∥∥∥θ̃ − θi

∥∥∥ ≤ E ∥ηi∥+
(
E
∥∥∥Q̄−1

NT

∥∥∥2)1/2 (
E ∥q̄NT ∥

2
)1/2

+

(
E
∥∥∥Q̄−1

NT

∥∥∥2)1/2 (
E
∥∥ξ̄NT

∥∥2)1/2 .
(A.6)
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Under Assumption 5, E∥ηi∥ < C and supi,tE∥witw
′
itηi∥

2 < C. Also by the Cauchy-Schwarz

inequality

E ∥witεit∥2 ≤
(
E ∥wit∥4

)1/2 (
|εit|4

)1/2
,

and, under Assumptions 1 and 3 we have supi,tE∥witεit∥2 < C. Then, applying Minkowski’s

inequality to ξ̄NT = N−1T−1
∑N

i=1

∑T
t=1witεit,

E
∥∥ξ̄NT

∥∥
2
=
(
E
∥∥ξ̄NT

∥∥2)1/2 ≤ N−1T−1
N∑
i=1

T∑
t=1

E ∥witεit∥2 ≤ sup
i,t

(
E ∥witεit∥2

)1/2
,

and it follows that E
∥∥ξ̄NT

∥∥2 < C. Similarly, since q̄NT = N−1T−1
∑N

i=1

∑T
t=1witw

′
itηi

and supi,t E ∥witw
′
itηi∥

2 < C, then E ∥q̄NT ∥
2 < C. Also, by Assumption 8,

∥∥∥Q̄−1
NT

∥∥∥2 =

λmax

(
Q̄

−2
NT

)
< C. Using these results in (A.6) now yields (A.5).

A.2 Proofs of the propositions

A.2.1 Proof of Proposition 1

Let P i = W i(W
′
iW i)

−1. Using (15), note that

E (riT |εi,W i,wi,T+1 ) =
(
ε′iP iwi,T+1

)
E (εi,T+1 |εi,W i,wi,T+1 ) ,

and, under Assumptions 1 and 2, E (εi,T+1 |εi,W i,wi,T+1 ) = 0, for all i. Hence, unconditionally

E (riT ) = 0. Furthermore, |riT | ≤ ∥ε′iP i∥ ∥wi,T+1∥ |εi,T+1| and |εi,T+1| is distributed independently

of wi,T+1 and T−1ε′iP i. Hence by the Cauchy–Schwarz inequality

E |riT | ≤
[
E
∥∥ε′iP i

∥∥2]1/2 (E ∥wi,T+1∥2
)1/2

E |εi,T+1| .
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Again, under Assumption 1, supi,T E |εi,T+1| < C and supi,T E ∥wi,T+1∥2 < C. Also, since Q−1
iT is

symmetric,
∥∥Q−1

iT

∥∥2 = λ2max

(
Q−1

iT

)
and we have

∥∥ε′iP i

∥∥2 =
∥∥T−1ε′iW i(T

−1W ′
iW i)

−1
∥∥2 ≤ T−1

∥∥Q−1
iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2 (A.7)

≤ λ2max

(
Q−1

iT

) ∥∥T−1W ′
iεi
∥∥2 .

By the Cauchy-Schwarz inequality and under Assumption 4

sup
i,T

E
∥∥ε′iP i

∥∥2 ≤ {sup
i,T

E
[
λ2max

(
Q−1

iT

)]}1/2 [
sup
i,T

∥∥T−1W ′
iεi
∥∥4]1/2 < C,

and supi,T E |riT | < C. Finally, under Assumption 9, riT are independently distributed over i. Then,

by the law of large numbers for independently distributed processes with zero means we have

RNT = Op(N
−1/2). (A.8)

Consider now SNT and note that

SNT = N−1
N∑
i=1

E(siT ) +N−1
N∑
i=1

[siT − E(siT )] ,

where siT is given by (16). Under Assumption 9, siT is distributed independently across i, and the

second term of SNT will be Op(N
−1/2) if supi,T E |siT | < C. Also

|siT | ≤ ∥wi,T+1∥2
∥∥Q−1

iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2 ,
and supi,T ∥wi,T+1∥ < C. Hence, supi,T E |siT | < C follows if

sup
i,T

E

[∥∥Q−1
iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2] < C.

This condition is satisfied by Assumptions 1 and 4, noting that by the Cauchy–Schwarz inequality

E

[∥∥Q−1
iT

∥∥2 ∥∥∥T−1/2W ′
iεi

∥∥∥2] ≤ [E∥∥Q−1
iT

∥∥4]1/2 [E∥∥∥T−1/2W ′
iεi

∥∥∥4]1/2 ,
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and
∥∥Q−1

iT

∥∥4 = λ4max

(
Q−1

iT

)
. Therefore, SNT = E(SNT )+Op(N

−1/2), where E (SNT ) = N−1
∑N

i=1E(siT ) =

hNT , and the result in equation (17) follows, with hNT given by (18). When the regressors wit are

strictly exogenous, using (16), we have (under Assumption 1)

E(siT ) = E([E (siT |wi,T+1,W i )] = E

[
w′

i,T+1Q
−1
iT

(
W ′

iE (εiε
′
i)W i

T

)
Q−1

iT wi,T+1

]
= E

[
σ2iw

′
i,T+1Q

−1
iT

(
W ′

iW i

T

)
Q−1

iT wi,T+1

]
= σ2iE

(
w′

i,T+1Q
−1
iT wi,T+1

)
,

and the result in equation (19) follows.

A.2.2 Proof of Proposition 2

The average MSFE of forecasts based on pooled estimates is given by (20) which we reproduce here

for convenience.

N−1
N∑
i=1

ẽ2i,T+1 = N−1
N∑
i=1

ε2i,T+1 +N−1
N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1 + S̃N,T+1 + 2R̃N,T+1, (A.9)

where

S̃N,T+1 = q̄′NT Q̄
−1
NT Q̄N,T+1Q̄

−1
NT q̄NT + ξ̄

′
NT Q̄

−1
NT Q̄N,T+1Q̄

−1
NT ξ̄NT (A.10)

−2q̄′NT Q̄
−1
NT q̄N,T+1 − 2ξ̄

′
NT Q̄

−1
NT q̄N,T+1 + 2ξ̄

′
NT Q̄

−1
NT Q̄N,T+1Q̄

−1
NT q̄NT ,

R̃N,T+1 = N−1
N∑
i=1

η′
iwi,T+1εi,T+1 −

(
q̄′NT Q̄

−1
NT + ξ̄

′
NT Q̄

−1
NT

)(
N−1

N∑
i=1

wi,T+1εi,T+1

)
, (A.11)

and

Q̄N,T+1 = N−1
N∑
i=1

wi,T+1w
′
i,T+1, and q̄N,T+1 = N−1

N∑
i=1

wi,T+1w
′
i,T+1ηi. (A.12)
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Under Assumption 7, ξ̄NT = Op

(
N−1/2

)
. Using Lemma A.1, we have Q̄

−1
NT = Q̄

−1
N +Op

(
N−1/2

)
=

Op(1), and similarly q̄NT = Op(1) and q̄N,T+1 = Op(1). Using these results in (A.10) we now have

S̃N,T+1 = q̄′NT Q̄
−1
NT Q̄N,T+1Q̄

−1
NT q̄NT − 2q̄′NT Q̄

−1
NT q̄N,T+1 +Op

(
N−1/2

)
. (A.13)

Note that under stationarity (see Assumptions 3 and 5), E
(
wi,T+1w

′
i,T+1ηi

)
= qi, E

(
wi,T+1w

′
i,T+1

)
=

Qi, and consider

q̄′NT Q̄
−1
NT Q̄N,T+1Q̄

−1
NT q̄NT =(∆q,NT + q̄N )′

(
∆Q,NT + Q̄

−1
N

) (
Q̄N,T+1 − Q̄N + Q̄N

)
×
(
∆Q,NT + Q̄

−1
N

) (
q̄N,T+1 − q̄N + q̄N

)
,

where (by Lemma A.1)

∆Q,NT = Q̄
−1
NT − Q̄

−1
N = Op(N

−1/2), ∆q,NT = q̄NT − q̄N = Op(N
−1/2),

and Q̄N and q̄N are defined by (6) and (8), respectively. Also note that

Q̄N,T+1 = N−1
N∑
i=1

E
(
wi,T+1w

′
i,T+1

)
+Op(N

−1/2) = Q̄N +Op(N
−1/2),

q̄N,T+1 = N−1
N∑
i=1

E
(
wi,T+1w

′
i,T+1ηi

)
+Op(N

−1/2) = q̄N +Op(N
−1/2).

Hence, it readily follows that

q̄′NT Q̄
−1
NT Q̄N,T+1Q̄

−1
NT q̄NT = q̄′NQ̄

−1
N q̄N +Op

(
N−1/2

)
. (A.14)

Similarly, q̄′NT Q̄
−1
NT q̄N,T+1 = q̄′NQ̄

−1
N q̄N +Op

(
N−1/2

)
, and as a result

S̃N,T+1 = −q̄′NQ̄
−1
N q̄N +Op

(
N−1/2

)
.
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Finally, since εi,T+1 (which has zero mean) is distributed independently of wi,T+1 and ηi, under

Assumption 9,

N−1
N∑
i=1

η′
iwi,T+1εi,T+1 = Op(N

−1/2), and N−1
N∑
i=1

wi,T+1εi,T+1 = Op(N
−1/2),

and R̃N,T+1 = Op(N
−1/2), noting that

(
q̄′NT Q̄

−1
NT + ξ̄

′
NT Q̄

−1
NT

)
= Op(1). Using this result and

(A.14) in (20) now yields

N−1
N∑
i=1

ẽ2i,T+1 = N−1
N∑
i=1

ε2i,T+1+N
−1

N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1− q̄′NQ̄

−1
N q̄N +Op

(
N−1/2

)
. (A.15)

Also, under Assumption 9, w′
i,T+1ηiη

′
iwi,T+1 is independently distributed over i and we have, noting

that under Assumption 5, supi,TE
∣∣∣w′

i,T+1ηiη
′
iwi,T+1

∣∣∣ = supi,TE
∥∥∥w′

i,T+1ηi

∥∥∥2 < C,

N−1
N∑
i=1

w′
i,T+1ηiη

′
iwi,T+1 = N−1

N∑
i=1

E
(
w′

i,T+1ηiη
′
iwi,T+1

)
+Op

(
N−1/2

)
.

Using this result in (A.15) now yields equation (21). To establish (23), note that when the het-

erogeneity is uncorrelated, q̄N = 0, and E
(
w′

i,T+1ηiη
′
iwi,T+1

)
= E

[
tr
(
wi,T+1w

′
i,T+1ηiη

′
i

)]
=

tr
[
E
(
wi,T+1w

′
i,T+1

)
E (ηiη

′
i)
]
. Also, under Assumptions 3 and 5, E

(
wi,T+1w

′
i,T+1

)
E (ηiη

′
i) =

QiΩη, and N
−1
∑N

i=1E
(
w′

i,T+1ηiη
′
iwi,T+1

)
= tr

(
Q̄NΩη

)
, as required.

A.2.3 Proof of Proposition 3

Using (12) and (13),

N−1
N∑
i=1

êi,T+1ẽi,T+1 = N−1
N∑
i=1

ε2i,T+1 +N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1w

′
i,T+1(θ̃ − θi) (A.16)

−N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1εi,T+1 −N−1

N∑
i=1

(θ̃ − θi)
′wi,T+1εi,T+1,

where θ̃ − θi = −ηi + Q̄
−1
NT q̄NT + Q̄

−1
NT ξ̄NT , and θ̂i − θi = (W ′

iW i)
−1W ′

iεi. Noting that the third

term in the above, apart from the minus sign, is the same as RNT defined below (14), by (A.8) it
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follows that

N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1εi,T+1 = N−1

N∑
i=1

riT = RNT = Op(N
−1/2). (A.17)

Further,

N−1
N∑
i=1

(θ̃ − θi)
′wi,T+1εi,T+1 = −N−1

N∑
i=1

η′
iwi,T+1εi,T+1 + Q̄

−1
NT q̄NT

(
N−1

N∑
i=1

wi,T+1εi,T+1

)

+Q̄
−1
NT ξ̄NT

(
N−1

N∑
i=1

wi,T+1εi,T+1

)
.

By Lemma A.1, Q̄
−1
NT = Op(1) and q̄NT = Op(1), and by Assumption 7 , ξ̄NT = Op(N

−1/2).

Also, under Assumptions 1 and 6, η′
iwi,T+1εi,T+1 and wi,T+1εi,T+1 have mean zero and first order

moments. Hence, given Assumption 9 we have

N−1
N∑
i=1

(θ̃ − θi)
′wi,T+1εi,T+1 = Op

(
N−1/2

)
. (A.18)

Consider now the second term of (A.16):

N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1w

′
i,T+1(θ̃ − θi)

= N−1
N∑
i=1

(
−ηi + Q̄

−1
NT q̄NT + Q̄

−1
NT ξ̄NT

)′
wi,T+1w

′
i,T+1(W

′
iW i)

−1W ′
iεi

= T−1/2

[
N−1

N∑
i=1

(
−η′

i + q̄′NT Q̄
−1
NT

)
wi,T+1w

′
i,T+1(T

−1W ′
iW i)

−1T−1/2W ′
iεi

]

+T−1/2ξ̄
′
NT Q̄

−1
NT

[
N−1

N∑
i=1

wi,T+1w
′
i,T+1(T

−1W ′
iW i)

−1T−1/2W ′
iεi

]
,

where, as noted above, ξ̄
′
NT Q̄

−1
NT = Op

(
N−1/2

)
. Also, under stationarity (Assumption 3) and using

(A.1) and (A.2) (See Lemma A.1), q̄NT = q̄N +Op

(
N−1/2

)
and Q̄

−1
NT = Q̄

−1
N +Op

(
N−1/2

)
, and we

have

N−1
N∑
i=1

(θ̂i − θi)
′wi,T+1w

′
i,T+1(θ̃ − θi) = T−1/2 (g1,nT − g2,nT ) +Op(T

−1/2N−1/2),
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where

g1,NT =

[
N−1

N∑
i=1

(
T−1/2ε′iW i

)
Q−1

iT wi,T+1w
′
i,T+1

]
Q̄

−1
N q̄N ,

g2,NT = N−1
N∑
i=1

(
T−1/2ε′iW i

)
Q−1

iT wi,T+1w
′
i,T+1ηi.

We also note that under Assumptions 3, 4, 8 and 9

g1,NT = E(g1,nT ) +Op

(
N−1/2

)
, and g2,NT = E(g2,NT ) +Op

(
N−1/2

)
.

Hence,

N−1
N∑
i=1

(θ̂i−θi)
′wi,T+1w

′
i,T+1(θ̃−θi) = T−1/2 [E (g1,nT )− E (g2,NT )]+Op

(
N−1/2

)
+Op

(
T−1/2N−1/2

)
.

Substituting this result together with (A.17) and (A.18) in (A.16), we obtain

N−1
N∑
i=1

êi,T+1ẽi,T+1 = N−1
N∑
i=1

ε2i,T+1 + T−1/2ψNT +Op(N
−1/2) +Op

(
T−1/2N−1/2

)
, (A.19)

where ψNT =E(g1,nT )−E(g2,NT ), or more specifically,

ψNT = N−1
N∑
i=1

E
[
T−1/2ε′iW iQ

−1
iT wi,T+1w

′
i,T+1

]
Q̄

−1
N q̄N (A.20)

−N−1
N∑
i=1

E
[
T−1/2ε′iW iQ

−1
iT wi,T+1w

′
i,T+1ηi

]
.

Using (A.19), together with (17) and (21), in (39) now yields (40).

A.2.4 Proof of Proposition 4

Recall from (33) and (28) that êi,T+1 = ε̃i,T+1−x̃′
i,T+1(β̂i−βi) and ê

FE
i,T+1 = ε̃i,T+1−(β̂FE−βi)

′x̃i,T+1,

where ε̃i,T+1 = εi,T+1 − ε̄iT and x̃i,T+1 = xiT+1 − x̄iT ,

β̂i − βi = (X ′
iMTXi)

−1X ′
iMTεi = Q−1

iT,βξiT,β,

β̂FE − βi = −ηi,β + Q̄
−1
NT,β q̄NT,β + Q̄

−1
NT,β ξ̄NT,β,
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QiT,β = (T−1X ′
iMTXi)

−1, ξiT,β = T−1/2X ′
iMTεi, and ξ̄NT,β = N−1

N∑
i=1

ξiT,β = Op(N
−1/2).

Hence,

N−1
N∑
i=1

êFEi,T+1êi,T+1 = N−1
N∑
i=1

ε̃2i,T+1 (A.21)

+N−1
N∑
i=1

(β̂i − βi)
′x̃i,T+1x̃

′
i,T+1(β̂FE − βi)

−N−1
N∑
i=1

(εi,T+1 − ε̄iT )x̃
′
i,T+1

[(
β̂FE − βi

)
+ (β̂i − βi)

]
.

Using (29) and (34), we have

N−1
N∑
i=1

ε̃i,T+1x̃
′
i,T+1

[(
β̂FE − βi

)
+ (β̂i − βi)

]
= cFENT + cNT,β +Op(N

−1/2). (A.22)

Also

N−1
N∑
i=1

(β̂i − βi)
′ (x̃i,T+1x̃

′
i,T+1

)
(β̂FE − βi)

= T−1/2N−1
N∑
i=1

(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

) (
−ηi,β + Q̄

−1
NT,β q̄NT,β + Q̄

−1
NT,β ξ̄NT,β

)
.

First, ξ̄NT,β = Op(N
−1/2) and Q̄

−1
NT,β = Q̄

−1
N,β +Op(N

−1/2), where Q̄N,β = E
(
Q̄NT,β

)
, (see Lemma

A.1). Hence, for a fixed T > T0

[
N−1

N∑
i=1

(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

)]
Q̄

−1
NT,β ξ̄NT,β = Op(N

−1/2).

Also, under Assumption 9,

N−1
N∑
i=1

(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

)
ηi,β

= N−1
N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

)
ηi,β

]
+Op(N

−1/2),
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and

N−1
N∑
i=1

(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

)
= N−1

N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

)]
+Op(N

−1/2).

Then

N−1
N∑
i=1

(β̂i − βi)
′x̃i,T+1x̃

′
i,T+1(β̂FE − βi) = T−1/2ψFE

NT +Op(T
−1/2N−1/2), (A.23)

where

ψFE
NT = N−1

N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

)]
Q̄

−1
N,β q̄N,β

−N−1
N∑
i=1

E
[(
T−1/2ε′iMTXi

)
Q−1

iT,β

(
x̃i,T+1x̃

′
i,T+1

)
ηi,β

]
. (A.24)

Using (A.22) and (A.23) in (A.21) yields

N−1
N∑
i=1

êFEi,T+1êi,T+1 = N−1
N∑
i=1

ε̃2i,T+1

+T−1/2ψFE
NT −

(
cFENT + cNT,β

)
+Op(N

−1/2) +Op(T
−1/2N−1/2).

Substituting this result together with (36) and (31) in (43) now yields equation (44).

A.3 Panel AR(1): An example of correlated heterogeneity

Correlated heterogeneity can arise in many contexts. One important example is dynamic panel data

models where, barring special cases, heterogeneity is correlated by design. As a simple example,

consider the stationary panel AR(1) case where yit = βiyi,t−1+εit, for t = . . .−2−1, 0, 1, . . . , T, T +

1, . . . , and supi |βi| ≤ c for some positive c < 1, and βi follows a random coefficient model βi = β0+ηi,

where β0 = E(βi), and ηi is suitably truncated such that the stationary condition supi |βi| ≤ c is

met.

Suppose our objective is to forecast yiT+1 based on the observations {yit, t = 0, 1, 2, . . . , T}.21 In

21The assumption that the process for yit has started a long time prior to date 0, is equivalent to assuming that yi0
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the context of the general linear model analyzed in the paper, wit = yi,t−1 and θi = βi. It is easily

verified that our Assumptions 1-9 cover the dynamic case where one or more elements of wit are

lagged values of yit. Forecasts based on pooled estimates, which incorrectly assume βi = β0 generate

a heterogeneity bias, ∆N , given by (24). In the present example qi = E
(
y2i,t−1ηi

)
, Qi = E

(
y2i,t−1

)
,

and

∆N = N−1
N∑
i=1

E
(
y2itη

2
i

)
−

[
N−1

∑N
i=1E

(
y2i,t−1ηi

)]2
N−1

∑N
i=1E

(
y2i,t−1

) ,

where qi measures the degree of correlated heterogeneity. To derive qi for the AR model, note that

yit =
∞∑
s=0

βsi εi,t−s =

∞∑
s=0

(β0 + ηi)
s εi,t−s, (A.25)

so yit is a non-linear function of ηi, and, in general, qi = E
(
y2i,t−1ηi

)
̸= 0. This shows that

heterogeneity in panel AR models generates correlated heterogeneity as is also implicit in the analysis

of Pesaran and Smith (1995). Using (A.25) we have

E(yit) = 0, Qi = E(y2it) = E
(
y2i,t−1

)
= E

(
σ2i

1− β2i

)
, for all t,

qi = E
(
y2i,t−1ηi

)
=

∞∑
s=0

E
(
β2si ηiσ

2
i

)
= E

(
ηiσ

2
i

1− β2i

)
, and E

(
y2itη

2
i

)
= E

(
η2i σ

2
i

1− β2i

)
.

In this simple example, heterogeneity is uncorrelated only if β0 = 0 and ηi is symmetrically dis-

tributed around 0. This follows since when β0 = 0 we have qi = E
(

ηiσ
2
i

1−η2i

)
and under symmetry

ηiσ
2
i /
(
1− η2i

)
is an odd function of ηi, which yields qi = 0. But when β0 ̸= 0, then qi ̸= 0 even if

ηi has a symmetric distribution. The expression for ∆N is strictly positive irrespective of whether

qi = 0 or not. Under stationarity, ∆N simplifies to

∆AR = E
(
y2itη

2
i

)
−

[
E
(
y2i,t−1ηi

)]2
E
(
y2i,t−1

)
=

E
(

η2i σ
2
i

1−β2
i

)
E
(

σ2
i

1−β2
i

)
−
[
E
(

ηiσ
2
i

1−β2
i

)]2
E
(

σ2
i

1−β2
i

) . (A.26)

is drawn from a distribution with zero mean and variance σ2
i /(1− β2

i ).
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Let fi = σiηi/
√
1− β2i and gi = σi/

√
1− β2i , and note that the numerator of ∆AR can be written as

E(f2i )E(g
2
i )− [E(figi)]

2 ≥ 0, which establishes that ∆AR ≥ 0, in line with part (c) of Proposition 2.

The magnitude of ∆AR depends on the joint distribution of βi and σ
2
i . As an example, consider

the case where σ2i and βi are independently distributed, E(σ2i ) = σ2 and ηi ∼ Uniform(−a/2, a/2),

for a > 0.22 Then,

qi = σ2E

(
ηi

1− β2i

)
=
σ2

2

[
E

(
ηi

1− β0 − ηi

)
+ E

(
ηi

1 + β0 + ηi

)]

To derive the expectation in this above expression note that for a given B, such that B2−a2/4 > 0,

we have

E

(
ηi

B + ηi

)
=

1

a

∫ a/2

−a/2

(
η

B + η

)
dη = 1−

(
B

a

)
ln

(
B + a/2

B − a/2

)
. (A.27)

Using this result, and setting B = 1 + β0, we have, for (1 + β0)
2 > a2/4,

E

(
ηi

1 + β0 + ηi

)
= 1−

(
1 + β0
a

)
ln

(
1 + β0 + a/2

1 + β0 − a/2

)
.

Similarly, again for (β0 − 1)2 > a2/4,

E

(
ηi

1− β0 − ηi

)
= −E

(
ηi

β − 1 + ηi

)
= −

[
1−

(
β0 − 1

a

)
ln

(
β0 − 1 + a/2

β0 − 1− a/2

)]
.

Overall, assuming that a/2 < 1− |β0|, we have

E
(
y2i,t−1ηi

)
=

σ2

2

[(
β0 − 1

a

)
ln

(
β0 − 1 + a/2

β0 − 1− a/2

)
−
(
1 + β0
a

)
ln

(
1 + β0 + a/2

1 + β0 − a/2

)]
=

σ2

2a

[
− (1− β0) ln

(
1− β0 − a/2

1− β0 + a/2

)
− (1 + β0) ln

(
1 + β0 + a/2

1 + β0 − a/2

)]
. (A.28)

To ensure that |βi| = |β0 + ηi| < 1, we require that a is sufficiently small relative to β0 and |β0| < 1.

A sufficient condition for this to hold is that

|βi| = |β0 + ηi| ≤ |β0|+ |ηi| = |β0|+ a/2 < 1.

22Note in this case ηi is symmetrically distributed around 0.
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Table A.2: Numerical values for E
(
y2i,t−1ηi

)
and ∆AR for the panel AR(1) model

β0 E(y2i,t−1ηi) ∆AR

0.3 0.100 0.116
0.45 0.316 0.163
0.49 0.657 0.211
0.4999 1.830 0.322

Note: The numerical values are

based on a = σ2 = 1.

We can now calculate E
(
y2i,t−1ηi

)
for a range of values for β0 < 1/2. Using a = 1 and σ2 = 1,

we obtain the values given in Table A.2.

In general for a > 0, E
(
y2i,t−1ηi

)
̸= 0, and for any |β0| < 1, it follows that E

(
y2i,t−1ηi

)
→ 0

as a → 0. Since ηi ∼ iidUniform(−a/2, a/2) is symmetrically distributed, then E
(
y2i,t−1ηi

)
= 0

for β0 = 0. But Cov(y2i,t−1, η
2
i ) ̸= 0, even under symmetry and y2i,t−1 and ηi are not independently

distributed. For example, when β0 = 0, we have

E(y2itη
2
i ) = σ2E

(
η2i

1− η2i

)
̸= E(y2it)E(η

2
i ) = σ2E

(
1

1− η2i

)
E(η2i ).

When βi and σ
2
i are independently distributed, using (A.26), we have

σ−2∆AR =
E
(

η2i
1−β2

i

)
E
(

1
1−β2

i

)
−
[
E
(

ηi
1−β2

i

)]2
E
(

1
1−β2

i

) .

We can derive an analytical expression for E
(

1
1−β2

i

)
, noting that

E

(
1

B + ηi

)
=

1

a

∫ a/2

−a/2

(
1

B + η

)
dη =

1

a
ln

(
B + a/2

B − a/2

)
.

Hence,

E

(
1

1− β2i

)
=

1

2

[
−E

(
1

−1 + β0 + ηi

)
+ E

(
1

1 + β0 + ηi

)]
= − 1

2a
ln

(
β0 − 1 + a/2

β0 − 1− a/2

)
+

1

2a
ln

(
β0 + 1 + a/2

β0 + 1− a/2

)
,
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or

E

(
1

1− β2i

)
=

1

2a

[
ln

(
1 + β0 + a/2

1 + β0 − a/2

)
− ln

(
1− β0 − a/2

1− β0 + a/2

)]
. (A.29)

Using (A.29) and simulated values of E
(

ηi
1−β2

i

)
and E

(
η2i

1−β2
i

)
, we obtain the values of ∆AR for

α = 1 and σ2 = 1 that are reported in Table A.2.
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S.1 Introduction

This supplementary appendix provides additional material underpinning the analysis in the main

paper along with a set of extensions to the Monte Carlo simulations and empirical results. We

begin by deriving in Section S.2 the pooled R-squared, PR2
N , used in the Monte Carlo simulations to

target the predictive power of our panel forecasting models. We characterize PR2
N as a function of the

underlying parameters of the DGPs and use this to calibrate the parameters used in the simulations.

Next, Section S.3 provides details of how we implement the estimators used in our analysis. Section

S.4 provides additional simulation and empirical results from equal-weighted forecast combination

schemes, while Section S.5 examines the robustness of our Monte Carlo simulation results with

regards to how we set the initial condition of the autoregressive processes.

S.2 Derivation of the pooled R-squared PR2
N

Consider the panel data model

yit = αi + βiyi,t−1 + γixit + εit, (S.1)

xit = µxi + ξit, ξit = ρxiξi,t−1 + σxi

√
1− ρ2xiνit.

Further, Var(εit) = 1, and Var(νit) = 1 as set out in further detail in Section 6. To simplify

the derivations, we treat xit as strictly exogenous (no feedback from yi,t−1) and assume that yit is

stationary and started a long time in the past. To deal with the heterogeneity across the different

equations in the panel, we use the following average measure of fit, for a given N ,

PR2
N = 1−

N−1
∑N

i=1Var (εit |θi, xit )

N−1
∑N

i=1Var(yit |θi, xit, )
, (S.2)

where as before θi = (αi, βi, γi)
′. For the numerator we have

Var
(
εit
∣∣ θi, σ

2
i , xit

)
= σ2i . (S.3)
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To derive Var(yit |θi, xit ), we note that

Var(yit
∣∣θi, σ

2
i , xit ) = E

[
Var(yit

∣∣θi, σ
2
i ,yi,t−1, xit )

]
+Var

[
E(yit

∣∣θi, σ
2
i , yi,t−1, xit )

]
,

E(yit
∣∣θi, σ

2
i , yi,t−1, xit ) = αi + βiyi,t−1 + γixit, Var(yit

∣∣θi, σ
2
i , yi,t−1, xit ) = σ2i ,

Var
[
E(yit

∣∣θi, σ
2
i , yi,t−1, xit )

]
= β2i Var(yit

∣∣θi, σ
2
i , xit ) + γ2i Var (xit) .

Hence,

Var(yit
∣∣θi, σ

2
i , xit ) =

γ2i Var(ξit) + σ2i
1− β2i

. (S.4)

Now using (S.3) and (S.4) in (S.2), we obtain

PR2
N = 1−

 N−1
∑N

i=1 σ
2
i

N−1
∑N

i=1
γ2
i σ

2
xi+σ2

i

1−β2
i

 ,

where σ2xi = Var(ξit). After some simplifications we have

PR2
N =

bN + (cN − aN )

bN + cN
, (S.5)

where aN = N−1
∑N

i=1 σ
2
i , bN = N−1

∑N
i=1

γ2
i σ

2
xi

1−β2
i
, and cN = N−1

∑N
i=1

σ2
i

1−β2
i
.

When these parameters are distributed independently, as N → ∞, we obtain

aN
p→ E(σ2i ), bN

p→ E(γ2i )E(σ
2
xi)E

(
1

1− β2i

)
,

cN
p→ E(σ2i )E

(
1

1− β2i

)
.

Hence, using (S.5), we note that (as N → ∞)

PR2
N → PR2 =

E(γ2i )E(σ
2
xi)E

(
1

1−β2
i

)
+
[
E(σ2i )E

(
1

1−β2
i

)
− E(σ2i )

]
E(γ2i )E(σ

2
xi)E

(
1

1−β2
i

)
+ E(σ2i )E

(
1

1−β2
i

) .
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Under our design E(σ2i ) = 1, E(σ2xi) = 1, and the above expression simplifies to

PR2 =
E(γ2i )E

(
1

1−β2
i

)
+
[
E
(

1
1−β2

i

)
− 1
]

E(γ2i )E
(

1
1−β2

i

)
+ E

(
1

1−β2
i

) . (S.6)

For the pure panel AR model (55), where γi = 0, ∀i, this reduces to

PR2
AR = 1− 1

E
(

1
1−β2

i

) . (S.7)

When βi is homogeneous such that βi = β0, E
(

1
1−β2

i

)
= 1/(1 − β20), this simplifies to the familiar

condition PR2
AR = β20 .

Additionally, we can now write

PR2 = PR2
AR +

E(γ2i )(1− PR2
AR)

1 + E(γ2i )
. (S.8)

In the general case where σ2i is not distributed independently of βi and N is finite we have

PR2
N > 1− aN/cN = 1−

N−1
∑N

i=1 σ
2
i

N−1
∑N

i=1
σ2
i

1−β2
i

.

In the case where βi = β0 + ηiβ, and ηiβ ∼iidUniform(−αβ/2, αβ/2), αβ > 0, we have (see also

(A.29) in the Appendix to the paper):

E
(

1
1−β2

i

)
= 1

aβ

∫ aβ/2

−aβ/2
1

1−(β0+ηβ)
2dηβ

= 1
2aβ

∫ aβ/2

−aβ/2

[
1

1+β0+ηβ
+ 1

1−β0−ηβ

]
dηβ

= 1
2aβ

[ln(1 + β0 + ηβ)− ln(1− β0 − ηβ)]
aβ/2

−aβ/2

= 1
2aβ

[
ln
(
1+β0+aβ/2
1+β0−aβ/2

)
− ln

(
1−β0−aβ/2
1−β0+aβ/2

)]
,

(S.9)

assuming that

(1 + β0 + aβ/2) (1 + β0 − aβ/2) > 0 and (1− β0 − aβ/2) (1− β0 + aβ/2) > 0,
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or if

0 ≤ aβ < 2 (1− |β0|) . (S.10)

It is easily established that E
(

1
1−β2

i

)
→ 1

1−β2
0
, as aβ → 0.

Now using (S.9) in (S.7) we have

PR2
AR(aβ, β0) = 1−

2aβ[
ln
(
1+β0+aβ/2
1+β0−aβ/2

)
− ln

(
1−β0−aβ/2
1−β0+aβ/2

)] . (S.11)

Numerical values for PR2
AR in (S.11) for different values of aβ and β0 are given in Table S.2. Note

that under heterogeneity (aβ > 0), PR2
AR exceeds its homogeneous counterpart.

Table S.2: Values of PR2
AR(aβ, β0)

β0 PR2
AR(aβ = 0, β0) PR2

AR(aβ = 0.5, β0) PR2
AR(aβ = 1, β0)

0 0 0.021 0.090
0.1 0.01 0.021 0.105
0.2 0.04 0.065 0.150
0.3 0.09 0.202 0.232
0.4 0.16 0.199 0.364
0.49 0.25 0.292 0.624

Note: The table reports numerical values for PR2
AR in (S.11) for different values

of aβ and β0.

Our Monte Carlo simulations target two values of PR2, namely 0.2 and 0.6, for the panel AR

model. We do so by calibrating the values of the aβ and β0 parameters. The values of the parameters

used to this end are reported in Table S.3. For the same parameters, the PR2 for the panel ARX

model are similar, albeit somewhat higher.

S.3 Details of the estimators

This section provides details on the implementation of the estimators and forecasts used in the

Monte Carlo experiments and empirical applications. Recall that the DGP, (56), in the Monte Carlo

experiments is

yit = αi + βiyi,t−1 + γixit + εit = αi + β′
ixit + εit = θ′

iwit + εit, εit ∼ (0, σ2i ), (S.12)
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Table S.3: PR2 for parameters of Monte Carlo models

aβ β0 PR2
AR PR2

ARX(ργx = 0) PR2
ARX(ργx = 0.5)

0 0.447 0.200 0.209 0.209
0.5 0.401 0.200 0.280 0.301
1 0.267 0.200 0.340 0.374

0 0.775 0.601 0.605 0.605
0.5 0.688 0.600 0.640 0.651
1 0.486 0.599 0.669 0.686

Note: The table reports the parameters for aβ and β0 in the first two

columns and the implied values for PR2 in the remaining columns. The

values of PR2 are obtained by simulation using the DGP in Section 6

with 10.000 replications.

for t = 1, 2, . . . , T and i = 1, 2, . . . , N , where βi = (βi, γi)
′, θi = (αi,β

′
i)
′, xit = (yi,t−1, xit)

′, and

wit = (1,x′
it)

′. Here we consider a more general case where the dimension of xit is k× 1 and that of

wit is K × 1, where K = k+1. In principle, xit could include highered lags of yit and xit, and other

covariates. As in the main analysis, for simplicity we do not explicitly refer to the forecast horizon,

h, but it is assumed that xit contains information known at time t− h. Below we assume a forecast

horizon of h = 1.

Individual forecasts The individual-specific forecasts based on the data of a given cross-sectional

unit are

ŷi,T+1 = α̂i,T + β̂
′
i,Txi,T+1 = θ̂

′
i,Twi,T+1 (S.13)

The parameters are estimated using the estimation sample containing T observations: yi =

(yi1, yi2, . . . , yiT )
′ and Xi = (xi1,xi2, . . . ,xiT )

′. In matrix notation, the model is

yi = αiτT +Xiβi + εi = W iθi + εi,

where τ is a T×1 unit vector,W i = (wi1,wi2, . . . ,wiT )
′,wit = (1,x′

it)
′, and εi = (εi1, εi2, . . . , εiT )

′.

The parameters are estimated as

β̂i,T =
(
X ′

iMTXi

)−1
XiMTyi,
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α̂i,T =
(
τ ′
TM ixτT

)−1
τ ′
TM ixyi,

MT = IT − τT

(
τ ′
TτT

)−1
τ ′
T , M ix = IT −Xi

(
X ′

iXi

)−1
X ′

i.

Written in more compact form, we have

θ̂i,T =
(
W ′

iW i

)−1
W ′

iyi. (S.14)

The “individual” forecasts in (S.13), for i = 1, 2, . . . , N , will be used as the reference forecast

and the MSFE of all other methods are reported as ratios relative to the MSFE of this forecast,

defined by

MSFEref = N−1
N∑
i=1

(
yi,T+1 − θ̂

′
i,Twi,T+1

)2
. (S.15)

Pooled forecasts The forecasts that use the pooled information of all units in the panel are

ỹi,T+1 = θ̃
′
poolwi,T+1, (S.16)

where

θ̃pool =
(
W ′W

)−1
Wy =

(
N∑
i=1

W ′
iW i

)−1 N∑
i=1

W ′
iyi, (S.17)

and W = (W ′
1,W

′
2, . . . ,W

′
N )′ and y = (y′

1,y
′
2, . . . ,y

′
N )′.

Fixed effects forecast The FE forecasts are given by

ŷFE
i,T+1 = α̂i,FE + β̂

′
FExi,T+1, (S.18)

where

β̂FE =

(
N∑
i=1

X ′
iMTXi

)−1 N∑
i=1

X ′
iMTyi,
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and

α̂i,FE = τ ′
T (yi − β̂

′
FEXi)/T

Goldberger’s random effects BLUP This forecast uses the best linear unbiased predictor (BLUP)

of Goldberger (1962). For this forecast, the model is assumed to be as follows:

yi,t+1 = α+ β′xi,t+1 + εi,t+1,

where εi,t+1 = ηi + ui,t+1. The BLUP forecasts are given as

ŷRE
i,T+1 = α̂RE + β̂

′
RExi,T+1 +

T σ̂2η
T σ̂2η + σ̂2u

¯̂εi, (S.19)

where ε̂i = T−1
∑T

t=1 ε̂it and ε̂it = yit − α̂RE − x′
itβ̂RE. α̂RE, and β̂RE are estimated by GLS

using

Σ̂
−1

= σ̂−2
u (MT + ρ̂P T )

where P T = IT −MT , ρ̂ = σ̂2u/(T σ̂
2
η + σ̂2u),

σ̂2u =
1

N(T − 1)−K

N∑
i=1

(yi − α̂i,FE −Xiβ̂FE)
′MT (yi − α̂i,FE −Xiβ̂FE)

σ̂2η =
1

N −K

N∑
i=1

(ȳi − β̂
′
FEx̄i)

2 − σ̂2u/T,

β̂RE =

[
1

NT

N∑
i=1

X ′
iMTXi +

ρ̂

N

N∑
i=1

(x̄i − x̄) (x̄i − x̄)′
]−1

×[
1

NT

N∑
i=1

X ′
iMTyi +

ρ̂

N

N∑
i=1

(x̄i − x̄) (ȳi − ȳ)′
]
,
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and

α̂RE = ȳ − β̂
′
REx̄,

where

x̄i = T−1
T∑
t=1

xi,t, x̄ = N−1
N∑
i=1

x̄i, ȳi = T−1
T∑
t=1

yit, ȳ = N−1
N∑
i=1

ȳi.

See Baltagi (2013, pp. 999–1001) and Pesaran (2015, pp. 646–649) for further details.

Combination of individual and pooled forecasts

ŷci,T+1 = ω̂∗
NT ŷi,T+1 + (1− ω̂∗

NT )ỹi,T+1,

where ŷi,T+1 and ỹi,T+1 are the individual and pooled forecasts in (S.13) and (S.16) with

weights

ω̂∗
NT =

∆̂NT

∆̂NT + T−1ĥNT

,

where ∆̂NT and ĥNT are given by (47) and (46).

Combination of individual and FE forecasts

y∗i,T+1(ω̂
∗
FE,NT ) = ω̂∗

FE,NT ŷi,T+1 + (1− ω̂∗
FE,NT )ŷi,T+1,FE,

where ŷi,T+1 and ŷi,T+1,FE are the individual and FE forecasts in (S.13) and (S.18) with the

weight

ω̂∗
FE,NT =

∆̂FE
NT

∆̂FE
NT + T−1ĥNT,β

.

∆̂FE
NT are ĥNT,β are given by (50) and (51).

Empirical Bayes forecast The empirical Bayes forecast using the estimator of Hsiao et al. (1999)
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is

ŷEB
i,T+1 = θ̂

′
i,EBwi,T+1,

where

θ̂
′
i,EB = (σ̂−2

i W ′
iW i + Ω̂

−1
θ )−1(σ̂−2

i W ′
iyi + Ω̂

−1
θ

¯̂
θ),

¯̂
θ =

1

N

N∑
i=1

θ̂i,T , σ̂2i = ε̂′iε̂i/(T −K),

Ω̂θ =
1

N

N∑
i=1

(θ̂i,T − ¯̂
θ)(θ̂i,T − ¯̂

θ)′,

and ε̂ = yi −W iθ̂i,T with θ̂i,T given in (S.14).

Hierarchical Bayesian forecast We apply the hierarchical Bayesian model of Lindley and Smith

(1972) which assumes εit ∼ iidN(0, σ2), using the following priors:

θi ∼ N(θ̄,Σθ),

θ̄ ∼ N(d,Sθ̄),

Σ−1
θ ∼ Wishart(νΣ, (νΣSΣ)

−1),

σ2 ∼ invGamma(νσ/2, νσs
2/2).

The Gibbs sampler uses the conditional posteriors (Gelfand et al., 1990) as set out below, where

|· denotes conditional on the other parameters in the Gibbs sampler, for rb = 1, 2, . . . , Rb, where

Rb denotes the number of random draws used in the Gibbs sampler:

• θi,rb |· ∼ N(bi,Si), where bi = Si

(
σ−2
rb−1W

′
iyi +Σ−1

θ, rb−1θ̄rb−1

)
,

and Si =
(
σ−2
rb−1W

′
iW i +Σ−1

θ, rb−1

)−1

• σ2rb |· ∼ invGamma
(
[NT + νσ]/2,

1
2

[∑N
i=1(yi −W iθi,rb)

′(yi −W iθi,rb) + νσs
2
])

• θ̄rb |· ∼ N(h,Sh), where h = Sh

(
Σ−1

θ,rb−1

∑N
i=1 θi,rb + S−1

θ̄
d
)
and Sh =

(
NΣ−1

θ,rb−1 + S−1
θ̄

)−1

• Σ−1
θ,rb

|· ∼ Wishart

(
N + νΣ,

[∑N
i=1

(
θi,rb − θ̄rb

) (
θi,rb − θ̄rb

)′
+ νΣSΣ

]−1
)
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Table S.4: Results for alternative priors in the applications

House price CPI
Priors: a, b, s2 SAR SARX AR AR-PC ARX

2,2,0.1 0.995 0.987 0.998 0.999 0.987
4,4,0.1 1.000 1.000 1.000 1.000 1.000
6,0,1 0.970 0.946 0.981 0.980 0.951

Note: The table reports the ratio of MSFEs for the hierarchical
Bayesian model for different priors. In the first columns are the priors,
where the first number is the exponent a for Sθ̄ = IK10a, the second
number the exponent b for SΣ = IK10b, and the final number the prior
for s2. For further details see the footnote of Table 6 and 9.

The Gibbs sampler draws iteratively from the conditional posterior distributions, starting with

the following initial values (rb = 0)

σ20 = ε̂′ε̂/(NT −K), ε̂ = (ε̂1, ε̂2, . . . , ε̂N )′, ε̂i = yi −W iθ̂i,T

θ̄0 =
1

N

N∑
i=1

θ̂i,T , and Σ−1
θ,0 =

1

N

N∑
i=1

(θ̂i,T − θ̄0)(θ̂i,T − θ̄0)
′.

Estimates from the Gibbs sampler are obtained from 1500 iterations with the first 500 discarded

as a burn-in sample. In each iteration, we calculate

ŷHB
i,T+1,rb

= θ̂
′
i,rb

wi,T+1, (S.20)

for i = 1, 2, . . . , N and the forecast is then ŷHB
i,T+1 =

1
Rb

∑Rb
rb=1 ŷ

HB
i,T+1,rb

.

We use the following hyperpriors: d = 0, Sθ̄ = IK106, SΣ = IK , νΣ = K, νσ = 0.1, and

s2 = 0.1, which are proper priors that are weakly informative and avoid the use of uninformative

priors that appear to be difficult to attain in hierarchical models (Gelman, 2006). Results for

alternative priors are reported in Table S.4. The results suggest that the choice of prior for

the error variance has relatively little influence, whereas the prior choices for the parameter

covariances can substantially alter the forecast accuracy.
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S.4 Additional Monte Carlo applications and empirical results

As a practical alternative to the combination forecasts in Section 4, which are based on estimates of

the optimal combination weights, forecast combinations using equal weights have a long history in

the literature (Timmermann, 2006). We therefore considered how this forecast combination scheme

performs both in the Monte Carlo simulations and for the empirical applications. As in the paper, we

separately consider combination schemes for the individual-pooled forecasts and for the individual-

FE forecasts.

Columns 3-8 of Tables S.5 and S.6 report results for the two DGPs in our Monte Carlo ex-

periments. Relative to the benchmark individual forecasts, the equal-weighted combination of the

individual-pooled forecasts performs well at lower levels of heterogeneity when the time-series di-

mension T is small. However, forecasts from this scheme quickly become inferior to the individual

forecasts as the level of parameter heterogeneity rises. This result is unsurprising: As the level of pa-

rameter heterogeneity increases, the pooled forecasts start to be dominated by the rising bias term

induced by parameter heterogeneity. The more sophisticated optimal combination scheme intro-

duced in the paper can adjust to this by reducing the weight on the pooled forecasts. However, the

equal-weighted forecast cannot adapt to the increasingly poor performance of the pooled forecasts

which is why we see the rise in the MSFE ratios for this scheme at higher levels of parameter het-

erogeneity. Moreover, comparing the results in Tables S.5 and S.6 to those from the main paper, we

see that even for the case with homogeneous parameters, the optimal combination scheme performs

better than the equal-weighted individual-pooled combination. The reason is that when the param-

eters are homogeneous, it is actually optimal to put a much higher weight on the pooled forecasts

than the equal-weighted scheme does and this is achieved by our optimal combination scheme.

The equal-weighted combination of the individual and FE forecasts performs a little worse than

the individual-pooled combination only under the scenario with homogenous parameters which of

course favors the pooled forecasts. However, as the level of parameter heterogeneity increases, the

equal-weighted individual-FE combination adapts much better than the individual-pooled combi-

nation and avoids MSFE-ratios that are notably higher than unity. This happens because the FE

forecasts can adapt to parameter heterogeneity in a way that the forecasts based on the pooled

estimates fail to do. Still, compared to the optimal combination weights introduced in the paper,
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using equal-weights leads to a notable deterioration in the performance of the individual-FE forecast

combination as the level of parameter heterogeneity goes up.

Tables S.7 and S.8 report the quantiles of the MSFE ratios. In the scenario with homogeneous

parameters, the quantiles are comparable, if slightly worse in the sense that the quantiles are shifted

to the right, than those of the forecasts based on estimated combination weights. However, as the

level of parameter heterogeneity increases, the distributions of ratios become relatively wider for the

equal-weighted combination scheme and the performance of these forecasts, particularly in the right

tail, is notably worse than that of the optimal combination scheme.

Overall, we conclude from these Monte Carlo simulations that the optimal forecast combination

scheme introduced in our paper produces more accurate forecasts that are notably more robust to

parameter heterogeneity than the equal-weighted combination schemes considered here.

Table S.9 shows the performance of the equal-weighted forecasts for the application to house price

inflation. For comparison, we also show the forecasting results for our optimal combination scheme.

In this application pooling beats individual forecasts, which suggests a low degree of parameter

heterogeneity. The equal-weighted forecast combinations perform correspondingly well. In fact, the

combination of individual and pooled forecasts has the lowest average MSFE, offers the most precise

forecasts for 10.2% (SAR model) and 14.9% (SARX) of MSAs and never produces the worst forecast.

This performance is marginally better than that of the optimal combination schemes with estimated

weights.

The quantiles of the ratios of MSFEs in Table S.10 reveal that the equal-weighted combined fore-

casts have a wider distribution than the forecasts based on the optimal combinations with estimated

weights. Hence, compared to our optimal forecast combinations the equal-weighted combination has

a higher chance of producing either very good forecasts (low MSFE ratios) or very poor forecasts(high

MSFE ratios) for individual units in the cross-section.

The results for the CPI application in Table S.11 show that in a similar fashion the equal-

weighted combination provides precise forecasts, which are more accurate, on average, than the

optimal forecast combination, though beaten by a small margin by the empirical Bayes forecasts.

Further, Table S.12 shows that, again, the distribution of MSFE ratios is wider that the correspond-

ing distribution using estimated weights.

Table S.13 shows the results from the panel and individual DM test statistics. For both applica-
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Table S.5: Monte Carlo results: panel AR, equal and oracle weighted combinations

aβ σ2
α Eq. w. (pool) Eq. w. (FE) Oracle w. (pool) Oracle w. (FE)

T 20 50 100 20 50 100 20 50 100 20 50 100

PR2 = 0.2
N = 50
0.0 0.0 0.892 0.968 0.985 0.928 0.982 0.992 0.856 0.957 0.980 0.904 0.976 0.990
0.0 0.5 0.938 1.019 1.035 0.928 0.982 0.992 0.939 0.993 0.998 0.904 0.976 0.990
0.5 0.5 0.957 1.039 1.055 0.934 0.988 0.998 0.950 0.995 0.999 0.923 0.988 0.997
1.0 1.0 1.011 1.099 1.116 0.954 1.008 1.017 0.968 0.997 0.999 0.954 0.996 0.999

N = 100
0.0 0.0 0.887 0.967 0.985 0.922 0.981 0.992 0.849 0.955 0.980 0.897 0.975 0.990
0.0 0.5 0.941 1.024 1.043 0.922 0.981 0.992 0.940 0.993 0.998 0.897 0.975 0.990
0.5 0.5 0.956 1.040 1.059 0.929 0.988 0.999 0.949 0.995 0.999 0.917 0.988 0.997
1.0 1.0 1.013 1.100 1.121 0.951 1.009 1.020 0.968 0.997 0.999 0.952 0.996 0.999

N = 1000
0.0 0.0 0.886 0.966 0.985 0.921 0.981 0.992 0.838 0.952 0.978 0.893 0.973 0.989
0.0 0.5 0.939 1.023 1.042 0.921 0.981 0.992 0.903 0.987 0.997 0.893 0.973 0.989
0.5 0.5 0.952 1.038 1.057 0.927 0.988 0.999 0.927 0.991 0.998 0.921 0.990 0.998
1.0 1.0 1.009 1.098 1.119 0.949 1.009 1.020 0.958 0.996 0.999 0.955 0.997 0.999

PR2 = 0.6
N = 50
0.0 0.0 0.883 0.965 0.984 0.923 0.981 0.992 0.843 0.954 0.979 0.900 0.975 0.989
0.0 0.5 0.910 0.991 1.008 0.923 0.981 0.992 0.904 0.986 0.996 0.900 0.975 0.989
0.5 0.5 0.932 1.010 1.027 0.934 0.992 1.002 0.932 0.991 0.998 0.928 0.991 0.998
1.0 1.0 0.977 1.060 1.077 0.959 1.021 1.032 0.959 0.997 0.999 0.958 0.997 0.999

N = 100
0.0 0.0 0.879 0.964 0.984 0.918 0.980 0.991 0.848 0.955 0.979 0.895 0.975 0.989
0.0 0.5 0.909 0.991 1.011 0.918 0.980 0.991 0.938 0.993 0.998 0.895 0.975 0.989
0.5 0.5 0.927 1.010 1.029 0.927 0.992 1.004 0.947 0.994 0.999 0.915 0.988 0.997
1.0 1.0 0.976 1.060 1.081 0.956 1.025 1.042 0.967 0.997 0.999 0.949 0.996 0.999

N = 1000
0.0 0.0 0.878 0.963 0.984 0.917 0.979 0.991 0.838 0.951 0.978 0.893 0.973 0.989
0.0 0.5 0.908 0.991 1.010 0.917 0.979 0.991 0.902 0.986 0.997 0.893 0.973 0.989
0.5 0.5 0.926 1.009 1.029 0.927 0.992 1.004 0.927 0.991 0.998 0.920 0.990 0.998
1.0 1.0 0.974 1.061 1.081 0.954 1.024 1.040 0.957 0.996 0.999 0.953 0.997 0.999

Note: ‘Eq. w.’ refer to combinations with equal weights. ‘Oracle w.’ refer to combinations
where the weights use the true parmeters θi in the DGP. For further details see the footnote
of Table 1.

tions, the panel DM test show significant improvements over the individual forecasts. For the house

price applications, somewhat fewer forecasts for MSAs are significantly better than the individual

forecast compared to what we find for the optimal combination scheme. For the CPI application,

in contrast, the pooled forecast with equal weights is significantly more precise than the benchmark

for slightly more series than under the optimal combination scheme.
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Table S.6: Monte Carlo results: panel ARX, equal weights combinations

aβ σ2
α Eq. w. (pool) Eq. w. (FE) Oracle w. (pool) Oracle w. (FE)

T 20 50 100 20 50 100 20 50 100 20 50 100

PR2 = 0.2
N = 50, ργx = 0
0.0 0.0 0.849 0.950 0.977 0.882 0.964 0.984 0.799 0.934 0.969 0.843 0.953 0.979
0.0 0.5 0.903 1.008 1.036 0.882 0.964 0.984 0.903 0.986 0.996 0.843 0.953 0.979
0.5 0.5 0.927 1.033 1.061 0.906 0.988 1.008 0.925 0.990 0.997 0.903 0.985 0.996
1.0 1.0 0.988 1.101 1.132 0.941 1.025 1.046 0.952 0.994 0.999 0.942 0.993 0.998
N = 50, ργx = 0.5
0.0 0.5 0.900 1.005 1.033 0.882 0.964 0.984 0.900 0.985 0.996 0.843 0.953 0.979
0.5 0.5 0.928 1.036 1.064 0.904 0.987 1.007 0.926 0.990 0.997 0.900 0.984 0.996
1.0 1.0 0.991 1.105 1.137 0.940 1.023 1.044 0.953 0.994 0.999 0.940 0.993 0.998
N = 100, ργx = 0
0.0 0.0 0.844 0.949 0.977 0.876 0.963 0.984 0.792 0.931 0.969 0.836 0.951 0.979
0.0 0.5 0.888 0.997 1.027 0.876 0.963 0.984 0.888 0.983 0.996 0.836 0.951 0.979
0.5 0.5 0.921 1.030 1.060 0.907 0.993 1.015 0.920 0.989 0.998 0.904 0.986 0.997
1.0 1.0 0.991 1.106 1.139 0.953 1.041 1.064 0.951 0.994 0.999 0.945 0.994 0.999
N = 100, ργx = 0.5
0.0 0.5 0.887 0.996 1.026 0.876 0.963 0.984 0.887 0.983 0.996 0.836 0.951 0.979
0.5 0.5 0.929 1.039 1.070 0.908 0.995 1.016 0.925 0.990 0.998 0.906 0.987 0.997
1.0 1.0 1.004 1.121 1.155 0.955 1.044 1.066 0.954 0.995 0.999 0.946 0.994 0.999
N = 1000, ργx = 0
0.0 0.0 0.840 0.948 0.976 0.872 0.963 0.984 0.786 0.931 0.968 0.830 0.950 0.978
0.0 0.5 0.891 1.005 1.034 0.872 0.963 0.984 0.892 0.985 0.996 0.830 0.950 0.978
0.5 0.5 0.926 1.039 1.068 0.903 0.993 1.014 0.922 0.990 0.998 0.900 0.986 0.997
1.0 1.0 0.999 1.119 1.151 0.948 1.041 1.063 0.953 0.994 0.999 0.942 0.993 0.999
N = 1000, ργx = 0.5
0.0 0.5 0.888 1.001 1.030 0.872 0.963 0.984 0.888 0.984 0.996 0.830 0.950 0.978
0.5 0.5 0.933 1.047 1.077 0.902 0.992 1.013 0.927 0.991 0.998 0.898 0.985 0.997
1.0 1.0 1.008 1.129 1.162 0.947 1.039 1.062 0.955 0.995 0.999 0.941 0.993 0.999

PR2 = 0.6
N = 50, ργx = 0
0.0 0.0 0.841 0.948 0.975 0.877 0.963 0.983 0.788 0.931 0.967 0.839 0.952 0.978
0.0 0.5 0.870 0.975 1.002 0.877 0.963 0.983 0.855 0.973 0.993 0.839 0.952 0.978
0.5 0.5 0.904 1.006 1.034 0.908 0.991 1.011 0.904 0.985 0.996 0.904 0.985 0.996
1.0 1.0 0.963 1.069 1.099 0.949 1.036 1.059 0.944 0.993 0.998 0.945 0.993 0.999
N = 50, ργx = 0.5
0.0 0.5 0.869 0.973 1.001 0.877 0.963 0.983 0.853 0.972 0.992 0.839 0.952 0.978
0.5 0.5 0.902 1.004 1.033 0.906 0.990 1.010 0.902 0.985 0.996 0.902 0.985 0.996
1.0 1.0 0.957 1.064 1.095 0.945 1.034 1.058 0.941 0.994 0.998 0.941 0.993 0.999
N = 100, ργx = 0
0.0 0.0 0.835 0.946 0.975 0.871 0.961 0.983 0.781 0.927 0.967 0.832 0.948 0.978
0.0 0.5 0.862 0.971 1.001 0.871 0.961 0.983 0.844 0.971 0.993 0.832 0.948 0.978
0.5 0.5 0.901 1.009 1.040 0.906 0.997 1.020 0.901 0.986 0.997 0.904 0.986 0.997
1.0 1.0 0.971 1.083 1.116 0.958 1.056 1.085 0.945 0.993 0.998 0.946 0.994 0.999
N = 100, ργx = 0.5
0.0 0.5 0.861 0.970 1.000 0.871 0.961 0.983 0.842 0.970 0.992 0.832 0.948 0.978
0.5 0.5 0.904 1.012 1.043 0.907 0.999 1.022 0.904 0.986 0.997 0.906 0.987 0.997
1.0 1.0 0.976 1.089 1.122 0.961 1.060 1.089 0.947 0.994 0.998 0.948 0.994 0.999
N = 1000, ργx = 0
0.0 0.0 0.834 0.945 0.975 0.869 0.960 0.983 0.779 0.927 0.967 0.829 0.948 0.977
0.0 0.5 0.863 0.973 1.002 0.869 0.960 0.983 0.846 0.972 0.993 0.829 0.948 0.977
0.5 0.5 0.902 1.011 1.041 0.903 0.996 1.019 0.902 0.986 0.997 0.901 0.986 0.997
1.0 1.0 0.969 1.083 1.115 0.955 1.056 1.084 0.944 0.993 0.998 0.944 0.994 0.999
N = 1000, ργx = 0.5
0.0 0.5 0.861 0.971 1.001 0.869 0.960 0.983 0.843 0.971 0.992 0.829 0.948 0.977
0.5 0.5 0.902 1.011 1.041 0.902 0.996 1.018 0.902 0.986 0.997 0.900 0.986 0.997
1.0 1.0 0.967 1.082 1.114 0.953 1.055 1.082 0.944 0.994 0.998 0.943 0.994 0.999

Note: See footnotes of Tables 1 and S.5 for details.
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Table S.9: House price inflation forecasts, including equal-weighted combinations

Ratio of Freq. beating Freq. smallest Freq. largest
Forecast ave. MSFE benchmark MSFE MSFE
methods SAR SARX SAR SARX SAR SARX SAR SARX

Individual 3.253 3.248 – – 0.066 0.047 0.613 0.384

Pooled 0.969 0.990 0.660 0.417 0.213 0.086 0.202 0.365
RE 0.973 0.993 0.685 0.428 0.105 0.041 0.014 0.014
FE 0.983 1.002 0.682 0.450 0.191 0.061 0.160 0.229
Emp.Bayes 0.961 0.935 0.884 0.878 0.130 0.215 0.000 0.003
Hier.Bayes 0.984 0.967 0.859 0.840 0.025 0.135 0.008 0.006
Comb. (pool) 0.963 0.944 0.865 0.859 0.039 0.069 0.003 0.000
Comb. (FE) 0.970 0.948 0.867 0.865 0.033 0.030 0.000 0.000
Comb. (eq.weight,pool) 0.949 0.923 0.845 0.768 0.105 0.157 0.000 0.000
Comb. (eq.weight,FE) 0.957 0.930 0.862 0.757 0.094 0.157 0.000 0.000

Note: See the footnotes of Tables 1, 6 and S.5 for further details.

Table S.10: Quantiles of ratio of MSFEs for house price inflation over MSAs, equal-weighted com-
binations

Quantiles 0.01 0.05 0.10 0.50 0.90 0.95 0.99

House prices: SAR

Comb. (eq.weight,pool) 0.853 0.884 0.906 0.962 1.010 1.025 1.065
Comb. (eq.weight,FE) 0.861 0.899 0.914 0.963 1.010 1.033 1.052

House prices: SARX

Comb. (eq.weight,pool) 0.796 0.835 0.862 0.957 1.031 1.053 1.101
Comb. (eq.weight,FE) 0.811 0.840 0.866 0.959 1.025 1.047 1.097

Note: The table reports the quantiles of the distribution of MSFE ratios across MSAs. See
Tables 7 and S.7 for further details.

S.5 Choice of initial condition

Tables S.14 to S.17 repeat the Monte Carlo experiments reported in Tables 1 to 2 for alternative

values of κ to check whether initializing the DGP out of equilibrium matters for the results. We

consider two values, namely κ = 1/2 and κ = 2. For efficiency, we restrict ourselves to N = 50 and

100 and omit the hierarchical Bayesian forecasts. The results indicate that the choice of κ has a

mild influence on the MSFE mainly when T = 20 but that the choice of initial condition does not

have a large impact on the overall conclusions from the Monte Carlo experiments.
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S-20

Table S.12: Quantiles of ratio of MSFEs for CPI inflation over subindices, equal-weighted combina-
tions

Quantiles 0.01 0.05 0.10 0.50 0.90 0.95 0.99

CPI: AR

Comb. (eq.weight,pool) 0.745 0.838 0.900 0.970 1.055 1.195 1.367
Comb. (eq.weight,FE) 0.759 0.843 0.904 0.968 1.011 1.054 1.169

CPI: AR-PC

Comb. (eq.weight,pool) 0.731 0.834 0.891 0.968 1.079 1.201 1.312
Comb. (eq.weight,FE) 0.743 0.839 0.892 0.962 1.007 1.030 1.095

CPI: ARX

Comb. (eq.weight,pool) 0.719 0.793 0.852 0.935 1.062 1.263 1.433
Comb. (eq.weight,FE) 0.733 0.809 0.867 0.935 1.022 1.108 1.439

Note: The table reports the quantiles of the distribution of ratios of MSFEs across subindices.
See Tables 10 and S.5 for further details.

Table S.13: Diebold-Mariano test statistics: equal-weighted combinations

Comb(eq.weights,Pool) Comb(eq.weights,FE)

House Prices: SAR

Panel DM −14.876 −12.825
DM< −1.96 77 77
Insign. 283 283
DM> 1.96 2 2

House Prices: SARX

Panel DM −15.674 −14.525
DM< −1.96 72 69
Insign. 289 292
DM> 1.96 1 1

CPI: AR

Panel DM −6.606 −5.665
DM< −1.96 28 23
Insign. 71 78
DM> 1.96 2 0

CPI: AR-PC

Panel DM −6.793 −5.887
DM< −1.96 30 32
Insign. 70 69
DM> 1.96 1 0

CPI: ARX

Panel DM −11.529 −10.762
DM< −1.96 59 59
Insign. 41 42
DM> 1.96 1 0

Note: See footnotes of Table 8 and S.5 for details.
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