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Abstract

RNA design shows growing applications in synthetic biology and therapeutics, driven by the crucial role of

RNA in various biological processes. A fundamental challenge is to find functional RNA sequences that satisfy

given structural constraints, known as the inverse folding problem. Computational approaches have emerged

to address this problem based on secondary structures. However, designing RNA sequences directly from 3D

structures is still challenging, due to the scarcity of data, the non-unique structure-sequence mapping, and

the flexibility of RNA conformation. In this study, we propose RiboDiffusion, a generative diffusion model

for RNA inverse folding that can learn the conditional distribution of RNA sequences given 3D backbone

structures. Our model consists of a graph neural network-based structure module and a Transformer-based

sequence module, which iteratively transforms random sequences into desired sequences. By tuning the

sampling weight, our model allows for a trade-off between sequence recovery and diversity to explore more

candidates. We split test sets based on RNA clustering with different cut-offs for sequence or structure

similarity. Our model outperforms baselines in sequence recovery, with an average relative improvement of

11% for sequence similarity splits and 16% for structure similarity splits. Moreover, RiboDiffusion performs

consistently well across various RNA length categories and RNA types. We also apply in-silico folding to

validate whether the generated sequences can fold into the given 3D RNA backbones. Our method could

be a powerful tool for RNA design that explores the vast sequence space and finds novel solutions to 3D

structural constraints.

1. Introduction

The design of RNA molecules is an emerging tool in synthetic

biology (Chappell et al., 2015; McKeague et al., 2016) and

therapeutics (Zhu et al., 2022), enabling the engineering of specific

functions in various biological processes. There have been various

explorations into RNA-based biotechnology, such as translational

RNA regulators for gene expression (Laganà et al., 2015; Chappell

et al., 2017), aptamers for diagnostic or therapeutic applications

(Espah Borujeni et al., 2016; Findeiß et al., 2017), and catalysis

by ribozymes (Dotu et al., 2014; Park et al., 2019). While the

tertiary structure determines how RNA molecules function, one

fundamental challenge in RNA design is to create functional RNA

sequences that can fold into the desired structure, also known as

the inverse RNA folding problem (Hofacker et al., 1994).

Most early computational methods for inverse RNA folding

focus on folding into RNA secondary structures (Churkin et al.,

2018). Some programs use efficient local search strategies to

optimize a single seed sequence for the desired folding properties,

guided by the energy function (Hofacker et al., 1994; Andronescu

et al., 2004; Busch and Backofen, 2006; Garcia-Martin et al., 2013).

Others attempt to solve the problem globally by modeling the

sequence distribution or directly manipulating diverse candidates

(Taneda, 2010; Kleinkauf et al., 2015; Yang et al., 2017; Runge

et al., 2019). However, without considering 3D structures of

RNA, these methods cannot meet accurate functional structure

constraints, since RNA secondary structures only partially

determine their tertiary structures (Vicens and Kieft, 2022). The

pioneering work (Yesselman and Das, 2015) applies a physically-

based approach to optimize RNA sequences and match the fixed

backbones, but it is still constrained by the local design strategy

and computational efficiency.

Recent advances in deep learning and the accumulation of

biomolecular structural data have enabled computational methods

to model mapping between sequences and 3D structures with

extraordinary performance, as demonstrated by remarkable results

in protein 3D structure prediction (Jumper et al., 2021; Lin

et al., 2023) and inverse design (Dauparas et al., 2022). Inspired

by this, the development of geometric learning methods on

RNA structures has received increasing research interest. On the

one hand, many studies have explored RNA tertiary structure
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prediction using machine learning models with limited data (Shen

et al., 2022; Baek et al., 2022; Li et al., 2023). On the other

hand, although deep learning has a promising potential to narrow

down the immense sequence space for inverse folding, developing

an appropriate model for RNA inverse folding remains an open

problem, as it requires capturing the geometric features of flexible

RNA conformations, handling the non-unique mappings between

structures and sequences, and providing alternative options for

different design preferences.

In this study, we introduce RiboDiffusion, a generative diffusion

model for RNA inverse folding based on tertiary structures.

We formulate the RNA inverse folding problem as learning the

sequence distribution conditioned on fixed backbone structures,

using a generative diffusion model (Yang et al., 2022). Unlike

previous methods that predict the most probable sequence for

a given backbone (Ingraham et al., 2019; Jing et al., 2021; Gao

et al., 2023; Joshi et al., 2023), our method captures multiple

mappings from 3D structures to sequences through distribution

learning. With a generative denoising process for sampling,

our model iteratively transforms random initial RNA sequences

into desired candidates under tertiary structure conditioning.

This global iterative generation distinguishes our model from

autoregressive models and local updating methods, enabling

it to better search for sequences that satisfy global geometric

constraints. We parameterize the diffusion model with a cascade of

a structure module and a sequence module, to capture the mutual

dependencies between sequence and structure. The structure

module, based on graph neural networks, extracts SE(3)-invariant

geometrical features from 3D fixed RNA backbones, while the

sequence module, based on Transformer-liked layers, captures the

internal correlations of RNA primary structures. To train the

model, we randomly drop the structural module to learn both

the conditional and unconditional RNA sequence distribution. We

also mix the conditional and unconditional distributions in the

sampling procedures, to balance sequence recovery and diversity

for more candidates.

We use RNA tertiary structures from PDB database (Bank,

1971) to construct the benchmark dataset and augment it with

predicted structures from the RNA structure prediction model

(Shen et al., 2022). We split test sets based on RNA clustering

using different sequence or structure similarity cutoffs. Our model

achieves an 11% higher recovery rate than the machine learning

baselines for benchmarks based on sequence similarity, and 16%

higher for benchmarks based on structure similarity. RiboDiffusion

also performs consistently well across different RNA lengths and

types. Further analysis reveals its great performance for cross-

family and in-silico folding. Our method could be a powerful tool

for RNA design, exploring a wide sequence space and finding novel

solutions to 3D structural constraints.

2. Methodology

This section will explain RiboDiffusion in detail - a deep generative

model for RNA inverse folding based on fixed 3D backbones.

The overview is shown in Fig. 1. We will first introduce the

preliminaries of diffusion models and our formulations of the RNA

inverse folding problem. We will then describe the design of neural

networks to parameterize the diffusion model and explain the

sequence sampling procedures.

2.1. Preliminary and Formulation

2.1.1. Diffusion Model

As a powerful genre of generative models, diffusion models (Sohl-

Dickstein et al., 2015) have been successfully applied to the

distribution learning of diverse data, including images (Ho et al.,

2020; Song et al., 2021), graphs (Huang et al., 2022, 2023a), and

molecular geometry (Watson et al., 2023; Huang et al., 2023b). As

the first step of setting up the diffusion model, a forward diffusion

process is constructed to perturb data with a sequence of noise.

This converts the data distribution to a known prior distribution.

With random variables x0 ∈ Rd and a forward process {xt}t∈[0,T ],

a Gaussian transition kernel is set as

q0t(xt|x0) = N (xt|αtx0, σ
2
t I) , (1)

where αt, σt ∈ R+ are time-dependent differentiable functions

that are usually chosen to ensure a strictly decreasing signal-to-

noise ratio (SNR) α2
t/σ

2
t and the final distribution qT (xT ) ≈

N (0, I) (Kingma et al., 2021). Diffusion models can generate

new samples starting from the prior distribution, after learning

to reverse the forward process. Such the reverse-time denoising

process from time T to time 0 can be described by a stochastic

differential equation (SDE) (Yang et al., 2022) as

dxt = [f(t)xt − g2(t)∇x log pt(xt)]dt + g(t)dw̄t , (2)

where ∇x log pt(xt) is the so-called score function and w̄t is the

standard reverse-time Wiener process. While f(t) = d log αt

dt
is the

drift coefficient of SDEs, g2(t) =
dσ2

t

dt
−2d log αt

dt
σ2
t is the diffusion

coefficient (Kingma et al., 2021). Deep neural networks are used

to parameterize the score function variants in two similar forms,

i.e., the noise prediction model ϵθ(xt, t) and the data prediction

model dθ(xt, t). In this study, we focus on the parameterization

of the widely used data prediction model to directly predict the

original data x0 from xt.

2.1.2. RNA Inverse Folding

Inverse folding aims to explore sequences that can fold into a

predefined structure, which is specified here as the fixed sugar-

phosphate backbone of an RNA tertiary structure. For an RNA

molecule with N nucleotides consisting of four different types

A (Adenine), U (Uracil), C (Cytosine), and G (Guanine),

its sequence can be defined as S ∈ {A,U,C,G}N . Among

the backbone atoms, we choose one three-atom coarse-grained

representation including the atom coordinates of C4’, C1’, N1

(pyrimidine) or N9 (purine) for every nucleotide. The simplified

backbone structure can be denoted as X ∈ R3N×3. Note that

there are various alternative schemes for coarse-graining RNA

3D backbones, including using more atoms to obtain precise

representations (Dawson et al., 2016). We explore a concise

representation with regular structural patterns (Shen et al., 2022).

Formally, we consider the RNA inverse folding problem as

modeling the conditional distribution p(S|X), i.e., the sequence

distribution conditioned on RNA backbone structures. We

establish a diffusion model to learn the conditional sequence

distribution. To take advantage of the convenience of defining

diffusion models in continuous data spaces (Chen et al., 2023;

Dieleman et al., 2022), discrete nucleotide types in the sequence

are represented by one-hot encoding and continuousized in the real

number space as S ∈ R4N . The continuous-time forward diffusion

process in the sequence space R4N can be described by the forward
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Fig. 1: Overview of RiboDiffusion for tertiary structure-based RNA inverse folding. We construct a dataset with experimentally determined

RNA structures from PDB, supplemented with additional structures predicted by an RNA structure prediction model. We cluster RNA

with different cut-offs for sequence or structure similarity and make cross-split to evaluate models. RiboDiffusion trains a neural network

with a structure module and a sequence module to recover the original sequence from a noisy sequence and a coarse-grained RNA backbone

extracted from the tertiary structure. RiboDiffusion then uses the trained network to iteratively refine random initial sequences until

they match the target structure. We present a comprehensive evaluation and analysis of the proposed method.

SDE with t ∈ [0, T ] as dSt = f(t)Stdt + g(t)dw. Under this

forward SDE, the original sequence at time t = 0 is gradually

corrupted by adding Gaussian noise. With the linear Gaussian

transition kernel derived from the forward SDE in Eq. (1) (Yang

et al., 2022), we can conveniently sample St = αt + σtϵS at any

time t for training, where ϵS is Gaussian noise in the sequence

space. For the generative denoising process, the corresponding

reverse-time SDE from time T to 0 can be derived from Eq. (2) as

dSt = [f(t)− g2(t)∇S log pt(St|X)]dt + g(t)d(w̄t) , (3)

where pt(St|X) is the marginal distribution of sequences given

X, and the score function ∇S log pt(St|X) represents the gradient

field of the logarithmic marginal distribution.

Once the score function is parameterized, we can numerically

solve this reverse SDE to convert random samples from the

prior distribution N (0, I) into the desired sequences. We

establish a data prediction model to achieve the score function

parameterization, learning to reverse the forward diffusion process.

Specifically, we feed the noised sequence data St, the log signal-to-

noise ratio λt = log(α2
t/σ

2
t ), and the conditioning RNA backbone

structures X to the data prediction model dθ(St, λt,X). We

optimize the data prediction model with a simple weighted squared

error objective function:

min
θ

Et{
√

αt

σt
ES0,XESt|S0

||dθ(St, λt,X)− S0||22} , (4)

which can be considered as optimizing a weighted variational lower

bound on the data log-likelihood or a form of denoising score

matching (Ho et al., 2020; Song et al., 2021; Kingma et al., 2021).

2.2. Model Architecture

The architecture design of the data prediction model largely

determines the diffusion learning quality of the diffusion model.

We propose a two-module model to predict the original nucleotide

types: a structure module to capture geometric features and a

sequence module to capture intra-sequential correlation.

2.2.1. Structure Module

Geometric deep learning models aim to extract equivariant

or invariant features from 3D data and achieve impressive

performance in the protein inverse folding task (Ingraham et al.,

2019; Jing et al., 2021; Gao et al., 2023). Our structure module

is constructed based on the GVP-GNN architecture (Jing et al.,

2021) and adapted for RNA backbone structures.

The fixed RNA backbone is first represented as a geometric

graph G = (V, E) where each node vi ∈ V corresponds to a

nucleotide and connects to its top-k nearest neighbors according

to the distance of C1’ atoms. The scalar and vector features

are extracted from 3D coordinates as node and edge attributes

in graphs, which describe the local geometry of nucleotides and

their relative geometry. Specifically, the scalar node features in

nucleotides are obtained from dihedral angles, while the vector

node features consist of forward and reverse vectors of sequential

C1’ atoms, as well as the local orientation vectors of C1’ to

C4’ and N1/N9. The initial embedding of each edge consists of

its connected C1’ atom’s direction vector, Gaussian radial basis

encoding for their Euclidean distance, and sinusoidal position

encoding (Vaswani et al., 2017) of the relative distance in the

sequence. In addition to geometry information, we also append

the corrupted one-hot encoding of nucleotide types St as the
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Algorithm 1 RiboDiffusion Training.

1: t ∼ U(0, 1], S0,X ∼ Training Set

2: St ∼ N (St|αtS0, σ2
t I), λt = log(α2

t/σ
2
t ), S̃0 ← 0

3: if Uniform(0, 1.0) < 0.5 then ▷ Self Conditioning

4: S̃0 ← dθ([St, S̃0], λt,X)

5: S̃0 ← StopGradient(S̃0)

6: end if

7: if Uniform(0, 1.0) < 0.4 then ▷ Drop Structure Condition

8: X ← 0

9: end if

10: Minimize
√

αt

σt
[||dθ([St, S̃0], λt,X)− S0||22]

Algorithm 2 RNA inverse folding via RiboDiffusion.

Require: time schedule {ti}Mi=0, RNA backbone coordinates X

1: S̃0 ← 0

2: St0 ← ST ∼ N (0, I)

3: for i← 1 to M do

4: t← ti−1, s← ti, λt ← log(α2
t/σ

2
t )

5: αt|s ← αt/αs, σ2
t|s ← σ2

t − α2
t|sσ

2
s

6: S̃0 ← dθ([St, S̃0], λt,X)

7: S̄s ← αt|sσ
2
s

σ2
t

St +
αsσ

2
t|s

σ2
t

S̃0

8: Sϵ ∼ N (0, I)

9: Ss ← S̄s +
σt|sσs

σt
Sϵ

10: end for

11: return S̄tM

node scalar features. Furthermore, inspired by the widely used

self-conditioning technique in diffusion models (Chen et al., 2023;

Watson et al., 2023; Huang et al., 2023b), the previously predicted

sequence output, denoted as S̃0, is also considered as node

embeddings to enhance the utilization of model capacity. To

update the node embeddings, the nucleotide graph employs a

standard message passing technique (Gilmer et al., 2017). This

involves combining the neighboring nodes and edges through GVP

layers, where scalar and vector features interact via gating to

create messages. The resulting messages are then transmitted

across the graph to update scalar and vector node representations.

2.2.2. Sequence Module

The sequential correlation in RNA primary structures is crucial

for inverse folding and to obtain high-quality RNA sequences

even with imprecise 3D coordinates. This concept is applicable

in the inverse folding of proteins (Hsu et al., 2022; Zheng et al.,

2023). The sequence module takes in f -dimensional nucleotide-

level embeddings h0 ∈ RN×f as tokens, which consists of SE(3)-

invariant scalar node representations from the structure module

and corrupted sequence data. During training, we randomly add

self-conditioning sequence data similar to those of the structure

module and drop structural features to model both the conditional

and unconditional sequence distributions for further application.

Our sequence module architecture is modified from the

Transformer block (Vaswani et al., 2017) to inject diffusion

context, log-SNR λ, or other potential conditional features (e.g.

RNA types) (Dhariwal and Nichol, 2021; Peebles and Xie, 2023).

The context input C affects sequence tokens in the form of

adaptive normalization and activation layers, which are denoted

as adaLN and act functions:

adaLN(h,C) = (1 + MLP1(C)) · LN(h) + MLP2(C),

act(h,C) = MLP3(C) · h,
(5)

where LN(·) is the layer normalization and MLP(·) is a

multilayer perception to learn shift and scale parameters. The l-th

Transformer block is defined as follows

ml = MHA(adaLN(hl, λt)) ,

hl+1′
= act(ml, λt) + hl,

hl+1 = act(FFN(adaLN(hl+1′
, λt)), λt) + hl+1′

,

(6)

where MHA(·) is the multi-head attention layer and FFN(·) is

the Feedforward neural network (Vaswani et al., 2017). Finally,

the sequence module output hL is projected to nucleotide one-hot

encodings via an extra MLP. The detailed training procedure is

referred to as Algorithm 1.

2.3. Sequence Sampling

To generate RNA sequences that are likely to fold into the given

backbone, we construct a generative denoising process based on

the parameterized reverse-time SDE with the optimized data

prediction model dθ , as described in Eq. (3). Various numerical

solvers for the SDE can be employed for sampling, such as

ancestral sampling, the Euler-Maruyama method, etc. We apply

convenient ancestral sampling combined with the data prediction

model and self-conditioning to generate sequences. Algorithm 2

outlines the specific sampling procedure. For more details on

the noise schedule parameters, including αt and σt, refer to

(Kingma et al., 2021). We intuitively explain the denoising process

as follows: we start by sampling noisy data from a Gaussian

distribution that represents a random nucleotide sequence, and

we iteratively transform this data towards the desired candidates

under the condition of the given RNA 3D backbones.

Exploring novel RNA sequences that fold into well-defined

3D conformations distinct from the natural sequence is also an

essential goal for RNA design, as it has the potential to introduce

new functional sequences. This task not only requires the model

to generate sequences that satisfy folding constraints but also to

increase diversity for subsequent screening. During the generative

denoising process, our model can balance the proportion of

unconditional and conditional sequence distributions by adjusting

the output of the data prediction model. Let w be the conditional

scaling weight, and the data prediction model can be modified as

d̃θ(St, λt,X) = wdθ(St, λt,X) + (1− w)dθ(St, λt,0). (7)

Setting w = 1 is the original conditional data prediction model

while decreasing w < 1 weakens the effect of conditional

information and strengthens the sequence diversity. In this way,

we achieve a trade-off between recovering the original sequence

and ensuring diversity. The distribution weighting technique is

also used in diffusion models for text-to-image generation (Ho and

Salimans, 2022; Saharia et al., 2022).

3. Results

We comprehensively evaluate and analyze RiboDiffusion for

tertiary structure-based RNA inverse folding. Additional results

can be found in supplemental materials. The source code is

provided at https://github.com/ml4bio/RiboDiffusion.
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Table 1. Recovery rate (%) comparison across six different settings. The average and standard deviation values of model performance on four random-split

non-overlapping test sets are reported. Mean recovery rates are reported for short (L<=50nt), medium (50nt<L<=100nt), and long (L>100nt) RNA.

Seq. 0.8 : sequence similarity-based split with 0.8 cluster threshold. Struct. 0.6 : structure similarity-based split with 0.6 cluster threshold.

Methods
Seq 0.8 Struct. 0.6

Mean Median Short Medium Long Mean Median Short Medium Long

RNAinverse 25.92± 1.1 25.37± 1.0 25.99± 2.0 24.98± 0.8 27.54± 1.4 24.94± 0.6 24.24± 0.5 24.68± 0.7 24.98± 1.0 26.15± 0.9

MCTS-RNA 25.75± 0.3 25.61± 0.1 25.37± 0.4 26.15± 0.5 25.86± 0.2 25.81± 0.5 25.55± 0.6 25.38± 0.5 26.19± 0.6 25.86± 0.9

LEARNA 24.80± 0.2 24.55± 0.3 24.81± 0.4 24.86± 0.2 24.41± 1.0 24.96± 0.2 24.43± 0.4 24.88± 0.5 25.15± 0.5 24.36± 0.6

MetaLEARNA 29.10± 0.6 29.09± 0.5 27.43± 1.5 29.46± 0.7 32.40± 0.9 27.83± 2.8 27.95± 2.5 25.53± 1.8 29.51± 0.6 30.75± 4.5

gRNAde 42.67± 5.3 43.03± 6.0 36.25± 2.0 44.86± 4.9 46.06± 6.1 43.46± 2.2 43.37± 2.7 38.01± 1.4 49.82± 2.7 41.24± 3.1

PiFold 50.03± 4.7 50.32± 6.0 41.34± 3.3 53.20± 3.7 54.75± 5.9 47.89± 5.4 48.76± 6.6 40.13± 1.0 54.95± 5.3 45.62± 7.7

StructGNN 51.29± 5.9 52.40± 8.0 42.74± 2.5 54.45± 7.1 54.44± 7.2 55.20± 6.9 54.94± 8.6 46.36± 1.0 63.86± 8.5 48.48± 11.3

GVP-GNN 51.66± 4.9 53.48± 6.4 42.70± 2.4 56.20± 5.7 53.30± 5.7 53.76± 5.4 54.02± 5.9 45.80± 0.7 62.28± 7.5 47.39± 9.0

RiboDiffusion 57.32± 4.1 58.79± 4.9 52.01± 3.1 59.95± 3.4 58.91± 5.7 66.50± 5.3 66.72± 5.8 61.51± 1.4 73.89± 8.4 57.98± 7.8

Methods
Seq 0.6 Struct 0.5

Mean Median Short Medium Long Mean Median Short Medium Long

RNAinverse 25.35± 0.5 24.30± 0.6 25.66± 0.6 25.48± 1.8 27.76± 2.1 25.82± 0.6 24.79± 0.9 25.38± 1.1 25.39± 1.0 27.69± 1.6

MCTS-RNA 25.81± 0.2 25.67± 0.2 25.29± 0.7 26.22± 0.5 26.29± 0.6 25.93± 0.4 25.47± 0.4 25.49± 0.5 26.28± 0.7 26.06± 0.6

LEARNA 24.93± 0.1 24.78± 0.1 24.92± 0.2 25.04± 0.6 24.34± 1.0 25.00± 0.2 24.42± 0.6 25.23± 0.3 24.64± 0.5 24.02± 1.2

MetaLEARNA 29.07± 3.2 29.89± 3.0 25.99± 2.4 29.81± 0.4 33.89± 3.3 28.13± 3.5 28.18± 3.5 25.81± 2.0 29.54± 0.9 30.87± 3.5

gRNAde 47.28± 4.3 49.59± 5.4 37.60± 1.7 48.66± 8.9 47.34± 3.5 43.36± 6.4 43.61± 7.6 36.82± 1.5 47.06± 6.5 41.74± 9.0

PiFold 46.74± 2.9 48.54± 3.9 37.11± 1.6 47.35± 4.4 51.32± 5.0 49.22± 3.0 50.06± 3.8 42.48± 3.0 53.51± 3.6 46.90± 5.3

StructGNN 54.23± 4.6 57.97± 7.0 41.49± 1.7 56.09± 6.9 53.32± 11.0 52.99± 8.6 51.81± 10.7 44.56± 2.4 59.33± 8.3 45.06± 14.3

GVP-GNN 54.27± 3.9 57.60± 5.6 42.54± 1.9 56.17± 5.8 54.20± 9.2 50.91± 5.7 50.37± 6.9 44.74± 2.0 56.51± 7.1 44.21± 9.5

RiboDiffusion 59.06± 2.8 61.84± 4.2 50.68± 2.1 59.66± 4.0 59.79± 7.9 60.48± 6.6 59.31± 7.9 55.40± 3.8 65.69± 9.0 51.14± 10.5

Methods
Seq 0.4 Struct 0.4

Mean Median Short Medium Long Mean Median Short Medium Long

RNAinverse 25.53± 0.7 24.79± 1.0 25.29± 0.4 26.18± 1.7 27.27± 1.8 25.54± 0.5 24.47± 0.6 25.36± 1.0 24.94± 0.7 27.08± 1.9

MCTS-RNA 25.97± 0.0 25.86± 0.2 25.44± 0.3 26.48± 0.3 26.34± 0.7 25.81± 0.4 25.30± 0.3 25.27± 0.5 26.17± 0.6 25.86± 1.0

LEARNA 25.03± 0.1 24.55± 0.3 25.16± 0.1 24.84± 0.4 25.01± 1.9 25.05± 0.1 24.62± 0.5 25.21± 0.2 24.70± 0.6 24.02± 1.2

MetaLEARNA 28.94± 1.1 29.54± 2.3 25.83± 2.2 29.94± 0.5 35.36± 2.8 28.14± 3.3 28.31± 3.2 25.84± 1.9 29.45± 0.6 30.01± 4.2

gRNAde 43.58± 7.6 45.41± 10.0 36.02± 2.6 43.91± 2.0 46.84± 12.5 44.00± 5.7 44.10± 7.1 37.24± 1.3 48.01± 5.6 41.74± 8.9

PiFold 47.41± 5.0 49.00± 6.7 37.64± 1.8 50.38± 4.7 52.11± 9.8 49.84± 2.7 50.61± 3.8 42.39± 2.9 54.33± 3.5 45.92± 6.3

StructGNN 50.40± 6.7 52.57± 10.8 41.03± 1.5 51.98± 4.6 53.33± 13.9 54.65± 7.8 53.98± 9.7 45.39± 2.5 61.35± 7.0 44.62± 14.4

GVP-GNN 50.55± 4.7 52.59± 7.0 41.77± 0.9 53.73± 5.6 51.48± 9.3 52.29± 5.1 51.84± 6.6 45.26± 1.9 58.26± 5.9 44.04± 9.5

RiboDiffusion 57.24± 5.0 59.94± 7.7 50.06± 2.4 58.33± 4.5 58.85± 11.4 62.13± 6.0 61.09± 7.6 56.48± 3.9 67.94± 7.7 50.36± 10.9

3.1. Dataset Construction

We gather a dataset of RNA tertiary structures from the

PDB database for RNA inverse folding. The dataset contains

individual RNA structures and single-stranded RNA structures

extracted from complexes. After filtering based on sequence

lengths ranging from 20 to 280, there is a total of 7.322 RNA

tertiary structures and 2, 527 unique sequences. In addition to

experimentally determined data, we construct augment training

data by predicting structures with RhoFold (Shen et al., 2022).

The structures predicted from RNAcentral sequences (Sweeney

et al., 2019) are filtered by pLDDT to keep only high-quality

predictions, resulting in 17, 000 structures.

To comprehensively evaluate models, we divide the structures

determined by experiments into training, validation, and test sets

based on sequence similarity and structure similarity with different

clustering thresholds. We use PSI-CD-HIT (Fu et al., 2012)

to cluster sequences based on nucleotide similarity. We set the

threshold at 0.8/0.6/0.4 and obtain 1, 252/1, 157/1, 114 clusters,

respectively. For structure similarity clustering, we calculate the

TM-score matrix using US-align (Zhang et al., 2022) and apply

the agglomerative clustering algorithm from scipy (Virtanen et al.,

2020) on the similarity matrix. We achieve 2, 036/1, 659/1, 302

clusters with TM-score thresholds of 0.6/0.5/0.4. We randomly

split the clusters into three groups: 15% for testing, 10% for

validation, and the remaining for training. We perform 4 random

splits with non-overlapping testing and validation sets for each

split strategy to evaluate models. The augmented training data

is also filtered strictly based on the similarity threshold with the

validation and testing sets for each split.

3.2. RNA Inverse Folding Benchmarking

Baselines. We compare our model with four machine learning

baselines with tertiary structure input, including gRNAde

(Joshi et al., 2023), PiFold (Gao et al., 2023), StructGNN

(Ingraham et al., 2019), GVP-GNN (Jing et al., 2021). While

gRNAde is a concurrent graph-based RNA inverse folding method,

PiFold, StructGNN, and GVP-GNN are representative deep-

learning methods of protein inverse folding, which are modified

here to be compatible with RNA. Implementation details of these

model modifications are in the supplementary material. These

methods use the same 3-atom RNA backbone representation.

We also introduce RNA inverse folding methods with secondary

structures as input for comparison. RNAinverse (Hofacker et al.,

1994) is an energy-based local searching algorithm for secondary

structure constraints. MCTS-RNA (Yang et al., 2017) searches

candidates based on Monte Carlo tree search. LEARNA and

MetaLEARNA are deep reinforcement learning approaches

(Runge et al., 2019) to design RNA that folds into the given

secondary structures. Each method generates a sequence for every

RNA backbone for benchmarking.

Metrics. The recovery rate is a commonly used metric in

inverse folding that shows how much of the sequence generated

by the model matches the original native sequence. While similar

sequences have a higher chance of achieving the correct fold, the

recovery rate is not a direct measure of structural fitness. We

further evaluate with two metrics: the F1 Score, which assesses the

alignment between the generated sequence’s predicted secondary

structure (via RNAfold (Gruber et al., 2008)) and the secondary

structure extracted from the input’s tertiary structure (using



6 Huang, H., et al.

rRNA(N: 362)tRNA(N: 541)

R
ec

ov
er

y 
R

at
e

(a) (b) (c) (d)sRNA(N: 172) ribozyme(N: 130)

Re
co

ve
ry

 R
at

e

pre_miRNA(N: 16)hammerhead ribozyme(N: 27)SRP_RNA(N: 85)snRNA(N: 90)

R
ec

ov
er

y 
R

at
e

(e) (f) (g) (h)

PiFold
StructGNN

GVP-GNN

RiboDiffusion

gRNAde
PiFold

StructGNN

GVP-GNN

RiboDiffusion

gRNAde
PiFold

StructGNN

GVP-GNN

RiboDiffusion

gRNAde
PiFold

StructGNN

GVP-GNN

RiboDiffusion

gRNAde

Fig. 2: Violin plots for the recovery rate distribution of methods for different types of RNA, including tRNA, rRNA, sRNA, ribozyme,

snRNA, SRP RNA, hammerhead ribozyme, and pre miRNA.

Table 2. Comparison of secondary structure similarity and success rate of

family preservation. F1: F1 score. Suc.: success rate of family preservation.

gRNAde PiFold StructGNN GVP-GNN RiboDiffusion

Seq 0.8
F1 0.564 0.408 0.761 0.765 0.744

Suc. 0.035 0.100 0.266 0.268 0.370

Seq 0.6
F1 0.142 0.336 0.709 0.740 0.749

Suc. 0.018 0.031 0.217 0.186 0.316

Seq 0.4
F1 0.424 0.388 0.777 0.802 0.785

Suc. 0.033 0.033 0.164 0.138 0.224

Str 0.6
F1 0.571 0.434 0.774 0.785 0.856

Suc. 0.036 0.023 0.206 0.163 0.305

Str 0.5
F1 0.731 0.440 0.763 0.766 0.786

Suc. 0.064 0.028 0.140 0.150 0.195

Str 0.4
F1 0.738 0.428 0.744 0.761 0.790

Suc. 0.060 0.031 0.128 0.134 0.l77

DSSR (Lu et al., 2015)), and the success rate determined by

Rfam’s covariance model (Kalvari et al., 2021), which evaluates

the preservation of family-specific information in the generated

sequences, indicating conserved structures and functions. Average

success rates across families are reported.

We present recovery rate results in Table 1, which contains

the average and standard deviation of four non-overlapping test

sets for each model in different cluster settings. Our model

outperforms the second best method by 11% on average for

sequence similarity splits and 16% for structure similarity splits.

RiboDiffusion consistently achieves better recovery rates in RNA

with varying degrees of sequence or structural differences from

training data. Methods based on tertiary structures outperform

those based on secondary structures, as the latter contains less

structural information. Extra results are shown in Table 2. It is

worth noting that the tools used in these two metrics may contain

errors. Our proposed method outperforms or matches the baseline

methods in secondary structure alignments and more effectively

retains family information from the input RNA.

We further classify the RNA in the test set based on its length

and type to compare the model performance differences more

thoroughly. First, we divide RNA into three categories based on

the number of nucleotides (nt), i.e., Short (50 nt or less), Medium
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Fig. 3: Performance of RiboDiffusion on different RNA families

under the cross-family setting. The average length and number of

tertiary structures for each family are marked above violin plots.

(more than 50 nt but less than 100 nt), and Long (100 nt or

more). It can be observed in Table 1 that RiboDiffusion maintains

performance advantages across different lengths of RNA. Short

RNAs present a challenge for the model to recover the original

sequence due to their flexible conformation, causing a relatively

low recovery rate when compared to medium-length RNAs. A

more detailed correlation of RiboDiffusion performance with RNA

length is shown in supplemental materials. Each split shows

similar patterns: RiboDiffusion has higher variance in short RNA

inverse folding, and the model’s performance becomes limited

as RNA length increases. Moreover, Fig. 2 shows the recovery

rate distribution of different RNA types with over 10 structures

in test sets, including rRNA, tRNA, sRNA, ribozymes, etc.

The RNA type information is collected from (Sweeney et al.,

2019). Compared to other baselines, RiboDiffusion still has a

better recovery rate distribution across RNA types. Through

comprehensive benchmarking, we have observed remarkable

performance improvement in tertiary structure-based RNA inverse

folding achieved by RiboDiffusion.
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Native:

Generated:

PDB: 6WQQ  Chain: 2
Type:  rRNA
Family:          RF00001
Length: 111
TM score: 0.7542
Recovery rate: 0.5766

CUGGU GACUA UAGCA AGGAG GUCAC ACCUG 
UUCCC AUGCC GAACA CAGAA GUUAA GCUCC 
UUAGC GACGA UGGUA GUCCA ACUUA CGUUC 
CGCUA GAGUA GAACG UUCCA G

UCGGU GGCGA UAGCG GAAAG GAAAC ACCCG 
UUCCC AUCCC GAACA CCGAA GUUAA GCUUU
CCAGC GCCGA UUGUA CUGGU GUUUU CCCUG
GAAAA AUAGG ACGCC GCCGU A

Native:

Generated:

PDB: 5WT1   Chain: F
Type:                  tRNA
Family:          RF00005
Length:                     68
TM score:         0.7474
Recovery rate: 0.6912

GGCGG UAGCU CAGCC UGGGA GAGCA 
CCGGA CUGAA GAUCC GGGUG UCGGG 
GGUUC AAAUC CCCCC CGC

CCGCG UGGCG CAGCC AGGUA GCGCG
CCCGA UUCUA GAUCG GGGUG UCCGG 
GGUUC GAAUC CCCGC GCG

Native:

Generated:

PDB: 2EES    Chain: A
Type:           riboswitch
Family:          RF00167
Length:            67
TM score:         0.8187
Recovery rate: 0.7015

GGACA UUUAA UCGCG UGGAU AUGGC 
ACGCA AGUUU CUACC GGGCA CCGUA 
AAUGU CCGAC AAUGU CC

GGUCU UAUAA UCCCG CGGAU AUGGC 
GCGGG AGUUU CUACC AAGAG CCGUA 
AACUU UUGAC UAAGA CU

RhoFold

TM
-s

co
re

Short        Medium       Long

DRFold

(a)

With Data Augmentation W/o Data Augmentation 

(c) (d)

Short        Medium       Long

(b)

(e)

Conditional Scaling Weight Conditional Scaling Weight

Fig. 4: Analysis of RiboDiffusion. (a)-(b) In-silico folding validation results that show the TM-score between structures predicted by

RhoFold or DRFold and the given fixed RNA backbones (on Seq. 0.4 split). Native represents structures predicted from original sequences

of given backbones as references, while Generated represents structures predicted from generated sequences. (c)-(d) Trade-offs between

the diversity of generated sequences and recovery rate, as well as refolding F1-score (including models with and without augmented data).

(e) Visualization of input RNA structures (pink) and predicted structures (green) of generated sequences. The generated sequences and

the corresponding native sequences are shown below the structure visualization, where different nucleotide types are marked in red.

3.3. Analysis of RiboDiffusion

We dive into a more comprehensive analysis of RiboDiffusion.

Cross-family performance. We repartition the dataset with

the cross-family setting to further verify the generalization of our

model. We obtain the RNA family corresponding to the tertiary

structure from (Kalvari et al., 2021), then randomly select four

families for testing and others for training. The experimental

results of 4 non-overlapping splits are shown in Fig. 3. The

average recovery rate of RiboDiffusion in each family generally

ranges between 0.4 and 0.6. Especially, our model performs well

on RF02540 whose sequence length far exceeds the training set.

Although the performance is slightly worse than other splits in

Table 1, these results still illustrate that our model can handle

RNA families that do not appear in the training data, considering

that cross-family is inherently a more difficult setting.

In-silico tertiary structure folding validation. To verify whether

RiboDiffusion generated sequences can fold into a given RNA

3D backbone, we use computational methods to predict RNA

structures (i.e., RhoFold (Shen et al., 2022) and DRFold (Li et al.,

2023)) to obtain their tertiary structures. Structure prediction

models with a single sequence input are used due to the difficulty

in finding homologous sequences for generated sequences and

performing multiple sequence alignment. We take the TM-score

of C1’ backbone atoms to measure the similarity between the

predicted RNA structure of generated sequences and the given

fixed backbones. Note that in-silico folding validation contains

two sources of errors. One is the structure prediction error

of the folding method itself, and the other is the sequence

quality generated by RiboDiffusion. Therefore, we also predict the

structure from the original native sequence using the same folding

method and compare it to the given RNA backbone as an error

and uncertainty reference.

As depicted in Fig. 4 (a), sequences generated by RiboDiffusion

exhibit promising folding results in the fixed backbone for medium-

length and long-length RNAs. However, the performance for short-

length RNAs is relatively poor, which is affected by the unsatisfied

recovery rate of our model and the limitations of RhoFold itself.

We also show the folding performance using DRFold in Fig. 4 (b),

where RiboDiffusion exhibits distribution shapes similar to those

of using RhoFold. Here, due to the limitation of DRFold inference

speed, we only test on the representative sequence of each cluster

instead of the entire test set. We further make in-silico folding

(with RhoFold) case studies of rRNA, tRNA, and riboswitch in

Fig. 4 (e). RiboDiffusion generates new sequences that are different

but still tend to fold into similar geometries. To alleviate concerns

about the independence of structure prediction and inverse folding

models, we provide results from alternative tools and evaluations
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of structures independent of current datasets as an extra reference

in the supplementary material.

Trade-off between sequence recovery and diversity. Exploring

novel RNA sequences that have the potential to collapse into a

fixed backbone distinct from native sequences is a realistic demand

for RNA design. However, there is a trade-off between the diversity

and recovery rate of the generated sequences. RiboDiffusion can

achieve this balance by controlling the conditional scaling weight.

For the representative input backbone of each cluster, we generate

8 sequences in total to report diversity. The diversity within

the generated set of sequences G is defined as IntDiv(G) =

1 − 1
|G|2

∑
S1,S2∈G Sim(S1, S2) (Benhenda, 2017). The function

Sim compares two sequences by calculating the ratio of the length

of the aligned subsequence to the length of the shorter sequence.

In Fig. 4 (c), it is evident that the mean diversity of generated

sequences in the test sets begins to increase when the conditional

scaling weight is set to 0.5, while the recovery rate and the F1

score decrease to some extent. Therefore, we recommend using a

value between 0.5 and 0.35 to adjust the sequence diversity.

Training data augmentation analysis. Augmenting training

data is primarily driven by the scarcity and limited diversity of

RNA available in PDB. Table 3 indicates that the incorporation

of additional RhoFold predictions improves the overall generated

sequence quality. This augmentation also enhances the adjustment

ability of RiboDiffusion for sequence diversity, as shown in Fig. 4

(d), where the sequence diversity of the model without the

augmented data remains relatively low. Notably, the noisy nature

of augmented data requires appropriate preprocessing and filtering

for quality assurance.

Table 3. Ablation study on data augmentation. Rec.: recovery rate.

Rec. Mean Rec. Median F1 score Rfam Success

RiboDiffusion 57.24% 59.94% 0.785 0.224

w/o Augment 55.26% 57.01% 0.768 0.221

4. Conclusion

We propose RiboDiffusion, a generative diffusion model for RNA

inverse folding based on tertiary structures. By benchmarking

methods on sequence and structure similarity splits, comparing

performance across RNA length and type, and validating with in-

silico folding, we demonstrate the effectiveness of our model. Our

model can also make trade-offs between recovery and diversity,

and handle cross-family inverse folding. In future work, we

aim to expand the scope of RiboDiffusion by exploring RNA

sequences that span larger magnitudes in size and integrate contact

information from the complex into the model. Our ultimate

objective is to utilize the model for designing functional RNA

like ribozymes, riboswitches, and aptamers, and to verify its

effectiveness in wet lab experiments.
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A. Dataset

Our dataset has 7, 322 experimentally determined RNA 3D

structures. We provide the length histogram of these structures

in Figure 1.

B. Experiment Details and Results

B.1. Secondary Structure-based Methods

We apply several RNA secondary structure-based inverse

folding and protein inverse folding methods to compare model

performance. For RNA secondary structure inverse folding

methods, we extract secondary structures in dot-bracket

form through DSSR (Lu et al., 2015). We use the default

optimized hyperparameters of these methods. For LEARNA and

MetaLEARNA (Runge et al., 2019), we set the design time limit

to 600 seconds.

B.2. Protein Inverse Folding Methods

GVP-GNN (Jing et al., 2021), PiFold (Gao et al., 2023) and

StructGNN (Ingraham et al., 2019) are models based on graph

neural networks which are first used for protein inverse folding

methods. These methods can well extract geometric features using

their graph neural network module. As a result, we construct RNA

geometric features as model input.

For GVP-GNN, we use the same input features of

RiboDiffusion as RiboDiffusion has a structure module based

on GVP-GNN. The scalar node features contain dihedral angles

of each nucleotide. The vector node features consist of forward

and reverse vectors of sequential C1’ atoms, as well as the

local orientation vectors of C1’ to C4’ and N1/N9. The initial

embedding of each edge consists of its connected C1’ atom’s

direction vector, Gaussian radial basis encoding for their Euclidean

distance, and sinusoidal position encoding of the relative distance

in the sequence.

StructGNN consists of two parallel encoders to obtain

embeddings of substructures and molecules, followed by a feed-

forward neural network for prediction. PiFold contains PiGNN

layers considering multi-scale residue interactions in node, edge,

and global context levels of the graph and a linear layer. For PiFold

and StructGNN, we construct distance, angle, and direction

features for single or paired nucleotides similar to those in protein.

The scalar node features contain dihedral angles of each nucleotide

and Gaussian radial basis encoding for every atom pair among C4’,

C1’, N1/N9 of each nucleotide. The vector node features consist of

the local orientation vectors of C1’ to C4’ and N1/N9. The scalar

edge features contain Gaussian radial basis encoding of every atom

pair among C4’, C1’, N1/N9 of two different nucleotides, as well

as quaternions of relative rotation between their local coordinate

systems. The vector edge features consist of the orientation vectors

of C1’ of one nucleotide to C4’ and N1/N9 in a different nucleotide.

In these features, C4’, C1’, N1/N9 in nucleotide correspond to N,

Cα, C in protein residues.

Protein inverse folding methods exploit the geometric features

of protein molecules. By constructing similar geometric features in

our 3-atom RNA backbones, we can retrain these models on the

RNA dataset. As a result, these methods can be applied to the

RNA inverse folding problem.

B.3. Metric

Recovery rate. This metric evaluates the quality of inverse folding

from the perspective of sequence similarity. It is not perfect

because it cannot directly characterize the possibility of sequences

folding into a specified structure, but it still has a certain reference

value. We plot the random mutation ratio versus the free energy

of the sequence folding into a given secondary structure (extracted

from the tertiary structure) in Figure 2. Folding into the structure

is more likely when the recovery rate is relatively high. Moreover,

our method has lower free energy than random mutation at the

same recovery rate.

F1 Score for secondary structure alignment. F1 Score is

defined between the secondary structure of the generated sequence

predicted by RNAfold (Gruber et al., 2008) and the secondary

structure extracted from the input tertiary structure. This metric

reflects whether the generated sequence satisfies the folding

constraints from the secondary structure level. However, since the

secondary structures derived from both methods may have errors,

we remove data that may have large errors based on the F1 score

of the native sequence with a threshold of 0.7.

Rfam success rate. We use Rfam’s covariance model to evaluate

whether the sequence obtained by inverse folding maintains the

same family information with the original RNA. Sequences within

the curated family are generally considered to have conserved

structures and similar functions. It is also of significance to

discover such new sequences through inverse folding. Specifically,

we define the success case as whether the bit score of the generated

sequence is larger than the gathering threshold.

B.4. Hyperparameters

Here we list the main hyperparameters we used in our model.

We construct nucleotide graphs with top-10 neighbors and stack 4

layers for the graph neural network in the structure module, where

the node feature dimension is 512 and the edge feature dimension
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Fig. 1: Length distribution of the experimentally determined structures. (a)-(c) Length distribution of short (L <= 50nt),

medium (50nt < L <= 100nt) and long (L > 100nt) RNA.

Fig. 2: The correlation between different mutation rates

and free energy (with random mutation and RiboDiffusion).

is 128. For the sequence module consisting of 8 blocks, we keep the

512 dimensions and use 8 attention heads. Our model is trained

40 epochs with the learning rate 0.0002.

B.5. Extra In-silico Tertiary Structure Folding Results

To alleviate concerns about the independence of structure

prediction tool and inverse folding models, we use two extra

computational tools, trRosettaRNA (Wang et al., 2023) and

SimRNA (Boniecki et al., 2016), to obtain tertiary structures

of generated RNA sequences. We also use these tools to predict

tertiary structures from the original native sequences. As depicted

in Figure 3(a), generated and native sequences have similar TM-

score distribution when predicted by trRosettaRNA. The result of

SimRNA is shown in Figure 3(b). The performance of SimRNA is

relatively poor, which indicates that although generated sequences

have a similar TM-score distribution to natural sequences, the

refolding evaluation based on SimRNA may have a large error and

uncertainty.

Besides RhoFold (Shen et al., 2022), we also provide 3D

visualized results of DRFold (Li et al., 2023) and trRosettaRNA,

which are shown in Figure 6.

B.6. Results on New RNA Structures

We evaluate the newly published RNA structures between 2023

and 2024 as an additional reference for our model. After removing

redundancy and removing RNAs similar to the training set, we

Fig. 3: In-silico folding validation results of trRosettaRNA

and simRNA. In-silico folding validation results that show

the TM-score between structures predicted by trRosettaRNA or

simRNA and the given fixed RNA backbones (on Seq. 0.4 split).

Native represents structures predicted from original sequences

of given backbones as references, while Generated represents

structures predicted from generated sequences.

present 8 structures that have not been trained by RiboDiffusion

and RhoFold. The result is displayed in Table 3.

B.7. Performance on CASP15

To assess the generalizability of the model, RiboDiffusion is tested

on six natural RNAs in CASP15 without any overlap with the

training set. As shown in Figure 4 (a) and (b), the performance of

RiboDiffusion in complex RNA backbone structures is impressive,

which is demonstrated by an average recovery rate of 0.56.

Furthermore, the TM-score values of generated sequences are

similar to the native sequences. However, it is important to note

that the results of in-silico folding on CASP15 need more follow-

up validation, as the TM-score value used as a reference is not

satisfactory.

B.8. Ablation Studies

We perform additional ablation studies to validate the necessity of

the sequence module. We train the models in a sequence similarity

split and a structure similarity split and report the results in Table

1. In our diffusion model formulation, adding the sequence module

facilitates performance improvement.
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Fig. 4: Performance on CASP15.(a) A bar chart shows

the recovery rate of RiboDiffusion on six natural RNAs in

CASP15. (b) A bar chart displays the TM-score between predicted

structures of RiboDiffusion-generated sequences and given RNA

backbones. The TM-score of predicted structures from native

sequences is displayed as a reference.

Table 1. Mean recovery rate (%) on ablation studies.

Method Seq. Struct.

RiboDiffusion 58.96 66.40

RiboDiffusion w/o seq 57.82 64.26

B.9. Running Time and Scalability Analysis.

The inference time of diffusion-based models is largely dependent

on the number of steps in the sampling process. For the run-

time analysis, we use 50 steps identical to those in our other

experiments. On a GeForce RTX 3090 GPU, we report wall clock

times of RiboDiffusion generation with different lengths of RNA

and different numbers of sequences generated simultaneously in

Figure 5. RiboDiffusion can finish the inverse folding of 200 nt

RNA in just one second when generating a sequence. However,

when generating 128 sequences simultaneously, RiboDiffusion

experiences a significant increase in processing time, leading to

limitations in scalability. We believe that the running speed

of RiboDiffusion can be further improved in the future by

accelerating the diffusion models, which is currently an emerging

topic in machine learning.

Fig. 5: Running time and scalability analysis. A line chart

shows the relationship between running time and RNA sequence

length when predicting different numbers of RNA sequences

simultaneously.

B.10. Extra Results on Secondary Structure Based Methods

We report extra results of secondary structure-based inverse

folding methods in Table 2. These methods obtain high F1 scores

because they directly use energy optimization to obtain sequences,

making it unfair to compare with other methods. It is difficult

for secondary structure-based inverse folding methods to generate

new sequences in the same family due to the information loss

compared to the tertiary structure input, even for tRNA with a

more conservative shape.

Table 2. Comparison of secondary structure similarity and success rate of

family preservation. The F1 score is an unfair metric for energy-optimized

methods.

rnainverse MCTS learna metalearna

Seq 0.8
F1* 0.990 0.918 0.750 0.905

Suc. 0.000 0.000 0.000 0.000

Seq 0.6
F1* 0.991 0.922 0.764 0.916

Suc. 0.000 0.000 0.000 0.000

Seq 0.4
F1* 0.987 0.916 0.796 0.928

Suc. 0.000 0.000 0.000 0.000

Str 0.6
F1* 0.990 0.915 0.776 0.913

Suc. 0.000 0.000 0.000 0.000

Str 0.5
F1* 0.985 0.900 0.789 0.919

Suc. 0.000 0.000 0.000 0.000

Str 0.4
F1* 0.987 0.901 0.762 0.911

Suc. 0.000 0.000 0.000 0.000

B.11. Results on Remaining Dataset Splits

Extra results of different dataset splits are shown in Figure 7,

8, 9. We show the bivariate distribution of sequence length and

recovery rate for RiboDiffusion on test set splits including Seq.

0.6, Seq. 0.8, Struct. 0.5 and Struct. 0.6 in Figure 7. We provide

additional violin plots displaying the TM-score performance of

RiboDiffusion-RhoFold pipeline about RNA length on test set

splits including Seq. 0.6, Seq. 0.8, Struct. 0.5 and Struct. 0.6

in Figure 8. In Figure 9, four different types of RNA are tested

to evaluate the performance of RiboDiffusion. The results show

that RiboDiffusion performs better on tRNA compared to rRNA.

However, its performance in sRNA and ribozyme may be limited

due to the scale of the relevant training data.
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Fig. 6: In-silico folding visualized results of DRFold and trRosettaRNA .(a) Visualization of input RNA structures (pink) and

predicted structures (green) of RiboDiffusion-DRFold pipeline. (b) Visualization of input RNA structures (pink) and predicted structures

(green) of RiboDiffusion-trRosettaRNA pipeline.

Table 3. Results on newly published RNA structures. TM-score (generated) is calculated between the given structure and the refolded structure from

the RiboDiffusion-RhoFold pipeline. TM-score (native) is calculated between the given structure and the predicted structure of RhoFold with the original

native sequence.

PDB id Recovery rate TM-score (generated) TM-score (native) Generated sequence

7wii V 0.5918 0.4209 0.3573
GGACCGUCCGCCAACAACGCUCCCCGAAAGGGGAGCAGCG

GGAGGUCCA

7xk1 B 0.5556 0.7460 0.7842
CGGAGGUGGCGCAGUGGUAGCGCAGGCGAGUUCAACUCGC

CAGGCGCGGGUUCGAUUCCCGUCCUCCGGCCC

8sh5 R 0.5747 0.2632 0.3472

GCGAAACUGGCAGAAUCGGUUAUGAGUUAGUCGAGCGAGA

CACGCUCACCCACCUUUUUAGGUUGGCUAACCGUUCGCUC

GUUUUGA

8t2a R 0.5889 0.3275 0.4005

GGCUGCCGGAGUGCUUGUUGUCGUAGCCGGCAUGGAAAGA

CCAUGUGCUCGGCUACCCUUCGGGGUGUGAGCUACGGCAC

GACGGUGGUC

8fn2 B 0.6964 0.6011 0.3474

GUCUGGUGGCCAUAGAAUCAAGGAACCACCUGAUCCCAUC

CCGAACUCAGAAGUUAAGCUUGAUAUCGGUGAUGAUAUUG

CGUUUUCGCGAGAAACUAGCGAACUGUCAGAA

8gxb B 0.6667 0.1951 0.1607
GAGCGUUGCUCGCAAGCGCCGCAUUGCACUUCGCGGCAGA

GGUGUUAAUAAAAAGAAGCG

8ine 5 0.7417 0.9157 0.9529

GGGUACGGCCAUACUUCCCUGAAAACACCGAUUCCCCUCC

GAUCAUCGAAGUUAAGCAGGGACAGGCUUGGUUAGUACUC

GUGUCGGAGACGAACUGGGAACACCGAGUGCUGUACCCUU

8ipy 8 0.5613 0.2557 0.5929

CAAUUCUCGACUCAGAAUAUUUGGCUUCCUCUUCGUUGAA

GAACGCAGCAAAAUGCGAUAAGCGAUAUGAGUUGCAAACA

UAAAAGAGUAUUAGGGGUUCGAACGCAAAGGCGCUCCCAG

UUGAAAUCUGGGAGUACAGCUCUUUCAGUCUCUUG
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Fig. 7: Bivariate distribution of sequence length and recovery rate for RiboDiffusion. (a)-(d) Four joint histplots of the

bivariate distribution between sequence length and recovery rate on test set splits including Seq. 0.6, Seq. 0.8, Struct. 0.5 and Struct.

0.6.
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Fig. 8: TM-score performance of RiboDiffusion-RhoFold pipeline about RNA length. (a)-(d) Four violin plots compare the

TM-score of structures predicted by RhoFold between generated RNA and native RNA on short, medium, and long RNA data in test

set splits including Seq. 0.6, Seq. 0.8, Struct. 0.5 and Struct. 0.6.
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Fig. 9: TM-score performance of RiboDiffusion-RhoFold pipeline about RNA type. (a)-(d) Four violin plots compare the

TM-score of structures predicted by RhoFold between generated RNA and native RNA on different types of RNA including rRNA,

tRNA, sRNA, and ribozyme in test set splits including Seq. 0.6, Seq. 0.8, Struct. 0.5 and Struct. 0.6.


