
GhostNetV3: Exploring the Training Strategies
for Compact Models

Zhenhua Liu1⋆, Zhiwei Hao2⋆, Kai Han1⋆⋆, Yehui Tang1, and Yunhe Wang1⋆⋆

1 Huawei Noah’s Ark Lab, Beijing, China
{liu.zhenhua,kai.han,yehui.tang,yunhe.wang}@huawei.com

2 Beijing Institute of Technology, Beijing, China
haozhw@bit.edu.cn

Abstract. Compact neural networks are specially designed for appli-
cations on edge devices with faster inference speed yet modest perfor-
mance. However, training strategies of compact models are borrowed
from that of conventional models at present, which ignores their differ-
ence in model capacity and thus may impede the performance of compact
models. In this paper, by systematically investigating the impact of differ-
ent training ingredients, we introduce a strong training strategy for com-
pact models. We find that the appropriate designs of re-parameterization
and knowledge distillation are crucial for training high-performance com-
pact models, while some commonly used data augmentations for training
conventional models, such as Mixup and CutMix, lead to worse perfor-
mance. Our experiments on ImageNet-1K dataset demonstrate that our
specialized training strategy for compact models is applicable to various
architectures, including GhostNetV3, MobileNetV2 and ShuffleNetV2.
Specifically, equipped with our strategy, GhostNetV3 1.3× achieves a
top-1 accuracy of 79.1% with only 269M FLOPs and a latency of 14.46ms
on mobile devices, surpassing its ordinarily trained counterpart by a
large margin. Moreover, our observation can also be extended to ob-
ject detection scenarios. PyTorch code and checkpoints can be found at
https://github.com/huawei-noah/Efficient-AI-Backbones.

1 Introduction

To meet the limited memory and computational resource of edge devices (e.g .,
mobile phone), various efficient architectures [10, 15, 16, 19, 21, 26, 28] have been
developed. For example, MobileNetV1 [16] uses depth-wise separable convolu-
tions to reduce computational cost. MobileNetV2 [21] introduces the residual
connection, and MobileNetV3 [15] further optimizes the architecture configu-
rations via neural architecture search (NAS), which significantly improves per-
formance of the model. Another typical architecture is GhostNet [10], which
utilizes redundancy in feature and duplicates channels of the feature by using

⋆ Equal contribution
⋆⋆ Corresponding author

ar
X

iv
:2

40
4.

11
20

2v
2 

 [
cs

.C
V

] 
 2

2 
A

pr
 2

02
4

https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv3_pytorch


2 Liu et al.

5 10 15 20 25 30 35 40 45
CPU Latency (ms)

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

To
p-

1 
Ac

c 
(%

)

MobileViT
PiT
ConViT
DeiT
FBNet
MixNet

MNASNet
MobileNetV1
MobileNetV2
MobileNeXt
MobileNetV3
EfficientNet

ShuffleNetV2
MobileFormer
MobileOne
GhostNetV1
GhostNetV2
GhostNetV3

Fig. 1: The top-1 validation accuracy and the latency on CPU of various compact
models on ImageNet dataset.

cheap operations. Recently, GhostNetV2 [26] further incorporates a hardware-
friendly attention module to capture the dependence between long-range pixels
and outperforms GhostNet by a significant margin.

Besides carefully designed model architectures, appropriate training strate-
gies are also critical for remarkable performance. For example, Wightman et
al . [29] improved the top-1 accuracy of ResNet-50 [11] on ImageNet-1K [5] from
76.1% to 80.4% by integrating advanced optimization and data augmentation
approaches. However, although considerable efforts have been made to explore
more advance training strategies for conventional models (e.g ., ResNet and Vi-
sion Transformer), little attention has been paid to compact models. Since mod-
els with different capacities may have different learning preferences [24], directly
applying strategies designed for conventional models to train compact models is
not appropriate.

To bridge this gap, we systematically investigate several training strategies for
compact models. Specifically, our main attentions are paid on the key training
settings as discussed in previous works [12, 27] including re-parameterization,
knowledge distillation (KD), learning schedule and data augmentation.

Re-parameterization. Depth-wise convolution and 1×1 convolution are
common components in compact model architectures due to their negligible
memory and computational consumption. Inspired by successful experiences
in training conventional models [6, 7], we employ the re-parameterization ap-
proach for these two compact modules to achieve better performance. When
training compact models, we introduce linear parallel branches into depth-wise



GhostNetV3: Exploring the Training Strategies for Compact Models 3

convolution and 1×1 convolution. These additional parallel branches can be
re-parameterized after training, bringing no extra cost at inference time. To
trade off the overall training cost against performance improvement, we com-
pare the impact of different numbers of added branches. Moreover, we find that
a 1×1 depth-wise convolution branch has a significant positive impact on the
re-parameterization of 3×3 depth-wise convolution.

Knowledge distillation. It is challenging for compact models to achieve
performance comparable to conventional models due to their limited model ca-
pacity. Hence, KD [14], which employs a larger model as the teacher to guide
the learning of compact models, is a proper approach to improve performance.
We empirically investigate the impact of several typical factors when training
compact models using KD, such as the choice of teacher model and the setting
of hyperparameters. The results imply that an appropriate teacher model can
significantly boost the performance of compact models.

Learning schedule and data augmentation. We compare several train-
ing settings for compact models, including learning rate, weight decay, expo-
nential moving average (EMA), and data augmentation. Interestingly, not all
the tricks designed for conventional models work well for compact models. For
instance, some widely-used data augmentation methods, such as Mixup and Cut-
Mix, actually detract from the performance of compact models. We discuss their
effect in Section 5 in detail.

Based on our investigation, we develop a specialized training recipe for com-
pact models. Experiments on ImageNet-1K dataset verify the superiority of our
proposed recipe. Specifically, the GhostNetV3 model trained with our recipe
significant outperforms that trained with the previous strategy in terms of both
top-1 accuracy and latency (Figure 1). Experiments on other efficient architec-
tures such as MobileNetV2 and ShuffleNetV2 further confirm the generalizability
of the proposed recipe.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 introduces the architecture of GhostNetV2. The training strategies
are discussed in detail in Section 4. Then the plentiful experimental results are
presented in Section 5. Section 6 concludes the paper.

2 Related works

2.1 Compact models

It is challenging to design a compact model architecture with low inference
latency and high performance simultaneously. SqueezeNet [17] proposes three
strategies to design a compact model, i.e., replacing 3×3 filters with 1×1 filers,
decreasing the number of input channels to 3×3 filters, and down-sampling late
in the network to keep large feature maps. These principles are constructive,
especially the usage of 1×1 convolution. MobileNetV1 [16] replaces almost all
the filers with 1×1 kernel and depth-wise separable convolutions, which dramat-
ically reduces the computational cost. MobileNetV2 [21] further introduces the



4 Liu et al.

residual connection to the compact model, and constructs an inverted residual
structure, where the intermediate layer of a block has more channels than its
input and output. To keep representation ability, a part of non-linear functions
are removed. MobileNeXt [36] rethinks the necessary of inverted bottleneck, and
claims that the classic bottleneck structure can also achieve high performance.
Considering the 1×1 convolution account for a substantial part of computational
cost, ShuffleNet [34] replace it with group convolution. The channel shuffle op-
eration to help the information flowing across different groups. By investigating
the factors that affect the practical running speed, ShuffleNetV2 [18] proposes a
new hardware-friendly block.

MnasNet [22] and MobileNetV3 [15] search the architecture parameters, such
as model width, model depth, convolutional filter’s size, etc. By leveraging the
feature’s redundancy, GhostNet [10] replaces half channels in 1×1 convolution
with cheap operations. GhostNetV2 [26] proposes a dubbed DFC attention based
on fully-connected layers, which can not only execute fast on common hardware
but also capture the dependence between long-range pixels. Until now, the series
of GhostNets are still the SOTA compact models with a good trade-off between
accuracy and speed.

Since ViT [8] (DeiT) has made a great success on computer vision tasks,
researchers have made efforts to design compact transformer architecture for
mobile devices. MobileFormer [2] proposes a compact cross attention to model
the two-way bridge between MobileNet and transformer. MobileViT [19] takes
the successful experiences in compact CNNs and replaces local processing in con-
volutions with global processing using transformers. However, the transformer-
based compact models suffer from high inference latency on mobile devices due
to the complex attention operation.

Ghost module

Add

Ghost module

BN ReLU

BN

DFC attention

Mul

DWConv Stride=2

BN

(a) GhostNetV2

BN

BN

BN

1x1 DWConv

3x3 DWConv

3x3 DWConv

Identity

…

N +

BN

Training of 3x3 DWConv

BN

BN

BN

1x1 Conv

1x1 Conv

Identity

…

N

+

Training of 1x1 Conv 

+: Add

C: Concat

C

DFC attention

Down-sample

Horizontal FC

1x1 Convolution

BN

Vertical FC

Sigmoid

Ghost Module

1
x1

 C
o

n
v

3
x3

 D
W

C
o

n
v

(b) GhostNetV3

Fig. 2: The architectures of GhostNetV2 and GhostNetV3.



GhostNetV3: Exploring the Training Strategies for Compact Models 5

2.2 Bag of tricks for training CNNs

There are some works that focusing on improving training strategies to improve
the performance of various models. He et al . [12] discuss several tricks that are
useful for efficient training on hardware and propose a new model architecture
tweaks for ResNet. Wrightman et al . [29] re-evaluate the performance of the
vanilla ResNet-50 when trained with novel optimization and data-augmentation
methods. They share the competitive training settings and pre-trained model in
the timm open-source library. With their training recipe, a vanilla ResNet-50
model achieves 80.4% top-1 accuracy. Chen et al . [1] investigate the effects of
several fundamental components for training self-supervised ViT. However, all
these attempts are designed for large models or self-supervised models. Directly
transferring them to compact models is inappropriate because of their different
model capacity [24].

3 Preliminary

GhostNets (GhostNetV1 and GhostNetV2) are the state-of-the-art compact mod-
els designed for efficient inference on mobile devices. Their key architecture is the
Ghost module, which can replace the original convolution by generating more
feature maps from cheap operations.

In the ordinary convolution, the output feature Y is obtained by Y = X ∗W ,
where W ∈ Rcout×cin×k×k is the convolution kernel and X is the input feature.
cin and cout denote the input and output channel dimension, respectively. k is
the kernel size and ∗ denotes convolution operation. A Ghost module reduces
the number of parameters and computational cost of ordinary convolution in
two steps. It first produces intrinsic features Y ′, whose channel dimension is
smaller than the original feature Y . Then the cheap operation (e.g ., depth-wise
convolution) is applied on the intrinsic features Y ′ to generate ghost features Y ′′.
The final output is obtained by concatenating the intrinsic and ghost features
along the channel dimension, which can be formulated as:

Y ′ = X ∗Wp, (1)
Y = Cat(Y ′, X ∗Wc), (2)

where Wp and Wc denote the parameters in primary convolution and cheap
operations, respectively. “Cat” denotes the concatenating operation. A whole
GhostNet model is constructed by stacking multiple Ghost modules.

GhostNetV2 enhances compact models by designing an efficient attention
module, i.e., DFC attention. Considering that compact models such as Ghost-
Net usually use small-kernel convolutions, e.g ., 1×1 and 3×3, they have weak
ability to extract global information from input features. GhostNetV2 employs
a simple fully-connected layer to capture the long-range spatial information and
generate an attention map. For computational efficiency, it decouples the global
information into horizontal and vertical directions and aggregates pixels along



6 Liu et al.

the two directions, respectively. As shown in Figure 2a, by equipping Ghost mod-
ule with DFC attention, GhostNetV2 can extract global and local information
effectively while achieves a better trade-off between accuracy and computational
complexity.

4 Training strategies

Our goal is to exploring the training strategies without changing the inference
network architectures to keep the small model size and fast speed of compact
models. We empirically investigate the key factors for training neural networks
including learning schedule, data augmentation, re-parameterization and knowl-
edge distillation.

4.1 Re-parameterization

Re-parameterization has proved its effectiveness in conventional convolutional
models [6, 7]. Inspired by their success, we introduce re-parameterization into
compact models by adding repetitive branches equipped with BatchNorm lay-
ers. Our design of re-parameterization GhostNetV3 is presented in Figure 2b.
It is worth noting that we introduce a 1×1 depth-wise convolution branch into
re-parameterized 3×3 depth-wise convolution. Experimental results confirm its
positive effect on the performance of compact models. Furthermore, the experi-
ments thoroughly explore the optimal number of repetitive branches.

At inference time, the repetitive branches can be removed via an inverse re-
parameterization process. Since convolution and BatchNorm operations are both
linear during inference, they can be folded into a single convolution layer, whose
weight matrix is denoted as Ŵ ∈ Rcout×cin×k×k and bias is denoted as b̂ ∈ Rcout .
After that, folded weights and biases in all branches can be re-parameterized
into Wrep =

∑
i Ŵi and bias brep =

∑
i b̂i, respectively, where i is the index of

repetitive branches.

4.2 Knowledge distillation

KD is a widely used model compression method, where the predictions of a large
pre-trained teacher model is regarded as the learning target of a tiny student
model. Given a sample x with label y, representing the corresponding logits pre-
dicted by the student and the teacher model using Γs(x) and Γt(x), respectively,
the total loss function of KD can be formulated as:

Ltotal = (1− α)Lce(Γs(x), y) + αLkd(Γs(x), Γt(x)), (3)

where Lce and Lkd denote the cross-entropy loss and KD loss respectively. α is
a balancing hyperparameter.

Usually, the Kullback-Leibler divergence function is adopted as the KD loss,
which can be represented as:

Lkd = τ2 · KL(softmax(Γs(x))/τ, softmax(Γt(x))/τ), (4)



GhostNetV3: Exploring the Training Strategies for Compact Models 7

where τ is a label smoothing hyperparameter termed temperature. In our ex-
periments, we study the impact of different settings of hyperparameters α and
τ on the performance of compact models.

4.3 Learning schedule

Learning rate is a critical parameter in the optimization of neural networks.
There are two commonly used learning rate schedules: step and cosine. The step
schedule decreases the learning rate linearly, whereas cosine schedule reduces
the learning rate slowly at the beginning, becomes almost linear in the middle,
and slows down again at the end. This work extensively investigates the impact
of both learning rate and learning rate schedule on compact models.

Exponential moving average (EMA) has recently emerged as an effective ap-
proach to improve the validation accuracy and increase the robustness of mod-
els. Specifically, it gradually averages parameters of a model during the training
time. Suppose parameters of the model at step t is Wt, the EMA of the model
is computed as:

Wt = β ·Wt−1 + (1− β) ·Wt, (5)

where Wt represents the parameters of the EMA model at step t and β is a
hyperparameter. We study the effect of EMA in Section 5.3.

4.4 Data augmentation

Various data augmentation approaches have been proposed to promote perfor-
mance of conventional models. Among them, AutoAug scheme [3] adopts 25 com-
binations of sub-strategy, each of which contains two transformations. For each
input image, a sub-strategy combination is randomly selected, and the decision
of whether to apply each transformation in the sub-strategy is determined by
a certain probability. RandomAug method [4] proposes a random augmentation
approach where all sub-strategies are selected with the same probability. Image
aliasing methods like Mixup [33] and CutMix [32] fuse two images to generate a
new image. Specifically, Mixup trains a neural network on convex combinations
of pairs of examples and their labels, whereas CutMix randomly removes a region
from one image and replace the corresponding area with a patch from another
image. RandomErasing [35] randomly selects a rectangle region in an image and
replaces its pixels with random values.

In this paper, we evaluate various combinations of the above data augmenta-
tion approaches and find that some commonly used data augmentation methods
for training conventional models, such as Mixup and CutMix, are not appropriate
for training compact models.

5 Experimental results

In our basic training strategy, we use a mini-batch size of 2048 and employ
LAMB [31] for model optimization over 600 epochs. The initial learning rate



8 Liu et al.

Table 1: Top-1 accuracy of dif-
ferent versions of GhostNetV3
models trained with or without
re-parameterization.

Model size 1.0× 1.3× 1.6×

w/o Rep 75.3 76.9 77.8
w/ ReP 76.1 77.6 78.7

Table 2: Comparison of top-1 accuracy for differ-
ent values of re-parameterization factor N . ’DW’
denotes depth-wise convolution.

Number of branches w/o 1×1DW w/ 1×1DW

N=1 77.3 77.0
N=2 77.2 77.3
N=3 77.1 77.6
N=4 77.0 77.5
N=5 77.0 77.6

is 0.005, and the cosine learning schedule is adopted. Weight decay and mo-
mentum are set to 0.05 and 0.9, respectively. We use a decay factor of 0.9999
for the exponential moving average (EMA), where random augmentation and
random erasing are applied for data augmentation. In this section, we explore
these training strategies and unveil insights for training compact models. All
experiments are conducted on the ImageNet dataset [5] using 8 NVIDIA Tesla
V100 GPUs.

5.1 Re-parameterization

To better comprehend the advantages of integrating re-parameterization into
the training of compact models, we perform an ablation study to assess the
impact of re-parameterization on different sizes of GhostNetV3. The results are
presented in Table 1. The adoption of re-parameterization, while keeping other
training settings unchanged, results in a significant improvement in performance
compared to directly training the original GhostNetV3 models.

Additionally, we compare different configurations of the re-parameterization
factor N and the results are presented in Table 2. As indicated in the results,
the 1×1 depth-wise convolution plays a crucial role in re-parameterization. If
the 1×1 depth-wise convolution is not used in the re-parameterized model, its
performance even decreases as the number of branches increases. In contrast,
when equipped with a 1×1 depth-wise convolution, the GhostNetV3 model
achieves a peak top-1 accuracy of 77.6% when N is 3, and further increasing
the value of N brings no additional improvement in performance. Therefore, the
re-parameterization factor N is set to 3 in subsequent experiments to achieve
better performance.

5.2 Knowledge distillation

In this section, we assess the impact of knowledge distillation on the perfor-
mance of GhostNetV3. Specifically, ResNet-101 [11], DeiT-B [27], and BeiTV2-
B [20] are adopted as the teacher, achieving top-1 accuracies of 77.4%, 81.8%,
and 86.5%, respectively. The results in Table 3 highlight performance variations
with different teacher models. Notably, superior teacher performance correlates



GhostNetV3: Exploring the Training Strategies for Compact Models 9

Table 3: Comparison of Top-1 accuracy for
various teachers and α in knowledge distil-
lation.

Teacher
α 0.5 0.9 1.0

ResNet-101 [11] 78.46 78.53 78.20
DeiT-B [27] 78.61 78.55 78.32

BEiTV2-B [20] 79.13 79.02 78.86

Table 4: Comparison of Top-1 ac-
curacy for different α and temper-
ature τ in knowledge distillation.

α
τ 1 2 4

0.5 79.13 77.98 77.91
1.0 78.94 77.92 77.70

Table 5: Comparison of Top-1 accu-
racy for combining re-parameterization
and knowledge distillation.

Number of branches 1 2 3

w/o 1×1DW 78.59 78.73 78.85
w/ 1×1DW 78.80 79.04 79.13

Table 6: Top-1 accuracy of different learn-
ing rate schedule for GhostNetV2. The
number after ’cosine’ denotes the minimum
of the learning rate.

lr schedule step cosine_0 cosine_1e-5

w ReP&KD 78.40 79.13 78.97

with improved GhostNetV3 performance, underscoring the importance of a well-
performing teacher model in knowledge distillation with compact models.

We additionally compare different settings of hyperparameters in the KD
loss with BEiTV2-B as the teacher. The results in Table 4 suggest that a low
temperature value is preferable for compact models. Furthermore, it is worth
noting that when the KD loss is used alone (i.e. α=1.0), there is a noticeable
decline in the top-1 accuracy.

We also explore the impact of combining re-parameterization and knowledge
distillation on the performance of GhostNetV3. As shown in Table 5, the results
indicate a significant improvement in performance (up to 79.13%) due to the
utilization of knowledge distillation. Moreover, it emphasizes the importance
of the 1×1 depth-wise convolution in re-parameterization. These findings un-
derscore the importance of investigating various techniques and their potential
combinations to enhance the performance of compact models.

5.3 Learning schedule

Learning rate schedule. Figure 3 illustrates the experimental results adopting
different scheduling schemes of the learning rate, both with and without re-
parameterization and knowledge distillation. It is observed that both small and
large learning rates have a detrimental effect on performance. Therefore, a learn-
ing rate of 5e-3 is chosen for the final experiments.

The step and cosine learning rate schedules are compared in Table 6. It
is observed that the cosine learning rate schedule achieves the highest top-1
accuracy. This underlines the effectiveness of a well-designed cosine learning
rate schedule in promoting the performance of compact models.



10 Liu et al.

0.002 0.004 0.006 0.008 0.010
Learning rate

75.0

75.5

76.0

76.5

77.0

77.5

78.0

78.5

79.0

79.5

To
p-

1 
Ac

cu
ra

y 
(%

)

Without ReP&KD With Rep&KD

Fig. 3: The top-1 validation accuracy for various learning rates of GhostNetV3.

Weight decay. The effect of weight decay on the top-1 accuracy of GhostNetV3
is shown in Table 7. The results indicate that a large weight decay significantly
diminishes the model’s performance. Therefore, we have retained a weight decay
value of 0.05 for GhostNetV3, given its effectiveness for compact models.

Table 7: Top-1 accuracy achieved with different weight decay settings on the ImageNet
dataset.

Weight decay 0.01 0.03 0.05 0.07 0.1

w ReP&KD 78.63 78.85 79.13 79.01 78.83

EMA. In Figure 4, it can be observed that when the decay of EMA is 0.99999,
there is a decline in performance regardless of whether re-parameterization and
knowledge distillation techniques are used or not. We speculate that this is due
to the weakening effect of the current iteration when the decay value is too large.
For compact models, a decay value of 0.9999 or 0.99995 is deemed appropriate,
which is similar to that of a conventional model.

5.4 Data Augmentation

To compare the impact of different data augmentation schemes on the perfor-
mance of lightweight models, we train cnn-based GhostNetV3 and ViT-based



GhostNetV3: Exploring the Training Strategies for Compact Models 11

0.99980 0.99985 0.99990 0.99995 1.00000
EMA decay

74

75

76

77

78

79

To
p-

1 
Ac

cu
ra

y 
(%

)

Without ReP&KD With Rep&KD

Fig. 4: The top-1 accuracy achieved with various decay values of EMA.

DeiT-tiny models under distinct augmentation strategies. The results are pre-
sented in Table 8. It is observed that random augmentation and random erasing
are advantageous for both GhostNetV3 and DeiT-tiny. Conversely, Mixup and
CutMix have a detrimental effect, which are then considered unsuitable for com-
pact models.

Table 8: comparison results of different combinations of data augmentation schemes
on GhostNetV3 and DeiT-tiny.

AutoAug RandAug Mixup CutMix Erasing GhostNetV3 DeiT-tiny

✓ ✗ ✗ ✗ ✗ 78.78 76.33
✗ ✓ ✗ ✗ ✗ 79.03 76.30
✗ ✓ ✓ ✗ ✗ 78.95 76.23
✗ ✓ ✓ ✓ ✗ 78.48 76.11
✗ ✓ ✓ ✓ ✓ 78.41 76.02
✗ ✓ ✗ ✗ ✓ 79.13 76.38

5.5 Comparison with other compact models

In this section, we compare GhostNetV3 with other compact models in terms of
parameters, FLOPs, latency on CPU and mobile phone. Specifically, we run the
models on a Windows desktop equipped with a 3.2GHz Intel i7-8700 processor
to measure the CPU latency and use a Huawei Mate40Pro equipped with a Kirin



12 Liu et al.

0 200 400 600 800 1000 1200 1400
FLOPs (M)

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

To
p-

1 
Ac

c 
(%

)

MobileViT
PiT
ConViT
DeiT
FBNet
MixNet
MNASNet
MobileNetV1
MobileNetV2

MobileNeXt
MobileNetV3
EfficientNet
ShuffleNetV2
MobileFormer
MobileOne
GhostNetV1
GhostNetV2
GhostNetV3

(a) FLOPs

20 40 60 80 100
Phone Latency (ms)

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

To
p-

1 
Ac

c 
(%

)

MobileViT
PiT
ConViT
DeiT
FBNet
MixNet

MNASNet
MobileNetV1
MobileNetV2
MobileNeXt
MobileNetV3
EfficientNet

ShuffleNetV2
MobileFormer
MobileOne
GhostNetV1
GhostNetV2
GhostNetV3

(b) Mobile phone latency

Fig. 5: The FLOPs and the latency of the compact models on mobile phone.

9000 CPU to evaluate the mobile phone latency under the configuration of input
resolution of 224×224. To ensure the lowest latency and the highest consistency,
all other applications on both the CPU and mobile phone are closed. Each model
is executed for 100 times to obtain reliable results.

Table 9 provides a detailed comparison of GhostNetV3 with other compact
models, whose parameter counts are under 20M. From the results, the smallest
transformer-based architectures require a latency of 12.5ms for inference on mo-
bile devices, while their top-1 accuracy is only 69.0%. In contrast, GhostNetV3
achieves a top-1 accuracy of 77.1% with a significantly lower latency of 7.81ms.
The current state-of-the-art model, MobileFormer [2], achieves a top-1 accuracy
of 79.3% with a latency of 129.58ms, which is unaffordable in real-world applica-
tions. In comparison, GhostNetV3 1.6× achieves better accuracy of 80.4% with
a significantly lower latency of 18.87ms, which is 6.8× faster than MobileFormer.

Next, we compare GhostNetV3 with other CNN-based compact models, in-
cluding MobileNets [15, 16, 21, 36], ShuffleNets [18, 34], MixNet [25], MNAS-
Net [22], FBNet [30], EfficientNet [23], and MobileOne [28], where FBNet, MNAS-
Net, and MobileNetV3 are search-based models and the others are manually de-
signed models. Specifically, FBNet employs a hardware searching strategy while
MNASNet and MobileNetV3 search the architecture parameters, such as model
width, model depth, the size of the convolutional filter, etc.

Compared with MobileNetV2 [21], GhostNetV3 1.0× achieves a 5.1% im-
provement while maintaining almost the same latency (7.81ms vs. 7.96ms).
GhostNetV3 1.3× also exhibits improved top-1 accuracy compared to MobileNeXt
and EfficientNet-B0, which are 3.0% and 2.8%, respectively. In particular, when
compared with the powerful manually designed MobileOne models, GhostNetV3
1.0× outperforms MobileOne-S1 in terms of top-1 accuracy by 1.2% with only
half the latency required. GhostNetV3 1.3× also outperforms MobileOne-S2 by
1.7% while costing only 60% of the latency. Moreover, when GhostNet 1.6×
achieves a higher top-1 accuracy than MobileOne-S4 (80.4% vs. 79.4%), Mo-
bileOne’s latency is 2.8× slower than that of GhostNetV3 on CPU.



GhostNetV3: Exploring the Training Strategies for Compact Models 13

Table 9: Top-1 accuracy achieved by various compact models on the ImageNet dataset.

Method Params
(M)

FLOPs
(M)

Latency(ms) Top-1 Top-5CPU Mobile

GhostNetV1 0.5× [10] 2.6 42 1.98 5.43 66.2 86.6
Mobileformer-52 [2] 3.6 52 34.27 89.65 68.7 —
MobileNetV3-S [15] 2.5 56 2.10 5.47 67.4 —
GhostNetV3 0.5× (ours) 2.7 48 2.09 5.67 69.4 88.5

Mobileformer-96 [2] 4.6 96 42.18 101.37 72.8 —
ShuffleNetV2 1.0× [18] 2.3 146 4.69 11.07 69.4 88.9
ShuffleNetV2 1.0× + ours 2.3 146 4.69 11.07 71.6 89.8
MobileViT-XXS [19] 1.3 373 12.5 29.47 69.0 —
MobileNetV1 [16] 4.2 575 7.02 12.85 70.6 —
MobileOne-S0 [28] 2.1 275 5.48 12.34 71.4 —
PiT-ti [13] 4.9 710 21.87 45.34 71.3 —
DeiT-tiny [27] 5.9 1300 28.01 56.4 72.2 —
PiT-xs [13] 10.6 1400 32.92 69.7 72.4 —
ConViT-tiny [9] 5.7 1000 28.75 58.73 73.1 91.7
MobileViT-XS [19] 2.3 724 23.43 64.34 74.8 —
MixNet-S [25] 4.1 256 15.75 30.79 75.8 92.8
MobileNetV3-L [15] 5.4 219 7.25 14.24 75.2 —
ShuffleNetV2 2.0× [18] 7.4 591 15.62 25.36 74.9 —
MNASNet-A1 [22] 3.9 312 7.81 13.57 75.2 92.5
MobileNetV2 1.0× [21] 3.4 300 7.96 14.97 72.0 90.8
MobileNetV2 1.0× + ours 3.4 300 7.96 14.97 75.0 92.1
GhostNetV1 1.0× [10] 5.2 141 6.25 12.65 73.9 91.4
MobileNeXt 1.0× [36] 3.4 311 8.63 16.17 74.0 —
MobileOne-S1 [28] 4.8 825 14.86 27.21 75.9 —
FBNet-C [30] 5.5 375 9.37 15.67 74.9 —
GhostNetV2 1.0× [10] 6.1 167 7.81 14.69 75.3 92.4
GhostNetV3 1.0× (ours) 6.1 167 7.81 14.69 77.1 93.3

MobileNetV2 1.4× [21] 6.9 585 13.07 22.85 74.7 —
GhostNetV1 1.3× [10] 7.3 226 12.69 24.31 75.7 93.4
MobileNeXt 1.4× [36] 6.1 590 11.46 21.65 76.1 —
MobileOne-S2 [28] 7.8 1299 23.04 40.28 77.4 —
MixNet-M [25] 5.0 360 21.44 43.12 77.0 93.3
MobileViT-S [19] 5.6 1792 35.93 92.28 78.4 —
GhostNetV2 1.3× [10] 8.9 269 14.46 28.69 76.9 93.4
GhostNetV3 1.3× (ours) 8.9 269 14.46 28.69 79.1 94.5

GhostNetV1 1.7× [10] 11.0 378 18.45 37.24 77.2 93.4
EfficientNet-B0 [23] 5.3 390 12.50 37.67 76.3 93.2
GhostNetV2 1.6× [26] 12.3 399 18.87 38.46 77.8 93.8
MobileOne-S3 [28] 10.1 1896 33.31 58.33 78.1 —
MixNet-L [25] 7.3 565 34.01 67.93 78.9 94.2
Mobileformer-508 [2] 14.0 508 129.58 163.39 79.3 —
MobileOne-S4 [28] 14.8 2978 52.86 92.06 79.4 —
GhostNetV3 1.6× (ours) 12.3 399 18.87 38.46 80.4 95.2



14 Liu et al.

When comparing GhostNetV3 1.0× with search-based compact models, it
outperforms FBNet-C citefbnet by 2.2% with faster inference speed on both
CPU and phone. Additionally, GhostNetV3 1.0× provides a 1.9% top-1 accuracy
advantage over MobileNetV3 and MNASNet, while maintaining similar latency.
The results demonstrate the superiority of our proposed training strategy over
existing manually designed and search-based architecture designing approaches
in obtaining excellent compact models.

Figure 5 presents a comprehensive performance comparison of various com-
pact models. The left and right figures illustrate the FLOPs and the latency
measured on a mobile phone, respectively. Notably, our trained GhostNetV3
stands out by exhibiting the best balance between latency and top-1 accuracy
on mobile devices.

Other compact models To further demonstrate the scalability of the proposed
training strategy, we apply them to the training of two other widely used com-
pact models: ShuffleNetV2 and MobileNetV2. The results in Table 9 show that
our proposed strategy can improve the top-1 accuracy of ShuffleNetV2 and Mo-
bileNetV2 by 2.2% and 3.0%, respectively.

5.6 Extend to object detection

To investigate whether the training receipts would work well for other datasets,
we expand our experiments to the object detection task on COCO to validate
their generalization. The results are presented in Table 10. Notably, the insights
from the classification task are applicable to the object detection task. For in-
stance, the GhostNetV3 model outperforms GhostNetV2 by mAPs of 0.4 and 0.5
under the two used resolution settings, respectively. Additionally, GhostNetV3
outperforms MobileNetV2 while requires fewer FLOPs for inference.

Table 10: Performance of GhostNetV3 on object detection.

Backbone Resolution FLOPs(M) mAP

MobileNetV2

320×230

613 22.2
GhostNetV1 1.1× 338 21.8
GhostNetV2 1.0× 342 22.3
GhostNetV3 1.0× 342 22.7

MobileNetV2

416×416

1035 23.9
GhostNetV1 1.1× 567 23.4
GhostNetV2 1.0× 571 24.1
GhostNetV3 1.0× 571 24.6



GhostNetV3: Exploring the Training Strategies for Compact Models 15

6 Conclusion

In this paper, we present a comprehensive study on training strategies aimed at
enhancing the performance of existing compact models. The techniques, includ-
ing re-parameterization, knowledge distillation, data augmentation, and learning
schedule adjustments, involve no modifications to the model architecture during
inference. In particular, our trained GhostNetV3 achieves an optimal balance be-
tween accuracy and inference costs, as verified on both CPU and mobile phone
platforms. We also apply the proposed training strategy to other compact mod-
els such as MobileNetV2 and ShuffleNetV2, where significant improvements in
accuracy are observed. We hope that our study can provide valuable insights
and experiences for future research in this field.

References

1. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision
transformers. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 9640–9649 (2021) 5

2. Chen, Y., Dai, X., Chen, D., Liu, M., Dong, X., Yuan, L., Liu, Z.: Mobile-former:
Bridging mobilenet and transformer. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 5270–5279 (2022) 4, 12, 13

3. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning
augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018) 7

4. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated
data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops. pp. 702–703
(2020) 7

5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2009) 2, 8

6. Ding, X., Zhang, X., Han, J., Ding, G.: Diverse branch block: Building a convo-
lution as an inception-like unit. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 10886–10895 (2021) 2, 6

7. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg: Making vgg-style
convnets great again. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 13733–13742 (2021) 2, 6

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020) 4

9. d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: Con-
vit: Improving vision transformers with soft convolutional inductive biases. In:
International Conference on Machine Learning. pp. 2286–2296. PMLR (2021) 13

10. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: More features
from cheap operations. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 1580–1589 (2020) 1, 4, 13

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 2, 8, 9



16 Liu et al.

12. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image clas-
sification with convolutional neural networks. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 558–567 (2019) 2, 5

13. Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial di-
mensions of vision transformers. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 11936–11945 (2021) 13

14. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015) 3

15. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings of
the IEEE/CVF international conference on computer vision. pp. 1314–1324 (2019)
1, 4, 12, 13

16. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017) 1, 3, 12, 13

17. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model
size. arXiv preprint arXiv:1602.07360 (2016) 3

18. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proceedings of the European conference on
computer vision (ECCV). pp. 116–131 (2018) 4, 12, 13

19. Mehta, S., Rastegari, M.: Mobilevit: light-weight, general-purpose, and mobile-
friendly vision transformer. arXiv preprint arXiv:2110.02178 (2021) 1, 4, 13

20. Peng, Z., Dong, L., Bao, H., Ye, Q., Wei, F.: Beit v2: Masked image modeling with
vector-quantized visual tokenizers. arXiv preprint arXiv:2208.06366 (2022) 8, 9

21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 4510–4520 (2018) 1, 3, 12, 13

22. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 2820–
2828 (2019) 4, 12, 13

23. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019) 12, 13

24. Tan, M., Le, Q.: Efficientnetv2: Smaller models and faster training. In: Interna-
tional conference on machine learning. pp. 10096–10106. PMLR (2021) 2, 5

25. Tan, M., Le, Q.V.: Mixconv: Mixed depthwise convolutional kernels. arXiv preprint
arXiv:1907.09595 (2019) 12, 13

26. Tang, Y., Han, K., Guo, J., Xu, C., Xu, C., Wang, Y.: Ghostnetv2: Enhance cheap
operation with long-range attention. arXiv preprint arXiv:2211.12905 (2022) 1, 2,
4, 13

27. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
conference on machine learning. pp. 10347–10357. PMLR (2021) 2, 8, 9, 13

28. Vasu, P.K.A., Gabriel, J., Zhu, J., Tuzel, O., Ranjan, A.: An improved one mil-
lisecond mobile backbone. arXiv preprint arXiv:2206.04040 (2022) 1, 12, 13

29. Wightman, R., Touvron, H., Jégou, H.: Resnet strikes back: An improved training
procedure in timm. arXiv preprint arXiv:2110.00476 (2021) 2, 5



GhostNetV3: Exploring the Training Strategies for Compact Models 17

30. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y.,
Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable neu-
ral architecture search. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10734–10742 (2019) 12, 13

31. You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel,
J., Keutzer, K., Hsieh, C.J.: Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv preprint arXiv:1904.00962 (2019) 7

32. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization
strategy to train strong classifiers with localizable features. In: Proceedings of the
IEEE/CVF international conference on computer vision. pp. 6023–6032 (2019) 7

33. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412 (2017) 7

34. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 6848–6856 (2018) 4, 12

35. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmenta-
tion. In: Proceedings of the AAAI conference on artificial intelligence. vol. 34, pp.
13001–13008 (2020) 7

36. Zhou, D., Hou, Q., Chen, Y., Feng, J., Yan, S.: Rethinking bottleneck structure for
efficient mobile network design. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. pp. 680–
697. Springer (2020) 4, 12, 13


	GhostNetV3: Exploring the Training Strategies for Compact Models

