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Abstract

The Indian classical dance-drama Kathakali has
a set of hand gestures called Mudras, which
form the fundamental units of all its dance
moves and postures. Recognizing the depicted
mudra becomes one of the first steps in its dig-
ital processing. The work treats the problem
as a 24-class classification task and proposes a
vector-similarity-based approach using pose es-
timation, eliminating the need for further train-
ing or fine-tuning. This approach overcomes
the challenge of data scarcity that limits the ap-
plication of Al in similar domains. The method
attains 92% accuracy which is a similar or bet-
ter performance as other model-training-based
works existing in the domain, with the added ad-
vantage that the method can still work with data
sizes as small as 1 or 5 samples with a slightly
reduced performance. Working with images,
videos, and even real-time streams is possible.
The system can work with hand-cropped or
full-body images alike. We have developed and
made public a dataset for the Kathakali Mudra
Recognition as part of this work.

1 Introduction

This is a work attempting to bring the advance-
ments we have in artificial intelligence into the
world of cultural heritage and knowledge, where
it can be put to use and benefit by solving real-
world tasks especially in preserving and handing
down the ancient knowledge system we have been
blessed with in this modern era of digitization.
Within the wide spectrum of Al, we now have
exceptional capabilities in processing images and
videos using computer vision techniques, handling
vectorized data using dedicated database manage-
ment systems, etc, which we utilize here. The
focus area we have chosen is the Indian classical
art form Kathakali, but the approaches we put forth
can be easily adapted in other similar use cases like
different dance forms or even be extended to pro-
cessing sign languages. Our approach aims for the
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most cost and resource-effective development, by
building on top of existing technologies, when the
general trend in Al is the opposite, requiring large
amounts of data and computational capabilities.

Kathakali is a dance drama, where a story is
acted out using an exquisite and well-defined set of
gestures and facial expressions, which originated in
the 17th century. These gestures have evolved out
of other ancient art forms that prevailed even be-
fore Kathakali and the authoritative treatises on
the Indian dance such as Natyasatra, Abhinaya
darpana, etc., which now forms the language of
Kathakali[23]. On one hand, it has a language sys-
tem that is capable of expressing even the minute
details of the story in a well-defined and structured
manner, whereas, on the other hand, we can ob-
serve the common challenges of natural language
processing like ambiguity, diverse dialects, etc.
here also when attempting computational modeling
or processing. Even outside of the computational
aspects, the language of Kathakali is so intricate
and elaborate that it requires expert knowledge for
a person to understand the performance.

Mudras, or hand gestures, of Kathakali are like
the alphabets of the language, forming its funda-
mental building blocks. There are 24 such mudras,
when used in specific manners(body posture, com-
bination and movements), which can be interpreted
as meaningful words of the language[21]. Mudras
are formed by holding the fingers of a hand in a
specific shape. These hand shapes can be held in
different angles and orientations or moved in dif-
ferent directions and still be identified as the same
Mudra. The concept of such mudras is commonly
seen in other Indian classical dance forms and they
share the majority of these features even though
there might be slight differences in the number of
Mudras and their shapes.

The challenges posed by such a use case when
attempting to process digitally are many. It is a
stage-performed art form and the raw data can be



captured as images and videos. From there to get
to a state to automatically process and understand
the enacted story, there are the hurdles of detecting
the artist, tracking his finger, face, and body move-
ments, recognizing the mudras and words shown,
interpreting the meaning of the combination and
sequence of such gestures to be able to translate it
to a written language like English. To list out the
technology stack for such a pipeline, there will be
computer vision techniques like gesture recogni-
tion to natural language processing techniques like
language understanding and translation. All these
are essentially achieved today with the help of deep
learning, which in turn depends on a large amount
of training data and infrastructures. Unfortunately,
such large training corpora will be hard to obtain
for use cases like these. Even if we manage to build
some data in one such task, achieving something
similar in a different art form would again bring
us to square one, which is not helpful when we
consider the ease of adaptation. An easy adaptation
is critical in this domain as here we aim to preserve
knowledge systems and cultures that are at the risk
of neglect. So we need to be able to work with as
minimum data as possible.

Breaking down the bigger task of automatic
Kathakali interpretation into component tasks, a
good place to start is by recognizing the Mudras as
they are the atomic units of the system. In this work
we develop an approach to detect mudras used in
Kathakali, using only a very few samples to learn
from. This gives us the possibility of applying the
same methods easily in different dance forms or
related areas like sign recognition by just build-
ing a dictionary of one or more sample images to
learn how the gesture is. This approach not only
would serve as the first step towards building an
interpretation system but also can be applied to;
building more training data from unannotated data
like videos of performances, as a pedagogical tool
aiding digital training, etc.

Our methodology makes use of existing general-
purpose pose estimation technologies and uses that
information to build vector representations of the
gesture/mudra classes we have. These vectors are
formed using Euclidean coordinates of different
landmarks of the hand, after applying necessary
normalizations. Now the test data is also subjected
to similar vectorization and then compared against
our database of known Mudra vectors to find the
one it is most similar to. The pose estimation model
used is Mediapipe from Google which can estimate
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Figure 1: Mudras in Kathakali: Our 24 classes[23]



3D coordinates of hand landmarks from images,
videos, and even real-time feeds[11].

2 Related Works

Kathakali, and traditional art forms in general, are
not areas of wide popularity, and hence technolog-
ical research is scarce. That is indicative of the
relevance of such research explorations and the ex-
isting gap. Among the existing works in Kathakali
and other related fields, one common trend seen is
that all such attempts rely on building deep learn-
ing models from the ground up by building datasets
first which is the major challenge of this domain.
Our work on the other hand aims to use minimum
data, leverage the powers of existing models, and
apply it to our task. Such an approach is novel in
the explored literature.

In the Kathakali Hand Gesture Recognition
works done by Bhavanam et. al.[3] in 2020,
which is the same task as we are attempting, they
achieved an accuracy of 74% by applying Con-
volutional Neural Networks on a dataset of 654
images cropped to show only one hand. They have
developed and published this dataset[14] which
comprises color images of 56x56 pixels. Our work
has also been tested on this dataset and observa-
tions are given in the results section. As part of
this work, authors have compared the performance
of the SVM classifier also on the same dataset and
found CNN to be outperforming it.

In a similar work done by Malavath et. al. [12]
in 2023 upon the same dataset as above they re-
ported an accuracy of 79% accuracy again using
CNN models. In the work, they also provide a
comparison with a Naive Bayes model.

Bulani et. al. has a work that builds a Framework
to Computationally Analyze Kathakali Videos[4]
(2022). As part of this framework, they build a
pose estimation model that can detect body land-
marks on a Kathakali performance video. This
is essential as the general purpose pose estima-
tion systems will not work on Kathakali images
because of its vibrant costumes and face painting.
Our approach which relies on pose estimation to
build vectors, can build on top of such works when
adapting to videos in costumes and facial expres-
sion recognition. In their work they further explore
the capabilities of such a pose estimation system for
style transfer and avatar puppeteering of Kathakali
model, synthesizing cartoon videos of Kathakali
performance. This work showcases the effective-

ness of pose-estimation-based processing and its
scope. In our work, the pose estimation module we
use is easily replaceable by other similar technolo-
gies like these.

Iyer et. al. [8] have conducted experimentation
on Kathakali character(vesham) recognition, which
is arelated problem in the same area, but concerned
with identifying the role of the performer based on
his attire. This is also treated as an image classifi-
cation task using deep learning techniques such as
CNN and reports a top accuracy of 97.5% through
rigorous parameter tuning and experiments. Selvi
et. al.’s work [19] in 2021, also deals with a dif-
ferent problem of expression detection in the same
domain of Kathakali Analysis.

Bharatanatyam is another classical dance form
in India that has wider popularity compared to
Kathakali. It also has the concept of mudras. In a
recent work by Niveditha Parthasarathy et. al.[16],
they have published a benchmark dataset of 5 mu-
dra classes and also proposed a method for classi-
fication mudras using MobileNetV2 models after
finetuning. The work had real-time and offline per-
formance tests. In the offline tests where they used
6000 images for 5 classes, the reported accuracy
is 86.45. We have included experiments on this
dataset as part of our work.

Another Bharathanatyam work by Vadakkot et.
al. in 2023[22], reports an accuracy of 92% upon
using CNN for Bharatanatyam mudra recognition
considering 29 classes of Mudras. Further, they
also propose an approach of using Eigen Mudra
projections. As part of their work, they have built
a dataset of 68,073 high-resolution color images,
from 6 subjects. The higher accuracy of this work
compared to the Kathakali work[3] could be at-
tributed to the bigger dataset and better quality
images, which might have also required bigger
computational resources. Finetuning of pre-trained
models like VGG19 is reported to have improved
the performance to 94%, which shows the effec-
tiveness of making use of general-purpose models.

At a similar task of Indian Classical dance mudra
recognition, Kumar et. al. in 2017[10] explored a
different approach of using a Histogram and other
such features and employing an SVM classifier. It
is also a 24-class classification task for the dance
form Kuchipudi. This work utilizes the pre-deep-
learning approaches of more mathematically aware
feature extraction but shows the effectiveness of
working with interpretable features, a smaller size
dataset of 25 samples per class, and a simpler ML



algorithm. Their reported mudra recognition fre-
quency is 89%.

Other works in Indian classical dance mudra
recognition, like Pradeep et. al.’s work in 2023[17]
and Haridas et. al.’s work in 2022[7] also employ
CNN. The latter used YOLO for Bharathanatyam
mudras and reported an accuracy of 73%. The for-
mer evaluates multiple CNN models. This work
also tries to locate hands in bigger images and then
classify them, which causes a lower accuracy of
50%. Other works like Nandeppanavar et. al’s[13]
attempts using VGG-19 and ResNet50V2 which
reports 96.44% accuracy, also exhibit a similar pat-
tern of depending on deep learning architectures
for either finetuning or training from scratch.

The dance pose recognition works on K-Pop
done by Dohyung Kim et. al. in 2017[9] utilize
pose detection as their feature. But for pose detec-
tion, they were using Kinect which requires a studio
environment to capture that data. But present-day
advancements in pose estimation models that can
work on images and videos eliminate that limitation
for us. They used a dataset of 800 data points for
200 classes, which is 4 samples per class, and indi-
cates the effectiveness of the pose-estimation-based
approach on a smaller dataset. Multiple machine
learning algorithms were tried on these features,
but they were all lighter techniques compared to
deep learning, like SVM, KNN, ELM, etc.

In a slightly more diverse application domain
of pose recognition for human-robot interaction,
Qing Gao et. al. in their 2022 work[6], adapts
the use of hand pose estimation. Previously hand-
glove-based approaches have shown good perfor-
mance in such tasks. Now those principles are
applied using pose estimates from images/videos
via openpose[5]. They are using a 3D-CNN and
an LSTM to further process these pose features for
their task and report the highest accuracy of 92.4%.

Other than the dependence on large training cor-
pora, one common issue with most of the CNN-
based works explored above is that they are work-
ing with cropped images of hands. When applying
to a use case, we would expect the model to classify
mudras on video data, and scaling these approaches
to such a requirement will need considerable addi-
tional work in locating hands in the bigger frames
and also in processing continuous video data effi-
ciently.

3 Methodology
3.1 Data

Good quality images or videos where hands show-
ing mudra are clearly visible are the data we can
work with. The main advantage of our approach
is its ability to work with just a few samples of
data. We tested the system using just one sample
per class and found that it can deliver reasonable
results even in such a constrained setting. With just
one sample per class, the accuracy would be lower
but for applications where a small compromise on
the accuracy of each prediction doesn’t hurt too
much, this gives us something to work with. For
instance, if we can consider a window of frames in
a video or depend on language models for getting a
more probable sequence of mudra, a small compro-
mise on the individual prediction accuracy could
be accommodated.

Upon increasing the number of samples to
around 5 samples per class and covering differ-
ent orientations of the hand making sure different
finger positions are well covered, especially for
mudras where some fingers would not be visible
in certain angles, we have observed a considerable
increase in the accuracy.

Another key highlight of the system is that even
though training samples only contain portions of
images with just a hand, it can be applied to videos
or images where the full upper body or more back-
ground scenery is visible. As long as the input data
has enough clarity for the pose detection system to
correctly detect the hand landmarks, the training
setup and testing setup are not too dependent on
each other.

3.2 Features

The raw images obtained from video frames, real-
time feeds, or image datasets are passed on to a
pose estimation model and we obtain the hand land-
marks output of that model. In this implementation,
we have relied on the media pipe framework[11]
by Google and the hands model[1] they provide.
This enables us to get a jump start with respect
to the computer vision aspects of the task. Also
helps in eliminating a lot of irrelevant features like
backgrounds, person-dependent features, etc, and
focuses only on what is relevant for us in our task,
giving a more robust system deployable in diverse
settings than what it has been trained in. Medi-
apipe gives 3D coordinates values of 21 landmarks
of hands thus giving us a 63 dimension feature
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Figure 2: Handlandmarks from Mediapipe[1]

vector for an image.

The more common approach of using image
pixel values as features for training CNNs from
scratch or fine-tuning pertained image classification
neural networks would all require large amounts
of labeled training data to be able to automatically
deduce the relevant features and converge with rea-
sonable accuracy. But even then, those models will
be highly sensitive to changes in training and test
data.

Another option commonly adopted while mak-
ing use of existing pertained models is to use the
embeddings from those models as our features. But
that, compared to the coordinate values we use,
lacks the advantage of being interpretable. The
coordinate values can be understood by us and sub-
jected to post-processing tasks like normalization
as per our requirements, which we utilize in our
system.

3.3 Normalization

Once the X, y, and z coordinates are obtained with
respect to the image frame, we subject it to nor-
malization. As we want the system to give a con-
sistent performance on images of different types
where factors like zoom, location within the frame,
person-built, angle, etc could vary drastically, this
normalization step is crucial for us. This becomes
even more critical as we aim to give consistent per-
formance but provide only very little data for it to
generalize over these diversities.

The normalization applied is the projection of
the obtained coordinates to a new coordinate sys-
tem such that it rotates, scales, and translates the
points with respect to each other to a new lo-
cation. For a 3-dimensional point this can be
achieved by multiplying it with a 4x4 transforma-
tion matrix[20].

The method adopted for obtaining this transfor-
mation matrix is to make use of 4 reference points,
namely the wrist, the base points of the index fin-
ger, the pinky finger, and the thumb. The first set
of points are the four points we have fixed at the

center of the frame, facing frontward and of fixed
body size. The second set is the corresponding co-
ordinate values obtained from pose estimation for
these body points. The first and second are com-
pared to determine the transformation required to
project the second to the first coordinate system.
Algorithm for Normalization
Input:Original hand landmark coordinates.
Output:Normalized coordinate values.

1. Fix the 4 primary points P
(a) Wrist at (px1, pyl, pz1)
(b) Index finger base at (px2, py2, pz2)
(c) Pinky finger base at (px3, py3, pz3)
(d) Thumb base at (pz4, py4, pz4)

2. Get the 4 secondary points from input, .S

(a) (sxl,syl,sz1) < Wrist (point 0 2)
(b) ( )
(c) (sx3,sy3,sz3) < Pinky base (point 5)
(d) ( )

sx2,5Yy2, s22) < Index base (point 17)

sx4d, syd, sz4) < Thumb base (point 1)
3. Compute transformation matrix X = S~ P

4. For each point in input hand landmarks

(a) normalized_point = X * point
5. Return normalized_landmarks

The figure3 depicts the input images and their
normalized coordinate values for two different mu-
dras in each column. It can be observed that the
difference in the size of the hand, the angle of the
hand, the zoom difference, the location of the hand
in the image frame, etc get normalized effectively
to be able to find a close match correctly.

Once the transformation matrix is thus ob-
tained, it is applied to all points obtained from
the model to project them into the normalized po-
sition, scale, and orientation. This normalization
of coordinate features is performed on both train-
ing data(reference samples in the database) and
incoming test data. As these are simple mathemati-
cal computations they can be incorporated without
hampering performance in a real-time setting too.

3.4 Database

Vector-based data processing is a field that has
been studied for decades, even though we have
been seeing its increased popularity and the rise of
dedicated database management systems over the



Figure 3: Normalized coordinates of hand landmarks

last few years. Now there are multiple production-
ready vector database management systems avail-
able, capable of doing efficient similarity searches
over large data collections[15]. Our use case re-
quires us to store only about 24 (or a few times 24)
data points and do a similarity search over it as we
go for a few samples per class approach. However,
we have relied upon robust database systems that
are capable of indexing these vectors and scaling
up easily to store more samples as we would want
to extend our data from mudras to more sophisti-
cated and varied content like words of Kathakali or
other dance forms. For the current implementation,
we have used the pgvector[2] database which is
an extension of Postgres DB for vector-based com-
puting. Each normalized coordinate vector in the
training data is stored in the database along with its
mudra label.

The use of a database system is not manda-
tory for the implementation of the method. Al-
ternatively using a K-Nearest Neighbour(KNN) im-
plementation with n=1 (or appropriate values) or
an Euclidean distance search implemented from
scratch will also provide a similar result as long as
the training dataset is small enough to be contained
in memory.

3.5 Recognition

When new test samples are obtained, either from
videos or images, these are also normalized and
checked against the data samples in the Database to
find those with the closest similarity. The similarity
score used is Euclidean as we are directly using
the x,y, and z coordinates in Euclidean space. A
threshold is set to the similarity score to avoid very
low matches.

The system can be modified to include top N
(N=3, 5, etc) matches rather than just one match if
the use case permits it. For instance, if the mudra
prediction can be used as logits for a Language
model to predict the correct sequence used, consid-
ering more than one of the top predictions would
be helpful to deduce the more probable sequence.
When running on videos, A window of the last 10
frames can be taken and the most frequent match
among these N*10 values is taken as a valid pre-
diction. This window-based approach allows fewer
fluctuations in prediction results.

4 Experiments and Results

We have conducted extensive experiments to com-
pare the performance of our proposed method with
that of existing works as well as to test its robust-
ness upon throttling the data set size. The first set
of experiments is conducted upon publicly avail-
able datasets and we compare how our method
performed against the reported accuracies from
other works which use deep learning model train-
ing. The next two sets of experiments are done
on our dataset by considering different data splits
like only 1 training sample, 5 training samples, 10
training samples, and 80% training set.

The procedures followed in all the below-
mentioned experiments are as per the steps dis-
cussed in the methodology. Pose estimation is done
for all the training image samples, after which the
coordinates values are normalized and stored in the
database with corresponding class labels. Similarly,
test set images are also subjected to pose estimation
and normalization. After this, a vector similarity
search based on Euclidean distance is run on the
database and the topmost match is considered as
the prediction. Even though there is no machine
learning or neural network training involved in our
approach we still refer to the reference data set as
the training set in this article following the common
practice in related literature.
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Figure 4: Processes involved in Mudra Recognition

Exp | Dataset Their | Our
No. | Description Score | Score
1.1 | Prior Kathakali[3] 74% | 0.83
1.2 | Partial Kathakali[18] - 0.92
1.3 | Bharathanatyam[16] 86.45 | 0.96
1.4 | Our Kathakali dataset - 0.92

Table 1: Performance on different public datasets

Experiment 1.1: Existing Kathakali Mudra
Dataset

The dataset published in the work of Lakshmi Tu-
lasi Bhavanam et. al.[14] contains images for 24
classes of Kathakali mudras, which they used in
their CNN-based work. We have used the dataset
and with a random 80:20 split, performed classifica-
tion using our method. Upon examining the dataset
it was noticed that the images are of 56x56 pixel
size and hence of very low quality. The fingers are
often indistinguishable and correct mudra recogni-
tion is difficult even manually for some samples.
As a result of low-quality images pose estimation
output is often incorrect in this dataset.

Experiment 1.2: Partial Kathakali Mudra
Dataset

A 5-class dataset is available on Kaggle[18] for
Kathakali mudras. It contains, ’mudrakhya’,
‘pataka’, ’kataka’, ’kartari mukha’, and ‘musti’,
which is a small subset of our 24 classes. Different
hand orientations including some ambiguous poses
where all fingers are not visible and hence mudra
is not clear are included in the dataset. This dataset
was also used and with an 80:20 split on the data
for the training and the test sets, we applied our
method for mudra classification.

Experiment 1.3: Bharathanatyam Dataset

In the works of Niveditha Parthasarathy et. al,
they have published a benchmark dataset[16] for
Bharathanatyam mudras, which includes short
video clips for 5 mudra classes. Image frames
are obtained from these video clips at the rate of
FPS=5. From the available videos in the published
dataset, we obtained 916 images for the experiment,
even though the original work has reported using
6000 images.

Experiment 1.4: Our dataset

As part of this work, we have developed a 24-class
dataset for Kathakali Mudras involving 8 partici-
pants, different angles of hand, left and right hands,
different zoom, lighting, and such capturing con-
ditions. In this dataset also, a random 80:20 split
was done for training and test sets and subjected to
performance testing using the proposed method.

Experiment 2.x: On small training sets

To observe the performance of the approach in a
data-constrained situation we have throttled our
training set size to extremely small sizes and tested
it against the remaining samples. The experiment
procedures followed in this set of experiments
are also the same as the previous ones, which in-
volved pose estimation, normalization, and vector
similarity-based prediction. The dataset used is our
dataset.

Experiment 2.1: One training sample per class
Experiment 2.2: 5 training samples per class
Experiment 2.3: 10 samples per class

Experiment 2.4: 80:20 split of the dataset (same
experiment as 1.4)



Training Dataset All 24 classes Only 10 classes
Exp No. | Accuracy | Exp No. | Accuracy

1 sample 2.1 0.63 3.1 0.81

5 samples 2.2 0.75 3.2 0.91

10 samples 23 0.83 33 0.91

80% of dataset 24 0.92 34 0.95

Table 2: Performance on different training set sizes

Experiment 3.x: Including only unambiguous
classes

The hand shapes of certain pairs of mudras can
be very similar to each other like in the case of
Tripataka and Anjlai or Mushti and Katakamukha.
This can cause a certain amount of ambiguity in
the task of mudra recognition and can have a ma-
jor impact on the samples where hand orientation
makes their difference minimal. Several works
[16] [18] explore the performance of their methods
on a simplified problem including only a subset
of mudras that have substantial differences in the
hand shape. To explore this performance difference
we have reduced our dataset and task to a 10-class
problem including only the following 10 mudras:
"pataka", "mudrakhya", "sukatunda", "hamsapak-
sha", "sikhara", "ardhachandra", " arala",
"mukula", "katakamukha".
Experiment 3.1: One training sample per class
Experiment 3.2: 5 training samples per class
Experiment 3.3: 10 samples per class
Experiment 3.4: 80:20 split of the dataset

This dataset of 24 class Kathakali mudras which
we developed as part of this work is publicly avail-
able at [github or huggingface link]. All the data
splits mentioned in experiments 1.4, 2.x and 3.x on
our dataset are also published along with our data.
The data split for some of the experiments has a
test set size which is several folds of the training
set size which is not common for Machine learning
or deep learning evaluations. The evaluation we
have done so is because of the tightened data size
constraints. The table:3 lists the sizes of training
sets and test sets in each of the experiments.

non

mukura",

5 Discussion

The experiment results clearly show that the pro-
posed approach can attain the performance of deep
learning models trained or finetuned for specific
tasks. Furthermore, it can give satisfactory results
even with very small data available for training a
baseline system in a new task. Though the work

Exp | Experiment Train set | Test set
No. | Description Size Size
1.1 | Prior Kathakali 485 169
1.2 | Partial Kathakali 991 245
1.3 | Bharathanatyam 732 184
1.4 | 24-class 80:20 split 742 186
2.1 | 24-class 1 sample 24 904
2.2 | 24-class 5 samples 120 808
2.3 | 24-class 10 samples 240 688
2.4 | 24-class 80:20 split 742 186
3.1 | 10-class 1 sample 10 381
3.2 | 10-class 5 samples 50 341
3.3 | 10-class 10 samples 100 291
3.4 | 10-class 80:20 split 315 76

Table 3: Sizes of training and test splits in the experi-
ments

is focused on Kathakali the proposed method can
be applied to other similar tasks easily as demon-
strated by the Bharathanatyam mudra recognition
experiments.

The experiments were done on isolated, cropped
images to be able to compare effectively with other
works. The pre-trained pose detection model we
use is capable of performing good quality pose es-
timation on images with full body and background
details, continuous videos, real-time streams, and
even on mobile devices[cite]. As the additional
computation of normalization and vector similarity
done on top of it are of negligible computational
costs, the method easily extends to a continuous,
real-time, and cross-platform solution.

The application of Kathakali mudra detection
comes as a first step towards Kathakali interpreta-
tion. Kathakali’s interpretation has its relevance as
the performance includes signed dialogues that are
not intelligible for a novice in the audience. But ap-
plications of the mudra recognition system come in
other forms also. It can serve as a pedagogical tool
applying the system to detect select mudras and
recommend ideal orientations. Another application



is in tagging unannotated data for creating larger
corpora as our target domain has the problem of
data scarcity.

6 Conclusion

The main contribution of this work is the novel
approach for image classification tasks involving
hand gestures such as dance mudra recognition
in Indian classical dance forms which can give
satisfactory results even with a very constrained
dataset size. This is critical as there are several
similar applications for this in art forms and Sign
languages where the foremost constraint for deep
learning approaches is their huge data requirements.
Our method could help with a jump start in such
tasks which can later be employed for creating
more data from unannotated corpora.

One of the future directions we plan to explore
is extending to Kathakali Word recognition. A
Kathakali word is formed using one or more of
the mudras held or moved in specified postures.
These span over multiple frames. Our current mu-
dra recognition is limited to single frame level clas-
sification, but the bigger task requires us to work
with videos involving more context. This calls for
more challenges and exploration of solutions. We
plan to employ full-body pose estimation in place
of only hands and figure out effective ways to seg-
ment videos based on pose changes. Again we will
aim to work with as minimum data as possible.

Other future directions we have in mind are ap-
plying the same solutions to different problems like
Koodiyattam and other dance form mudra recog-
nitions. Apply similar techniques in word-level
sign language recognition as in Kathakali, to be
able to adapt the solutions easily to different sign
languages and their variants with minimum data
dependency.
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