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Abstract

One of the elegant achievements in the history of proof theory is
the characterization of the provably total recursive functions of an
arithmetical theory by its proof-theoretic ordinal as a way to measure
the time complexity of the functions. Unfortunately, the machinery
is not sufficiently fine-grained to be applicable on the weak theories
on the one hand and to capture the bounded functions with bounded
definitions of strong theories, on the other. In this paper, we develop
such a machinery to address the bounded theorems of both strong
and weak theories of arithmetic. In the first part, we provide a re-
fined version of ordinal analysis to capture the feasibly definable and
bounded functions that are provably total in PA +⋃β≺αTI(≺β), the
extension of Peano arithmetic by transfinite induction up to the ordi-
nals below α. Roughly speaking, we identify the functions as the ones
that are computable by a sequence of PV-provable polynomial time
modifications on an initial polynomial time value, where the compu-
tational steps are indexed by the ordinals below α, decreasing by the
modifications. In the second part, and choosing l ≤ k, we use similar
technique to capture the functions with bounded definitions in the
theory T

k
2 (resp. S

k
2 ) as the functions computable by exponentially

(resp. polynomially) long sequence of PVk−l+1-provable reductions
between l-turn games starting with an explicit PVk−l+1-provable win-
ning strategy for the first game.

Keywords. Total search problems, ordinal analysis, bounded arith-
metic, local search programs.
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1 Introduction

One of the elegant achievements in the history of proof theory is the witness-
ing techniques connecting the provability of a formula of a certain form to
the existence of a computational entity (algorithm [35], function [22], term in
a type theory [3], etc.) that witnesses the truth of the formula. These con-
nections identify the power of the theories and they are useful to establish
the unprovability of a formula by showing the non-existence of the corre-
sponding witness. As an example, consider the ordinal analysis as one of the
well-known witnessing techniques that among many other things provides a
characterization for the provably total recursive functions of some mathe-
matical theories [29, 14, 22]. (For a comprehensive high-level explanation,
see [31]). It connects the provability of the totality of a Σ

0
1-definable function

to its time complexity, measured by the proof-theoretic ordinal of the theory.
The characterization then leads to some independence results for the formu-
las in the form A = ∀x∃yB(x, y), where B ∈ Σ

0
1 is a definition of a function

with a faster growth rate and hence higher time complexity than what the
theory can actually reach [22].

There are, however, some settings in which the witnessing techniques
and especially the one based on ordinal analysis break down. Sometimes, we
are only interested in the formulas with no existential quantifiers to witness
(e.g. A = ∀xB(x), where B is a quantifier-free formula). Other times,
the theory is so weak that even the basics of the witnessing machinery goes
beyond the power of the theory. Even working with powerful theories, there
can be some problematic situations. For instance, one may be interested in
bounded formulas (e.g. ∀x∃y ≤ t(x)B(x, y), where all quantifiers in B are
also bounded) provable in Peano Arithmetic, denoted by PA. Here, what the
usual witnessing methods provide is rather weak or even useless. For instance,
using ordinal analysis for PA, the best thing we can learn in the bounded
setting is the existence of an algorithm to compute y using a huge amount
of time measured by ǫ0, the ordinal of the theory. This is much weaker than
what we started with, i.e., the provability of the totality of the function with
a bounded definition. The reason roughly is that the algorithm leads to the
existence of the definition ∃wC(x, w, y) for the function, where w encodes the
computation and PA proves ∀x∃ywC(x, w, y). However, the computation w

can be huge and hence unbounded by the terms in the language and in this
sense proving the totality of a bounded function with a bounded definition is
stronger than the existence of such an algorithm.

To solve this type of issues and to address both weak theories and low
complexity formulas, many new witnessing techniques were designed, from
witnessing the universal provable formulas by short propositional proofs [21,
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30, 26, 15] to witnessing provable bounded formulas in first-order bounded
theories of arithmetic in special cases [13, 18, 28] and then in general cases [32,
34, 7], using game reductions and different versions of local search problems.
A similar technique is also developed for second-order bounded theories of
arithmetic [5, 19, 8, 24] and even for Peano arithmetic [4]. In this paper, we
will continue this line of research by providing a general witnessing machinery
to witness the low-complexity theorems both in strong and weak theories of
arithmetic using a computational entity that we call a flow. Flows are meant
to formalize the idea of flowing information and they formally are uniform
suitably long sequences of PV-provable implications between formulas in a
suitable class, where PV is Cook’s theory for polynomial time functions. We
will work with two different types of flows in this paper, ordinal flows and
k-flows.

Ordinal flows

An ordinal flow is a transfinite uniform sequence of PV-provable implications
between universal formulas. We use ordinal flows to witness low-complexity
theorems of the theory PA + ⋃β≺α TI(≺β), where α is an ordinal with a
certain polynomial time representation and TI(≺β) means the transfinite
induction up to the ordinal β. More precisely, we witness the provability
of an implication between two universal formulas in PA + ⋃β≺α TI(≺β) by
a uniform sequence of PV-provable implications of length β ≺ α. Using
Herbrand’s theorem for PV, we push the witnessing further to witness the
PA +⋃β≺α TI(≺β)-provable formulas in the form A = ∀x̄∃ȳB(x̄, ȳ), where
B is a polynomial time computable predicate by an algorithm to compute
ȳ by a sequence of PV-provable polynomial time modifications on an initial
polynomial time value, where the computational steps are indexed by the
ordinals below α, decreasing by the modifications. Our result generalizes
the main theorem of [4] that developed a similar characterization for PA.
However, as we will explain below, even for that special case, we use a simpler
and easier to generalize methodology.

To compare our result to the existing literature on ordinal analysis, it
is important to focus on the role of the polynomial time computable func-
tions and the theory PV in our contribution. First, note that changing the
polynomial time functions and PV in our characterization to the elementary
or primitive recursive functions and ERA or PRA, respectively, makes the
characterization an easy consequence of the known facts in the ordinal anal-
ysis literature. For instance, one can use the powerful witnessing theorems
in [23, 2] or the interesting algebraic presentation of the ordinals in [10].
What is not trivial, though, is providing a low-complexity version suitable to

3



witness the low-complexity theorems of arithmetic. To reach such a version,
we have two options. The first, as followed in the above-mentioned paper
[4], rewrites the continuous cut elimination technique [11, 12], replacing all
primitive recursive functions by more careful polynomial time computable
operations [9]. The second as an indirect approach uses the known results
in ordinal analysis as a black-box and rewitness them in a feasible manner
to circumvent redoing the tedious ordinal analysis argument. This option is
what we follow in the present paper. More precisely, we first use the refined
ordinal analysis in [23] to show that a Π

0
2-formula is provable in the theory

PA+⋃β≺α TI(≺β) iff it is provable in an extension of PRA with a weak form
of transfinite induction. Then, using a suitable polynomial time representa-
tion for the ordinals below α, we will transform a proof in the weaker theory
to a sequence of PV-provable polynomial time modifications described above.
Our technique of using ordinally long sequence of easy modifications is sim-
ilar to what used in [2], although its machinery has a more model-theoretic
character and also implements the ordinal analysis from the scratch. Roughly
speaking, [2] provides a similar witnessing theorem using elementary func-
tions rather than polynomial time functions in its ordinal flows. However, to
have a verifiablity criterion, it insists on having the whole witnessing process
provable inside the meta-theory PRA. The witnessing machinery of [2] can-
not be directly used to prove the low-complexity version we are interested
in here. The reason is its use of PRA-formalized Herbrand’s theorem for
first-order logic that uses cut elimination and it is extremely costly to be
directly formalizable in PV. To solve the issue, as [2] also suggests, one must
witness the Herbrand’s theorem part by a sequence of PV-verifiable modi-
fications or equivalently witness the first-order logic by such modifications,
directly. This is one of the things we do in the present paper. Therefore,
although our work is inspired by [4] and the witnessing theorems in bounded
arithmetic and hence its technique was developed independent from [2], one
can interpret our contribution as a generalization of [2] making its machinery
applicable even in the low-complexity settings.

k-flows

A (polynomial) k-flow is a uniform (polynomially) exponentially long se-

quence of PV-provable implications between Π̂
b
k-formulas. Recall that Π̂

b
k-

(Σ̂
b
k-formulas) are roughly the formulas with k-many bounded quantifier

blocks starting with a universal (existential) block and followed by a quantifier-
free formula over the language LPV that has a term for any polynomial time
computable function. We will witness the provability of an implication be-
tween Π̂

b
k-formulas in T

k
2 (resp. S

k
2 ) by a k-flow (resp. polynomial k-flow).
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To push the witnessing further, we can use Herbrand’s theorem again for the
universal theory PV. However, this time the formulas are in Π̂

b
k and hence we

have k-many layers of quantifier to peel off. To control the number of layers
we intend to remove, we will follow a relative approach. We fix a number
l ≤ k and only peel off the outmost l many quantifier blocks. More precisely,
we first move the PV-provable implications from PV to PVk−l+1, a universal
theory for the functions in the (k− l+1)-th level of the polynomial hierarchy.
This way we can pretend that all the formulas in Σ̂

b
k−l ∪ Π̂

b
k−l are quantifier-

free. Therefore, only l many quantifier blocks are left to witness. Using
Herbrand’s theorem for the theory PVk−l+1 and reading any quantifier-free
formula in the language of PVk−l+1 as an l-turn game [32], we can then wit-
ness any PV-provable implication by an explicit PVk−l+1-verifiable reduction
between l-turn games. These reductions are somewhat non-deterministic
mapping their input values to some possible instances, where one of the op-
tions may work, (see the second part in Theorem 2.2 to see what we mean by
non-determinism in this context). Finally, using these reductions, we show

that a formula in the form ∀x̄∃y ≤ r(x̄)B(x̄, y), where B ∈ Σ̂
b
k−l ∪ Π̂

b
k−l is

provable in T
k
2 (resp. S

k
2 ) iff there is a uniform (polynomially) exponentially

long sequence of PVk−l+1-verifiable reductions between l-turn games, start-
ing from an explicit PVk−l+1-verifiable winning strategy for the first game.
We will only spell out the details for l = 1, 2. For l = 1, we show that our
witnessing theorem reproves some of the well-known witnessing theorems for
S
k
2 and T

k
2 including the usual witnessing of Σ̂

b
k-definable functions of S

k
2 by

□
p

k-functions [13] and Σ̂
b
1-definable multifunctions of T

1
2 by polynomial local

search problems [18]. For l = 2, we provide new witnessing theorems. For

T
k
2 , there are other witnessing methods providing similar characterizations

as ours based on better (i.e., deterministic) game reductions [32, 34]. The
theory of flows can also prove these stronger characterizations. However, it
needs to work with more involved notions of a k-flow than what we have here.
We leave such investigations to another paper. For S

k
2 , however, our result,

to the best of our knowledge, is the only characterization in the same style of
the original witnessing theorems [13] that reduce the provability in S

k
2 to a

polynomially long sequence of feasible modifications. Of course, one can use
the conservativity of S

k
2 over T

k−1
2 for Σ̂

b
k-formulas and then using the wit-

nessing for T
k−1
2 by the deterministic game reductions [32, 34] or any other

characterization [6, 7], find a witnessing theorem for S
k
2 . Using this approach,

the characterizations provide an exponentially long sequence of deterministic
reductions while we provide a polynomially long sequence of more complex
non-deterministic reductions. These two different approaches can be seen as
an instance of the usual phenomenon of simulating the huge power of the de-
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terministic exponential time with polynomial time non-determinism, where
the latter, if possible, is more informative than the former.

Finally, to compare our witnessing method to the rich literature on wit-
nessing theorems in bounded arithmetic, let us emphasize two points that
we find unique to our characterization. First, unlike the methods used in
[18, 28, 32, 34, 6, 7], our machinery is sufficiently general to directly witness
bounded theories arising from practically any type of bounded induction
[1]. For instance, for any m ≥ 2, consider the language LPV ∪ {#m}, where

x#2y = 2
∣x∣∣y∣

and x#i+1y = 2
∣x∣#i∣y∣ and define the class Π̂

b
k(#m) and the

theory PV(#m) over the new language similar to Π̂
b
k and PV over LPV. Now,

for any n ≥ 0, m ≥ n+ 2, and k ≥ 1, define the theory R
k
m,n as the extension

of a basic universal theory to handle the function symbols, by the induction
axiom

A(0)∧∀x(A(x) → A(x + 1)) → ∀xA(∣x∣n)
where A ∈ Π̂

b
k(#m), ∣x∣0 = x and ∣x∣j+1 = ∣∣x∣j∣. It is easy to imitate our

technique in the present paper to witness R
k
m,n-provable implications between

Π̂
b
k(#m)-formulas by a uniform sequence of PV(#m)-provable implications

between Π̂
b
k(#m)-formulas with the length ∣t∣n, for some term t. This can

be even more generalized to any type of induction satisfying some basic
properties [1].

The second point is that the length of our witnessing flows honestly re-
flects the type of the induction we use. For instance, for S

k
2 and T

k
2 , we

use polynomially long and exponentially long k-flows, respectively and more
generally, in R

k
m,n where the induction is up to ∣x∣n, the length of the wit-

nessing flow is ∣t∣n, for some term t, see [1]. This honest correspondence is
not typical with the above-mentioned characterizations. For instance, the
polynomially long adaptation of the known characterizations for T

k
2 [32, 34],

i.e., polynomially long sequence of PV-verifiable deterministic reductions be-
tween k-turn games, does not witness S

k
2 -provable implications. The reason

is that any polynomially long iteration of a deterministic reduction is again a
deterministic reduction itself. Therefore, if such a witnessing theorem holds,
one can witness the implications in S

k
2 between Π̂

b
k-formulas by a polynomi-

ally long sequence of reductions and hence only one reduction. Thus, the
Σ̂

b
k-definable functions of S

k
2 must be all polynomial time computable and as

all the functions in □
p

k are Σ̂
b
k-definable in S

k
2 , the polynomial hierarchy must

collapse. This simple observation shows that the non-determinism we use
in our reductions is essential to have an honest characterization. Moreover,
it shows that our characterization for S

k
2 is not a simple consequence of the

methodologies used for T
k
2 in [32, 34] or even in [6, 7].
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Here is the structure of the paper. In Section 2, we recall the basic defi-
nitions of different languages and arithmetical systems we use in this paper.
In Section 3, we introduce our version of polynomial time ordinal represen-
tation and we recall the one introduced in [9] for ǫ0. In Section 4, we present
ordinal flows and the witnessing technique to reduce the provability of the
low complexity statements in the theory PA+⋃β≺α TI(≺β). Finally, in Sec-
tion 5, we introduce k-flows to witness the provability of the low complexity
statements in the theories S

k
2 and T

k
2 .

2 Preliminaries

For any first-order language L, by an L-formula, we mean any expression
constructible by the connectives {∧,∨,∀,∃} from the atomic formulas (in-
cluding ⊥ and ⊤) and their negations. The formula ¬A is defined via de
Morgan laws and A → B is an abbreviation for ¬A ∨ B. By an L-term, we
simply mean a term in the language L. By t̄, we mean a sequence of terms
in the language and x̄ means a sequence of variables.
To introduce the system PV, let us recall Cobham’s machine-independent
characterization of polynomial-time computable (ptime, for short) functions
[20]. It states that a function is ptime iff it is constructible from certain ba-
sic functions by composition and a weak sort of recursion called the bounded
recursion on notation. Any such construction provides an algorithm to com-
pute the corresponding ptime function. Let LPV be a first-order language
with a function symbol for any such algorithm. In [21], Cook introduced an
equational theory over the language LPV to reason about ptime functions.
The theory essentially consists of the defining axioms for the function sym-
bols together with a sort of induction rule. Later, a conservative first-order
extension of PV, denoted by PV1, was introduced [27]. The theory has the
polynomial induction axiom scheme, denoted by PInd

A(0)∧∀x(A(⌊x
2
⌋) → A(x)) → ∀xA(x),

for any quantifier-free formula A(x) and is universally axiomatizable [27]. In
this paper, we will only use the theory PV1 and not PV. Therefore, by abuse
of notation, we will use the name PV to denote its first-order extension PV1.

In any language extending LPV, by a bounded quantifier, we mean a quan-
tifier in the form ∀x(x ≤ t → A(x)) or ∃x(x ≤ t ∧ A(x)), abbreviated
by ∀x ≤ t A(x) and ∃x ≤ t A(x), respectively. For any sequence of vari-
ables x̄ = (x1, . . . , xn) and terms t̄ = (t1, . . . , tn), by Qx̄ ≤ t̄ A(x̄), we mean
Qx1 ≤ t1Qx2 ≤ t2 . . . A(x1, . . . , xn), for any Q ∈ {∀,∃}.

7



By recursion on k, define the classes Σ̂
b
k and Π̂

b
k of LPV-formulas in the

following way:

• Π̂
b
0 = Σ̂

b
0 is the class of all quantifier-free formulas,

• Σ̂
b
k ⊆ Σ̂

b
k+1 and Π̂

b
k ⊆ Π̂

b
k+1,

• Π̂
b
k and Σ̂

b
k are closed under conjunction and disjunction,

• If B(x) ∈ Σ̂
b
k then ∃x ≤ t B(x) ∈ Σ̂

b
k and ∀x ≤ t B(x) ∈ Π̂

b
k+1 and

• If B(x) ∈ Π̂
b
k then ∀x ≤ t B(x) ∈ Π̂

b
k and ∀x ≤ t B(x) ∈ Σ̂

b
k+1.

Define Σ̂
b
∞ = Π̂

b
∞ as ⋃∞

k=0 Σ̂
b
k that is the same as ⋃∞

k=0 Π̂
b
k. For the sake of

simplicity, we suppressed the free variables in our notation. However, let us
emphasize that they are also allowed to be used in the formulas.

By the axiom scheme Π̂
b
k − PInd, we mean

A(0)∧∀x(A(⌊x
2
⌋) → A(x)) → ∀xA(x),

for any A ∈ Π̂
b
k and by Π̂

b
k − Ind, we mean

A(0)∧∀x(A(x) → A(x + 1)) → ∀xA(x),
for A ∈ Π̂

b
k. The schemes Σ̂

b
k − PInd and Σ̂

b
k − Ind are defined similarly. For

any k ≥ 1, define the theories S
k
2 and T

k
2 as PV+Π̂

b
k−PInd and PV+Π̂

b
k−Ind,

respectively. It is known that S
k
2 (resp., T

k
2 ) proves Σ̂

b
k−PInd (resp., Σ̂

b
k−Ind).

It is also useful to mention that the following axiom scheme, denoted by
Π̂

b
k − LInd

A(0) ∧∀x(A(x) → A(x + 1)) → ∀xA(∣x∣),
where A ∈ Π̂

b
k, is provable in S

k
2 . The same also holds for Σ̂

b
k − LInd, where

we replace Π̂
b
k by Σ̂

b
k [13, 25]. The following theorem is true for theories S

k
2

and T
k
2 [25].

Theorem 2.1. (Parikh) Let T be either S
k
2 or T

k
2 , for some k ≥ 1 and

A(x̄, y) be an LPV-formula in Σ̂
b
∞. Then, if T ⊢ ∀x̄∃yA(x̄, y), then there

exists an LPV-term t(x̄) such that T ⊢ ∀x̄∃y ≤ t(x̄)A(x̄, y).
It is possible to define a universal theory for any level in the polynomial

hierarchy, similar to what PV1 does for the polynomial time computable
functions. More precisely, for any k ≥ 2, one can define a universal theory
PVk over an extended language LPVk

that has a term for any function in
the k-th level of the polynomial hierarchy, denoted by □

p

k [27]. We do not
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spell out the details of these theories. The only thing we need to know is
that PVk has an explicit term for the characteristic functions of Σ̂

b
k-formula

and its term construction allows defining functions by bounded recursion on
notation [27, 25]. As PVk is universal, it enjoys Herbrand’s theorem [17, 25]:

Theorem 2.2. (Herbrand) Let A(x̄, y) and B(x̄, y, z) be two quantifier-free
LPVk

-formulas. Then:

• If PVk ⊢ ∃yA(x̄, y) then there exists an LPVk
-term f(x̄) such that

PVk ⊢ A(x̄, f(x̄)).
• If PVk ⊢ ∃y∀zB(x̄, y, z) then there are LPVk

-terms f0(x̄), f1(x̄, z0),
..., fm(x̄, z0, z1, . . . , zm−1) such that ⋁m

i=0B(x̄, fi(x̄, z0, . . . , zi−1), zi) is
provable in PVk.

It is possible to generalize this theorem to a generalized Herbrand’s the-
orem to cover more alternations of quantifiers. However, in this paper, one
can restrict oneself only to these two levels [17].

The system PVk proves the scheme PInd for any quantifier-free LPVk
-

formula. As any LPVk
-term can be defined by an LPV-formula in Σ̂

b
k, it is

possible to represent any quantifier-free LPVk
-formula by two LPV-formulas,

one in Σ̂
b
k and one in Π̂

b
k. Using this fact, one can interpret PVk inside the

theory S
k
2 .

Going beyond bounded theories of arithmetic, in a similar fashion to PV
and using the construction of primitive recursive functions by composition
and primitive recursion on certain basic functions, it is possible to extend the
language LPV by a fresh function symbol for any primitive recursive func-
tion. Denote this new language by LPRA and set the first-order theory PRA
over LPRA as PV extended by the defining axioms for the new functional
symbols and the induction axiom A(0)∧∀x(A(x) → A(x+ 1)) → ∀xA(x),
for any quantifier-free formula in the new language. This is of course dif-
ferent from the usual definition of PRA as its language is extended by the
ptime function symbols in LPV and the theory itself is extended by the theory
PV. Moreover, the formula in the induction axiom of PRA may contain the
symbols from LPV. However, as the functions in the Cobham calculus are
constructible as primitive recursive functions, it is clear that the separation
of the primitive recursive function symbols and ptime function symbols is
just a technical point and is totally immaterial. In fact, our presentation of
PRA is a conservative extension of the usual PRA and hence has nothing
essentially different from the usual PRA.
By Peano arithmetic, denoted by PA, we mean the theory PV extended by
full induction axiom scheme A(0) ∧ ∀x(A(x) → A(x + 1)) → ∀xA(x), for

9



any formula A(x). This is also different from the usual definition of PA.
However, as all of the function symbols in LPV are definable in the usual
language of PA and their functionality and totality are provable in the usual
PA, it is easy to see that our PA is a conservative extension of the usual PA.
By Π

0
2, we mean the class of LPV-formulas in the form ∀x̄∃ȳA(x̄, ȳ), where

any quantifier in A(x̄, ȳ) is bounded. For two theories T and S and a class
of formulas Φ, by T ≡Φ S, we mean T ⊢ A iff S ⊢ A, for any A ∈ Φ.
Finally, let us recall some basics of the ordinal arithmetic. Apart from addi-
tion, multiplication and exponentiation of the ordinals, it is also possible to
define subtraction ∸ from left such that α ∸ β = 0, if α ≺ β and α ∸ β = γ,
if β ⪯ α, where γ is the unique ordinal with the property that β + γ = α.
Similarly, it is possible to define the division d from left such that if β ≠ 0,
then d(α, β) is the unique γ such that α = βγ + δ, for some δ ≺ β.

3 Polynomial-time Ordinal Representations

In this section, we will introduce polynomial time ordinal representations
and recall the concrete representation for the ordinal ǫ0 provided in [9]. Both
parts will be of essential use in Section 4.

Definition 3.1. Let α be an infinite ordinal closed under addition, multipli-
cation and the operation β ↦ ω

β
. We call the tuple

O = (O,≺,+, ⋅,∸, d(⋅, ⋅), o, x↦ ω
x
, 0, 1, ω)

a polynomial time representation with a primitive recursive exponentiation
(ptime representation, for short) for the ordinal α, if:

• O is a unary polynomial time relation on the natural numbers repre-
sented as a quantifier-free LPV-formula. Its intended meaning is the
set of all the representations of the ordinals below α. We use small
Greek letters to denote the elements of O. For instance, by ∀β A(β),
we actually mean ∀x(O(x) → A(x)).

• ≺ is a binary polynomial time relation on the natural numbers, rep-
resented as a quantifier-free LPV-formula. Its intended meaning is the
order over the ordinals below α. We define the relation (γ ⪯ β) as(γ ≺ β) ∨ (γ = β).

• +, ⋅,∸ and d(⋅, ⋅) are binary polynomial time functions, represented as
LPV-terms. Their intended meaning is the ordinal addition, multipli-
cation, subtraction from left and division from left, respectively.

10



• o is a unary polynomial time function represented as an LPV-term. Its
intended meaning is the function that maps the natural numbers to the
representation of their order-types below α. For instance, o(0) is the
least element of O while o(1) is its second least element.

• ω
x

is a primitive recursive unary function represented as an LPRA-term.
Its intended meaning is the function that maps the ordinal β ≺ α to
the ordinal ω

β
≺ α.

• 0, 1 and ω are three numbers representing the ordinals zero, one and
ω, respectively.

• The structure (O,≺) is isomorphic to (α,≺α), where ≺α is the order
on α.

• PV proves that ≺ is a total ordering on O with the minimum 0.

• PV proves that ≺ is discrete over O, i.e., for all β, γ ∈ O, if γ ≺ β + 1

then either γ ≺ β or γ = β.

• PV proves the associativity of the addition and multiplication, the left
distributivity of multiplication over the addition, the neutrality of 0 for
the addition, the neutrality of 1 for the multiplication and the identity
0β = β0 = 0.

• PV proves that the addition and the non-zero multiplication from left
respect the order ≺, i.e., if δ ≺ γ then β + δ ≺ β + γ and if we also have
β ≠ 0, then βδ ≺ βγ.

• PV proves that the addition and multiplication from right respects ⪯,
i.e., if δ ⪯ γ then δ + β ⪯ γ + β and δβ ⪯ γβ.

• PV proves the defining axioms of ∸, i.e., if α ≺ β then α ∸ β = 0 and
if α ⪰ β then α = β + (α ∸ β).

• PV proves the defining axioms of d, i.e., if β ≠ 0, then βd(α, β) ⪯ α

and α ∸ βd(α, β) ≺ β.

• PV proves that o is an order-isomorphism between the natural num-
bers and the ordinals below ω, mapping 0 and 1 to 0 and 1, respec-
tively, i.e., PV proves o(0) = 0, o(1) = 1, ∀x[O(o(x)) ∧ o(x) ≺ ω],
∀β ≺ ω∃!y o(y) = β and ∀xy(x < y ↔ o(x) ≺ o(y)). Where there is
no risk of confusion, we will use the numbers and their ordinal reinter-
pretations, interchangeably. For instance, we use 1 for 1.

11



• PRA proves that ω
0
= 1 and ω

1
= ω. It also proves that ω

β
respects ⪯

and maps the addition to the multiplication.

• If there is no γ ∈ O such that β = γ + 1, then ω
β

is the supremum of
the set {ωγ ∣ γ ≺ β}, i.e., for any δ ∈ O, if ω

γ
⪯ δ, for any γ ≺ β, then

ω
β
⪯ δ.

• PRA proves that for every β ∈ O, there is a unique expansion β =

ω
γ1
+ . . .+ ω

γn such that γn ⪯ γn−1 ⪯ . . . ⪯ γ1.

Remark 3.2. Here are some remarks. First, notice that the relations of
being a successor and a limit ordinal are both definable by the predicates
∃γ(β = γ + 1) and ∀γ ≺ β(γ + 1 ≺ β), respectively. It is also easy to see
that PV can prove the dichotomy that for any β ∈ O, it is either a successor
or a limit. Secondly, using the compatibility of the order with the addition
and the multiplication, one can easily prove in PV that if β = γ + δ = γ + η,
then β ∸ γ = δ = η. This observation proves that for any γ ≺ β, the interval(0, β ∸ γ) in O is in one-to-one correspondence with the interval (γ, β), via
the map δ ↦ γ + δ. Similarly, PV proves that if γ ≠ 0, then β = γδ = γη

implies d(β, γ) = δ = η. Therefore, d(γδ, γ) = δ, for γ ≠ 0. Thirdly, let us
explain the discrepancy between the polynomial time character of the order,
addition, multiplication, subtraction and division and the primitive recursive
character of the function x ↦ ω

x
in our definition. For that purpose, first,

pretend that our definition uses the primitive recursive functions and predi-
cates and PRA everywhere when it actually uses polynomial time functions
and predicates and PV. Then, one can easily see that this primitive recursive
version of our representation is just a mild extension of the primitive recursive
(even elementary) ordinal representation employed in [23]. (Their conditions
are different, but it is easy to show that our axioms imply theirs). As we use
a proof-theoretic result of [23], using the primitive recursive version of our
definition is completely justified. However, there is another role for our ordi-
nal representation. As it is clear, in this paper, we intend to address the lower
complexity formulas and for that purpose, some basic ordinal arithmetic (up
to addition and multiplication and hence subtraction and division from left)
is required to be implemented in polynomial time. Therefore, we are forced
to lower the complexity of some parts of the representation. However, as the
use of the exponentiation is only restricted to the result from [23] that we use
as a black box here, we decided to lower the complexity up to the point we
need and let the exponentiation parts intact. This way we can accept more
ptime representations.

Let β ∈ O. By the axiom scheme TI(≺β), we mean the transfinite induc-
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tion up to the ordinal β, i.e.,

∀γ ≺ β[∀δ ≺ γA(δ) → A(γ)] → ∀γ ≺ βA(γ),
where A can be any formula in LPV. In [23], a refined method of ordinal
analysis is provided showing that the Π

0
2-consequences of the theory PA +

⋃β∈O TI(≺β) are actually provable in a smaller theory extending PRA with
a weak form of transfinite induction stating that for any β ≺ α, there is no
primitive recursive decreasing sequence of ordinals below β. For more, see
[23, 31].

Theorem 3.3. Let α be an ordinal and O be its ptime representation. Then,
PA +⋃β∈O TI(≺β) ≡Π0

2
PRA +⋃β∈O PRWO(≺β), where PRWO(≺β) is the

scheme ∀x̄∃y[f(x̄, y + 1) ⊀ f(x̄, y) ∨ ¬O(f(x̄, y)) ∨ f(x̄, y) ⊀ β], for any
function symbol f in LPRA.

3.1 A Polynomial-time Representation for ǫ0

In this subsection, we will recall the basics of the ptime notation system for
the ordinal ǫ0, introduced in [9]. Define O0 and ≺0 inductively and simul-
taneously in the following way: O0 is the least set of expressions containing
the empty string 0 and is closed under the operation (α1, . . . , αn) ↦ ω

α1a1+

. . .+ω
αnan, where ai ≠ 0 are natural numbers and αn ≺0 . . . ≺0 α2 ≺0 α1 and

set ω
α1a1 + . . .+ ω

αnan ≺0 ω
β1b1 + . . .+ ω

βmbm, if there exists i ≤ min{m,n}
such that αj = βj and aj = bj , for any j ≤ i and one of the following takes
place:

• i = n < m,

• i < min{m,n} and αi+1 ≺0 βi+1

• i < min{m,n} and αi+1 = βi+1 and ai < bi.

Using some efficient method of sequence encoding, it is possible to arithme-
tize the set O0 and the predicate ≺0. It is also possible to implement the
arithmetization in a way that the length of the Gödel number of α ∈ O0 is
proportional to the number of symbols in the expression α. By this fact, [9]
shows that both O0 and ≺0 are polynomial time computable and hence for-
malizable in PV. (Technically, it uses a conservative extension of PV, but the
difference does not affect us here). We fix quantifier-free predicates O0(x)
and x ≺0 y to denote the formalized versions in the language LPV. In [9], it
is shown that PV proves that ≺ is a total ordering on O0. It is clear that PV
also proves that 0 is the minimum element of O0. Define 1 as ω

0
1 and for
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o, consider the function that maps the number n to ω
0
n. Denote ω

o(1)
by ω.

Then, we have ω
0
= 1 and ω

1
= ω. The map o is ptime and it is easy to prove

in PV that o is an order-isomorphism, i.e., PV ⊢ ∀x[O0(o(x))∧ o(x) ≺ ω],
PV ⊢ ∀α ≺ ω∃!y o(y) = α and PV ⊢ x < y ↔ o(x) ≺0 o(y). For x ↦ ω

x
,

use the evident function mapping the expression β to the expression ω
β

and
note that it is clearly primitive recursive.
In the rest of this subsection, we will explain how to formalize the basic or-
dinal arithmetic in PV, using the aforementioned representation. For that
purpose, first consider the following equalities over the real ordinals below
ǫ0. We assumed that the inputs are non-zero as the operations with one zero
input are trivial. These equalities make the computation of the addition,
multiplication, subtraction from left and division from left possible, using
the Cantor normal form of the ordinals. We will not provide a proof for
these equalities as they are just simple computations, see [33].

( n

∑
i=1

ω
αiai)+ ( m

∑
j=1

ω
βjbj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑n

i=1 ω
αiai +∑m

j=1 ω
βjbj αn ≻ β1

∑m

j=1 ω
βjbj α1 ≺ β1

∑k

i=1 ω
αiai +∑m

j=1 ω
βjbj αk+1 ≺ β1 ≺ αk

∑k−1

i=1 ω
αiai + ω

αk(ak + b1) +∑m

j=2 ω
βjbj αk = β1

( n

∑
i=1

ω
αiai)∸ ( m

∑
j=1

ω
βjbj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 αk+1 ≺ βk+1

∑n

i=k+1 ω
αiai αk+1 ≻ βk+1

ω
αk+1(ak+1 − bk+1) +∑n

i=k+2 ω
αiai αk+1 = βk+1, ak+1 > bk+1

0 αk+1 = βk+1, ak+1 < bk+1

where k is the maximum i such that αi = βi and ai = bi, if there is any and
otherwise k = 0,

( n

∑
i=1

ω
αiai)( m

∑
j=1

ω
βjbj) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑m

j=1 ω
α1+βjbj βm ≻ 0

∑m−1
j=1 ω

α1+βjbj + ω
α1a1bm +∑n

i=2 ω
αiai βm = 0,m > 1

ω
α1a1b1 +∑n

i=2 ω
αiai βm = 0,m = 1

d( n

∑
i=1

ω
αiai,

m

∑
j=1

ω
βjbj) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 α1 ≺ β1

∑k
i=1 ω

αi∸β1ai α1 ⪰ β1, αk ≠ β1

∑k−1
i=1 ω

αi∸β1ai + d(ak, b1) α1 ⪰ β1, αk = β1, (∗)
∑k−1

i=1 ω
αi∸β1ai + (d(ak, b1) − 1) otherwise

where k is the greatest i such that αi ⪰ β1, d(ak, b1) is the quotient of ak
divided by b1 and (∗) is the condition that ∑n

i=k ω
αiai ⪰ ω

αkb1d(ak, b1) +
∑m

j=2 ω
βjbj . Note that to compute any of the operations, it is enough to do

constant many comparisons and basic numerical computations, a search to
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find the maximum index that takes at most as long as the length of the in-
puts and at most m or n many applications of a ptime function. Hence, all
the operations are ptime and hence representable in PV. It is easy to see but
tedious to show that all the claimed properties in Definition 3.1 hold. There-
fore, the described data in this subsection defines a ptime representation for
ǫ0 that we denote by O0.

4 Ordinal Flows and Arithmetic

Let α be an ordinal and O be its ptime representation. In this section, we
develop a witnessing method for the theory PA+⋃β∈O TI(≺β). The section
consists of three parts. First, in Subsection 4.1, we will introduce an auxil-
iary theory TI(∀1,≺) with a transfinite induction on the universal formulas
in the language of PV. The system is powerful enough to interpret PRA +

⋃β∈O PRWO(≺β) and hence proves all Π
0
2-theorems of PA +⋃β∈O TI(≺β).

Then in Subsection 4.2, we will provide a witnessing method for TI(∀1,≺)
that transforms the provability between two universal formulas in TI(∀1,≺)
to an ordinal-length sequence of PV-provable implications. Finally, in Sub-
section 4.3, we use Herbrand’s theorem, Theorem 2.2, to witness the impli-
cations in PV to provide a characterization for the low complexity theorems
of PA +⋃β∈O TI(≺β).
4.1 The System TI(∀1,≺)
This subsection is devoted to the introduction and investigation of the aux-
iliary theory TI(∀1,≺).
Definition 4.1. Define ∀1 (resp., ∃1) as the least set of LPV-formulas con-
taining all atomic formulas and their negations and closed under conjunction,
disjunction and universal (resp. existential) quantifiers.

Let I∀1 (resp. I∃1) be the theory extending PV by the ∀1-induction
(resp. ∃1-induction) scheme, i.e., A(0)∧∀x(A(x) → A(x+ 1)) → ∀xA(x),
for any A(x) ∈ ∀1 (resp. A(x) ∈ ∃1). Note that I∃1 = I∀1. The proof uses
the usual technique of using ∀1-induction on B(x) = ¬A(y ∸ x) to prove
∃1-induction on A(y) and similarly for the other direction, see [16].

Lemma 4.2. For any primitive recursive function f ∶ N
k
→ N, there is a

∃1-formula Df(x̄, y) such that I∃1 ⊢ ∀x̄∃!yDf(x̄, y) and N ⊨ Df(n̄,m) iff
f(n̄) = m, for any n̄, m ∈ N.
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Proof. For any primitive recursive function f , we provide a quantifier-free
formula Cf(x̄, w, y) ∈ LPV encoding that w is a computation of f with the
input x̄ and the output y. To that aim, we use recursion on the construction
of f . The cases for the basic functions and composition are easy. For the
recursion case, if f(x̄, y) is defined via recursive equations f(x̄, 0) = g(x̄)
and f(x̄, y + 1) = h(x̄, y, f(x̄, y)), define Cf(x̄, y, ⟨u, v⟩, z) as Cg(x̄, u0, v0)∧
∀i ≤ l(v)Ch(x̄, i, vi, ui+1, vi+1) ∧ vl(v) = z, where v encodes the sequence

{f(x̄, i)}l(v)i=0 , the number l(v) is the length of this sequence and u encodes

the sequence of computations {ui}l(v)i=0 , where u0 reads x̄ and computes v0 =

f(x̄, 0) and ui+1 reads x̄, i and f(x̄, i) and computes f(x̄, i+ 1) via the func-
tion h. Note that the predicate ∀i ≤ l(v)Ch(x̄, i, vi, ui, vi+1) is polynomial
computable, as l(v) ≤ ∣v∣, where ∣v∣ is the binary length of v. Hence there
exists a polynomial time function symbol in PV like F such that PV proves
that F (x̄, u, v) = 1 iff ∀i ≤ l(v)Ch(x̄, i, vi, ui, vi+1). Therefore, Cf can be
written in a quantifier-free form. Now, set Df(x̄, y) = ∃wCf(x̄, w, y). It is
clear that Df ∈ ∃1 and N ⊨ Df(n̄,m) iff f(n̄) = m, for any n̄,m ∈ N.
Finally, the proof of the claim that I∃1 ⊢ ∀x̄∃!yDf(x̄, y) is similar to the
similar claim in the representation of primitive recursive functions in IΣ1.

Definition 4.3. Define the theory TI(∀1,≺) over LPV as the theory PV
extended by the transfinite induction scheme ∀δ(∀γ ≺ δ A(γ) → A(δ)) →

A(θ), for any A(γ) ∈ ∀1 and any constant θ ∈ O.

Note that TI(∀1,≺) extends the theory I∀1 as TI(∀1,≺) proves ∀δ ≺

ω(∀γ ≺ δ A(γ) → A(δ)) → ∀δ ≺ ωA(δ), for any A ∈ ∀1. Using the function
o and the fact that it is an order-isomorphism between the numbers and the
ordinals below ω, we will have ∀x(∀y < x A(y) → A(x)) → ∀xA(x) which
implies A(0)∧∀x(A(x) → A(x+1)) → ∀xA(x). Therefore, by Lemma 4.2,
TI(∀1,≺) represents any primitive recursive function with an ∃1-definition.
As it is routine in arithmetic [16], this provides both ∀1 and ∃1 definitions
for any atomic formula in LPRA. Hence, it is possible to interpret any ∀1-
formula in LPRA as an ∀1-formula in LPV. Using that interpretation, we
can pretend that TI(∀1,≺) has a fresh function symbol for any primitive
recursive function and the ∀1-formulas in the new language are allowed in the
transfinite induction. Moreover, we can also pretend that TI(∀1,≺) extends
the theory PRA. The reason simply is that the equational defining axioms
in PRA are all provable in I∀1 = I∃1 and hence in TI(∀1,≺), as they are
actually encoded in the definition Df of f . For the quantifier-free induction
of PRA, as we have seen before, it is possible to use the isomorphism o to
prove the induction in TI(∀1,≺).
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Lemma 4.4. If PRA+⋃β∈O PRWO(≺β) ⊢ A then TI(∀1,≺) ⊢ A, for any
A ∈ LPV.

Proof. Pretend TI(∀1,≺) has a function symbol for any primitive recur-
sive function, allowed in the ∀1-formulas. As TI(∀1,≺) extends PRA, it is
enough to prove TI(∀1,≺) ⊢ PRWO(≺β), for any β ∈ O. For the sake of
contradiction, assume ∀y[f(x̄, y + 1) ≺ f(x̄, y)∧O(f(x̄, y))∧ f(x̄, y) ≺ β].
Set B(γ, x̄) = ∀y(f(x̄, y) ≠ γ) and note that B(γ, x̄) ∈ ∀1. By transfinite
induction, we prove ∀γ ≺ β B(γ, x̄). For that purpose, assume ∀δ ≺ γ[δ ≺

β → B(δ, x̄)]. Then, to prove [γ ≺ β → B(γ, x̄)], if f(x̄, y) = γ, for some
γ ≺ β, as f(x̄, y + 1) ≺ f(x̄, y), we have f(x̄, y + 1) ≺ γ ≺ β. On the other
hand, by ∀δ ≺ γ[δ ≺ β → B(δ, x̄)], we know that none of the ordinals δ

below γ is in the form of f(x̄, z), which contradicts with f(x̄, y + 1) ≺ γ.
Hence, [γ ≺ β → B(γ, x̄)]. Therefore, ∀δ ≺ γ[δ ≺ β → B(δ, x̄)] implies[γ ≺ β → B(γ, x̄)]. Hence, by transfinite induction, we have ∀γ ≺ β B(γ, x̄)
which for γ = f(x̄, 0) ≺ β implies ∀y(f(x̄, y) ≠ f(x̄, 0)) which is a contra-
diction.

Corollary 4.5. PA +⋃β∈O TI(≺β) ≡Π0

2
TI(∀1,≺).

Proof. One direction is a consequence of the fact that PA + ⋃β∈O TI(≺β)
proves the transfinite induction for any formulas and hence extends the theory
TI(∀1,≺). The other direction is a consequence of Theorem 3.3 and Lemma
4.4.

4.1.1 A proof system for TI(∀1,≺)
We now present a sequent calculus for the theory TI(∀1,≺). By a sequent
over LPV, we mean an expression in the form S = Γ ⇒ ∆, where Γ and
∆ are multisets of formulas in LPV. Define LPV as the usual system LK

augmented with the equality axioms for atomic formulas and their negations
and all quantifier-free theorems of PV as the initial sequents:

Axioms:

⊥ ⇒ ⇒ ⊤

P ⇒ P ¬P ⇒ ¬P P,¬P ⇒ ⇒ P,¬P ⇒ A
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⇒ t = t

s1 = t1, . . . , sn = tn ⇒ f(s̄) = f(t̄)
s1 = t1, . . . , sn = tn, Q(s̄) ⇒ Q(t̄)

where P ranges over all atomic formulas, f ranges over all function symbols
in the language, Q ranges over all atmoic formulas or their negations, and A

ranges over all quantifier-free theorems of PV.

Structural Rules:

Γ, A, A ⇒ ∆
Lc

Γ, A ⇒ ∆
Γ ⇒ A,A,∆

Rc
Γ ⇒ A,∆

Γ ⇒ ∆
Lw

Γ, A ⇒ ∆
Γ ⇒ ∆

Rw
Γ ⇒ A,∆

Γ ⇒ A,∆ Π, A ⇒ Λ
cut

Γ,Π ⇒ ∆,Λ

Logical Rules:

Γ, Ai ⇒ ∆
i ∈ {0, 1} L∧

Γ, A0 ∧ A1 ⇒ ∆
Γ ⇒ A,∆ Γ ⇒ B,∆

R∧
Γ ⇒ A ∧ B,∆

Γ, A ⇒ ∆ Γ, B ⇒ ∆
L∨

Γ, A ∨ B ⇒ ∆
Γ ⇒ Ai,∆

i ∈ {0, 1} R∨
Γ ⇒ A0 ∨A1,∆

Γ, A(t) ⇒ ∆
L∀

Γ,∀xA(x) ⇒ ∆

Γ ⇒ A(y),∆
R∀

Γ ⇒ ∀xA(x),∆
Γ, A(y) ⇒ ∆

L∃
Γ,∃xA(x) ⇒ ∆

Γ ⇒ A(t),∆
R∃

Γ ⇒ ∃xA(x),∆
In the rules (R∀) and (L∃), the variable y should not appear in the conse-
quence. Adding the rule

Γ,∀γ ≺ δ A(γ) ⇒ ∆, A(δ)
Indα

Γ ⇒ ∆, A(θ)
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to LPV, we get G0. Note that in (Indα), the variable δ should not appear
in the consequence. Moreover, the constant θ ∈ O is arbitrary and can take
any value. For more on the proof theory of first-order theories and specially
arithmetic, see [17, 16].
By the usual cut reduction method [17, 16], it is easy to prove that for any
Γ∪∆ ⊆ ∀1, if Γ ⇒ ∆ is provable in TI(∀1,≺) (resp., PV), then it has a G0-
proof (resp. LPV-proof) consisting only of ∀1-formulas. For some practical
reasons, we simplify the system G0 by changing the cut and the induction
rules to the weak cut and weak induction rules, respectively:

Γ ⇒ A A ⇒ ∆
wCut

Γ ⇒ ∆
Γ,∀γ ≺ δ A(γ) ⇒ ∀γ ≺ δ + 1 A(γ)

wIndα
Γ ⇒ A(θ)

Denote this system by G1. Note that the difference between (Indα) and(wIndα) is that in the latter ∆ is omitted and A(δ) is replaced by ∀γ ≺

δ + 1 A(γ).
Lemma 4.6. For any Γ∪∆ ⊆ ∀1, if TI(∀1,≺) ⊢ ⋀Γ → ⋁∆, then Γ ⇒ ∆
has a G1-proof only consisting of ∀1-formulas.

Proof. By a ∀1-proof in G1 (resp. LPV), we mean a proof in G1 (resp.
LPV) consisting only of ∀1-formulas. We show that the cut rule and the
induction rule (over ∀1-formulas) are derivable in G1 (by a ∀1-proof). We
only investigate the harder case of ∀1-proofs. The other is the same omitting
the restrictions everywhere.
For cut, consider the following proof-tree in G1, where the double lines mean
simple omitted proofs in G1. The tree proves Γ,Σ ⇒ Λ,∆ from Γ ⇒ A,∆
and Σ, A ⇒ Λ.

Σ ⇒ ⋀Σ

Γ,Σ ⇒ ⋀Σ,∆

Γ ⇒ A,∆

Γ,Σ ⇒ A,∆

Γ,Σ ⇒ A ∧⋀Σ,∆

Γ,Σ ⇒ (A ∧⋀Σ) ∨⋁∆

⋁∆ ⇒ ∆

⋁∆ ⇒ Λ,∆

Σ, A ⇒ Λ

A ∧⋀Σ ⇒ Λ

A ∧⋀Σ ⇒ Λ,∆(A ∧⋀Σ) ∨⋁∆ ⇒ Λ,∆
wCut

Γ,Σ ⇒ Λ,∆

Note that the simulation of the cut rule in G1 implies that G1 is as powerful
as LPV. It also transforms a ∀1-proof in LPV to a ∀1-proof in G1. For the
induction rule, consider the following proof-tree proving Γ ⇒ A(θ),∆ from
Γ,∀γ ≺ δ A(γ) ⇒ A(δ),∆:
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Γ,⋁∆ ⇒ [A(δ) ∨⋁∆]
Γ,∀γ ≺ δ A(γ) ⇒ A(δ),∆

Γ,∀γ ≺ δ A(γ) ⇒ [A(δ) ∨⋁∆]
Γ, [∀γ ≺ δ A(γ)] ∨⋁∆ ⇒ [A(δ) ∨⋁∆]

∗
Γ,∀γ ≺ δ [A(γ) ∨⋁∆] ⇒ [A(δ) ∨⋁∆]

∗∗
Γ,∀γ ≺ δ [A(γ) ∨⋁∆] ⇒ ∀γ ≺ δ + 1 [A(γ) ∨⋁∆]

wInd
Γ ⇒ A(θ) ∨⋁∆

†
Γ ⇒ A(θ),∆

where (∗) is the result of a cut with the sequent ∀γ ≺ δ [A(γ) ∨⋁∆] ⇒[∀γ ≺ δ A(γ)] ∨⋁∆ which has a proof in LPV and hence a ∀1-proof in
LPV and by the observation we have just made, a ∀1-proof in G1. Note
that the use of cut is allowed as we showed its derivability in G1. Moreover,(∗∗) is the result of a cut with the PV-provable sequent [A(δ)∨⋁∆],∀γ ≺

δ [A(γ)∨⋁∆] ⇒ ∀γ ≺ δ+1 [A(γ)∨⋁∆]. The latter is provable in LPV.
Therefore, it has a ∀1-proof in LPV and hence in G1. Finally, † is the result
of a cut with A(θ) ∨⋁∆ ⇒ A(θ),∆ that has a trivial ∀1-proof.

4.2 Ordinal Flows

In this subsection, we will witness TI(∀1,≺)-provable implications between
∀1-formulas by a sequence of β many PV-provable implications, for some
β ∈ O.

Definition 4.7. Let A(x̄), B(x̄) ∈ ∀1. A pair (H(γ, x̄), β) of a ∀1-formula
and β ∈ O such that β ⪰ 1 is called an α-flow from A(x̄) to B(x̄), if:

• PV ⊢ A(x̄) ↔ H(0, x̄).
• PV ⊢ ∀ 1 ⪯ δ ⪯ β [∀γ ≺ δ H(γ, x̄) → H(δ, x̄)].
• PV ⊢ H(β, x̄) ↔ B(x̄).
We denote the existence of an α-flow from A(x̄) to B(x̄) by A(x̄) ⊳α B(x̄).
For any multisets Γ and ∆ of ∀1-formulas, by Γ⊳α ∆, we mean ⋀Γ⊳α⋁∆.

In order to use α-flows to witness the proofs in TI(∀1,≺), we will develop
a high level calculus for this new notion, implemented in the following series
of lemmas.

Lemma 4.8. Let A(x̄), B(x̄), C(x̄) ∈ ∀1. Then:

(i) If PV ⊢ A(x̄) → B(x̄), then A(x̄) ⊳α B(x̄).
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(ii) If A(x̄)⊳αB(x̄), then A(x̄)◦C(x̄)⊳αB(x̄)◦C(x̄), for any ◦ ∈ {∧,∨}.
Proof. For (i), set β = 1 and H(γ, x̄) = (γ = 0 → A(x̄)) ∧ (γ = 1 → B(x̄)).
It is clear that PV ⊢ H(0, x̄) ↔ A(x̄) and PV ⊢ H(1, x̄) ↔ B(x̄). As
PV ⊢ A(x̄) → B(x̄), we can see that (H(γ, x̄), β) is an α-flow from A(x̄) to
B(x̄).
For (ii), we only prove the conjunction case. The disjunction case is similar.
Since A(x̄) ⊳α B(x̄), by Definition 4.7, there exist an ordinal β ⪰ 1 and
a formula H(γ, x̄) ∈ ∀1 satisfying the conditions in Definition 4.7. Set
I(γ, x̄) = H(γ, x̄) ∧ C(x̄) and note that I(γ, x̄) ∈ ∀1. It is easy to see that
the pair (I(γ, x̄), β) is an α-flow from A(x̄) ∧ C(x̄) to B(x̄) ∧ C(x̄), as the
PV-provability of ∀ 1 ⪯ δ ⪯ β [∀γ ≺ δ H(γ, x̄) → H(δ, x̄)] implies the
PV-provability of ∀ 1 ⪯ δ ⪯ β [∀γ ≺ δ (H(γ, x̄) ∧ C(x̄)) → (H(δ, x̄) ∧
C(x̄))].

In the next lemma, we glue α-flows together to construct longer α-flows.
Notice that the proof heavily uses the fact that the operations {+,∸, ⋅, d}
and their basic properties are representable in PV.

Lemma 4.9. (i) If A(x̄) ⊳α B(x̄) and B(x̄) ⊳α C(x̄), then A(x̄) ⊳α C(x̄).
(ii) If Γ,∀γ ≺ δ A(γ, x̄) ⊳α ∀γ ≺ δ + 1 A(γ, x̄), then Γ ⊳α A(θ, x̄), for any

θ ∈ O.

Proof. For (i), as A(x̄) ⊳α B(x̄), there exists an α-flow (H(γ, x̄), β) from
A(x̄) to B(x̄). Similarly, as B(x̄) ⊳α C(x̄), there is an α-flow (H ′(γ, x̄), β ′)
from B(x̄) to C(x̄). Set β

′′
= β+β

′
and H

′′(γ, x̄) = [γ ⪯ β → H(γ, x̄)]∧[β ≺

γ ⪯ β+β
′
→ H

′(γ∸β, x̄)]. We claim that the pair (H ′′(γ, x̄), β ′′) is an α-flow
from A(x̄) to C(x̄). First, note that H

′′(0, x̄) is PV-equivalent to H(0, x̄)
which is PV-equivalent to A(x̄). Similarly, as (β + β

′) ∸ β = β
′

is provable
in PV, we know that H

′′(β + β
′
, x̄) is PV-equivalent to H

′(β ′, x̄) which is
PV-equivalent to C(x̄). To prove PV ⊢ ∀ 1 ⪯ δ ⪯ β

′′ [∀γ ≺ δ H
′′(γ, x̄) →

H
′′(δ, x̄)], note that if δ ⪯ β, then the claim reduces to the same claim for

H(γ, x̄) which is provable. If β ≺ δ ⪯ β + β
′
, assume ∀γ ≺ δ H

′′(γ, x̄)
to prove H

′′(δ, x̄) or equivalently H
′(δ ∸ β, x̄). Note that ∀γ ≺ δ H

′′(γ, x̄)
implies ∀β ⪯ γ ≺ δ H

′′(γ, x̄). As the interval (0, δ ∸ β) is isomorphic to(β, δ), by the map γ ↦ β + γ, then ∀β ⪯ γ ≺ δ H
′′(γ, x̄) implies ∀0 ≺

γ ≺ δ ∸ β H
′′(β + γ, x̄) which implies ∀0 ≺ γ ≺ δ ∸ β H

′(γ, x̄). On the
other hand, ∀β ⪯ γ ≺ δ H

′′(γ, x̄) implies H
′′(β, x̄) which is PV-equivalent

to H(β, x̄), by definition. As H(β, x̄) is PV-equivalent to B(x̄) which is
also PV-equivalent to H

′(0, x̄), we can claim that H(β, x̄) and H
′(0, x̄) are

PV-equivalent. Hence, ∀β ⪯ γ ≺ δ H
′′(γ, x̄) implies ∀γ ≺ δ ∸ β H

′(γ, x̄)
which also implies H

′(δ ∸ β, x̄), as (H ′(γ, x̄), β ′) is an α-flow.
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For (ii), as ⋀Γ ∧ ∀γ ≺ δ A(γ, x̄) ⊳α ∀γ ≺ δ + 1 A(γ, x̄), by Lemma 4.8,
we have ⋀Γ ∧ ∀γ ≺ δ A(γ, x̄) ⊳α ⋀Γ ∧ ∀γ ≺ δ + 1 A(γ, x̄). Set B(δ, x̄) =

⋀Γ∧∀γ ≺ δ A(γ, x̄). Therefore, B(δ, x̄)⊳αB(δ+1, x̄). Let (H(η, δ, x̄), β) be
the α-flow from B(δ, x̄) to B(δ+1, x̄). Note that H(0, δ, x̄) is PV-equivalent
to B(δ, x̄) and H(β, δ, x̄) is PV-equivalent to H(0, δ + 1, x̄), as both are
PV-equivalent to B(δ + 1). Define β

′
= β(θ + 1) and I(τ, x̄) = H(τ ∸

βd(τ, β), d(τ, β), x̄) and note that I(τ, x̄) ∈ ∀1. We show that (I(τ, x̄), β ′)
is an α-flow from B(0, x̄) to B(θ + 1, x̄). Note that (I(τ, x̄), β ′) is nothing
but the result of gluing the α-flows (H(η, δ, x̄), β), for all δ ≺ θ+ 1, one after
another as depicted in the following figure, (for simplicity, in the figures, we
drop the free variables x̄).

B(0) B(1) ⋯ B(θ + 1)
H(0, 0) H(1, 0) ⋯ H(β, 0) ≡ H(0, 1) ⋯ H(0, θ + 1)
I(0) I(1) ⋯ I(β) ⋯ I(β(θ + 1))

≡ ≡

≡ ≡ ≡≡
≡

First, as d(0, β) = 0 and 0 ∸ βd(0, β) = 0, provably in PV, we know that
I(0, x̄) is PV-equivalent to H(0, 0, x̄) which is itself PV-equivalent to B(0, x̄).
Secondly, as d(β(θ+1), β) = θ+1 and β(θ+1)∸βd(β(θ+1), β) = 0, provably
in PV, we know that I(β(θ+ 1), x̄) is PV-equivalent to H(0, θ+ 1, x̄) which
is PV-equivalent to B(θ + 1, x̄). For the middle condition, we must prove
PV ⊢ ∀ 1 ⪯ τ ⪯ β(θ + 1) [∀ζ ≺ τ I(ζ, x̄) → I(τ, x̄)]. There are two
cases to consider, either βd(τ, β) ≺ τ or βd(τ, β) = τ . If βd(τ, β) ≺ τ then
βd(τ, β)+ 1 ⪯ τ which implies τ = βd(τ, β)+ µ for µ = τ ∸ βd(τ, β) ⪰ 1. As
for any η ≺ µ, we have βd(τ, β)+η ≺ τ , we know that ∀ζ ≺ τ I(ζ, x̄) implies
∀η ≺ µ H(η, d(τ, β), x̄). As we have µ ⪰ 1, the latter proves H(µ, d(τ, β), x̄)
which is PV-equivalent to I(τ, x̄).
⋯ H(0, d(τ, β)) H(1, d(τ, β)) ⋯ H(µ, d(τ, β)) ⋯

⋯ I(βd(τ, β)) I(βd(τ, β) + 1) ⋯ I(τ) ⋯

≡ ≡≡

For the other case, if βd(τ, β) = τ , we should use ∀ζ ≺ τ I(ζ, x̄) to prove the
formula I(τ, x̄) = H(0, d(τ, β), x̄). Again, there are two cases to consider:
either d(τ, β) is a successor or a limit ordinal. If d(τ, β) = ρ + 1, for some
ρ, as H(0, ρ + 1, x̄) is PV-equivalent to H(β, ρ, x̄), it is enough to prove
H(β, ρ, x̄). As βρ+ η ≺ βρ+ β = β(ρ+ 1) = τ , for any η ≺ β, we know that
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∀ζ ≺ τ I(ζ, x̄) implies ∀η ≺ β H(η, ρ, x̄) which implies H(β, ρ, x̄).
⋯ H(0, ρ) H(1, ρ) ⋯ H(β, ρ) ≡ H(0, ρ + 1) ⋯

⋯ I(βρ) I(βρ + 1) ⋯ I(β(ρ + 1)) ⋯

≡ ≡ ≡

If d(τ, β) is a limit ordinal, then ∀ζ ≺ βd(τ, β) I(ζ, x̄) implies the formula
∀δ ≺ d(τ, β)H(0, δ, x̄) which implies ∀δ ≺ d(τ, β)B(δ, x̄). The latter is
∀δ ≺ d(τ, β)[⋀Γ∧∀γ ≺ δ A(γ, x̄)] that implies ⋀Γ∧∀γ ≺ d(τ, β) A(γ, x̄),
as d(τ, β) is a limit ordinal. The latter is PV-equivalent to H(0, d(τ, β), x̄) =
I(τ, x̄). This completes the proof of the claim and shows that B(0, x̄)⊳αB(θ+
1, x̄). Now, as PV ⊢ ⋀Γ → (⋀Γ∧∀γ ≺ 0 A(γ, x̄)) and PV ⊢ (⋀Γ∧∀γ ≺

θ+1 A(γ, x̄)) → A(θ, x̄), by Lemma 4.8, we have ⋀Γ⊳α⋀Γ∧∀γ ≺ 0 A(γ, x̄)
and ⋀Γ ∧ ∀γ ≺ θ + 1 A(γ, x̄) ⊳α A(θ, x̄). Hence, by part (i), we have
⋀Γ ⊳α A(θ, x̄) which completes the proof.

Lemma 4.10. (Conjunction and Disjunction Rules)

(i) If Γ, A ⊳α ∆ or Γ, B ⊳α ∆, then Γ, A ∧ B ⊳α ∆.

(ii) If Γ ⊳α A,∆ and Γ ⊳α B,∆, then Γ ⊳α A ∧ B,∆.

(iii) If Γ ⊳α A,∆ or Γ ⊳α B,∆, then Γ ⊳α A ∨ B,∆.

(iv) If Γ, A ⊳α ∆ and Γ, B ⊳α ∆, then Γ, A ∨B ⊳α ∆.

Proof. For (i) and (iii), as the implications [(⋀Γ∧(A∧B)) → (⋀Γ∧A)],[(⋀Γ∧(A∧B)) → (⋀Γ∧B)], [(⋁∆∨A) → (⋁∆∨(A∨B))] and [(⋁∆∨
B) → (⋁∆∨(A∨B))] are all provable in PV, using Lemma 4.8 and Lemma
4.9, we reach what we wanted. For (ii), if Γ⊳α ∆, A then ⋀Γ⊳α⋁∆∨A, by
definition. By Lemma 4.8, we reach ⋀Γ ⊳α (⋁∆ ∨A)∧⋀Γ. Similarly, we
have ⋀Γ⊳α⋁∆∨B and by Lemma 4.8, we reach ⋀Γ∧(⋁∆∨A)⊳α(⋁∆∨
B)∧ (⋁∆∨A). Therefore, ⋀Γ ⊳α (⋁∆∨B)∧ (⋁∆∨A), by part (i) in
Lemma 4.9. Finally, as (⋁∆∨B)∧(⋁∆∨A) → ⋁∆∨(A∧B) is provable
in PV, by Lemma 4.8 and Lemma 4.9, we reach ⋀Γ⊳α⋁∆∨ (A∧B). The
proof for (iv) is similar.

Having the required lemmas, we are now ready to prove the following the-
orem as the main extraction technique that witnesses the proofs in TI(∀1,≺)
by α-flows.

Theorem 4.11. Let Γ(x̄) ∪ ∆(x̄) ⊆ ∀1. Then, TI(∀1,≺) ⊢ ⋀Γ(x̄) →

⋁∆(x̄) iff Γ(x̄) ⊳α ∆(x̄).
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Proof. We first prove the easier direction. Assume Γ(x̄) ⊳α ∆(x̄) and the
pair (H(γ, x̄), β) is an α-flow from ⋀Γ(x̄) to ⋁∆(x̄). As PV ⊢ ∀ 1 ⪯ δ ⪯

β [∀γ ≺ δ H(γ, x̄) → H(δ, x̄)] and TI(∀1,≺) extends PV, we have

TI(∀1,≺) ⊢ ∀ 1 ⪯ δ ⪯ β [∀γ ≺ δ H(γ, x̄) → H(δ, x̄)].
Then, as H(γ, x̄) ∈ ∀1, by the transfinite induction in TI(∀1,≺), we reach
TI(∀1,≺) ⊢ H(0, x̄) → H(β, x̄). Finally, using the PV-provable equiva-
lences ⋀Γ(x̄) ↔ H(0, x̄) and H(β, x̄) ↔ ⋁∆(x̄), we reach TI(∀1,≺) ⊢

⋀Γ(x̄) → ⋁∆(x̄).
For the other direction, assume TI(∀1,≺) ⊢ ⋀Γ(x̄) → ⋁∆(x̄). By Lemma
4.6, Γ(x̄) ⇒ ∆(x̄) has a G1-proof only consisting of ∀1-formulas. By induc-
tion on this proof, we show that for any sequent Σ ⇒ Λ in the proof, we
have Σ ⊳α Λ.
For the axioms, as they are provable in PV, using Lemma 4.8, there is noth-
ing to prove. The case of structural rules (except for the weak cut) is easy.
Weak cut and weak induction are addressed in Lemma 4.9. The conjunc-
tion and disjunction rules are proved in Lemma 4.10. For the right uni-
versal quantifier rule, if Σ(x̄) ⇒ Λ(x̄),∀zB(x̄, z) is proved from Σ(x̄) ⇒

Λ(x̄), B(x̄, z), then by induction hypothesis, Σ(x̄) ⊳α Λ(x̄), B(x̄, z). There-
fore, there exists an α-flow (H(γ, x̄, z), β) from ⋀Σ(x̄) to B(x̄, z)∨⋁Λ(x̄).
Define I(γ, x̄) = ∀zH(γ, x̄, z) and note that I(x̄, z) ∈ ∀1. It is easy
to see that (I(γ, x̄), β) is an α-flow from ∀z[⋀Σ(x̄)] to ∀z[B(x̄, z) ∨
⋁Λ(x̄)], as PV-provability of ∀γ ≺ δH(γ, z, x̄) → H(δ, z, x̄) implies the
PV-provability of ∀γ ≺ δ∀zH(γ, z, x̄) → ∀zH(δ, z, x̄). Finally, as z does
not occur as a free variable in Σ(x̄)∪Λ(x̄), we have the PV-equivalence be-
tween ∀z[⋀Σ(x̄)] and ⋀Σ(x̄) and similarly between ∀z[B(x̄, z)∨⋁Λ(x̄)]
and ⋁Λ(x̄) ∨ ∀zB(x̄, z). Using Lemma 4.8 and Lemma 4.9, we can prove
⋀Σ(x̄) ⊳α ⋁Λ(x̄) ∨ ∀zB(x̄, z). For the left universal quantifier rule, if
Σ(x̄),∀zB(x̄, z) ⇒ Λ(x̄) is proved from Σ(x̄), B(x̄, s(x̄)) ⇒ Λ(x̄), then
by induction hypothesis Σ(x̄), B(x̄, s(x̄)) ⊳α Λ(x̄). Since PV ⊢ ⋀Σ(x̄) ∧
∀zB(x̄, z) → ⋀Σ(x̄)∧B(x̄, s(x̄)), by Lemma 4.8 and Lemma 4.9, we reach
Σ(x̄),∀zB(x̄, z) ⊳α Λ(x̄).
Corollary 4.12. Let α be an ordinal with the ptime representation O. Then,
PA+⋃β∈O TI(≺β) ⊢ ⋀Γ(x̄) → ⋁∆(x̄) iff Γ(x̄)⊳α∆(x̄), for Γ(x̄)∪∆(x̄) ⊆
∀1.

Proof. As any implication in the form ⋀Γ(x̄) → ⋁∆(x̄) is logically equiva-

lent to a Π
0
2-formula, the claim is a consequence of Theorem 4.11 and Corol-

lary 4.5.
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Corollary 4.13. Let O0 be the ptime representation for ǫ0 introduced in
Subsection 3.1. Then, PA ⊢ ⋀Γ(x̄) → ⋁∆(x̄) iff Γ(x̄)⊳ǫ0 ∆(x̄), for Γ(x̄)∪
∆(x̄) ⊆ ∀1.

4.3 Ordinal Local Search Programs

In this subsection, we will first introduce the notion of an ordinal local search
program as a formalized version of the transfinite ptime modifications over an
initial ptime value that we explained before. We will then use these programs
to witness some provable statements in the theory PA +⋃β∈O TI(≺β).
Definition 4.14. Let T be a theory over the language LPV. A total search
problem of T is a quantifier-free formula A(x̄, ȳ) such that T ⊢ ∀x̄∃ȳA(x̄, ȳ).
A total search problem is called an NP-search problem, if there are sequences
of polynomials r̄ such that PV ⊢ A(x̄, ȳ) → ∣ȳ∣ ≤ r̄(∣x̄∣), where ∣ȳ∣ ≤ r̄(∣x̄∣)
is an abbreviation for ⋀i(∣yi∣ ≤ ri(∣x̄∣)). We denote the class of all these
total search (resp., NP-search) problems of T by TSP(T ) (resp. TFNP(T )).
Definition 4.15. Let α be an ordinal, O be its ptime representation, A(x̄, ȳ)
be a quantifier-free formula in LPV and β ∈ O. By an LS(⪯β)-program for
A(x̄, ȳ), we mean the following data: an initial sequence of LPV-terms ī(x̄),
a quantifier-free LPV-formula G(γ, x̄, z̄), a sequence of LPV-terms N̄(γ, x̄, z̄),
an LPV-term q(γ, x̄, z̄), a sequence of LPV-terms p̄(x̄, z̄), such that:

• PV ⊢ G(β, x̄, ī(x̄)),
• PV ⊢ γ ≠ 0 → q(γ, x̄, z̄) ≺ γ,

• PV ⊢ γ ≠ 0 → [G(γ, x̄, z̄) → G(q(γ, x̄, z̄), x̄, N̄(γ, x̄, z̄))],
• PV ⊢ G(0, x̄, z̄) → A(x̄, p̄(x̄, z̄)).
By LS(⪯β), we mean the class of all formulas A(x̄, ȳ) for which there exists a
LS(⪯β)-program. By PLS(⪯β), we mean the class LS(⪯β)∩TFNP(Th(N)).

Membership A(x̄, ȳ) ∈ LS(⪯β) implies ∀x̄∃ȳA(x̄, ȳ) and the LS(⪯β)-
program actually provides an algorithm to compute ȳ from x̄. To see this,
denote G(γ, x̄, z̄) by Gγ. The algorithm starts at the level β with an initial
value ī(x̄) satisfying the property Gβ. Then, using the feasible function q,
it finds a lower level to go to and uses the modification N̄ to update any
value with the property Gγ to a value satisfying the property Gq(γ). Finally,
reaching the zeroth level, the algorithm uses p̄ to compute ȳ satisfying A

from any value with the property G0.
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The next theorem uses LS(⪯β)-programs (PLS(⪯β)-programs) to witness
the total search (NP-search) problems of PA+⋃β∈O TI(≺β). The idea is using
Herbrand’s theorem, Theorem 2.2, applied on PV to push the data extraction
of Corollary 4.12 a bit further to reach an ordinal local search program for
total search problems.

Theorem 4.16. Let α be an ordinal with the ptime representation O. Then
TSP(PA+⋃β∈O TI(≺β)) = ⋃β∈O LS(⪯β) and TFNP(PA+⋃β∈O TI(≺β)) =
⋃β∈O PLS(⪯β).
Proof. We only prove the first equality. The second is just a consequence.
For the first direction, assume that A(x̄, ȳ) has a LS(⪯β)-program. Set
H(γ, x̄) = ∀z̄¬G(γ, x̄, z̄) ∧ ∀ȳ¬A(x̄, ȳ) and note that H ∈ ∀1. We claim
that (H(γ, x̄), β) is an α-flow from ∀ȳ¬A(x̄, ȳ) to ⊥. First, as PV ⊢

G(0, x̄, z̄) → A(x̄, p̄(x̄, z̄)), we have PV ⊢ ∀ȳ¬A(x̄, ȳ) → ∀z̄¬G(0, x̄, z̄)
and hence PV ⊢ ∀ȳ¬A(x̄, ȳ) ↔ H(0, x̄). Secondly, as PV ⊢ G(β, x̄, ī(x̄)),
we reach PV ⊢ ∀z̄¬G(β, x̄, z̄) ↔ ⊥ and hence PV ⊢ ⊥ ↔ H(β, x̄). Finally,
using PV ⊢ γ ≠ 0 → q(γ, x̄, z̄) ≺ γ, and

PV ⊢ γ ≠ 0 → [G(γ, x̄, z̄) → G(q(γ, x̄, z̄), x̄, N̄(γ, x̄, z̄))],
it is easy to see that

PV ⊢ ∀ 1 ⪯ δ ⪯ β [¬G(q(δ, x̄, z̄), x̄, N̄(δ, x̄, z̄)) → ¬G(δ, x̄, z̄)]
and hence we reach

PV ⊢ ∀ 1 ⪯ δ ⪯ β [∀γ ≺ δ ∀z̄¬G(γ, x̄, z̄) → ∀z̄¬G(δ, x̄, z̄)].
The latter implies PV ⊢ ∀ 1 ⪯ δ ⪯ β [∀γ ≺ δ H(γ, x̄) → H(δ, x̄)].
Therefore, (H(γ, x̄), β) is an α-flow from ∀ȳ¬A(x̄, ȳ) to ⊥. Hence, PA +

⋃β∈O TI(≺β) ⊢ ∀ȳ¬A(x̄, ȳ) → ⊥, by Corollary 4.12 and thus, we reach

PA + ⋃β∈O TI(≺β) ⊢ ∀x̄∃ȳ A(x̄, ȳ). For the converse, assume that PA +

⋃β∈O TI(≺β) ⊢ ∀x̄∃ȳA(x̄, ȳ), where A(x̄, ȳ) ∈ LPV is quantifier-free. As

PA+⋃β∈O TI(≺β) ⊢ ∀ȳ¬A(x̄, ȳ) → ⊥, by Corollary 4.12, ∀ȳ¬A(x̄, ȳ)⊳α⊥.
Hence, there exist H(γ, x̄) ∈ ∀1 and β ∈ O such that PV ⊢ ∀ȳ¬A(x̄, ȳ) ↔
H(0, x̄), PV ⊢ H(β, x̄) ↔ ⊥ and

PV ⊢ ∀ 1 ⪯ δ ⪯ β [∀γ ≺ δ H(γ, x̄) → H(δ, x̄)].
As H ∈ ∀1, there exists a quantifier-free formula I(γ, x̄, z̄) such that H(γ, x̄)
and ∀z̄I(γ, x̄, z̄) are equivalent over PV. On the other hand, as the implica-
tions are provable in PV, we can witness the existential quantifiers by ptime
functions. Hence, there are LPV-terms Ȳ (x̄, z̄), Z̄(γ, x̄, z̄), ∆(γ, x̄, z̄) and
W̄ (x̄) such that
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• PV ⊢ ¬A(x̄, Ȳ (x̄, z̄)) → I(0, x̄, z̄),
• PV ⊢ I(β, x̄, W̄ (x̄)) → ⊥,

• PV ⊢ ∀1 ⪯ δ ⪯ β [[(∆(δ, x̄, z̄) ≺ δ → I(∆(δ, x̄, z̄), x̄, Z̄(δ, x̄, z̄))] →

I(δ, x̄, z̄)].
Define G(δ, x̄, z̄) = ¬I(δ, x̄, z̄)∧ (δ ⪯ β),

q(δ, x̄, z̄) = {∆(δ, x̄, z̄) ¬I(δ, x̄, z̄) ∧ (δ ⪯ β)
0 otherwise

ī(x̄) = W̄ (x̄) and p̄(x̄, z̄) = Ȳ (x̄, z̄). It is easy to see that this new data is
an LS(⪯β)-program for A(x̄, ȳ).

Applying Theorem 4.16 to α = ǫ0, we reach the following Corollary, orig-
inally proved in [4].

Corollary 4.17. Let O0 be the ptime representation of the ordinal ǫ0 intro-
duced in Subsection 3.1. Then TSP(PA) = ⋃β∈O0

LS(⪯β) and TFNP(PA) =
⋃β∈O0

PLS(⪯β).
5 k-Flows and Bounded Arithmetic

In this section, we will modify the method developed for the strong theories of
arithmetic in Section 4 to also cover the bounded and hence weaker theories
of arithmetic. The structure of the present section is similar to that of
Section 4. After recalling the usual sequent calculi for the theories S

k
2 and

T
k
2 in Subsection 5.1, the next subsection, Subsection 5.2 will be devoted to

investigate a suitable version of a flow for bounded arithmetic called a k-flow.
Roughly speaking, a k-flow is an exponentially long uniform sequence of PV-
provable implications between LPV-formulas in the class Π̂

b
k. After proving

some basic properties of k-flows, we will conclude the subsection by proving
a witnessing theorem, transforming the proofs of the implications between
Π̂

b
k-formulas in S

k
2 and T

k
2 to some types of k-flows. Finally, in Subsection

5.3, we will introduce the appropriate notion of a local search program to
witness the PV-provable implications further and find a complete witnessing
for the theories S

k
2 and T

k
2 .
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5.1 Sequent Calculi for Bounded Arithmetic

To recall the usual sequent calculi for S
k
2 and T

k
2 , introduced in [13], first

consider the following rules:

Bounded Quantifier Rules:

Γ, A(s) ⇒ ∆
L∀

≤

Γ, s ≤ t,∀y ≤ t A(y) ⇒ ∆

Γ, z ≤ t ⇒ A(z),∆
R∀

≤

Γ ⇒ ∀y ≤ t A(y),∆
Γ, z ≤ t, A(z) ⇒ ∆

L∃
≤

Γ,∃y ≤ t A(y) ⇒ ∆

Γ ⇒ A(s),∆
R∃

≤

Γ, s ≤ t,⇒ ∃y ≤ t A(y),∆
Induction Rules:

Γ, A(⌊z
2
⌋) ⇒ A(z),∆

PIndk
Γ, A(0) ⇒ A(t),∆ Γ, A(z) ⇒ A(z + 1),∆

Indk
Γ, A(0) ⇒ A(t),∆

In the rules (R∀≤) and (L∃≤) as well as in the induction rules, the variable
z should not appear in the consequence of the rule. Moreover, in the induc-
tion rules (PIndk) and (Indk), the index k means that the formula A(z) is
restricted to the class Π̂

b
k.

The system LS
k

2 (resp. LT
k

2) for S
k
2 (resp. T

k
2 ) is defined as the system LPV

plus the bounded quantifier rules and the rule (PIndk) (resp. (Indk)). For
some technical reasons, we prefer to work with the alternative systems where
the cut and the induction rules are weakened. Define the system wLS

k

2

(resp. wLT
k

2) similar to LS
k

2 (resp. LT
k

2) with the difference that in the
former the quantifier rules in LPV are omitted and the cut and the induc-
tion rule (PIndk) (resp. (Indk)) are replaced by the weak cut and the weak
induction rule (wPIndk) (resp. (wIndk)) depicted below:

Γ ⇒ A A ⇒ ∆
wCut

Γ ⇒ ∆

Γ, A(⌊z
2
⌋) ⇒ A(z)

wPIndk
Γ, A(0) ⇒ A(s) Γ, A(z) ⇒ A(z + 1)

wIndk
Γ, A(0) ⇒ A(s)

In the weak induction rules, we have the similar constraints as before, namely
that A ∈ Π̂

b
k and z does not appear in the consequence of the rules. Note that

the only point modified in the weak induction rules is the missing context ∆.
The following theorem ensures that the system wLS

k

2 (resp. wLT
k

2) is

complete for the sequents of Π̂
b
k-formulas. Notice that the lemma does not

claim the full completeness as the system wLS
k

2 (resp. wLT
k

2) is clearly weak
to introduce any unbounded quantifier.
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Lemma 5.1. For any Γ ∪∆ ⊆ Π̂
b
k:

• If S
k
2 ⊢ ⋀Γ → ⋁∆, then Γ ⇒ ∆ has a wLS

k

2-proof only consisting of

Π̂
b
k-formulas.

• If T
k
2 ⊢ ⋀Γ → ⋁∆, then Γ ⇒ ∆ has a wLT

k

2-proof only consisting of

Π̂
b
k-formulas.

Proof. It is a well-known consequence of the cut reduction theorem for LS
k

2

(resp. LT
k

2) that if ⋀Γ → ⋁∆ is provable in S
k
2 (resp. T

k
2 ), it has a

proof in LS
k

2 (resp. LT
k

2) only consisting of Π̂
b
k-formulas and only using

bounded quantifier rules instead of the usual unbounded quantifier rules in
LPV [13, 25]. Therefore, the only thing remained to prove is simulating the

cut and the induction rules over Π̂
b
k-formulas by their weak versions applied

over the same family of formulas. This simulation is almost identical to the
one presented in the proof of Lemma 4.6 and hence will be skipped here.

5.2 k-Flows

In this subsection, we will first introduce a k-flow as a uniform term-length
sequence of PV-provable implications between Π̂

b
k-formulas. Then, we will

develop a high-level calculus for k-flows to witness the provability in theories
S
k
2 and T

k
2 .

Definition 5.2. Let A(x̄), B(x̄) ∈ Π̂
b
k be two LPV-formulas and t(x̄) be

an LPV-term. A k-flow from A(x̄) to B(x̄) with the length t(x̄) is a pair(H(u, x̄), t(x̄)), where H(u, x̄) ∈ Π̂
b
k and:

• PV ⊢ H(0, x̄) ↔ A(x̄).
• PV ⊢ H(t(x̄), x̄) ↔ B(x̄).
• PV ⊢ ∀u < t(x̄) [H(u, x̄) → H(u+ 1, x̄)].
A k-flow is called polynomial if t(x̄) = q(∣x̄∣), for some polynomial q, where
by equality, we mean the syntactical equality between the terms. If there

exists a k-flow from A(x̄) to B(x̄) with the length t(x̄), we write A(x̄) ⊳t(x̄)
k

B(x̄). If we intend to emphasize on the existence of the k-flow regardless of its
length, we write A(x̄)⊳k B(x̄) and if the k-flow is polynomial A(x̄)⊳p

k B(x̄).
Moreover, if Γ ∪ ∆ ⊆ Π̂

b
k, by Γ ⊳k ∆ (resp. Γ ⊳

p

k ∆), we mean ⋀Γ ⊳k ⋁∆
(resp. ⋀Γ ⊳

p

k ⋁∆).

Similar to the situation with the ordinal flows, it is also reasonable to
provide a high-level calculus to work with the k-flows. The following series
of lemmas realize this goal.
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Lemma 5.3. (Padding) Let A(x̄), B(x̄) ∈ Π̂
b
k and t(x̄), s(x̄) be two LPV-

terms such that PV ⊢ t(x̄) ≤ s(x̄). If A(x̄)⊳t(x̄)
k B(x̄), then A(x̄)⊳s(x̄)

k B(x̄).
Therefore, without loss of generality, we can always assume that the length
t(x̄) of a k-flow is PV-monotone, i.e., PV ⊢ ⋀n

i=1(xi ≤ yi) → t(x̄) ≤ t(ȳ).
Proof. Let (H(u, x̄), t(x̄)) be a k-flow from A(x̄) to B(x̄). Then, define

H
′(u, x̄) = {H(u, x̄) u ≤ t(x̄)

B(x̄) u > t(x̄)
Notice that H

′(u, x̄) ∈ Π̂
b
k. It is easy to prove that (H ′(u, x̄), s(x̄)) is a k-

flow from A(x̄) to B(x̄). The only thing worth emphasizing is the role of the
assumption PV ⊢ t(x̄) ≤ s(x̄) in the proof. This assumption together with
the definition of H

′(u, x̄) shows PV ⊢ H
′(s(x̄), x̄) ↔ B(x̄) which is one of

the conditions of being a k-flow. This observation completes the proof of
the first part of the claim. For its second part, note that for any term t(x̄),
there exists a polynomial q such that PV ⊢ t(x̄) ≤ 2

q(∣x̄∣)
[13, 25]. As 2

q(∣x̄∣)
is PV-monotone, it is enough to use the first part to extend a k-flow with

the length t(x̄) to a k-flow with the length 2
q(∣x̄∣)

. For polynomial k-flows,
as the length t(x̄) is in the form q(∣x̄∣), for some polynomial q, it is already
PV-monotone and hence there is nothing to prove.

Lemma 5.4. Let A(x̄), B(x̄), C(x̄) ∈ Π̂
b
k. Then:

(i) If PV ⊢ A(x̄) → B(x̄), then A(x̄) ⊳p

k B(x̄).
(ii) If A(x̄)⊳k B(x̄), then A(x̄)◦C(x̄)⊳k B(x̄)◦C(x̄), for any ◦ ∈ {∧,∨}.

A similar claim also holds for ⊳
p

k.

Proof. The proof is similar to that of Lemma 4.8.

Lemma 5.5. (Bounded variables) Let A(x̄, y), B(x̄, y) ∈ Π̂
b
k be two LPV-

formulas and s(x̄) be an LPV-term (not depending on y). If A(x̄, y) ⊳k

B(x̄, y), then there exists a formula I(u, y, x̄) ∈ Π̂
b
k and an LPV-term r(x̄)

(not depending on y) such that:

• PV ⊢ I(0, y, x̄) ↔ A(x̄, y).
• PV ⊢ ∀y ≤ s(x̄)[I(r(x̄), y, x̄) ↔ B(x̄, y)].
• PV ⊢ I(u, y, x̄) → I(u+ 1, y, x̄).
• PV ⊢ r(x̄) ≥ 1.
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If we also have A(x̄, y) ⊳p

k B(x̄, y), then the term r(x̄) can be chosen in the
form q(∣x̄∣), for some polynomial q.

Proof. Assume (H(u, y, x̄), t(y, x̄)) is a k-flow from A(x̄, y) to B(x̄, y). Using
Lemma 5.3, we can assume that t(y, x̄) is PV-monotone and PV ⊢ t(y, x̄) ≥
1. Define

I(u, y, x̄) = {H(u, y, x̄) u ≤ t(y, x̄)
B(y, x̄) u > t(y, x̄)

and notice that I(u, y, x̄) ∈ Π̂
b
k. Recall from the basic facts in bounded

arithmetic that for the term s(x̄), there is a polynomial qs such that PV ⊢∣s(x̄)∣ ≤ qs(∣x̄∣) [13, 25]. Define r(x̄) = t(2qs(∣x̄∣), x̄) and note that PV ⊢

y ≤ s(x̄) → t(y, x̄) ≤ r(x̄), as t(y, x̄) is PV-monotone and PV ⊢ r(x̄) ≥ 1.
We claim that I(u, y, x̄) and r(x̄) work. The first and the third claims in
the statement of the lemma are the trivial consequences of the fact that(H(u, y, x̄), t(y, x̄)) is a k-flow from A(x̄, y) to B(x̄, y). For the second, no-
tice that as PV ⊢ y ≤ s(x̄) → t(y, x̄) ≤ r(x̄), we can use the definition of
I(y, x̄) to see that the formula I(r(x̄), x̄) is PV-equivalent to B(y, x̄).
For the polynomial case, if (H(u, y, x̄), t(y, x̄)) is a polynomial k-flow from
A(x̄, y) to B(x̄, y), then there is a polynomial qt such that t(y, x̄) = qt(∣y∣, ∣x̄∣).
Therefore, r(x̄) = qt(qs(∣x∣) + 1, ∣x̄∣) which implies that r(x̄) is in the form
qr(∣x̄∣), for some poynomial qr.

Lemma 5.6. Let Γ(x̄) ∪ {A(x̄), B(x̄), C(x̄), D(y, x̄)} ⊆ Π̂
b
k. Then:

(i) (weak gluing) If A(x̄)⊳k B(x̄) and B(x̄)⊳k C(x̄) then A(x̄)⊳k C(x̄). A
similar claim also holds for ⊳

p

k.

(ii) (polynomial strong gluing) If Γ(x̄), D(⌊y
2
⌋, x̄) ⊳p

k D(y, x̄), then we have

Γ(x̄), D(0, x̄) ⊳p

k D(s(x̄), x̄), for any LPV-term s(x̄).
(iii) (strong gluing) If Γ(x̄), D(y, x̄) ⊳k D(y + 1, x̄), then Γ(x̄), D(0, x̄) ⊳k

D(s(x̄), x̄), for any LPV-term s(x̄).
Proof. For (i), as A(x̄) ⊳k B(x̄) and B(x̄) ⊳k C(x̄), there exist k-flows(H(u, x̄), t(x̄)) and (H ′(u, x̄), t′(x̄)), from A(x̄) to B(x̄) and from B(x̄)
to C(x̄), respectively. Set t

′′(x̄) = t(x̄) + t
′(x̄) + 1 and

H
′′(u, x̄) = {H(u, x̄) u ≤ t(x̄)

H
′(u∸ (t(x̄) + 1), x̄) u > t(x̄)
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Notice that H
′′(u, x̄) is clearly a Π̂

b
k-formula. We claim that (H ′′(u, x̄), t′′(x̄))

is a k-flow from A(x̄) to C(x̄) as depicted in the following figure, (for sim-
plicity, in the figure, we sometimes drop the free variables x̄):

A(x̄) B(x̄) B(x̄) C(x̄)
H(0) ⋯ H(t)

H
′(0) ⋯ H

′(t′)

H
′′(0) ⋯ H

′′(t) H
′′(t + 1) ⋯ H

′′(t+ t
′
+ 1)

≡ ≡

≡ ≡

First, it is trivial that H
′′(0, x̄) is PV-equivalent to H(0, x̄) which is PV-

equivalent to A(x̄). Similarly, H
′′(t′′(x̄), x̄) is PV-equivalent to H

′(t′(x̄), x̄)
which is PV-equivalent to C(x̄). To prove PV ⊢ ∀u < t

′′(x̄) [H ′′(u, x̄) →

H
′′(u + 1, x̄)], the cases u < t(x̄) and t(x̄) < u < t

′′(x̄) are reduced to a
similar claim for H and H

′
. For u = t(x̄), note that H

′′(t(x̄), x̄) is PV-
equivalent to H(t(x̄), x̄) and H

′′(t(x̄) + 1, x̄) is PV-equivalent to H
′(0, x̄).

As both formulas are PV-equivalent to B(x̄), the proof is complete. Finally,
note that if the k-flows (H(u, x̄), t(x̄)) and (H ′(u, x̄), t′(x̄)) are polynomial,
there are polynomials q and q

′
such that t(x̄) = q(∣x̄∣) and t

′(x̄) = q
′(∣x̄∣).

Hence, t
′′(x̄) = q(∣x̄∣) + q

′(∣x̄∣) + 1. Therefore, the k-flow (H ′′(u, x̄), t′′(x̄))
is also polynomial.

For (ii), as Γ(x̄), D(⌊y
2
⌋, x̄)⊳p

kD(y, x̄), by Lemma 5.4, we have ⋀Γ(x̄)∧
D(⌊y

2
⌋, x̄) ⊳

p

k ⋀Γ ∧ D(y, x̄). For simplicity, denote ⋀Γ(x̄) ∧ D(y, x̄) by

E(y, x̄). Therefore, we have E(⌊y
2
⌋, x̄) ⊳p

k E(y, x̄). First, we want to prove

E(0, x̄) ⊳p

k E(s(x̄), x̄). Roughly speaking, the idea is gluing the polynomial
k-flows from E(⌊y

2
⌋, x̄) to E(y, x̄), one after another, starting from y = s(x̄)

till reaching E(0, x̄):
E(0, x̄) ⋯ E(⌊ ⌊ s(x̄)2

⌋
2

⌋, x̄) E(⌊s(x̄)
2
⌋, x̄) E(s(x̄), x̄)

Notice that the result of this gluing extends the length of the k-flow by ∣s(x̄)∣
which is bounded by a polynomial and hence acceptable. More formally,
using Lemma 5.5 for the formulas E(⌊y

2
⌋, x̄) and E(y, x̄) and the term 2s(x̄)

(the choice of 2s(x̄) instead of s(x̄) is rather technical) and using the fact
that E(⌊y

2
⌋, x̄) ⊳p

k E(y, x̄), we reach a pair (H ′(u, y, x̄), t′(x̄)) such that:

(1) PV ⊢ H
′(0, y, x̄) ↔ E(⌊y

2
⌋, x̄),
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(2) PV ⊢ ∀y ≤ 2s(x̄)[H ′(t′(x̄), y, x̄) ↔ E(y, x̄)],
(3) PV ⊢ H

′(u, y, x̄) → H
′(u+ 1, y, x̄),

(4) PV ⊢ t
′(x̄) ≥ 1,

and t
′(x̄) = qt′(∣x̄∣), for some polynomial qt′ . Define the function Y (z, x̄) as

the result of ∣s(x̄)∣+1∸z many iterations of the operation n ↦ ⌊n
2
⌋ on 2s(x̄).

Note that the function is clearly polynomial time computable. Therefore, we
can define it recursively in PV and represent it by an LPV-term. This term
is PV-provably bounded by 2s(x̄), i.e., PV ⊢ Y (z, x̄) ≤ 2s(x̄) and we have

Y (0, x̄) = 0, Y (∣s(x̄)∣, x̄) = s(x̄) and if z ≤ ∣s(x̄)∣, then Y (z, x̄) = ⌊Y (z+1,x̄)
2

⌋,
all provable in PV. Now, define

I(u, x̄) = H
′(u∸ t

′(x̄)⌊ u

t′(x̄)⌋, Y (⌊ u

t′(x̄)⌋ + 1), x̄).
Note that I(u, x̄) is well-defined as t

′(x̄) is greater than zero, provably in
PV. It is trivial that I(u, x̄) ∈ Π̂

b
k. Set r(x̄) = t

′(x̄)∣s(x̄)∣. We claim that
the pair (I(u, x̄), r(x̄)) is a k-flow from E(0, x̄) to E(s(x̄), x̄) as depicted in
the following figure. For simplicity, we drop the free variables x̄ in the figure.

⋯ E(⌊ s
2
⌋) E(s)

H
′(t′, ⌊ s

2
⌋) ≡ H

′(0, s) H
′(1, s) ⋯ H

′(t′, s)

⋯ I(∣⌊ s
2
⌋∣t′) I(∣⌊ s

2
⌋∣t′ + 1) ⋯ I(∣s∣t′)

≡
≡≡

≡

≡

To prove, we first claim that

PV ⊢ ∀z ≤ ∣s(x̄)∣ [I(t′(x̄)z, x̄) ↔ E(Y (z, x̄), x̄)] (∗)
The reason is that by definition, I(t′(x̄)z, x̄) = H

′(0, Y (z + 1, x̄), x̄) and the

latter is PV-equivalent to E(⌊Y (z+1,x̄)
2

⌋, x̄), by the property (1) above. Fi-

nally, since for any z ≤ ∣s(x̄)∣, we have Y (z, x̄) = ⌊Y (z+1,x̄)
2

⌋ provably in PV,
we reach the PV-equivalence with E(Y (z, x̄), x̄).
Now, we prove that (I(u, x̄), r(x̄)) is a k-flow from E(0, x̄) to E(s(x̄), x̄).
First, note that I(0, x̄) is PV-equivalent to E(0, x̄), by substituting z = 0 in(∗) and using the PV-provable fact that Y (0, x̄) = 0. Secondly, note that
I(r(x̄), x̄) is PV-equivalent to E(s(x̄), x̄), by substituting z = ∣s(x̄)∣ in (∗)
and using the PV-provable fact that Y (∣s(x̄)∣, x̄) = s(x̄). Thirdly, to prove
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PV ⊢ ∀u < t
′(x̄) [I(u, x̄) → I(u + 1, x̄)], there are two cases to consider:

Either u + 1 divides t
′(x̄) or not. In the latter case, we have ⌊ u+1

t′(x̄)⌋ = ⌊ u

t′(x̄)⌋.
By definition I(u, x̄) is H

′(u∸ t
′(x̄)⌊ u

t′(x̄)⌋, Y (⌊ u

t′(x̄)⌋+ 1), x̄) while I(u+ 1, x̄)
is H

′(u+ 1∸ t
′(x̄)⌊ u+1

t′(x̄)⌋, Y (⌊ u+1

t′(x̄)⌋+ 1), x̄). Therefore, the former proves the

latter by property (3) above. For the first case, if t
′(x̄)∣u+ 1, then there ex-

ists z ≤ ∣s(x̄)∣ such that u+ 1 = t
′(x̄)z. Therefore, I(u+ 1, x̄) is I(t′(x̄)z, x̄)

which is PV-equivalent to E(Y (z, x̄), x̄) by (∗), and hence PV-equivalent to
H
′(t′(x̄), Y (z, x̄), x̄) by (2), as Y (z, x̄) is PV-provably bounded by 2s(x̄). As

I(u, x̄) is H
′(t′(x̄) ∸ 1, Y (z, x̄), x̄) by definition, by (3), the formula I(u, x̄)

implies I(u + 1, x̄) in PV.
So far, we showed that (I(u, x̄), r(x̄)) is a k-flow from E(0, x̄) to E(s(x̄), x̄).
Again, recall that for the term s(x̄), there is a polynomial qs such that
PV ⊢ ∣s(x̄)∣ ≤ qs(∣x̄∣) [13, 25]. Hence, PV ⊢ r(x̄) ≤ qs(∣x̄∣)qt′(∣x̄∣).
Therefore, using Lemma 5.3, we can prove the existence of a k-flow with the
length qs(∣x̄∣)qt′(∣x̄∣) from E(0, x̄) to E(s(x̄), x̄) which implies E(0, x̄) ⊳p

k

E(s(x̄), x̄). Now, to complete the proof of (ii), by the definition of E(y, x̄),
we have ⋀Γ(x̄) ∧ D(0, x̄) ⊳

p

k ⋀Γ(x̄) ∧ D(s(x̄), x̄). As PV ⊢ ⋀Γ(x̄) ∧
D(s(x̄), x̄) → D(s(x̄), x̄), by Lemma 5.4, we have ⋀Γ(x̄) ∧ D(s(x̄), x̄) ⊳p

k

D(s(x̄), x̄). Hence, by the weak gluing, the part (i) in the present lemma,
we reach ⋀Γ(x̄) ∧D(0, x̄) ⊳p

k D(s(x̄), x̄).
The proof of (iii) is similar to that of (ii) and even easier. In this case,
one must again define E(y, x̄) as ⋀Γ(x̄)∧D(y, x̄) and then glue the k-flows
from E(y, x̄) to E(y + 1, x̄), one after another, for all 0 ≤ y < s(x̄).
Lemma 5.7. (Conjunction and Disjunction Rules) Let Γ∪∆∪{A,B} ⊆ Π̂

b
k.

Then:

(i) If Γ, A ⊳k ∆ or Γ, B ⊳k ∆ then Γ, A ∧ B ⊳k ∆.

(ii) If Γ ⊳k A,∆ and Γ ⊳k B,∆ then Γ ⊳k A ∧ B,∆.

(iii) If Γ ⊳k A,∆ or Γ ⊳k B,∆ then Γ ⊳k A ∨ B,∆.

(iv) If Γ, A ⊳k ∆ and Γ, B ⊳k ∆ then Γ, A ∨ B ⊳k ∆.

A similar claim also holds for ⊳
p

k.

Proof. The argument is identical to that of Lemma 4.10 claiming the same
fact for the ordinal flows.

Lemma 5.8. (Negation Rules) If Γ ∪∆ ⊆ Π̂
b
k and A,¬A ∈ Π̂

b
k, then:

(i) If Γ, A ⊳k ∆ then Γ ⊳k ¬A,∆.
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(ii) If Γ ⊳k A,∆ then Γ,¬A ⊳k ∆.

A similar claim also holds for ⊳
p

k.

Proof. We only prove the claim for ⊳k. The case for ⊳
p

k is identical. For (i),
assume Γ, A⊳k ∆ which means ⋀Γ∧A⊳k⋁∆. As ¬A ∈ Π̂

b
k, by Lemma 5.4,

we have (⋀Γ∧A)∨¬A⊳k⋁∆∨¬A. Since PV ⊢ ⋀Γ → (⋀Γ∧A)∨¬A,
by Lemma 5.4, we have ⋀Γ ⊳k (⋀Γ ∧ A) ∨ ¬A. Hence, by weak gluing,
Lemma 5.6, we have ⋀Γ ⊳k ⋁∆ ∨ ¬A. The proof for (ii) is similar.

Lemma 5.9. (Bounded Universal Quantifier) Let A(x̄), B(x̄, y) ∈ Π̂
b
k and

s(x̄) be an LPV-term. If A(x̄), (y ≤ s(x̄)) ⊳k B(x̄, y), then A(x̄) ⊳k ∀y ≤

s(x̄)B(y, x̄). The same also holds for ⊳
p

k.

Proof. Again, we only prove the claim for ⊳k. The proof for ⊳
p

k is identical.
Since A(x̄), (y ≤ s(x̄))⊳k B(x̄, y) and y ≤ s(x̄) is quantifier-free, by Lemma
5.8, we have A(x̄)⊳k (y ≤ s(x̄) → B(x̄, y)). Note that (y ≤ s(x̄) → B(x̄, y))
is defined as ¬(y ≤ s(x̄)) ∨ B(x̄, y), as the negation is not primitive in the
language. Use Lemma 5.5 for the formulas A(x̄) and (y ≤ s(x̄) → B(x̄, y))
and the term s(x̄). Therefore, we have a formula I(u, y, x̄) ∈ Π̂

b
k and a term

r(x̄) such that:

• PV ⊢ I(0, y, x̄) ↔ A(x̄).
• PV ⊢ ∀y ≤ s(x̄)[I(r(x̄), y, x̄) ↔ (y ≤ s(x̄) → B(x̄, y))].
• PV ⊢ I(u, y, x̄) → I(u+ 1, y, x̄).
It is easy to see that the pair (∀y ≤ s(x̄)I(u, y, x̄), r(x̄)) is a k-flow from
A(x̄) to ∀y ≤ s(x̄)B(x̄, y).

Now we are ready to use k-flows to witness the provable implications
between Π̂

b
k-formulas in S

k
2 and T

k
2 .

Theorem 5.10. (Soundness and Completeness) Let Γ(x̄) ∪ ∆(x̄) ⊆ Π̂
b
k.

Then:

(i) S
k
2 ⊢ ⋀Γ(x̄) → ⋁∆(x̄) iff Γ(x̄) ⊳p

k ∆(x̄).
(ii) T

k
2 ⊢ ⋀Γ(x̄) → ⋁∆(x̄) iff Γ(x̄) ⊳k ∆(x̄).

Proof. We only prove (i). The proof of (ii) is similar. First, we prove the
easier completeness part. If Γ(x̄)⊳p

k ∆(x̄), then by Definition 5.2, there exist

a polynomial q, and a formula H(u, x̄) ∈ Π̂
b
k such that:
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• PV ⊢ H(0, x̄) ↔ ⋀Γ(x̄),
• PV ⊢ H(q(∣x̄∣), x̄) ↔ ⋁∆(x̄),
• PV ⊢ ∀u < q(∣x̄∣) [H(u, x̄) → H(u+ 1, x̄)].
Using Lemma 5.3, without loss of generality, we can also assume that PV ⊢

q(∣x̄∣) ≥ 1. As PV is a subtheory of S
k
2 , we also have all the above prov-

abilities for S
k
2 . Hence, S

k
2 ⊢ ∀u < q(∣x̄∣) [H(u, x̄) → H(u + 1, x̄)].

Since H(u, x̄) ∈ Π̂
k
2, by the Π̂

b
k − LInd axiom, we have, S

k
2 ⊢ H(0, x̄) →

H(∣2q(∣x̄∣)∸1∣, x̄). As PV ⊢ q(∣x̄∣) ≥ 1, we have PV ⊢ ∣2q(∣x̄∣)∸1∣ = ∣q(x̄)∣.
Hence, S

k
2 ⊢ H(0, x̄) → H(q(∣x̄∣), x̄). Therefore, S

k
2 ⊢ ⋀Γ(x̄) → ⋁∆(x̄).

For soundness, assume S
k
2 ⊢ ⋀Γ(x̄) → ⋁∆(x̄). By Lemma 5.1, Γ(x̄) ⇒

∆(x̄) has a wLS
k

2-proof only consisting of Π̂
b
k-formulas. By induction on this

proof, we show that for any sequent Σ ⇒ Λ in the proof, we have Σ ⊳
p

k Λ.
For the axioms, as they are provable in PV, using Lemma 5.4, there is noth-
ing to prove. The case of structural rules (except for the weak cut) is easy.
Weak cut and (wPIndk) are addressed in Lemma 5.6. The conjunction and
disjunction rules are proved in Lemma 5.7 and the rule (R∀≤) is addressed
in Lemma 5.9. Therefore, there are only three cases to consider. If the last
rule is

Σ(x̄, y), B(x̄, s(x̄, y)) ⇒ Λ(x̄, y)
L∀

≤

Σ(x̄, y), s(x̄, y) ≤ t(x̄, y),∀y ≤ t(x̄, y)B(x̄, y) ⇒ Λ(x̄, y)
by the induction hypothesis, we have Σ(x̄, y), B(x̄, s(x̄, y))⊳p

k Λ(x̄, y). Since

⋀Σ(x̄, y)∧ (s(x̄, y) ≤ t(x̄, y))∧∀y ≤ t(x̄, y)B(x̄, y)
implies ⋀Σ(x̄, y) ∧ B(x̄, s(x̄, y)) in PV, by Lemma 5.4 and weak gluing,
Lemma 5.6, we have

Σ(x̄, y), s(x̄, y) ≤ t(x̄, y),∀y ≤ t(x̄, y)B(x̄, y) ⊳p

k Λ(x̄, y).
The case for the rule R∃

≤
is similar to the previous case. Finally, if the last

rule is

Σ(x̄), z ≤ s(x̄), B(x̄, z) ⇒ Λ(x̄)
L∃

≤

Σ(x̄),∃y ≤ s(x̄)B(x̄, y) ⇒ Λ(x̄)
by the induction hypothesis, we have Σ(x̄), z ≤ s(x̄), B(x̄, z) ⊳p

k Λ(x̄). Since

∃y ≤ s(x̄)B(x̄, y) ∈ Π̂
b
k and it starts with an existential quantifier, it must

belong to Σ̂
b
k−1. Hence, both ¬B(x̄, z) and ¬∃y ≤ s(x̄)B(x̄, y) = ∀y ≤

s(x̄)¬B(x̄, y) are in Π̂
b
k. Therefore, by Lemma 5.8,

Σ(x̄), z ≤ s(x̄) ⊳p

k Λ(x̄),¬B(x̄, z).
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By using the fact that the names of the parameters are not important in k-
flows and employing Lemma 5.9, we have Σ(x̄)⊳p

k Λ(x̄),∀y ≤ s(x̄) ¬B(x̄, y).
Finally again by Lemma 5.8, we reach Σ(x̄),∃y ≤ s(x̄)B(x̄, y) ⊳p

k Λ(x̄).
5.3 Reductions and PLS(k,l)-programs

In Subsection 5.2, we transformed the S
k
2 -provable (resp. T

k
2 -provable) im-

plications between Π̂
b
k-formulas into exponentially (resp., polynomially) long

uniform sequences of PV-provable implications between Π̂
b
k-formulas. Having

that characterization at hand, one can use the universality of PV to employ
generalized Herbrand’s theorem and push the characterization of Theorem
5.10 even further to witness all essentially existential quantifiers in the PV-
provable implications by polynomial-time computable functions. Instead of
following this rather absolute approach, in this subsection, we will employ a
relative approach to witness all the essentially existential quantifiers up to a
given level l ≤ k. The idea is simple. First, by moving the PV-provable im-
plications from PV to PVk−l+1, we will pretend that all the LPV-formulas in
Π̂

b
k−l∪ Σ̂

b
k−l are quantifier-free in LPVk−l+1

. Therefore, only l many alternating
quantifiers are left to peel off for which we use the generalized Herbrand’s
theorem. In choosing the right value for l, there is a clear trade-off between
the complexity of the witnessing functions on the one hand and the com-
plexity of the witnessing more alternating quantifiers, on the other. For the
smaller values of l, the latter would be quite easy as evidenced by Theorem
2.2. However, the cost to pay is the higher complexity of the witnessing func-
tions that now live in the higher level of the polynomial hierarchy, i.e., in the
class □

p

k−l+1. For the higher values of l, the situation is reverse. For instance,
if l = k, then all the witnessing functions are polynomial time as they live in
PVk−k+1 = PV. However, the generalized Herbrand’s theorem must witness
k many quantifier alternations that is combinatorially too complex to deal
with. In the present subsection, we will lean towards the lower values for l

and will only apply the relative approach to two instances of l = 1 and l = 2
to avoid the high witnessing complexity. However, it is worth emphasizing
that the main base, i.e., Theorem 5.10 is there and one can use it for any
value of l by employing the right instance of Herbrand’s theorem. We only
cover these two cases to show that how interesting the concrete consequences
can be. For l = 1, we will show that some well-known witnessing theorems
in bounded arithmetic are just special cases of our witnessing theorem. For
l = 2, the witnessing results are all new.
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5.3.1 The game interpretation

Let k ≥ l ≥ 1 be two numbers, G(x̄, y1, y2, . . . , yl) be a quantifier-free LPVk
-

formula and t(x̄) be an LPVk
-term. We call the pair (G(x̄, y1, y2, . . . , yl), t(x̄))

a (k, l)-game (a game, for short) and we interpret it as a uniform fam-
ily of l-turn games between two players parameterized by the variables x̄.
To emphasize this parameter role, we sometimes write Gx̄(y1, y2, . . . , yl) for
G(x̄, y1, y2, . . . , yl) and if the variables are clear from the context, we use the
shorthand (Gx̄, t(x̄)) for an instance of the game and (G, t) for the uniform
family itself. Given the value ā for x̄, the game Gā starts with the first
player, denoted by I, playing the number b1 ≤ t(ā) for y1. Then, the sec-
ond player, denoted by II, plays b2 ≤ t(ā) for y2 and so on. The resulting
tuple (b1, b2, . . . , bl) is called a play of the game. For a play, (b1, b2, . . . , bl),
if G(ā, b1, b2, . . . , bl) holds, the first player wins the game and otherwise, the
second player is the winner. A play (b1, . . . , bl) is called a winning play for
the first (second) player, if it makes the first (second) player wins. It is an
easy and well-known fact that the first player has a winning strategy in Gā

iff ∃y1 ≤ t(ā)∀y2 ≤ t(ā)∃y3 ≤ t(ā) . . . G(ā, y1, . . . , yl) holds. As we are al-
ways interested in the first player in this subsection, by a winning play and
a winning strategy, we always mean them for the first player. Having two(k, l)-games (G(x̄, y1, y2, . . . , yl), t(x̄)) and (H(x̄, z1, z2, . . . , zl), s(x̄)), a nat-
ural question to ask is the following. Let the existence of a winning strategy
in (Gx̄, t(x̄)) implies the existence of a winning strategy in (Hx̄, s(x̄)), for
any x̄, i.e., the implication

∃y1 ≤ t(x̄)∀y2 ≤ t(x̄) . . . G(x̄, y1, . . . , yl) →
∃z1 ≤ s(x̄)∀z2 ≤ s(x̄) . . .H(x̄, z1, . . . , zl), (†)

hold. Then, does it mean that we can find an explicit way to use a winning
strategy for (Gx̄, t(x̄)) to design a winning strategy for (Hx̄, s(x̄))? One can
even sharpen the question by asking if having a proof of the implication (†)
in the theory PVk helps to provide an explicit and relatively simple transfor-
mation between the winning strategies. Fortunately, as PVk is a universal
theory, the extraction of the explicit transformation between the winning
strategies is possible and it is simply the content of Herbrand’s theorem,
Theorem 2.2 (up to some small modifications). We will explain the details
for the two case l = 1 and l = 2, below.

5.3.2 The case l = 1

Let (G(x̄, y), t(x̄)) and (H(x̄, z), s(x̄)) be two (k, 1)-games. The most trivial
way to reduce the winning strategy of the latter to that of the former is via
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a function f(x̄, y) that maps any move y ≤ t(x̄) in (G, t) to a move z ≤ s(x̄)
in (H, s) such that if the play y is a winning play in (G, t), then the play
z = f(x̄, y) is a winning play in (H, s). Moreover, as we expect the reduction
to be simple and verifiable, we expect that everything happens inside a base
theory, in our case PVk. More formally:

Definition 5.11. Let (G(x̄, y), t(x̄)) and (H(x̄, z), s(x̄)) be two (k, 1)-games.
A (k, 1)-reduction from (H(x̄, z), s(x̄)) to (G(x̄, y), t(x̄)) is an LPVk

-term
f(x̄, y) such that:

• PVk ⊢ ∀y ≤ t(x̄)[f(x̄, y) ≤ s(x̄)],
• PVk ⊢ ∀y ≤ t(x̄)[G(x̄, y) → H(x̄, f(x̄, y))].
Naturally, we expect a connection between the provability of

∃y ≤ t(x̄)G(x̄, y) → ∃z ≤ s(x̄)H(x̄, z)
in PVk and the existence of a (k, 1)-reduction. This is the content of the
following modification of Herbrand’s theorem.

Theorem 5.12. For any two (k, 1)-games (G(x̄, y), t(x̄)) and (H(x̄, z), s(x̄)),
the following are equivalent:

• PVk ⊢ ∃y ≤ t(x̄)G(x̄, y) → ∃z ≤ s(x̄)H(x̄, z)
• There is a (k, 1)-reduction from (H(x̄, z), s(x̄)) to (G(x̄, y), t(x̄)).

Proof. One direction is trivial. For the other, assume

PVk ⊢ ∃y ≤ t(x̄)G(x̄, y) → ∃z ≤ s(x̄)H(x̄, z).
Therefore, PVk ⊢ ∀y∃z [(y ≤ t(x̄) ∧ G(x̄, y)) → (z ≤ s(x̄) ∧H(x̄, z))]. By
Herbrand’s theorem, Theorem 2.2, there exists an LPVk

-term g(x̄, y) such
that

PVk ⊢ [y ≤ t(x̄) ∧G(x̄, y)] → [g(x̄, y) ≤ s(x̄) ∧H(x̄, g(x̄, y))].
Define

f(x̄, y) = {g(x̄, y) g(x̄, y) ≤ s(x̄)
0 g(x̄, y) > s(x̄)

It is easy to represent f(x̄, y) as an LPVk
-term. By definition, it is clear

that PVk ⊢ ∀y ≤ t(x̄)[f(x̄, y) ≤ s(x̄)]. Moreover, it is easy to see that
PVk ⊢ ∀y ≤ t(x̄)[G(x̄, y) → H(x̄, f(x̄, y))].
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As explained in the opening of this subsection, for l = 1, the combination
of witnessing by k-flows, moving from PV to PVk and using Theorem 5.12
provides an explicit witnessing theorem for theories S

k
2 and T

k
2 . This is what

we will come back to in Corollary 5.15. However, as the combination has a
natural form itself, it is worth defining it directly.

Definition 5.13. Let A(x̄, y) ∈ Π̂
b
k−1 be an LPV-formula and t(x̄) and r(x̄)

be two LPV-terms. By a PLS(k,1)-program for (A(x̄, y), r(x̄)) with the length
t(x̄), we mean the following data: an initial LPVk

-term i(x̄), a quantifier-free
LPVk

-formula G(x̄, u, z), an LPVk
-term N(x̄, u, z) and an LPVk

-term p(x̄, z),
such that:

• PVk ⊢ i(x̄) ≤ s(x̄),
• PVk ⊢ G(x̄, 0, i(x̄)),
• PVk ⊢ ∀z ≤ s(x̄)[N(x̄, u, z) ≤ s(x̄)],
• PVk ⊢ ∀z ≤ s(x̄) [G(x̄, u, z) → G(x̄, u+ 1, N(x̄, u, z))],
• PVk ⊢ ∀z ≤ s(x̄)[p(x̄, z) ≤ r(x̄)],
• PVk ⊢ ∀z ≤ s(x̄)[G(x̄, t(x̄), z) → A(x̄, p(x̄, z))].
By PLS(k,1), we mean the class of all the pairs (A(x̄, y), r(x̄)) for which there
exists a PLS(k,1)-program. By PLS

p(k,1), we mean the class of all the pairs(A(x̄, y), r(x̄)) for which there exists a PLS(k,1)-program with a polynomial
length, i.e., t(x̄) = q(∣x̄∣), for some polynomial q.

It is easy to see that if (A(x̄, y), r(x̄)) ∈ PLS(k,1) then∀x̄∃y ≤ r(x̄)A(x̄, y)
holds and the PLS(k,1)-program actually provides an algorithm to compute
y ≤ r(x̄) from x̄. Denoting G(x̄, u, z) by G

u
, the algorithm starts at the

zeroth level with an initial value i(x̄) bounded by s(x̄) satisfying the prop-
erty G

0
. Then, using the modification N , it goes from one level to the next

updating any value z ≤ s(x̄) with the property G
u

to a value satisfying the
property G

u+1
. Note that the modification always respects the bound s(x̄).

Finally, reaching the level t(x̄), the algorithm uses p to compute y ≤ r(x̄)
satisfying A from any value z ≤ s(x̄) with the property G

t(x̄)
.

There are two points to emphasize here. First, the case k = 1, where
the predicate G(x̄, y, z) and all the functions i(x̄), N(x̄, u, z) and p(x̄, z) are
polynomial time computable is just another presentation of the well-known
polynomial local search problems, (PLS for short), see [18, 25]. Therefore,
one can simply read PLS(k,1)-programs as a generalization of PLS from poly-
nomial time to the k-th level of the polynomial hierarchy, where the predicate

40



G(x̄, u, z) and the functions i(x̄), N(x̄, u, z) and p(x̄, z) are all allowed to
be on the k-th level of the hierarchy. It is also worth mentioning that our
PLS(k,1)-programs are similar to but weaker than Π

b
k − PLS problems with

Π
b
l -goals defined in [6], where the functions i(x̄), N(x̄, u, z) and p(x̄, z) (and

not the predicate G(x̄, u, z)) must be polynomial-time computable and ev-
erything must be provable in S

1
2 rather than in PVk. The second point is

about the PLS
p(k,1)-programs with a polynomial length. For these programs,

the algorithm we just provided can efficiently (relative to the level of the
polynomial hierarchy, of course) compute the value of y as it only needs to
iterate the modification function N for polynomially many times. In other
words, we can pack the whole algorithm in one single LPVk

-term as a for-
malized version of a □

p

k-function that computes y. We will come back to
this observation in Corollary 5.16, where we reprove a well-known witnessing
theorem for S

k
2 , characterizing the Σ̂

b
k-definable functions of S

k
2 as the ones

in the k-th level of the polynomial hierarchy.

Remark 5.14. Employing the game interpretation we explained before, a
PLS(k,1) program for (A(x̄, y), r(x̄)) with the length t(x̄) is nothing but the
following three (k, 1)-reductions:

• i(x̄) as a (k, 1)-reduction from (G(x̄, 0, z), s(x̄)) to (⊤, s(x̄)).
• N(x̄, u, z) as a (k, 1)-reduction from the game (G(x̄, u+ 1, z), s(x̄)) to

the game (G(x̄, u, z), s(x̄)). Notice that u is also a parameter here.

• p(x̄, z) as a (k, 1)-reduction from the game (A(x̄, y), r(x̄)) to the game(G(x̄, t(x̄), z), s(x̄)).
Notice that the formula A(x̄, y) is not quantifier-free in LPVk

and hence we
cannot read the pair (A(x̄, y), r(x̄)) as a (k, 1)-game. However, as A(x̄, y)
is in Π̂

b
k−1, it is PVk-equivalent to a quantifier-free formula and hence we

can pretend that it is quantifier-free. Having that observation, we can use
Theorem 5.12 to see that there is a PLS(k,1) program for (A(x̄, y), r(x̄)) with
the length t(x̄) iff there exist a quantifier-free LPVk

-formula G(x̄, u, z) and
an LPV-term s(x̄) such that:

• PVk ⊢ ∃z ≤ s(x̄)G(x̄, 0, z).
• PVk ⊢ ∃z ≤ s(x̄)G(x̄, u, z) → ∃z ≤ s(x̄)G(x̄, u + 1, z).
• PVk ⊢ ∃z ≤ s(x̄)G(x̄, t(x̄), z) → ∃y ≤ r(x̄)A(x̄, y).
The next Corollary uses PLS(k,1)-programs (resp. PLS

p(k,1)-programs) to

witness the theorems of S
k
2 (resp. T

k
2 ) as promised before.
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Corollary 5.15. Let k ≥ 1, A(x̄, y) ∈ Π̂
b
k−1 and r(x̄) be an LPV-term:

(i) S
k
2 ⊢ ∀x̄∃y ≤ r(x̄)A(x̄, y) iff (A(x̄, y), r(x̄)) ∈ PLS

p(k,1).
(ii) T

k
2 ⊢ ∀x̄∃y ≤ r(x̄)A(x̄, y) iff (A(x̄, y), r(x̄)) ∈ PLS(k,1).

Proof. We only prove (i). The proof of (ii) is similar. For the right to
left direction, if there exists a PLS(k,1)-program for (A(x̄, y), r(x̄)) with the
length q(∣x̄∣), for some polynomial q, using Remark 5.14, there are quantifier-
free LPVk

-formula G(x̄, u, z) and an LPV-term s(x̄) such that:

• PVk ⊢ ∃z ≤ s(x̄)G(x̄, 0, z).
• PVk ⊢ ∃z ≤ s(x̄)G(x̄, u, z) → ∃z ≤ s(x̄)G(x̄, u + 1, z).
• PVk ⊢ ∃z ≤ s(x̄)G(x̄, q(∣x̄∣), z) → ∃y ≤ r(x̄)A(x̄, y).

Since PVk is interpretable in S
k
2 , mapping all quantifier-free LPVk

-formulas

to LPV-formulas in Σ̂
b
k, we can pretend that G(x̄, u, z) ∈ Σ̂

b
k and all the above

formulas are also provable in S
k
2 . Finally, since the theory S

k
2 has the axiom

Σ̂
b
k − LInd and ∃z ≤ s(x̄)G(x̄, u, z) ∈ Σ̂

b
k, we have S

k
2 ⊢ ∃y ≤ r(x̄)A(x̄, y).

For the other direction, assume S
k
2 ⊢ ∀x̄∃y ≤ r(x̄)A(x̄, y). Hence, S

k
2 ⊢

∀y ≤ r(x̄) ¬A(x̄, y) → ⊥. By Theorem 5.10, ∀y ≤ r(x̄) ¬A(x̄, y) ⊳p

k ⊥.

Therefore, there exist a polynomial q and a formula H(u, x̄) ∈ Π̂
b
k such that:

• PV ⊢ H(0, x̄) ↔ [∀y ≤ r(x̄) ¬A(x̄, ȳ)].
• PV ⊢ H(q(∣x̄∣), x̄) ↔ ⊥.

• PV ⊢ ∀u < q(∣x̄∣) [H(u, x̄) → H(u+ 1, x̄)].
Define H

′(u, x̄) as [(u ≤ q(∣x̄∣)) → H(u, x̄)]. It is easy to see that

• PV ⊢ [∀y ≤ r(x̄) ¬A(x̄, ȳ)] → H
′(0, x̄).

• PV ⊢ H
′(q(∣x̄∣), x̄) → ⊥.

• PV ⊢ H
′(u, x̄) → H

′(u+ 1, x̄).
As PV has the pairing function, it can encode finite many bounded variables
as one bounded variable. Hence, without loss of generality, we can assume
that H

′
is in the prenex bounded form starting with one universal quantifier

on z, i.e., H
′(u, x̄) = ∀z ≤ s

′(x̄, u) I(x̄, u, z), where s
′

is PV-monotone and
I ∈ Σ̂

b
k−1. Define s(x̄) as s

′(q(∣x̄∣), x̄). Then, it is easy to see that

PV ⊢ H
′(u, x̄) ↔ [∀z ≤ s(x̄)[(z ≤ s

′(u, x̄))∧ (u ≤ q(∣x̄∣)) → I(x̄, u, z)]].
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Hence, without loss of generality, we can assume that H
′

is in the form
∀z ≤ s(x̄)J(x̄, u, z), where J is in Σ̂

b
k−1. Since PV is a subtheory of PVk and

in PVk any formula in Σ̂
b
k−1 is equivalent to a quantifier-free formula, we can

assume that J is quantifier-free in the language of PVk and we have

• PVk ⊢ [∀y ≤ r(x̄) ¬A(x̄, y)] → ∀z ≤ s(x̄)J(x̄, 0, z).
• PVk ⊢ ∀z ≤ s(x̄)J(x̄, q(∣x̄∣), z) → ⊥.

• PVk ⊢ ∀z ≤ s(x̄)J(x̄, u, z) → ∀z ≤ s(x̄)J(x̄, u+ 1, z).
Define G(x̄, u, z) as ¬J(x̄, q(∣x̄∣) ∸ u, z) and note that it is a quantifier-free
LPVk

-formula. Therefore, we have

• PVk ⊢ ∃z ≤ s(x̄)G(x̄, q(∣x̄∣), z) → ∃y ≤ r(x̄)A(x̄, y).
• PVk ⊢ ∃z ≤ s(x̄)G(x̄, 0, z).
• PVk ⊢ ∃z ≤ s(x̄)G(x̄, u, z) → ∃z ≤ s(x̄)G(x̄, u + 1, z).

Finally, it is enough to use Remark 5.14 to get a PLS(k,1)-program for the pair(A(x̄, y), r(x̄)) with the length q(∣x̄∣). Hence, (A(x̄, y), r(x̄)) ∈ PLS
p(k,1).

Note that the second part in Corollary 5.15, when applied on k = 1,
reproves the well-known characterization of the T

1
2 -provable formulas of the

form ∀x̄∃y ≤ r(x̄)A(x̄, y), where A(x̄, y) ∈ Π̂
b
0, in terms of the usual PLS

problems [18, 25]. Our result, however, seems a bit weaker than the one
proved in [18, 25], as in the latter y is not assumed to be bounded and

A(x̄, y) can be in Σ̂
b
1 rather than in our lower class of Π̂

b
0. However, proving

the stronger form from the one we provided is just a standard technique.
First, notice that the presence of r(x̄) is no restriction, thanks to Parikh
theorem. Secondly, to reduce the complexity of A(x̄, y), it is enough to write
A(x̄, y) in the form ∃z̄ ≤ x̄(x̄)B(x̄, y, z̄), where B(x̄, y, z̄) ∈ Π̂

b
0. Then, using

the pairing function available in PV, we can make y and all the variables
z̄ into one bounded variable w ≤ t(x̄). Now, we can apply Corollary 5.15
to compute w by a PLS(k,1)-program. With this technique, the PLS(k,1)-
program not only computes the intended variable y, but it also finds a value
for the variables z̄. To retrieve our formula A(x̄, y), we can simply keep the
computation for y and forget the other values for z̄ by reintroducing their
existential quantifiers. Having this observation about the usual PLS, one can
read Corollary 5.15 as a generalization of the mentioned characterization for
T

1
2 to cover both T

k
2 and S

k
2 , for any k ≥ 1. However, the latter case can

be strengthened even further as the polynomial PLS(k,1)-program provided
in Corollary 5.15 can be simplified to one single LPVk

-term. This reproves

the following well-known witnessing theorem for S
k
2 [13, 25].
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Corollary 5.16. The provably Σ̂
b
k-definable functions of S

k
2 are in □

p

k. Even

better, if S
k
2 ⊢ ∀x̄∃yA(x̄, y), where A(x̄, y) ∈ Σ̂

b
k, then there exists a function

f ∈ □
p

k represented as an LPVk
-term such that PVk ⊢ ∀x̄ A(x̄, f(x̄)).

Proof. Following the technique we just described, without loss of generality,
we can assume that A(x̄, y) has no existential quantifier in its front and hence
it is actually in Π̂

b
k−1. By Parikh theorem, there exists an LPV-term r(x̄) such

that S
k
2 ⊢ ∀x̄∃y ≤ r(x̄)A(x̄, y). By Corollary 5.15, there exists a PLS(k,1)-

program for (A(x̄, y), r(x̄)) with the length q(∣x̄∣), for a polynomial q. Let
G(x̄, u, z), i(x̄), N(x̄, u, z) and p(x̄, z) be the data of the PLS(k,1)-program.
By recursion on notation on w, define the function M(w, x̄) as

{M(0, x̄) = i(x̄)
M(w, x̄) = N(x̄, ∣w∣ ∸ 1,M(⌊w

2
⌋, x̄)) w > 0

Recall that the LPVk
-terms are closed under bounded recursion on notation.

As both i and N are LPVk
-terms and i(x̄) is bounded by s(x̄) and N(x̄, u, z)

maps any z ≤ s(x̄) to something below s(x̄), we can make sure that the func-
tion M(w, x̄) is also representable as an LPVk

-term. Now, define I(x̄, w, z)
as G(x̄, ∣w∣, z). Using the properties of the PLS(k,1)-program, it is clear that

• PVk ⊢ I(x̄, 0, i(x̄)),
• PVk ⊢ ∀z ≤ s(x̄)∀w > 0 [I(x̄, ⌊w

2
⌋, z) → I(x̄, w,N(x̄, ∣w∣ ∸ 1, z))].

Therefore, as PVk ⊢ M(w, x̄) ≤ s(x̄), by using the axiom PInd on the
quantifier-free formula I(x̄, w,M(w, x̄)), we can prove PVk ⊢ I(x̄, w,M(w, x̄)).
Substituting w = ⌊2q(∣x̄∣)

2
⌋, we reach

PVk ⊢ I(x̄, ∣⌊2
q(∣x̄∣)
2

⌋∣,M(⌊2
q(∣x̄∣)
2

⌋, x̄)).
Using the fact that PVk ⊢ ∣⌊2q(∣x̄∣)

2
⌋∣ = q(∣x̄∣), we have

PVk ⊢ G(x̄, q(∣x̄∣),M(⌊2
q(∣x̄∣)
2

⌋, x̄)).
Therefore, as p(x̄, z) is an LPVk

-term and it has the property

PVk ⊢ ∀z ≤ s(x̄)[G(x̄, q(∣x̄∣), z) → A(x̄, p(z̄, z))],
we can define f(x̄) = p(x̄,M(⌊2q(∣x̄∣)

2
⌋, x̄)) as an LPVk

-term. Therefore, PVk ⊢

∀x̄A(x̄, f(x̄)).
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5.3.3 The case l = 2

Let (G(x̄, y, z), t(x̄)) and (H(x̄, v, w), s(x̄)) be two (k, 2)-games. To use a
winning strategy for (G(x̄, y, z), t(x̄)) to design one for (H(x̄, v, w), s(x̄)),
the most trivial way is using two functions f(x̄, y) and g(x̄, y, w), where
f(x̄, y) reads the first move y ≤ t(x̄) in (G, t) and computes a first move
v ≤ s(x̄) in (H, s). Then, g(x̄, y, w) reads the second move w ≤ s(x̄) in(H, s) and computes a second move z ≤ t(x̄) in (G, t). These computations
must be in a way that if the play (y, z) is winning in (G, t), the play (v, w)
is winning in (H, t). Expecting the whole reduction process to be simple
relative to PVk, we have:

Definition 5.17. Let (G(x̄, y, z), t(x̄)) and (H(x̄, v, w), s(x̄)) be two (k, 2)-
games. By a deterministic (k, 2)-reduction from (H, s) to (G, t), we mean
two LPVk

-terms f(x̄, y) and g(x̄, y, w) such that:

• PVk ⊢ ∀y ≤ t(x̄)[f(x̄, y) ≤ s(x̄)].
• PVk ⊢ ∀w ≤ s(x̄)∀y ≤ t(x̄)[g(x̄, y, w) ≤ t(x̄)].
• PVk ⊢ ∀w ≤ s(x̄)∀y ≤ t(x̄)[G(x̄, y, g(x̄, y, w)) → H(x̄, f(x̄, y), w)].
In a similar fashion to what we had n the previous subsubsection, we

expect an equivalence between the provability of

∃y ≤ t(x̄)∀z ≤ t(x̄)G(x̄, y, z) → ∃v ≤ s(x̄)∀w ≤ s(x̄)H(x̄, v, w)
in PVk and the existence of a deterministic (k, 2)-reduction from (H, s) to(G, t). Unfortunately, this expected equivalence does not exist, unless a hard-
ness conjecture in complexity theory fails. Let us first explain this conjecture.

Let U, V ⊆ N be two disjoint NP-sets. We call a polynomial time com-
putable S ⊆ N a separator for U and V , if U ⊆ S and S ∩ V = ∅. The
hardness conjecture we want to use states that there are two disjoint NP-
sets U and V that have no separator.

Example 5.18. Let U and V be two disjoint NP-sets that have no separa-
tor and represent them by the LPV-formulas ∃y ≤ sB(x)B(x, y) and ∃y ≤

sC(x)C(x, y), respectively, where B(x, y) and C(x, z) are two quantifier-free
LPV-formulas and sB(x) and sC(x) are two LPV-terms. First, notice that
without loss of generality, we can always assume that sB(x) = sC(x) and
∀x(sB(x) > 0) holds in the standard model. The reason is that we can
replace ∃y ≤ sB(x)B(x, y) by

∃y ≤ sB(x) + sC(x) + 1 [y ≤ sB(x) ∧ B(x, y)]
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and similarly for ∃z ≤ sC(x)C(x, z). From now on, denote both sB(x) and
sC(x), by the common name s(x). Moreover, notice that as U ∩ V = ∅, the
formula ∀y ≤ s(x)¬B(x, y) ∨ ∀z ≤ s(x)¬C(x, z) is true, for any value for
x. Now, let

A(x, w, y, z) = (w = 0 → ¬B(x, y))∧ (w ≠ 0 → ¬C(x, z)).
It is clear that the formula

∃w0w1 ≤ s(x)∀y0y1z0z1 ≤ s(x) [A(x, w0, y0, z0) ∨ A(x, w1, y1, z1)]
logically implies

∃w ≤ s(x)∀yz ≤ s(x) A(x, w, y, z)
and hence the implication is provable in PV. Unfortunately, in both for-
mulas, some of the quantifier blocks have more than one bounded quan-
tifiers, and hence, the formulas cannot be read as (k, 2)-games. However,
using the pairing function and its projections available in PV, it is not hard
to change the formulas to PV-equivalent formulas in the right form. We
will avoid applying this change here as it makes everything unnecessarily
complicated. Instead, we keep working with the original formulas as the
one and the only exception in this paper. However, let us emphasize that
whatever we claim in this example can be rewritten in a precise way using
the mentioned encoding. Having said that, in the rest of this example, we
pretend that we are working with the two (k, 2)-games (A(x, w, y, z), s(x))
and (A(x, w0, y0, z0) ∨ A(x, w1, y1, z1), s(x)) and we show that there is no
deterministic (k, 2)-reduction from the (k, 2)-game (A(x, w, y, z), s(x)) to
the (k, 2)-game (A(x, w0, y0, z0) ∨ A(x, w1, y1, z1), s(x)). For the sake of
contradiction, assume that there are polynomial time computable functions
f(x, w0, w1), g0(x, w0, w1, y, z), g1(x, w0, w1, y, z), h0(x, w0, w1, y, z) and fi-
nally h1(x, w0, w1, y, z), all represented as LPV-terms such that they read w0,
w1, y and z below s(x) and compute w, y0, y1, z0 and z1 all below s(x),
respectively, satisfying the property

PV ⊢ ∀w0w1yz ≤ s[(A(x, w0, g0, h0) ∨ A(x, w1, g1, h1)) → A(x, f, y, z)].
(The arguments of the functions are omitted, for simplicity). Therefore, the
formula

∀w0w1yz ≤ s[(A(x, w0, g0, h0) ∨ A(x, w1, g1, h1)) → A(x, f, y, z)]
is true in the standard model. Substitute w0 = 0 and w1 = 1 and no-
tice that the condition s(x) ≥ 1 allows such a substitution. We see that
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A(x, 0, g0, h0) is equivalent to ¬B(x, g0) and A(x, 1, g1, h1) is equivalent to
¬C(x, h1). Therefore, the following formula is true:

∀yz ≤ s(x)[(¬B(x, g0) ∨ ¬C(x, h1)) → A(x, f, y, z)].
Therefore, we have

[∀y ≤ s(x)¬B(x, y)∨∀z ≤ s(x)¬C(x, z)] → ∀yz ≤ s(x)A(x, f, y, z).
Recall that as U∩V = ∅, we know ∀y ≤ s(x)¬B(x, y)∨∀z ≤ s(x)¬C(x, z)
is true. Therefore, we reach ∀yz ≤ s(x)A(x, f, y, z). Now, note that if
f(x, 0, 1) = 0, the formula A(x, f, y, z) is equivalent to ¬B(x, y) and if
f(x, 0, 1) ≠ 0, it is equivalent to ¬C(x, z). Therefore, if f(x, 0, 1) = 0, we
have ∀y ≤ s(x)¬B(x, y) and if f(x, 0, 1) ≠ 0, we have ∀z ≤ s(x)¬C(x, z).
We claim that the set S = {x ∈ N ∣ f(x) ≠ 0} is a separator. First, note that
S is polynomial computable as f(x, w0, w1) is a polynomial-time computable
function. Secondly, it is clear that S is disjoint from V . To show that it in-
cludes U , assume x ∈ U and f(x, 0, 1) = 0. Then, ∀y ≤ s(x)¬B(x, y) which
means that x ∉ U . Therefore, we found a separator which is impossible.
Hence, the claimed deterministic (k, 2)-reduction does not exist.

As we observed in Example 5.18, deterministic (k, 2)-reductions are not
even powerful enough to capture the pure logical implications between the
existence of the winning strategies. To solve the problem, in the following,
we strengthen the notion by relaxing the determinism in the definition.

Definition 5.19. Let (G(x̄, y, z), t(x̄)) and (H(x̄, v, w), s(x̄)) be two (k, 2)-
games. By a (k, 2)-reduction from (H, s) to (G, t), we mean a finite sequence
of LPVk

-terms f0(x̄, y), f1(x̄, y, w0), ..., fm(x̄, y, w0, . . . , wm−1) together with
an LPVk

-term g(x̄, y, w0, . . . , wm) such that all the following are provable in
PVk:

• ∀w̄ ≤ s(x̄)∀y ≤ t(x̄)[fi(x̄, y, w0, . . . , wi−1) ≤ s(x̄)], for any 0 ≤ i ≤ m.

• ∀w̄ ≤ s(x̄)∀y ≤ t(x̄)[g(x̄, y, w0, . . . , wm) ≤ t(x̄)].
• ∀w̄ ≤ s(x̄)∀y ≤ t(x̄)[G(x̄, y, g(x̄, y, w0, . . . , wm)) → H̄(x̄, y, w0, . . . , wm)],

where H̄(x̄, y, w0, . . . , wm) is ⋁m

i=0H(x̄, fi(x̄, y, w0, . . . , wi−1), wi).
Remark 5.20. Here is a computational interpretation of a (k, 2)-reduction
as a non-deterministic version of the deterministic (k, 2)-reductions we had
before. A (k, 2)-reduction starts with reading the first move y ≤ t(x̄) in(G, t) and uses f0 to transform it to a first move v0 ≤ s(x̄) in (H, s). Then,
as before it reads the second move w0 ≤ s(x̄) in (H, s). However, instead of
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using it to find a second move in (G, t), it uses f1 to come up with another
possible first move v1 ≤ s(x̄) in (H, s) and asks about its second move w1.
It keeps repeating this procedure to finally after m + 1 many enquiries, it
uses g to compute the second move in (G, t). These computations are in a
way that if the produced play for (G, t) is winning, then one of the produced
plays for (H, s) is winning.

The following theorem slightly modifies Herbrand’s theorem, Theorem
2.2, to connect the PVk-provability of the implication between the existence
of the strategies and the existence of (k, 2)-reductions.

Theorem 5.21. Let (G(x̄, y, z), t(x̄)) and (H(x̄, v, w), s(x̄)) be two (k, 2)-
games. Then

PVk ⊢ ∃y ≤ t(x̄)∀z ≤ t(x̄)G(x̄, y, z) → ∃v ≤ s(x̄)∀w ≤ s(x̄)H(x̄, v, w)
iff there exists a (k, 2)-reduction from (H, s) to (G, t).
Proof. One direction is clear. For the other, assume

PVk ⊢ ∃y ≤ t(x̄)∀z ≤ t(x̄)G(x̄, y, z) → ∃v ≤ s(x̄)∀w ≤ s(x̄)H(x̄, v, w).
Define G̃(x̄, y, z) as [y ≤ t(x̄) ∧ (z ≤ t(x̄) → G(x̄, y, z))] and H̃(x̄, v, w) as[v ≤ s(x̄) ∧ (w ≤ s(x̄) → H(x̄, v, w))]. Now, by moving the quantifiers, we
have

PVk ⊢ ∀y∃vz∀w[G̃(x̄, y, z) → H̃(x̄, v, w)].
Using the pairing function available in PV, we can make two variables v

and z into one variable, apply Herbrand’s theorem, Theorem 2.2 and then
retrieve y and z again, by projections. Therefore, there are LPVk

-terms
g0(x̄, y), h0(x̄, y), g1(x̄, y, w0), h1(x̄, y, w0), ..., gm(x̄, y, w0, . . . , wm−1) and
hm(x̄, y, w0, . . . , wm−1) such that

PVk ⊢

m

⋁
i=0

[G̃(x̄, y, gi(x̄, y, w0, . . . , wi−1)) → H̃(x̄, hi(x̄, y, w0, . . . , wi−1), wi)].
Define g

′(x̄, y, w0, . . . , wm) by cases: if G̃(x̄, y, g0(x̄, y)) is false, define g
′

as
g0(x̄, y); if G̃(x̄, y, g0(x̄, y)) is true but G̃(x̄, y, g1(x̄, y, w0)) is false, define
g
′

as g1(x̄, y, w0); if both G̃(x̄, y, g0(x̄, y)) and G̃(x̄, y, g1(x̄, y, w0)) are true
but G̃(x̄, y, g2(x̄, y, w0, w1)) is false, define g

′
as g2(x̄, y, w0, w1) and so on.

Finally, if all of G(x̄, y, gi(x̄, y, w0, . . . , wi−1))’s are true, define g
′
as 0:

g
′(x̄, y, w0, . . . , wm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g0(x̄, y) ¬G̃(x̄, y, g0(x̄, y))
g1(x̄, y, w0) G̃(x̄, y, g0(x̄, y)),¬G̃(x̄, y, g1(x̄, y, w0))
. . . . . .

0 o.w.
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Note that g
′
is defined in a way that unless ⋀m

i=0 G̃(x̄, y, gi(x̄, y, w0, . . . , wi−1))
is true, we always have ¬G̃(x̄, y, g′(x̄, y, w0, . . . , wm)). Therefore, it is easy
to see that

PVk ⊢ [G̃(x̄, y, g′(x̄, y, w0, . . . , wm)) → m

⋀
i=0

G̃(x̄, y, gi(x̄, y, w0, . . . , wi−1))],
and hence

PVk ⊢ [G̃(x̄, y, g′(x̄, y, w0, . . . , wm)) → m

⋁
i=0

H̃(x̄, hi(x̄, y, w0, . . . , wi−1), wi)].
Define

fi(x̄, y, w0, . . . , wi−1) = {hi(x̄, y, w0, . . . , wi−1) hi(x̄, y, w0, . . . , wi−1) ≤ s(x̄)
0 hi(x̄, y, w0, . . . , wi−1) > s(x̄)

for any 0 ≤ i ≤ m and set

g(x̄, y, w0, . . . , wm) = {g′(x̄, y, w0, . . . , wm) g
′(x̄, y, w0, . . . , wm) ≤ t(x̄)

0 g
′(x̄, y, w0, . . . , wm) > t(x̄)

It is clear that PVk ⊢ fi(x̄, y, w0, . . . , wi−1) ≤ s(x̄), for any 0 ≤ i ≤ m and
PVk ⊢ g(x̄, y, w0, . . . , wm) ≤ t(x̄). It is also clear that

∀y ≤ t(x̄)[G(x̄, y, g(x̄, y, w0, . . . , wm)) → G̃(x̄, y, g′(x̄, y, w0, . . . , wm))]
and

∀w̄ ≤ s(x̄)[H̃(x̄, hi(x̄, y, w0, . . . , wi−1), wi) →
H(x̄, y, fi(x̄, y, w0, . . . , wi−1), wi)]

are provable in PVk. Therefore, we reach the implication ∀w̄ ≤ s(x̄)∀y ≤

t(x̄)[G(x̄, y, g(x̄, y, w0, . . . , wm)) → ⋁m

i=0H(x̄, fi(x̄, y, w0, . . . , wi−1), wi)] in
PVk.

Definition 5.22. Let k ≥ 2 be a natural number, A(x̄, y, z) ∈ Σ̂
b
k−1 be an

LPVk
-formula and t(x̄) and r(x̄) be two LPV-terms. By a PLS(k,2)-program

for the pair (A(x̄, y, z), r(x̄)), we mean a (k, 2)-game (G(x̄, u, v, w), s(x̄))
(read u as a parameter) and

• an initial sequence i(x̄, w) of LPVk
-terms as a (k, 2)-reduction from the

game (G(x̄, 0, v, w), s(x̄)) to (⊤, s(x̄)),
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• a sequence N(x̄, u, v, w) of LPVk
-terms as a (k, 2)-reduction from the

game (G(x̄, u+ 1, v, w), s(x̄)) to (G(x̄, u, v, w), s(x̄)),
• a sequence p(x̄, v, z) of LPVk

-terms as a (k, 2)-reduction from the game(A(x̄, y, z), r(x̄)) to (G(x̄, t(x̄), v, w), s(x̄)). Here, we pretend that
A(x̄, y, z) is a quantifier-free LPVk

-formula.

By PLS(k,2), we mean the class of all the pairs (A(x̄, y, z), r(x̄)) for which
there exists a PLS(k,2)-program. By PLS

p(k,2), we mean the class of all the
pairs (A(x̄, y, z), r(x̄)) for which there exists a PLS(k,2)-program with poly-
nomial length, i.e., t(x̄) = q(∣x̄∣), for some polynomial q.

One can read a (polynomial) PLS(k,2)-program as (a polynomially) an ex-
ponentially long sequence of reductions between 2-turn games, starting with
an explicit winning strategy for the first game, where all the functions and
predicates live in the k-th level of the polynomial hierarchy verified in PVk.

Similar to what we had in the last subsubsection, we can finally witness
provability in T

k
2 (resp. S

k
2 ) by (resp. polynomial) PLS(k,2)-programs.

Corollary 5.23. Let k ≥ 2, A(x̄, y, z) ∈ Σ̂
b
k−2 and r(x̄) be an LPV-term:

(i) S
k
2 ⊢ ∀x̄∃y ≤ r(x̄)∀z ≤ r(x)A(x̄, y, z) iff (A(x̄, y, z), r(x̄)) ∈ PLS

p(k−1,2).
(ii) T

k
2 ⊢ ∀x̄∃y ≤ r(x̄)∀z ≤ r(x̄)A(x̄, y, z) iff (A(x̄, y, z), r(x̄)) ∈ PLS(k−1,2).

Proof. The proof is similar to that of Corollary 5.15. Therefore, we only ex-
plain the main ingredients for (i). For the right to left, assume that there is a
PLS(k,2)-program for (A(x̄, y, z), r(x̄)) with the length q(∣x̄∣), for some poly-
nomial q. We use Theorem 5.21 to transform the existence of the reductions
in the PLS(k,2)-program to the following provable implications:

• PVk−1 ⊢ ∃v ≤ s(x̄)∀w ≤ s(x̄)G(x̄, 0, v, w).
• PVk−1 ⊢ ∃v ≤ s(x̄)∀w ≤ s(x̄)G(x̄, u, v, w) → ∃v ≤ s(x̄)∀w ≤

s(x̄)G(x̄, u + 1, v, w).
• PVk−1 ⊢ ∃v ≤ s(x̄)∀w ≤ s(x̄)G(x̄, q(∣x̄∣), v, w) → ∃y ≤ r(x̄)∀z ≤

r(x̄)A(x̄, y, z).
As any quantifier-free LPVk−1

-formula can be interpreted as an LPV-formula

in Π̂
b
k−1 and PVk−1 can be interpreted in S

k−1
2 , we can pretend that all the

above implications are provable in S
k
2 and G ∈ Π̂

b
k−1. Therefore, we can

assume that ∃v ≤ s(x̄)∀w ≤ s(x̄)G(x̄, u, v, w) ∈ Σ̂
b
k. Using LInd in S

k
2
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on the formula ∃v ≤ s(x̄)∀w ≤ s(x̄)G(x̄, u, v, w), we reach S
k
2 ⊢ ∃y ≤

r(x̄)∀z ≤ r(x̄)A(x̄, y, z). Conversely, we assume that S
k
2 ⊢ ∃y ≤ r(x̄)∀z ≤

r(x̄)A(x̄, y, z). Hence, ∀y ≤ r(x̄)∃z ≤ r(x̄)¬A(x̄, y, z) → ⊥ is provable in
S
k
2 . Since A ∈ Σ̂

b
k−2, the formula ∀y ≤ r(x̄)∃z ≤ r(x̄)¬A(x̄, y, z) is in Π̂

b
k.

Hence, by Theorem 5.10, we have ∀y ≤ r(x̄)∃z ≤ r(x̄)¬A(x̄, y, z) ⊳p

k ⊥.
Call the k-flow (H(u, x̄), t(x̄)), where t(x̄) = q(∣x̄∣), for some polynomial
q. Without loss of generality, write H(u, x̄) in the form ∀v ≤ s(x̄)∃w ≤

s(x̄)J(x̄, u, v, w), where J ∈ Π̂
b
k−2. As k ≥ 2, the theory PV is a subtheory

of PVk−1. Therefore, moving the implications in the definition of the k-flow
from PV to PVk−1, we have:

• PVk−1 ⊢ [∀y ≤ r(x̄)∃z ≤ r(x̄) ¬A(x̄, y, z)] → ∀v ≤ s(x̄)∃w ≤

s(x̄)J(x̄, 0, v, w).
• PVk−1 ⊢ ∀v ≤ s(x̄)∃w ≤ s(x̄)J(x̄, q(∣x̄∣), v, w) → ⊥.

• PVk−1 ⊢ ∀v ≤ s(x̄)∃w ≤ s(x̄)J(x̄, u, v, w) → ∀v ≤ s(x̄)∃w ≤

s(x̄)J(x̄, u + 1, v, w).
As J ∈ Π̂

b
k−2, in PVk−1, we can pretend that J is a quantifier-free LPVk−1

-
formula. Define G(x̄, u, v, w) as ¬J(x̄, q(∣x̄∣)∸ u, v, w). Therefore, we have:

• PVk−1 ⊢ ∃v ≤ s(x̄)∀w ≤ s(x̄)G(x̄, q(∣x̄∣), v, w) → ∃y ≤ r(x̄)∀z ≤

r(x̄)A(x̄, y, z).
• PVk−1 ⊢ ∃v ≤ s(x̄)∀w ≤ s(x̄)G(x̄, 0, v, w).
• PVk−1 ⊢ ∃v ≤ s(x̄)∀w ≤ s(x̄)G(x̄, u, v, w) → ∃v ≤ s(x̄)∀w ≤

s(x̄)G(x̄, u + 1, v, w).
Finally, it is enough to use Theorem 5.21 to get a PLS(k−1,2)-program for the
pair (A(x̄, y, z), r(x̄)) with the length q(∣x̄∣). Hence, (A(x̄, y, z), r(x̄)) ∈

PLS
p(k−1,2).

It is worth putting Corollary 5.23 for the concrete case k = 2 into
plain words. Here, the corollary characterizes the T

2
2 -provability (resp. S

2
2 -

provability) of a formula in the form ∀x̄∃y ≤ r(x̄)∀z ≤ r(x)A(x̄, y, z), where
A is a polynomial time computable predicate represented as a quantifier-
free LPV-formula by the existence of an exponentially (resp. polynomially)
long sequence of polynomial time reductions between polynomial time games
starting on an explicit polynomial time winning strategy in the first game.
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