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Ultracold atoms trapped in optical superlattices provide a simple platform for realizing the seminal
Aubry-André-Harper (AAH) model. However, the periodic modulations on the nearest-neighbour
hoppings have been ignored in this model. In this paper, we find that optical superlattice system
actually can be approximately described by a generalized AAH model in the case of V1 ≫ V2,
with periodic modulations on both on-site energies and nearest-neighbour hoppings, supporting
much richer topological properties that are absent in the standard AAH model. Specifically, by
calculating Chern numbers and topological edge states, we show that the generalized AAH model
possesses multifarious topological phases and topological phase transitions, as compared to the
standard AAH model only supporting a single topological phase. Our findings can open up more
opportunities for using optical superlattices to study topological and localization physics.

Ultracold atoms in optical lattices in the past decade
have been proved to be a powerful platform for exploring
topological phases of matter [1–3]. This platform fea-
tures unprecedented controllability and flexibility, open-
ing possibilities to go beyond standard solid-state topo-
logical systems. For example, ultracold atoms allow to
create a synthetic dimension inside [4, 5]. The basic
idea is that by coupling a sets of atomic states in a se-
quential manner, ranging from internal hyperfine [6, 7],
magnetic [8], clock [9–11] and Rydberg states [12], to
external momentum [13, 14], orbital [15] and superra-
diant states [16–20], one can construct a synthetic di-
mension in which the atomic states are treated as lat-
tice sites and the couplings between them as the lattice
hoppings. This approach enables the implementation of
high-dimensional topological models in low-dimensional
optical lattices with a synthetic real-space dimension,
and also provides opportunities for exploring the topo-
logical effects that remain challenging before, such as the
realization of chiral edge states in optical lattices [6, 7]
and Laughlin’s topological pump [21].

The concept of synthetic dimension also can be gener-
alized to momentum space. Taking the advantage of high
controllability in optical lattices, one can regard a peri-
odic systematic parameter as an extra momentum, and
by tuning such parameter from 0 to 2π a synthetic mo-
mentum space is built. Recent studies have shown that,
optical superlattices offer a natural platform for realizing
such synthetic dimension [22, 23]. This sort of super-
lattice is created by superimposing a long optical lattice
on a short one, both produced by standing-wave lasers.
The corresponding tight-binding Hamiltonian is natu-
rally described by the seminal AAH model [29, 30]. As
the two standing-wave lasers have incommensurate wave-
lengths, the incommensurate AAH model [29, 30] that is
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well known for displaying Anderson localization transi-
tion [30–44] can be implemented, enabling observation of
Anderson localization of Bose-Einstein condensate [45].
In the commensurate case, this one-dimensional model
supports multiple energy bands and can be mapped to
two dimensions by associating the relative phase of the
two standing-wave lasers as a synthetic momentum, al-
lowing us to study the topological properties of two-
dimensional integer quantum Hall insulator [22, 46] and
Z2 topological insulator phases [23].

We notice that, previous works have been focusing
on an extreme case where the periodic modulations on
the nearest-neighbour hoppings have been ignored, which
leads to wanted standard AAH model with only on-site
periodic modulations [22, 23, 45]. In this paper, we high-
light that in the limiting case V1 ≫ V2, the corresponding
optical superlattice system realizes a generalized AAH
model, with periodic modulations on both on-site ener-
gies and nearest-neighbour hoppings. We present the de-
tailed derivation for this model, including from the single-
particle Hamiltonian to the approximated tight-binding
Hamiltonian. By seeing the relative laser phase as a
synthetic momentum and considering the commensurate
case, the one-dimensional generalized AAH model can
be mapped to a two-dimensional lattice model describ-
ing a generalized integer quantum Hall effect. Based on
calculating Chern numbers and topological edge states,
we demonstrate that this model holds much richer topo-
logical properties that are absent in the standard AAH
model, including multiple topological phases and differ-
ent forms of topological edge states.

Compared to previous works on off-diagonal AAH
models [24–26], our study shows that the generalized
AAH model presented here could support multiple multi-
band topological phases and various topological phase
transitions, which has not been reported before. Partic-
ularly for the case when the AAH models support even
numbers of energy bands, our work shows that the middle
two bands are corresponding to nontrivial gapped topo-
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logical phases, while the two middle bands in previous
works are gapless topological phases [24–26]. Moreover,
extending the generalized AAH model to the incommen-
surate case could offer opportunities beyond the standard
AAH model for studying its underlying localization fea-
tures [27, 28].
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FIG. 1: Schematic illustration of the optical superlattice cre-
ated by superimposing two standing-wave lasers. By regard-
ing the relative laser phase φ as a synthetic dimension, such
one dimensional lattice allows to explore nontrivial topologi-
cal properties attributed to systems in two dimensions.

Generalized Aubry-André-Harper models in optical su-
perlattices. The optical superlattice with ultracold atom
trapped inside is simply created by superimposing a short
and a long optical lattice, as shown in Fig. 1, where the
two optical lattice potentials are respectively produced
by two standing-wave lasers. The resulted optical super-
lattice potential takes the following form

Vx = V1 sin
2(k1x) + V2 sin

2(k2x+ φ/2) (1)

where V1,2 are respectively the strengths of the short and
long optical lattice potentials, k1,2 = 2π/λ1,2 are the cor-
responding laser wave vectors and φ is the relative phase
of the two lasers. Throughout this work, we assume V1
is larger than V2, so that the short lattice is the primary
lattice, determining the period of the whole optical super-
lattice a = λ1/2, and the long lattice is a perturbation,
causing modulations to the nearest-neighbour hoppings
and on-site energies.

The single-particle Hamiltonian for the short optical
lattice system is written as

Ĥs1 =
p2x
2m

+ V1 sin
2(k1x). (2)

In the second quantization, the continuum single-particle
Hamiltonian Hs is written into

Ĥ1 =

∫
dxψ+ (x) Ĥs1ψ (x) (3)

Here we assume atoms trapped in the ground band. The
field operator is expanded as

ψ (x) =
∑
m

cmW (x− xm), (4)

where cm is the annihilation operator at the lattice site
xm and W (x− xm) is the corresponding ground-band
Wannier function. The lattice spacing is assumed as a =

1 throughout this work. By substituting Eq. (4) into Eq.
(3), we obtain the tight-binding Hamiltonian

Ĥ1 =
∑
m

t0
(
c†mcm+1 +H.c.

)
, (5)

where

t0 =

∫
dxW ∗(x−xm)(

p2x
2m

+V1 sin
2 (k1x))W (x−xm+1).

(6)
The single-particle Hamiltonian for the long lattice is

Ĥs2 = V2 sin
2(k2x+ φ/2). (7)

As V1 ≫ V2, the long lattice does not substantially
change the minimal position of the short lattice. Then,
the field operator still can be approximately expanded in
the basis of the Wanneir states defined in terms of the
short lattice. With this approximation, we can easily ob-
tain the expression of the tight-binding Hamiltonian for
the whole optical superlattice system. Via the same pro-
cedure for obtaining H1, the tight-binding Hamiltonian
for Hs2 can be approximately expressed as

Ĥ2 =
∑
m

[tm,m+1

(
c†mcm+1 +H.c.

)
+∆mc

†
mcm]. (8)

As shown, the introduction of the weak long lattice can
cause modulations to both the nearest-neighbour hop-
pings and on-site energies. Specifically, the modulation
to the nearest-neighbor hopping rates are approximately
given by

tm,m+1 =

∫
dxW ∗(x− xm)Hs2W (x− xm+1)

= −V2
2

∫
dxW ∗(x− xm) cos(2k2x+ φ)W (x− xm+1)

=− t1 cos (2πβm+ φ) + t2 sin (2πβm+ φ) ,
(9)

with β = k2/k1 being the commensurability parameter,

t1 =
V2
2

∫
dxW ∗ (x) cos (2βk1x)W (x− 1) ,

t2 =
V2
2

∫
dxW ∗ (x) sin (2βk1x)W (x− 1) . (10)

The modulation to the on-site energies are approximately
given by

∆m =

∫
dxW ∗(x− xm)Hs2W (x− xm)

= V2

∫
dxW ∗(x− xm)

1− cos(2k2x+ φ)

2
W (x− xm)

=∆cos(2πβm+ φ) + c.e., (11)

with

∆ = −V2
2

∫
dxW ∗(x) cos(2βk1x)W (x), (12)
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FIG. 2: (a) Topological phase diagram in the parameter space of t1 and ∆ for β = 1/3. The topological phase transitions occur
at the closing of the first (blue solid line) or second (red dash-dotted line) energy gaps. The energy spectra of edge states for
the generalized AAH model in the phase I-IV are shown in (b) and (d-f), respectively. (c) The density distributions for the
three modes marked in (b), showing that the black dashed and red solid lines in (b, d-f) are respectively corresponding to the
left and right edge states. The parameters used in the numerical calculations are (b) t1 = 2t0,∆ = 4t0, (d) t1 = −t0,∆ = 2t0,
(e) t1 = 5t0,∆ = t0 and (f) t1 = t0,∆ = 2t0. The other parameter is t1 = t2 and t0 is used as the energy unit.

where c.e. denotes a constant energy which can be safely
neglected without affect main physics.

Combining Eqs. (5) and (8), we find that the optical
superlattice system in the tight-binding limit naturally
implements the generalized AAH model,

ĤGAAH =
∑
m

[(t0 + V od
m )

(
c†mcm+1 +H.c.

)
+ V d

mc
†
mcm].

(13)
which contains both off-diagonal and diagonal modula-
tions, i.e., V od

m = −t1 cos (2πβm+ φ)+t2 sin (2πβm+ φ)
and V d

m = ∆cos(2πβm + φ). It is wroth pointing out
that, the derivation of HGAAH is based on assuming
V1 ≫ V2 and using approximated Wannier functions,
then HGAAH is not the exact Hamiltonian. However, it
can be used to capture the main physical features.

Previous studies have been focusing on an extreme case
where the periodic modulations on the nearest-neighbour
hoppings have been ignored [22, 23, 45], which leads to
the standard AAH model Hamiltonian

ĤAAH =
∑
m

[t0
(
c†mcm+1 +H.c.

)
+ V d

mc
†
mcm]. (14)

which contains only diagonal modulations. By associat-
ing the laser phase φ with the momentum ky, the com-
mensurability paramter β with the magnetic flux, the
standard AAH model can be exactly mapped to the two-
dimensional lattice model describing the integer quantum

Hall (IQH) effects, i.e,

ĤIQH =
∑
m,n

[t0c
†
m,ncm+1,n + tye

i2πβmc†m,ncm,n+1 +H.c.],

(15)
where ty = ∆/2. In this way, the standard AAH model
inherits the topological properties of integer quantum
Hall states.
Topological phase diagrams and edge states. Now, we

show that the topological properties of the generalized
AAH model are quite different from the standard AAH
model. The topological origin of the one-dimensional
generalized AAH model also comes from a two dimen-
sional system. We start by studying the topological prop-
erties of the energy bands in a synthetic two-dimension
momentum space. Through a Fourier transformation
along the genuine lattice direction, the Hamiltonian for
the generalized AAH model becomes HGAAH(kx, φ). By
scanning the relative laser phase φ from −π to π and
employing it as a synthetic dimension, a synthetic two-
dimensional momentum space is built. Similar to the
standard AAH model, for β = 1/q (q ∈ Z), in the energy
spectrum E(kx, φ) there are q energy bands. The topo-
logical property for the n-th energy band is characterized
by a synthetic Chern number, defined as

Cn =
1

2π

∫ π/q

−π/q

dkx

∫ π

−π

dφFn (kx, φ) (16)

where Fn (kx, φ) is the Berry curvature associated with
the Bloch wave function |Ψn(kx, φ)⟩ corresponding to the
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FIG. 3: (a) Topological phase diagram in the parameter space of t1 and ∆ for β = 1/4. Different topological phases are
separated by the closing of the first (blue solid line), second (red dash-dotted line) or third (green dashed line) energy gaps.
The energy spectra of edge states for the standard AAH model and for the generalized AAH model in the phase I-VI are shown
in (b) and (c-h), respectively. The parameters are (b) t1 = 0,∆ = 5t0, (c) t1 = 2t0,∆ = 5t0, (d) t1 = 4t0,∆ = −2t0, (e)
t1 = 4t0,∆ = 4t0, (f) t1 = 0.8t0,∆ = −2t0, (g) t1 = 0.8t0,∆ = 2t0 and (h) t1 = 4t0,∆ = 2t0. The other parameter is t1 = t2.

n-th energy band. Numerically calculating the Chern
numbers allows us to obtain the full topological phase
diagram of HGAAH(kx, ϕ).

Fig. 2(a) presents the corresponding topological phase
diagram for an odd q. We take q = 3 as an exam-
ple. In this case, each unit cell has three sites, mak-
ing the system support three energy bands. As shown,
compared to the standard AAH model having a single
kind of topological phase [22, 23], the generalized AAH
model exhibits four different kinds of topological phase.
According to the Chern numbers for the three energy
bands (from the bottom to the top), the four topological
phases are identified as (C1 = 1, C2 = −2, C3 = 1) in
the phases I, (C1 = −2, C2 = 1, C3 = 1) in the phase
II, (C1 = −2, C2 = 4, C3 = −2) in the phase III and
(C1 = 1, C2 = 1, C3 = −2) in the phase IV. In contrast,
the standard AAH model (t1 = t2 = 0) possess a single
topological phase [22, 23], and the corresponding Chern
numbers are (C1 = 1, C2 = −2, C3 = 1), which are the
same as the phase I in the generalized AAH model.

Moreover, as exhibited in Fig. 2(a), the generalized
AAH mode features a variety of topological phase transi-
tions. The transitions between different nontrivial topo-
logical phases, signified by the change of Chern numbers,
are accompanied by different energy gap closings. For ex-
ample, the transition between the phase I and the phase
II is accompanied by the closing of the first energy gap
(blue solid line), as shown by the change of the Chern
numbers from (C1 = 1, C2 = −2) to (C1 = −2, C2 = 1)
and the invariant of the Chern number C3. Since the
sum of the Chern numbers for all energy bands needs to

be zero, the sum of C1 and C2 remain unchanged when
crossing the topological phase transition. Similarly, the
transition between the phase II and the phase III is cor-
responding to the closing of the second energy gap (red
dash-dotted line), as indicated by the change of the Chern
numbers from (C2 = 1, C3 = 1) to (C2 = 4, C3 = −2)
and the invariant of their sum. While for the transition
between the phase I (II) and the phase III (IV), the first
and second energy gaps both close, the specific changes
for the three Chern numbers are determined by the zero
sum rule.

According to the bulk-edge correspondence, these non-
trivial synthetic Chern numbers guarantee the appear-
ance of topological edge states at the boundaries of the
genuine dimension. In Figs. 2(b), we numerically calcu-
late the energy spectra of the one-dimension generalized
AAH model in the phases I, with open boundary con-
dition, as a function of φ. As depicted in Figs. 2(c),
the modes in the energy gaps are the left and right edge
states, maximally localized at the left and right edges re-
spectively. The characteristics of the edge states in which
energy gap are determined by the topology of this gap.
For example, for the n-th energy gap, its topology is char-
acterized by the topological invariant Cgap

n =
∑n

i=1 Ci,
that is related to the topology of the energy bands below
this gap; Consequently, the number and group velocity of
the edge states in this energy gap is respectively decided
by the amplitude and sign of Cgap

n . As illustrated in Figs.
2(b), for the first energy gap, Cgap

1 = 1, then there is one
left and right edge state in this gap; While for the second
energy gap, Cgap

1 = −1, the number of the correspond-
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ing left and right edge state is same but with opposite
group velocities. This bulk-edge correspondence also can
be observed in the energy spectra of edge states for the
phases II-IV, as shown in 2(d-f) respectively.

The topological phase diagram for the generalized
AAH model in the case of an even q is further investi-
gated in Fig. 3(a). As displayed, the emerged topological
phases and topological phase transitions turn out to be
much richer. More interestingly, in this case we find a sig-
nificant difference with the standard AAHmodel. As pre-
sented before, the middle two energy bands in the stan-
dard AAH model for an even q are gapless [22, 23]; While
in the generalized AAH model the corresponding two
bands are gapped with nontrivial topology. Specifically,
for q = 4, there are six different kinds of gapped topolog-
ical phases for the four energy bands, distinguished by
the Chern numbers (C1 = 1, C2 = 1, C3 = −3, C4 = 1)
in the phases I, (C1 = −3, C2 = 5, C3 = −3, C4 = 1)
in the phases II, (C1 = 1, C2 = −3, C3 = 1, C4 = 1) in
the phases III, (C1 = −3, C2 = 1, C3 = 1, C4 = 1) in
the phases IV, (C1 = 1, C2 = 1, C3 = 1, C4 = −3) in
the phases V and (C1 = 1, C2 = −3, C3 = 5, C4 = −3)
in the phases VI. As shown by the closings of the three
energy gaps in Fig. 3(a), this case gives rise to more topo-
logical phase transitions. The bulk-edge correspondence
is studied in Fig. 3(c-h). As indicated, these topolog-
ical phases lead to various forms of in-gap edge states.
By contrast, the standard AAH model features a single
topological phase [22, 23], where the two middle energy
bands are gapless and the other two gapped energy bands
are topologically nontrivial with C1 = 1 and C4 = −1,
respectively manifested in Fig. 3(b) by the central band
touching and one pair of edge states in the bottom and
top energy gaps.

The topological properties of the generalized AAH
model can be understood by mapping it to a two-
dimensional lattice model,

ĤGIQH =
∑
m,n

[t0c
†
m,ncm+1,n + tye

i2πβmc†m,ncm,n+1

−t′yei2πβm(c†m,ncm+1,n+1 + c†m,ncm−1,n+1) + H.c.],

(17)

where t′y = (t1 + it2)/2. In this mapping, we perform
a Fourier transformation to the synthetic momentum φ
and transfer HGAAH(φ) into two-dimension real spaces.
Compared to the lattice model in Eq. (15) describing the
standard IQH effect, the above lattice model supports
next nearest-neighbour hoppings in the presence of mag-
netic fields. As a result, this model depicts a generalized
IQH effect, and the corresponding topological phases in

the generalized AAH model belong to the A class without
respecting any symmetry.

Before summary, we briefly discuss the detection of
topological phases in the generalized AAH model. As
studied before, optical superlattice system constitutes an
idea platform to implement quantized topological pump-
ing [47–58]. For our system, suppose it tuned into the
regime where the ground band supports the topologi-
cal phase with Chern number C, via adiabatically scan-
ning the relative laser phase φ over one period, one can
implement a quantized topological pumping, where the
displacement of the atomic cloud is equal to C and de-
tects the topological invariant. Another signatures as-
sociated with topological phases is the appearance of
edge state at the boundaries of the systems. By engi-
neering laser to create boundaries or interfaces in optical
lattices and tuning the filling factor, the edge states in
different energy gaps and their dynamics can be directly
observed through time-of-flight [59, 60] or Bragg spec-
troscopy technology [61].

Summary and Outlook. In summary, we have shown
that the optical superlattice system in the limiting case
V1 ≫ V2 implements the generalized AAH model, with
periodic modulations on both the on-site energies and
nearest-neighbour hoppings. By calculating topologi-
cal invariants and edge states, we have exhibited that
this system supports much richer topological properties,
which are absent in the standard AAH model.

As shown, the generalized AAH model provides op-
portunities to go beyond what is possible in the stan-
dard AAH model. For example, in the near future it
would be quite interesting to generalize our result to
two dimensions for implementing two-dimensional gen-
eralized AAH model. Through introducing the relative
laser phases in the two directions as two synthetic mo-
mentums, this model not only enables the implementa-
tion of four-dimensional topological phases [62, 63], but
also allows us to explore a variety of four-dimensional
topological phases transitions that are quite challenging
before. Moreover, the generalized AAH model in the in-
commensurate case also can set an stage for controlling
Anderson localization [30, 64].
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