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Abstract 

Importance: The efficacy of lung cancer screening can be significantly impacted by the imaging 

modality used. This Virtual Lung Screening Trial (VLST) addresses the critical need for precision in lung 

cancer diagnostics and the potential for reducing unnecessary radiation exposure in clinical settings. 

 

Objectives: To establish a virtual imaging trial (VIT) platform that accurately simulates real-world lung 

screening trials (LSTs) to assess the diagnostic accuracy of CT and CXR modalities. 

 

Design, Setting, and Participants: Utilizing computational models and machine learning algorithms, we 

created a diverse virtual patient population. The cohort, designed to mirror real-world demographics, was 

assessed using virtual imaging techniques that reflect historical imaging technologies. 

 

Main Outcomes and Measures: The primary outcome was the difference in the Area Under the Curve 

(AUC) for CT and CXR modalities across lesion types and sizes. 

 

Results: The study analyzed 298 CT and 313 CXR simulated images from 313 virtual patients, with a 

lesion-level AUC of 0.81 (95% CI: 0.78-0.84) for CT and 0.55 (95% CI: 0.53-0.56) for CXR. At the 

patient level, CT demonstrated an AUC of 0.85 (95% CI: 0.80-0.89), compared to 0.53 (95% CI: 0.47-

0.60) for CXR. Subgroup analyses indicated CT's superior performance in detecting homogeneous lesions 

(AUC of 0.97 for lesion-level) and heterogeneous lesions (AUC of 0.71 for lesion-level) as well as in 

identifying larger nodules (AUC of 0.98 for nodules > 8 mm). 

 

Conclusion and Relevance: The VIT platform validated the superior diagnostic accuracy of CT over 

CXR, especially for smaller nodules, underscoring its potential to replicate real clinical imaging trials. 

These findings advocate for the integration of virtual trials in the evaluation and improvement of imaging-

based diagnostic tools. 

 

 



Introduction 
 
Lung cancer ranks as the leading cause of cancer-related deaths, accounting for approximately 1.8 million 

fatalities in 2020.1,2 Projections from the American Cancer Society indicate an estimated 238K 

individuals in the United States are anticipated to be diagnosed with lung cancer during the year 2023.3 In 

the realm of timely Lung cancer detection and diagnosis, chest imaging modalities, such as X-rays and 

Computed Tomography (CT) scans, play a pivotal role. They offer comprehensive insights into 

abnormalities within the thoracic region.4 

 

Associating the early-state cancer detection to the larger likelihood of cure, worldwide multiple lung 

cancer screening trials such as National Lung Screening Trial (NLST),4 Nederlands-Leuvens Longkanker 

Screenings Onderzoek (NELSON) trial,5 The Multicentric Italian Lung Detection (MILD) trial,6 The 

British Thoracic Society Lung Cancer Screening Group (BTSLSG) trial,7 and The International Early 

Lung Cancer Action Program (IE-LCAP) trial,8 contributed valuable insights into the efficacy and 

implementation of lung cancer screening programs.  

 

However, addressing costs, radiation exposure, and ethical considerations becomes imperative to ensure 

both financial feasibility and patient safety.9 Lung cancer screening trials, including the NLST and 

NELSON, show varying rates of unnecessary procedures (1% to 8%) following positive LDCT scans, 

with no resulting cancer diagnosis.4,5,10 Of particular concern are the 4% of patients with 'risk-gap' 

nodules (3% to 5% cancer probability) who undergo unnecessary procedures, impacting an estimated 

7,000 individuals out of 9 million eligible for screening in the U.S. based on NLST criteria.10 

 

In the sphere of computational power, virtual simulation, and artificial intelligence, the concept of Virtual 

Imaging Trials (VITs) emerges as a potent tool to expedite and reshape the landscape of clinical imaging 

trials. Serving as a swifter, more cost-effective, and safer alternative, it has the potential to revolutionize 

the traditional approach.11-13 In their comprehensive review paper, Abadi et al. delve extensively into 

various methods and applications of VITs.12 Abadi et al. showed coronavirus disease (COVID-19) 

simulation and Emphysema Quantification utilizing VITs.14 VITs has also been reported in optimized 

medical imaging systems, Organ Dosimetry,15 Furthermore, as the field evolves, acknowledging the 

potential influence of the evolution of therapies on screening's long-term impact is crucial for informed 

regulatory decision-making. Badano et al. assess the viability of digital breast tomosynthesis (DBT) over 

digital mammography (DM) through a VIT.11 Tushar et al. showed the effect of data diversity on AI-

based diagnosis utilizing VIT.13 

 

This research centers around three primary goals: first, the generation of a virtual patient population that 

reflects the demographics and imaging data characteristics of the clinical Lung Screening Trials (LSTs) 

for cancer detection cohort; second, the encapsulation of 2000's imaging techniques (CXR and CT) to 

create virtual images that align with the old imaging technology; and finally, the execution detection task 

through virtual reader studies using these images. These studies aim to gauge the precision and efficacy of 

the virtual imaging trial platform. By merging innovative computational approaches with clinical 

significance, this investigation highlights the transformative capacity of virtual imaging trials in reshaping 

medical research and practice within a controlled and ethically mindful environment. This, in turn, fosters 

evidence-based progress. 

 

 

 

 



Methods 
 

Study Design 

 
Fig.1 shows an overview of the different steps performed to accomplish the VLST comprised of 

simulation virtual population, modeling virtual scanners, development, and evaluation of virtual readers, 

and finally analysis of the detection and diagnosis performance. In the section below, we will briefly 

explain each of the steps. 

 

Trial Virtual Population 

In any clinical trial, the selection of the targeted population and sample groups holds paramount 

importance as it directly influences the validation of trial results and outcomes. The composition of the 

VIT population cohort is established through power calculations, designed to replicate the outcomes of 

lung cancer detection detailed in eAppendix 1. 

 

Creating a virtual human phantom involves two key steps: constructing the overall body habitus and 

detailing the specific anatomical abnormalities. In this context, for the VLST, the subjects employed are 

virtual human phantoms, meticulously generated from authentic clinical CT/PET scans gathered from a 

singular institutional health system (Duke University Medical Center) which encompasses multiple 

hospitals. 

 

The construction of these simulated human phantoms involves a series of intricate steps: commencing 

with the segmentation of specific organs, ensuring the quality control of these segmentations, followed by 

the creation of airways and vessels, texturization of internal organs, and culminating in the voxelization 

process. A comprehensive outline of this procedure in Fig. 1, while further information is available in our 

previous publication.16 In this research, we employed both pre-existing and newly developed 4D extended 

cardiac-torso (XCAT) models representing both sexes at varying age, height, weight, BMI and race 

combinations.16-18. Demographically, the mean age stood at approximately 59.5 years, with a near-equal 

distribution between male (55.68%) and female (44.32%) participants. 

 

Furthermore, the generation of simulated nodules follows a dual-phase approach. Initially, a single-

density lesion is formed, adhering to the desired morphology. Subsequently, a convolution process is 

applied to transform this single density simulated lesion into a multi-density structure.19,20 while further 

information is available in our previous publication.20 Several instances of these simulated nodules, 

featuring diverse characteristics such as size and morphology, are depicted in eFigure 2. These simulated 

nodules are then randomly inserted into the body habitus of virtual human population, guided by 

indications derived from prior clinical trial studies.4 Specifics regarding population demographics, as well 

as the criteria for inclusion and exclusion, are comprehensively expounded upon in Table 1 and Fig. 2. 

 

Virtual Scanners and Imaging Protocols 

 
The developed virtual population was virtually imaged using a validated radiographic simulator 

(DukeSim)21 and reconstructed using a vendor-neutral reconstruction tool (MCR toolkit)22. The 

radiographic simulation framework has been detailed in our previous works14,21,23 and described briefly 

here. DukeSim generates projection images of voxelized computational models using ray tracing (for 

primary signal) and monte carlo simulation (for scatter signal and radiation dose). The projections were 

reconstructed with a weighted filter back projection (WFBP) algorithm using the MCR toolkit. In this 

study for CT simulation, DukeSim was configured to emulate the physical and geometrical properties of 



two generic CT scanners named Duke Legacy W12 and Duke Legacy W20 which are representative of 

NLST CT techniques.24 The geometry and acquisition configurations of the scanners are listed in the 

eTable 3. 

 

Due to the lack of direct access to the original NLST CXR datasets, our study did not involve direct 

referencing images from the NLST. Instead, we examined example images displayed in scientific 

publications to inform our analysis. Our methodology involved the application of post-processing 

techniques to CXR images we simulated, to closely mirror the appearance of the example images found in 

the literature. This post-processing was crucial for ensuring that our images closely matched the visual 

attributes of older chest radiograph technology as depicted in the scientific papers we consulted. 

 

Virtual Reader 

 
The virtual reader component of our study is designed to emulate the image interpretation process 

typically performed by radiologists. This study is powered by two RetinaNet models (2D and 3D models), 

designed for processing CT and CXR images respectively as virtual readers.25 We have meticulously 

selected and calibrated readily available machine learning models, optimizing them with publicly 

accessible clinical datasets (LUNA16,26 NODE227). This strategic choice ensures widespread accessibility 

and ease of replication, while also enhancing the models' versatility across a variety of diagnostic 

scenarios. The core concept was to standardize the model architecture for both CT and CXR to minimize 

virtual reader variability. The architecture, training methodologies, and patch extraction techniques 

remained constant across both models, with only the training datasets and data dimensions varying. This 

approach is akin to having the same radiologist interpret different modalities with consistent training. 

 

The workflow starts with image data augmentation and leverages RetinaNet's feature pyramid network to 

extract multi-scale features.25 Anchor boxes generated are matched with ground truth data, refined 

through regression, and classified to detect objects of interest.28 The final predicted boxes and 

classifications are selected and evaluated against the ground truth.25,28 Distinct from other trials, which 

commonly employ observer models,26 this streamlined architecture mirrors the analytical process of a 

radiologist within a virtual environment. By incorporating such a model, we aim to closely replicate the 

decision-making process of radiologists, encompassing both the search and the detection phases that are 

critical in diagnostic imaging. Detailed information regarding the development, validation, and the 

clinical datasets used for the virtual reader models is comprehensively documented in the eAppendix3. 

 

 

Trial End Point 

 
The evaluation of performance was conducted at two levels: lesion-level and patient-level. At the lesion-

level, each lesion was individually assessed to determine the model's accuracy in detecting and 

characterizing lesions. For patient-level evaluation, the highest predicted probability among all lesions 

within a single patient was utilized as the representative predictor for that patient, allowing for an 

assessment of the model's overall diagnostic performance on a per-patient basis. Performance was 

assessed using the Area Under the Curve (AUC) as a measure of diagnostic accuracy at both the lesion 

and patient levels, with subgroup analyses for lesion type and size. 

 

The VLST's primary endpoint was the variance in the Area Under the Curve (AUC) between CT and 

CXR across the entire patient cohort. Additionally, subgroup analyses were conducted to evaluate the 

AUC variation for two distinct lesion types and for lesions of varying sizes. 

 



Statistical Analysis 

 
Performance was assessed using the AUC. The 95% CIs were calculated using the DeLong method with 

2000 bootstrapping samples. 

Results 

 
In this VLST, virtual readers assessed 298 simulated CT scans and 313 simulated chest X-rays (CXR) 

originating from a cohort of 313 virtual human subjects. This cohort included 174 individuals with lung 

nodules and 139 without. A total of 512 lesions, with the following lung lesion types: 202 (39.4%) 

homogeneous and 310 (60.5%) heterogenous were evaluated. The mean size (largest axis) of these lesions 

was found to be 10.09 mm, with a standard deviation of 5.09 mm, indicating variability in lesion sizes 

across the sample. The smallest lesion measured was 4 mm, while the largest recorded lesion was 34 mm. 

The distribution of lesion sizes shows that 25% of lesions were 6 mm or smaller (first quartile), the 

median size was 9 mm, and 75% of the lesions (third quartile) were 12 mm or smaller. 

 

At the lesion level, CT outperformed CXR with an AUC of 0.81 (95% CI: 0.78-0.84) compared to 0.55 

(95% CI: 0.53-0.56), reflecting a substantial difference in diagnostic precision between the two 

modalities. The patient-level evaluation further underscored this disparity, with CT achieving an AUC of 

0.85 (95% CI: 0.80-0.89) relative to CXR's 0.53 (95% CI: 0.47-0.60). 

 

When stratifying the results by lesion type, homogeneous lesions detected via CT had an AUC of 0.97 

(95% CI: 0.95-0.98), while CXR reported an AUC of 0.64 (95% CI: 0.61-0.66). For heterogeneous 

lesions, CT presented an AUC of 0.71 (95% CI: 0.67-0.75) versus CXR’s 0.50 (95% CI: 0.48-0.53).  

Analysis by lesion size (largest axis) also revealed differences in AUC between CT and CXR. For 

nodules < 8 mm, CT had an AUC of 0.57 (95% CI: 0.52-063), whereas nodules ≥ 8 mm saw a higher 

AUC of 0.98 (95% CI: 0.96-0.99). In contrast, CXR's AUC for nodules < 8 mm was 0.57 (95% CI: 0.52-

0.62), whereas nodules ≥ 8 mm saw a higher AUC of 0.71 (95% CI: 0.67-0.75) 

 

Discussion 
 
VIT methodology replicates three fundamental elements of an imaging trial: patients, scanners, and 

readers. This study's main purpose was to establish a VIT Platform for lung cancer diagnosis that 

replicates real-world LSTs' characteristics. We evaluated the diagnostic accuracy of CT and CXR 

imaging modalities within this virtual trial platform. By simulating a diverse virtual patient population, 

employing machine learning algorithms as standardized virtual readers, and utilizing validated 

radiographic simulators for imaging, our approach minimized variability and was closely aligned with 

real-world radiological assessments. Results demonstrated the CT outperformed the CXR in Nodule 

detection which is consistent with the performance seen in the real lung screening trials. 

 
The composition of the trial population stands as a pivotal element in the execution and success of any 

clinical study. The VICTRE trial represents a significant milestone within the realm of virtual imaging 

trials, exhibiting results that are promising when juxtaposed with those derived from human trials.11 Our 

investigation utilized a comparably smaller virtual cohort than that of existing clinical lung screening 

studies.4,5,7 Despite this, our study extends beyond the scope of prior VIT research, which typically 

focuses on simulating specific pathologies or singular organs.11,12 The construction of our trial population 

posed unique challenges due to the necessity of replicating the comprehensive thoracic anatomy of a 

virtual human. This complexity underscores the innovative approach of our study and contributes to the 

advancement of virtual trials in the simulation of more complex bodily systems. 



 
To mirror the heterogeneity encountered in real-world clinical settings,4 our study meticulously 

incorporates diversity within the virtual population's demographics. This inclusion spans across a 

spectrum of age, gender, and ethnicity, reflecting the multifaceted human population encountered in 

actual clinical trials.4 Furthermore, we calibrated our virtual models to account for a range of lesion sizes, 

drawing upon the vast clinical knowledge and data accumulated from existing clinical trials. This 

diversity and clinical realism not only enhance the relevance of our findings but also fortify the potential 

for our virtual trial to serve as a robust model for future research in complex bodily system simulations. 
For future work, our efforts will pivot towards enriching the virtual population with an even broader 

spectrum of diverse and underrepresented virtual subjects. 

 

The virtual readers were designed using established deep-learning libraries29 and were trained on open-

access clinical datasets26,27 to ensure that the development process remained straightforward and broadly 

applicable. Unlike traditional VITs, which typically employ imaging physics-based observer models that 

evaluate specific imaging regions for the presence or absence of signal,11,30 our virtual readers incorporate 

a search process.25 This process mirrors the diagnostic approach of a radiologist by assessing the 

likelihood of a region containing a significant finding. While our deep-learning models are susceptible to 

the same training and testing biases previously noted in our VIT studies for COVID-19 diagnosis,13,31,32 

we have noted that these biases may be more pronounced in chest X-ray (CXR) analysis.32 To closely 

emulate the clinical setting and avoid introducing additional complexities, we have deliberately avoided 

intricate model architectures and elaborate training methodologies, thereby aligning the virtual readers' 

functionality as closely as possible with that of human readers across different imaging modalities. 

 

Reported results demonstrated the CT outperformed the CXR in Nodule detection which is consistent 

with the performance seen in the real lung screening trials. Our simulated homogenous lesions performed 

higher detection performance in both modalities compared to the heterogeneous. VITs usually focus on 

the task of lesion detection. However, existing lung cancer clinical imaging trials evaluate the patient-

level end-point outcomes as cancer diagnosis.4 Directly translating VLST’s detection patient-level end-

point results to NLST's patient-level end-point is not linear as most cases the clinical end-point outcomes 

are not only driven by findings supported by the imaging but also by additional information not accessible 

to the VIT’s virtual reader. Recognizing this limitation, our future research aims to expand VITs to more 

closely replicate clinical trial scenarios by considering patient-level outcomes, such as cancer diagnoses, 

to enhance the clinical relevance of VITs. 

 
In conclusion, the transformative potential of VITs in advancing evidence-based medicine offers an 

efficient and ethically conscious approach to medical research and development. 
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Figure 1. Flowchart summarizing the comprehensive workflow of the Virtual Lung Screening Trial 

(VLST), from the creation of virtual patient models using clinical CT data, through lesion simulation 

and insertion, to the virtual imaging using DukeSim, and concluding with the evaluation by a virtual 

reader employing 2D/3D RetinaNet for both lesion-level and patient-level detection evaluation. 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Cohort Characteristics of the VLST Virtual Population of 264 out of 313* patients With 

Cases Corresponding to with and without simulated nodule.  

 

Characteristics All 
With Lung Nodule 
(n=174) 

Without Lung Nodule 
(n=90) 

Age (year)    

Mean ± Std  59.52 ± 14.44  59 ± 15  60 ± 13  

Sex     

Male 147 (55.68%) 95 (54.60%) 52 (57.78%) 

Female 117 (44.32) 79 (45.40%) 79 (42.22%) 

Weight (kg)    

Mean ± Std (min-max)  
78.33 ± 20.31  
(17. 00- 148.00) 

77.14 ± 20.52  
(17. 00- 148.00) 

80.62 ± 19.82 
(30. 00- 133.90) 

BMI    

Mean ± Std (min-max)  
27.17 ± 5.99 
(13-50.49) 

26.69 ± 6.08 
(13-50.49) 

27.97 ± 5.76 
(18.37-41.65) 

Race    

White 198 (75 %) 128 (73.56%) 70 (70.78%) 

Black or African 
American 

56 (21.21%) 36 (20.69%) 20 (22.22%) 

Other/Unknown (10 3.79%) 10 (5.75 %)  

Ethnic    

Not Hispanic or Latino 260 (98.48) 171 (98.28%) 89 (98.89 %) 

Hispanic/ Unknown 4 (1.52 %) 3 (1.73 %) 1 (1.11%) 

 
*Note: Characteristics for the existing 49 phantoms are currently unavailable. 

 
 
 
 
 
 
 



 
 

Figure 2. Virtual Patient’s inclusion and exclusion criteria and progress through the study. Within the 

study, 313 virtual patients were assessed, with 174 of them having a total of 512 lesions, varying from 

homogeneous to heterogeneous in nature. All 313 virtual patients underwent both virtual CT and CXR 

scans. For the CT cohort, 15 virtual patients without nodule were excluded due to imaging failures.  

*The remaining 298 virtual images were processed through two distinct scanners, the Duke Legacy-12 

and the Duke Legacy-20, with each scanner producing three unique imaging configurations per patient 

(298 x 3=894). **From these six configurations, one CT image per patient, total 298 was randomly 

selected for evaluation. As for the CXR cohort, all 313 virtual patients were successfully imaged using 

the Duke Legacy-CXR scanner. A indicate the area under the receiver operating characteristic curve. 

 
 
 
 
 
 
 
 
 
 



Table. 2: VLST End Points (AUC and Change in AUC) for the CT and CXR in lesion and 

patient-level, sub-group analysis with lesion type and lesion size (largest axis). 

 

 AUC (95% CI)  

VLST CT CXR p-value  

Lesion-level  0.81 (0.78-0.84) 0.55 (0.53-0.56)  < 2.2𝑒−16 

Patient-level  0.85 (0.80-0.89) 0.53 (0.47- 0.60) < 6.554𝑒−14 

By lesion-type    

Homogeneous lesion  (n=202)    0.97 (0.95-0.98) 0.64 (0.61-0.66) < 2.2𝑒−16 

Heterogeneous lesion (n=310)    0.71 (0.67-0.75) 0.50 (0.48-0.53) < 2.2𝑒−16 

By lesion-size    

Nodule <    8 mm (n=79)    0.57 (0.52-0.63) 0.57 (0.52-0.62)         0.961 

Nodule > = 8 mm (n=433)    0.98 (0.96-0.99) 0.71 (0.67-0.75) < 2.2𝑒−16 
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