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Topological phases of ultracold atoms recently have been intensively studied both in optical su-
perlattices and Raman lattices. However, the topological features induced by the interplay between
such two lattices remain largely unexplored. Here we present an optical Raman superlattice sys-
tem that incorporates an optical superlattice and a Raman superlattice. The Raman superlattice
presented here supports tunable dimerized spin-orbit couplings and staggered on-site spin flips. We
find that such system respects a spin-rotation symmetry and has much richer topological properties.
Specifically, we show that various topological phases could emerge in the optical Raman superlattice,
such as four different chiral topological insulator phases and two different quantum spin Hall insu-
lator phases, identified by spin winding and spin Chern numbers respectively. We also demonstrate
that the spin-dependent topological invariants could be directly measured by quench dynamics.

I. INTRODUCTION

Ultracold atoms trapped in optical lattices provide
a versatile synthetic system for exploring topological
phases of matter [1–3]. Many pioneering experimental
progresses achieved in this field are simply based on op-
tical superlattices. For instance, using ultracold atoms
trapped in one-dimensional (1D) optical superlattices,
the seminal Su-Schrieffer-Heeger (SSH) model [4] has
been naturally implemented in experiment [5]. It is well
known that such model supports two-band topological
insulator phases protected by chiral symmetry [4]. The
quantized Zak phases characterizing the topological fea-
tures of the Bloch bands have been directly measured by
Bloch oscillations and Ramsey interferometry [5]. Fur-
thermore, quantized topological pumping [6] also has
been experimentally realized [7–10] by controlling the op-
tical superlattices in a cyclic and adiabatic manner [11–
21]. In addition to 1D topological phenomena, optical
superlattice system also allows to explore 2D [22, 23] and
4D integer quantum Hall insulator phases [10].

In parallel, with the experimentally successful prepa-
ration of spin-orbit couplings in ultracold gases [24–27],
optical Raman lattices have been developed into a pow-
erful platform for implementing spin-orbit couplings in
lattice systems [28–37], in which Raman lattice poten-
tials are additionally applied except the conventional op-
tical lattice trapping potentials. The Raman potentials
are generated through a two-photon Raman transition
which couples the spin up and spin down encoded by two
atomic internal states [28, 29]. Based on generated spin-
orbit couplings in different dimensions, various topologi-
cal phases could be created and probed in optical Raman
lattices, including 1D topological insulator phases [33],
2D topological Chern insulator phases [30, 32, 34, 35] and
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3D topological Weyl [37–40] and nodal-line semimetal
phases [36, 41, 42]. Moreover, our recent study also shows
that optical Raman lattices have the ability to gener-
ate complex spin-orbit couplings by designing suitable
Raman lattice potentials [43], like the 3D next-nearest-
neighbor spin-orbit couplings, that could enable exotic
topological nodal chain semimetal phases [43].

In this paper, we present an optical Raman superlat-
tice system that integrates an optical superlattice and a
Raman superlattice. Different from previous Raman lat-
tices, the Raman superlattice could generate dimerized
spin-orbit couplings and staggered on-site spin flips, that
can be directly implemented through two proper Raman
lasers, which has not been reported before. We find that
the interplay between the optical superlattice and the
Raman superlattice could lead to much richer topologi-
cal phases. First, we reveal that the optical Raman su-
perlattice system satisfies a spin-rotation symmetry, that
allows us to use spin-dependent topological invariants to
identify its topological property. Second, we demonstrate
that the system in the case of turning off the on-site terms
could support four different 1D four-band chiral topo-
logical insulator phases, characterized by spin winding
numbers. Third, with on-site terms, the corresponding
system could be mapped into a synthetic 2D momen-
tum space and supports two different quantum spin Hall
insulator phases and one double Chern insulator phase,
characterized by spin Chern numbers. In both cases, the
topological properties are detailedly explored by numer-
ically extracting topological phase diagrams and demon-
strating bulk-edge correspondences. In addition, we also
show that both the spin winding and spin Chern numbers
could be directly measured by quench dynamics.

The paper is organized as follows. Section II presents
the construction of optical Raman superlattices. Section
III studies the symmetry of the Bloch Hamiltonian. Sec-
tions IV and V exhibits that optical Raman superlattices
provide a versatile platform for exploring various four-
band 1D and 2D topological insulator phases, protected
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FIG. 1: (a) Schematic illustration of the double-Λ configura-
tion for creating a Raman superlattice potential. Each Ra-
man coupling is induced by one standing-wave laser with Rabi
frequency Ω1x or Ω2x and one plane-wave laser with Rabi fre-
quency Ω0. ∆1,2 are the detunings from the auxiliary excited
states |e⟩1,2. (b) Implemented lattice model with dimerized
spin-orbit couplings and staggered on-site spin flips. Specifi-
cally, each unit cell has two sublattice sites a and b; the intra-
and inter-cell spin-conserved hoppings are J1,2, the intra- and
inter-cell spin-flip hoppings are K1,2 and the on-site spin-flip
strengths for the sublattices a and b are ±M .

by spin winding and spin Chern numbers respectively.
Section VI summaries the main results of this paper and
outlines future works along this line.

II. OPTICAL RAMAN SUPERLATTICES

We consider two-component ultracold fermionic 173Yb
(or 40K) atoms trapped in a one-dimensional optical
Raman superlattice. The two components are repre-
sented by the two magnetic sublevels |↑⟩ = |5/2, 3/2⟩ and
|↓⟩ = |5/2, 5/2⟩, respectively encoding the spin up and
spin down. The optical Raman superlattice is produced
by a spin-independent optical superlattice potential and a
spin-dependent Raman superlattice potential. The state-
independent optical superlattice potential is generated
by superimposing two standing-wave lasers [5], i.e, Vx =
V1 cos

2(k0x)+V2 cos
2(k0x/2+φ/2), where V1,2 and φ can

be varied by tuning the intensities and phases of the two
standing-wave lasers. In contrast to previously applied
Raman potentials [28–37], here we consider a superlattice
Raman potential created by two sets of two-photon Ra-
man transitions. As illustrated in Fig. 1(a), this is done
by applying one standing-wave laser with Rabi frequency
Ω1x = Ω1 sin(2k0x) (Ω2x = Ω2 cos(k0x + θ)) and one
plane-wave laser with Rabi frequency Ω0 to induce the
transition between the spin up (spin down) state and the
auxiliary excited state |e⟩1 (|e⟩2). Note that such double-
Λ Raman transitions have been experimentally realized
with 173Yb atoms [33, 36]. When both transitions have a
large detuning ∆1,2, we obtain two Raman potentials and
their superposition creates a Raman superlattice poten-
tial Vsoσx, where Vso = Ω1 sin(2k0x) + Ω2 cos(k0x + θ),
Ω1,2 = Ω1,2Ω0/∆1,2 and θ can be controlled by tuning
the intensities and phases of the two Raman lasers.

The single-particle Hamiltonian for the optical Raman
superlattice system is written as

Hs =
p2x
2m

+ Vx + Vsoσx. (1)

In the second quantization, this Hamiltonian takes the
following form

H =

∫
dxψ†(x)Hsψ(x) (2)

where the field operator ψ(x) = (ψ↑(x), ψ↓(x))
T . Here we

only consider atoms staying in the ground band. Then
the field operator can be further expanded as

ψσ(x) =
∑
x

W (x− j)Cjσ, (3)

where Cjσ is the annihilation operator with spin σ =↑, ↓
at the lattice site j andW (x−j) is the ground-band spin-
independent Wannier function centered at the lattice site
j. Here we assume the lattice spacing a = π/k0 = 1. The
tight-binding Hamiltonian for the optical Raman super-
lattice system is derived by substituting Eq. (3) into Eq.
(2) [28, 29].
In the case without Raman superlattice potential, the

tight-binding Hamiltonian reads

H1 =−
∑
j

tj,j+1(C
†
j↑Cj+1↑ + C†

j↓Cj+1↓ +H.c.)

−
∑
j

δj(C
†
j↑Cj↑ + C†

j↓Cj↓). (4)

The nearest-neighbor hopping rates are calculated as

tj,j+1 =−
∫
dxW ∗(x− j)(

p2x
2m

+ Vx)W (x− j − 1)

=t0 − V2

∫
dxW ∗(x− j)

1 + cos(k0x+ φ)

2
W (x− j − 1))

=t0 +
(−1)j

2
V2

∫
dxW ∗(x) sin(k0x+ φ)W (x− 1)

=t0 +
(−1)j

2
V2[cos(φ)

∫
dxW ∗(x) sin(k0x)W (x− 1)

+ sin(φ)

∫
dxW ∗(x) cos(k0x)W (x− 1)]

=t0 + (−1)j(t1 cos(φ) + t2 sin(φ)), (5)

where

t0 = −
∫
dxW ∗(x− j)(

p2x
2m

+ V1 cos
2 (k0x))W (x− j − 1),

t1 =
V2
2

∫
dxW ∗(x) sin(k0x)W (x− 1),

t2 =
V2
2

∫
dxW ∗(x) cos(k0x)W (x− 1).

(6)
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The on-site energies are derived as

δj =−
∫
dxW ∗(x− j)(

p2x
2m

+ Vx)W (x− j)

=− V2

∫
dxW ∗(x− j)

1 + cos(k0x+ φ)

2
W (x− j) + c.e.

=
(−1)j

2
V2 sin(φ)

∫
dxW ∗(x) cos(k0x)W (x) + c.e.

=(−1)jδ sin(φ) + c.e., (7)

where

δ =
V2
2

∫
dxW ∗(x) cos(k0x)W (x), (8)

c.e. denotes constant energy and can be neglected.
cos2(k0j) = 0 is used in the analytical calculations. As we
can see, the parameters tj,j+1 and ∆j dependent on the
parity of the lattice site j. When φ = 0, π, the on-site en-
ergy vanishes, the corresponding system implements the
SSH model [5], but with spins, where nontrivial (trivial)
topological phases could be prepared by tuning φ = 0
(π).
Similarly, the tight-binding Hamiltonian created by the

Raman superlattice potential is derived as

H2 =−
∑
j

tsoj,j+1(C
†
j↑Cj+1↓ + C†

j↓Cj+1↑ +H.c.)

−
∑
j

mj(C
†
j↑Cj↓ +H.c.) (9)

where the spin-orbit coupling strengths and on-site spin-
flip rates are given by

tsoj,j+1 = tso0 + (−1)j(tso1 cos(θ) + tso2 sin(θ)),

mj = (−1)jm sin(θ) (10)

with

tso0 = Ω1

∫
dxW ∗(x) sin(2k0x)W (x− 1),

tso1 = Ω2

∫
dxW ∗(x) sin(k0x)W (x− 1),

tso2 = Ω2

∫
dxW ∗(x) cos(k0x)W (x− 1),

m = Ω2

∫
dxW ∗(x) cos(k0x)W (x). (11)

We find that tsoj,j+1 and Mj also dependent on the parity
of the lattice site j. When θ = 0, π, the Raman su-
perlattice potential only generates dimerized spin-orbit
couplings; When θ ̸= 0, π, in addition to the dimerized
spin-orbit couplings, staggered on-site spin flips are also
induced by the Raman superlattice potential.

Due to the parity-dependent feature of the lattice pa-
rameters in both H1 and H2, each unit cell in the optical

Raman superlattice has two sites. Suppose the two lat-
tice sites in the j-th unit cell are labelled as aj and bj .
The total Hamiltonian H = H1+H2 can be rewritten as

H =
∑
j

J1(a
†
j↑bj↑ + a†

j↓bj↓ +H.c.)

+
∑
j

J2(a
†
j↑bj−1↑ + a†

j↓bj−1↓ +H.c.)

+ ∆
∑
j

(a†
j↑aj↑ + a†

j↓aj↓ − b†j↑bj↑ − b†j↓bj↓)

+
∑
j

K1(a
†
j↑bj↓ + a†

j↓bj↑ +H.c.)

+
∑
j

K2(a
†
j↑bj−1↓ + a†

j↓bj−1↑ +H.c.)

+M
∑
j

(a†
j↑aj↓ − b†j↑bj↓ +H.c.), (12)

where J1,2 = ±(t1 cos(φ) + t2 sin(φ)) − t0, K1,2 =
±(tso1 cos(θ) + tso2 sin(θ)) − tso0 , ∆ = δ sin(φ) and M =
m sin(θ). This model is highly tunable, in which the
dimerized spin-conserved hoppings, dimerized spin-orbit
couplings, staggered on-site spin filps and staggered on-
site energies all can be individually controlled by tuning
the laser intensities and phases, that allows the system
into different topological phases.

III. SPIN-ROTATION SYMMETRY

Topological features of optical Raman superlattices are
rooted in the momentum space. Through defining a four-
component operator C(kx) = [akx↑, akx↓, bkx↑, bkx↓]

T

and implementing a Fourier transformation, the
momentum-space Hamiltonian is derived as H(kx) =∑

kx
C†(kx)h(kx)C(kx), with

h(kx) = (J1 + J2 cos(kx))τxσ0 + J2 sin(kx)τyσ0

+ (K1 +K2 cos(kx))τxσx +K2 sin(kx)τyσx

+∆τzσ0 +Mτzσx, (13)

where τi and σi are the Pauli matrixes respectively de-
fined on the sublattice and spin degree of freedom. We
find that the Bloch Hamiltonian h(kx) satisfies a spin-
rotation symmetry, i.e.,

Rxh(kx)R
−1
x = h(kx), (14)

where Rx = τ0σx is the spin-rotation symmetry operator.
As a result, the optical Raman lattice model is invariant
under the spin rotation (↑, ↓) → (↓, ↑).
Since [Rx, h(kx)] = 0, the Bloch Hamiltonian h(kx)
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FIG. 2: Topological phase diagram and spin winding number values in the parameter space of K1/J0 and K2/J0 for (a) J1 = 2J0

and J2 = J0, (b) J1 = J2 = J0, (c) J2 = 2J0 and J1 = J0. The transitions between different topological phases are determined
by the gap closing conditions E+ = 0 (red solid line, A+ = ±B+) and E− = 0 (blue dashed line, A− = ±B−). The energy
spectra with open boundary condition are shown in (d) K1 = 1.5J0 and K2 = 4J0, (e) K1 = −3J0 and K2 = 3J0, (f) K1 = 3J0

and K2 = 1J0 and (g) K1 = 4J0 and K2 = −3J0, corresponding to the four topological phases shown in (c), manifesting the
bulk-edge correspondence. Here J0 is used as energy unit.

can be block-diagonalized in the eigenspace of Rx. i.e.,

|+⟩1 =
1√
2

 1
1
0
0

 , |+⟩2 =
1√
2

 0
0
1
1

 ,

|−⟩1 =
1√
2

 1
−1
0
0

 , |−⟩2 =
1√
2

 0
0
1
−1

 , (15)

with eigenvalues ±1 respectively. In the following, we
name the eigenvector spaces {|±⟩1, |±⟩2} as the ±1 spin-
rotation subspaces. In such two subspaces, the Bloch
Hamiltonian h(kx) is block-diagonalized into

h̄(kx) =

(
h+(kx) 0

0 h−(kx)

)
(16)

where ± denote the ±1 spin-rotation subspaces. The
block Hamiltonian takes the following form

h±(kx) =dx±sx± + dy±sy± + dz±sz±, (17)

with dx± = A± + B± cos(kx), dy± = B± sin(kx) and
dz± = ∆ ± M , where A± = J1 ± K1, B± = J2 ± K2

and sx±,y±,z± are the Pauli matrixes defined in the ±1
spin-rotation subspaces. The eigenvalues of the block
Hamiltonian h±(kx) are

Es = ±
√
A2

s +B2
s + (∆+ sM)2 + 2AsBs cos(kx), (18)

where s = ±.

Below we will demonstrate that the presence of the
spin-rotation symmetry simplifies the characterization of
the topology of h(kx). We exhibit that the four-band
topological features associated with h(kx) can be char-
acterized through two spin-dependent topological invari-
ants, that are defined in the ±1 spin-rotation subspaces
based on h±(kx).

IV. TOPOLOGICAL PHASES PROTECTED BY
SPIN WINDING NUMBERS

We firstly study the case without on-site energies and
on-site spin flips by tuning the laser phases φ = θ = 0.
In this case, the block Hamiltonian h±(kx) respect a chi-
ral symmetry, allowing us to employ winding numbers
to characterize their topology. In each spin-rotation sub-
space, a spin winding number can be defined, i.e.,

ν± =
1

2π

∫
dkxn± × ∂kx

n±, (19)

where n± = (dx±, dy±)/(d
2
x±+d

2
y±)

1/2. The spin winding
numbers ν+ and ν− separately characterize the topology
of the block Hamiltonian h+(kx) and h−(kx). By substi-
tuting Eq. (17) into Eq. (19), the spin winding numbers
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are calculated as

ν± =

{
1 if |A±| < |B±|
0 otherwise.

(20)

The topological phase diagrams in terms of (ν+, ν−)
are studied in Figs. 2(a-c). We can find that the Raman
superlattice system features four different chiral topo-
logical phases. The transitions between different topo-
logical phases, signified by the change of spin winding
number values, are usually accompanied by gap closings.
Through examining the gap closings in Figs. 2(a-c), we
find that the optical Raman lattice supports abundant
topological phase transitions. For the bloch Hamiltonian
h±(kx), the gap closing conditions are E± = 0 and give
the gap closing lines |A±| = |B±|. The topological invari-
ant ν+ (ν−) would change once crossing the gap closing
lines E+ = 0 (E− = 0), agreeing well with the theoretical
predictions by Eq. (20).

Fig. 2(a) investigates the spin winding numbers as a
function of the spin-orbit coupling strengthes for J1 >
J2. When the spin-orbit couplings are turned off, the
corresponding optical Raman lattice is described by two
independent SSH models and in the trivial topological
phases, with the topological invariants as (ν+ = 0, ν− =
0). When the spin-orbit couplings are turned on, with
the increase of K1,2, the energy gap would firstly close
at E+ = 0 (A+ = ±B+) or E− = 0 (A− = ±B−);
After the gap reopening, the system will come into a
nontrivial topological phase with (ν+ = 1, ν− = 0) or
(ν+ = 0, ν− = 1). While if the energy gap successively
closes at E+ = 0 and E− = 0, the final topological phase
is (ν+ = 1, ν− = 1).
Fig. 2(b) shows that the gap closing lines A+ = B+

and A− = B− coincide for J1 = J2. In contrast to Fig.

2(a), the region between such two lines vanishes, and
topological phases transitions could take place directly
between (ν+ = 1(0), ν− = 1) and (ν+ = 0(1), ν− = 0). It
is also worth pointing out that in this case the topologi-
cal features mainly comes from the Raman superlattice.
Fig. 2(c) further displays that, for J1 < J2, the region
between the gap closing lines A+ = B+ and A− = B−
reopens, in which the three phases simultaneously un-
dergo a topological phase transition as compared to Fig.
2(a). As a consequence, when the spin-orbit coupling is
fixed, tuning J1,2 could also drive the system into differ-
ent topological phases.
Figs. 2(d-g) exhibit the bulk-edge correspondence as-

sociated with the four topological phases (ν+ = 0, 1, ν− =
0, 1) shown in Fig. 2(c). The edge modes guaranteed by
the bulk topological invariants are investigated by calcu-
lating the energy spectra of H, with open boundary con-
dition. For the topological phase with (ν+ = 1, ν− = 1),
Fig. 2(d) shows that there are four degenerate zero-
energy topological edge states, i.e., two left and two right
zero-energy edge states. The wave functions (not nor-
malized) for the four edge states are directly calculated
as [44, 45]

|ψL
±⟩ =

N∑
j=1

(−1)j
(
A±

B±

)j a+j↑ ± a+j↓√
2

|0⟩,

|ψR
±⟩ =

N∑
j=1

(−1)j−N

(
A±

B±

)j−N b+j↑ ± b+j↓√
2

|0⟩. (21)

While for (ν+ = 1(0), ν− = 0(1)), there are only two zero-
energy topological edge states (see Figs. 2(e,g)), i.e., one
left edge state |ψL

+⟩ (|ψL
−⟩) and one right edge states |ψR

+⟩
(|ψR

−⟩). By contrast, for (ν+ = 0, ν− = 0), there are no
zero-energy edge states (see Fig. 2(f)).
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The winding numbers could be measured through
quench dynamics [46, 47]. Here we show that a single
quench process could be used to simultaneously mea-
sure the two spin winding numbers ν±. Suppose the
initial state of the system is prepared into an equal su-
perposition of the ground state of the block Hamiltonian
h± = dx±sx± + (dy± + my±)sy± with my± ≫ 1, i.e.,
|ψ(t = 0)⟩ = (|+⟩1 − i|+⟩2 + |−⟩1 − i|−⟩2)/2. After
that, the Hamiltonian governing the time evolution is
h(kx) that is equivalent to h±(kx) with my± = 0, which
thus accomplishes a y-direction quantum quench for both
block Hamiltonian, i.e., from my± ≫ 1 to my± =
0. From the measured time-resolved spin polarizations
⟨sx±,y±(kx)⟩t = ⟨ψ(t = 0)|eih(kx)tsx±,y±e

−ih(kx)t|ψ(t =
0)⟩, the time-averaged spin polarizations are extracted

as ⟨sx±,y±(kx)⟩ = 1
T

∫ T

0
dt⟨sx±,y±(kx)⟩t. When T is

longer enough, the spin winding numbers can be mea-
sured through

v± =
1

2
(gx±(kR)− gx±(kL)) (22)

where gx±(kL,R) = −sgn(∂k⊥⟨sx±⟩) [46, 47], with
kL,R as the band inversion surfaces (BISs) given by

⟨sy±(kL,R)⟩ = 0, and k⊥ as the momentum pointing from
the region dy± < 0 to dy± > 0.

Fig. 3 presents the time-averaged spin polarizations as
a function of kx for different lattice parameters. Accord-
ing to Fig. 2(c), the spin winding numbers correspond-
ing to the lattice parameters in Figs. 3(a,b) are (ν+ =
0, ν− = 1). Figs. 3(a,b) clearly show that, the time-

averaged spin polarizations ⟨sy±⟩ vanish at the BISs,
yielding the locations of BISs as kx = kL,R; The time-
averaged spin polarizations near the BISs give gx+(kR) =
gx+(kL) = −1 and gx−(kR) = −gx−(kL) = 1. Based
on Eq. (22), the spin winding numbers are measured
as ν+ = 0 and ν− = 1, fully agreeing with theoretical
predicted values. The results in Figs. 3(c,d) show that
gx+(kR) = gx+(kL) = 1 and gx−(kR) = gx−(kL) = 1,
giving the the spin winding numbers ν+ = 0 and ν− = 0.
Similarly, the spin winding numbers measured in Figs.
3(e,f) and (g,h) are respectively (ν+ = 1, ν− = 0) and
(ν+ = 1, ν− = 1).

V. TOPOLOGICAL PHASES PROTECTED BY
SPIN CHERN NUMBERS

We further find that, by associating the laser phases
φ = θ (∈ (0, 2π)) with a synthetic momentum, the opti-
cal Raman superlattice is described by h(kx, φ) and pro-
vides a natural platform for exploring two-dimensional
quantum spin Hall insulator phases, where the two-
dimensional Brillouin zone is defined by the genuine
momentum kx ∈ (0, π] and the synthetic momentum
φ ∈ (0, 2π]. In this case, the block Hamiltonian h±(kx)
are mapped into h±(kx, φ), and the corresponding topol-
ogy are characterized by spin Chern numbers instead,

defined as

C± =
1

4π

∫ ∫
dkxdφ(∂kx

n± × ∂φn±) · n±, (23)

where n± = (dx±, dy±, dz±)/(d
2
x± + d2y± + d2z±)

1/2. As
indicated in Eqs. (8,11), the ratios of the lattice param-
eters α = tso0 /t0 and β = tso1 /t1 = tso2 /t2 = m/δ can be
flexibly controlled through tuning V1,2 and Ω1,2. Below
we will show that tuning α and β allows us to explore
different two-dimensional topological phases.
According to the spin Chern numbers (C+, C−), the

topological phase diagram in the parameter space of α
and β is obtained in Fig. 4(a). The values of (C+, C−)
are calculated as C+ = 1(−1) for α > −1 (α < −1)
and C− = 1(−1) for α > 1 (α < 1). From which we
find that, there are two different quantum spin Hall in-
sulator phases identified by (C+ = −1, C− = 1) and
(C+ = 1, C− = −1), separated by a double Chern in-
sulator phases identified by (C+ = 1, C− = 1). Through
the gap closings, as plotted in Fig. 4(a), we also find
that the topological phase transitions in this synthetic
two-dimensional system have an interesting character-
istic. The gap closing conditions for h± are E± = 0,
respectively giving the gap closing lines α = ∓1 and
β = ∓1. As we can see, topological phase transitions
do occur at the gap closing lines α = ∓1, signified by
the change of the spin Chern number values C± crossing
theses lines. However, there is no topological phase tran-
sitions at the gap closing lines β = ∓1, across which the
spin Chern numbers C± are same.
As shown in Figs. 4(b-e), this is attributed to that

the physical mechanism for producing the gap closings
is quite different. For α = ±1, the energy gaps close at
the two-dimensional Dirac points (see Figs. 4(b-c)), ac-
companied by band inversions after the reopening of the
gaps, leading to topological phase transitions. While for
β = ±1, the energy spectra for the middle two bands have
nothing to do with the synthetic momentum φ (see Figs.
4(d-e)), and the energy gap closes at one-dimensional
Dirac points kx = ±π. This means that, the couplings
along the synthetic dimension are turned off and the sys-
tem is decoupled into independent one-dimensional lat-
tices in the genuine dimension. Consequently, band in-
versions and topological phase transitions do not take
place in the two-dimension momentum space in this sit-
uation. In addition, the energy bands for α = β = ±1
present an interesting feature, where the middle two en-
ergy bands merge into degenerate zero-energy flat bands,
with the sum of spin Chern numbers as zero, as depicted
in Fig. 4(f).

Figs. 4(g-k) plot the energy spectra of edge states
corresponding to the five regions (labelled by A-E re-
spectively) in the topological phase diagram. The re-
sults show that, there are one pair of in-gap edge states
connecting the energy bands of h+ and h− respectively,
agreeing with the prediction by the bulk-edge correspon-
dence and the corresponding spin Chern number values
C±. Moreover, the crossing points for the left (red solid
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FIG. 4: (a) Topological phase diagram and spin Chern number values in the parameter space of α and β. The solid (dashed)
lines α = −1 and β = −1 (α = 1 and β = 1) are the gap closing lines in which E+ = 0 (E− = 0). The integer values in
the coordinates represent the spin Chern number values C±, while the values of the laser phase φ in the coordinates reflect
the positions at which the edge states of h± cross. For example, (1,−1) represents that the spin Chern number values are
(C+ = 1, C− = −1); (0, π) represents that the edge states of h+ and h− in this region of parameter space respectively cross at
φ = 0 and π (see (g-k)). The bulk energy spectra in the synthetic first Brillouin zone for (b) α = 1 and β = 0.5, (c) α = −1
and β = 0.5, (d) α = 0.5 and β = −1, (e) α = 0.5 and β = −1 and (f) α = 1 and β = 1. With open boundary condition along
the genuine dimension, the corresponding energy spectra in the five regions of parameter space A − E (labelled in (a)) are
respectively plotted in (g-k) and for the flat band case is shown in (l). The specified parameters are (g) α = 0.5 and β = 0.5,
(h) α = 1.5 and β = 0.5, (i) α = −1.5 and β = 0.5, (j) α = 0.5 and β = 1.5, (k) α = 0.5 and β = −1.5 and (l) α = 1 and
β = 1. The red solid and black dashed lines respectively denote the left and right in-gap topological edge states. The other
parameters are t1 = 0.8t0, t2 = 0.3t0 and δ = −t0. Here t0 is used as energy unit.

lines) and right (black dotted lines) edge states of h+ and
h− both cross at φ = 0 or π, which has been specifically
given in Fig. 4(a). For example, in the region B, (0, π)
denotes that the edge states of h+ and h− respectively
cross at φ = 0 and π, as shown in Fig. 4(h). We also no-
tice that, for the edge states of h+ (h−), once crossing the
gap closing lines E+ = 0 (E− = 0), the crossing points
would change from φ = 0(π) to φ = π(0), regardless of
whether topological phase transition occurs. The differ-
ences between different topological phases are manifested
by the group velocities of the edge states. For instance,
by making a comparison between Fig. 4(g) and (h), we
can observe that the group velocities for the left or right
edge state of h− (h+) are opposite (same), reflecting that
the sign of the spin Chern numbers C− (C+) are opposite
(same), revealing the difference between the topological
phases (C+ = 1, C− = 1) and (C+ = 1, C− = −1). The
edge states for α = β = ±1 are presented in Fig. 4(l),
where there is only one pair of edge states, due to the
merging of the two middle bands into a single topologi-
cally trivial flat band.

Quench dynamics also allows to measure Chern num-
bers [46, 48]. We show that the two spin Chern num-
bers C± can be simultaneously measured from a sin-
gle quench process. As an example, the measurement
of (C+ = 1, C− = −1) is exhibited as follows. Simi-

lar to measure spin winding numbers, here we perform
a x-direction quantum quench by initially preparing the
system into |ψ(t = 0)⟩ = (|+⟩1 − |+⟩2 + |−⟩1 − |−⟩2)/2
and letting it evolve under h(kx, φ). After that, the time-

averaged spin polarizations ⟨sx±,y±,z±⟩ are measured, as
numerically shown in Figs. 4(a-c). From them, the BISs
for h± are determined by dx± = 0 and measured through

⟨sx±⟩ = 0; the dynamic fields g⃗± = (gy±, gz±) are ex-

tracted by gi± = −∂k⊥⟨si±⟩ [46, 48], with k⊥ as the mo-
mentum pointing from the region V− to V+. Fig. 5(d)
shows the dynamic fields g⃗± on the BISs. The Chern
number is given by the winding number of the dynamic
fields along the BISs [46, 48]. As plotted in Fig. 5(d),
the dynamic fields g⃗± both wind the BISs one time, but
with opposite winding directions, giving the spin Chern
numbers C+ = 1 and C− = −1 respectively.

VI. SUMMARY AND OUTLOOK

In summary, we have proposed an experimentally rel-
evant optical Raman superlattice system and systemat-
ically studied its topological properties. We have found
that such system respects a spin-rotation symmetry that
allows us to characterize its topological property through
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and T = 10/t0.

spin winding and spin Chern numbers, which could be di-
rectly measured by nonequilibrium quench dynamics. We
have further exhibited that this system features various
topological phases, such as the four-band chiral topologi-
cal insulator phases, quantum spin Hall insulator phases
and double Chern insulator phases, with several interest-
ing topological features, like the multifarious topological
phase transitions, tunable zero-energy modes and degen-
erate zero-energy flat bands.

The results in our study clearly show that, due to the
interplay between optical superlattice and Raman su-
perlattice, optical Raman superlattice system has much
richer topological properties, which could provide more
opportunities for implementing and probing topological
phases of ultracold atoms. For example, when the op-
tical superlattice system is prepared into the quantum
spin Hall insulator phases, Z2 topological pumping [49]
can be naturally implemented by adiabatically control-
ling the laser phase over one period. In the near future,
it is quite interesting to generalize optical Raman super-

lattices to two and three dimensions for exploring diverse
high-dimensional topological phases, including the topo-
logical semimetal phases [50–52], higher-order topological
insulator phases [53, 54] and four-dimensional topological
insulator phases [10, 55, 56].
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