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Fig. 1: Samples of the ONOT dataset compliant with the ISO/IEC 39794-5 standard and ICAO guidelines. The dataset
exhibits a great inter-class variety, in terms of, among others, genders, ethnicity, age and face-specific traits.

Abstract— Nowadays, state-of-the-art Al-based generative
models represent a viable solution to overcome privacy issues
and biases in the collection of datasets containing personal
information, such as faces. Following this intuition, in this paper
we introduce ONOT', a synthetic dataset specifically focused
on the generation of high-quality faces in adherence to the
requirements of the ISO/IEC 39794-5 standards that, following
the guidelines of the International Civil Aviation Organization
(ICAO), defines the interchange formats of face images in
electronic Machine-Readable Travel Documents (eMRTD). The
strictly controlled and varied mugshot images included in
ONOT are useful in research fields related to the analysis of
face images in eMRTD, such as Morphing Attack Detection and
Face Quality Assessment. The dataset is publicly released’, in
combination with the generation procedure details in order to
improve the reproducibility and enable future extensions.

I. INTRODUCTION

The rapid advancement of Artificial Intelligence (AI) has
introduced a new era of unprecedented opportunities and
challenges. Among the various applications of Al, face-
based systems have gathered significant attention due to
their potential to enhance effectiveness in fields ranging from
security and surveillance (e.g., Face Recognition [50], [34],
Morphing Attack Detection [38], [5]) to human-computer
interaction (e.g., Facial Expression Recognition [30], [43],
Facial Landmark Detection [48], [21]).

1One, No one and One hundred Thousand (L. Pirandello, 1926)
2https://miatbiolab.csr.unibo.it/
icao-synthetic-dataset

However, the adoption of these technologies has raised
critical concerns, particularly related to privacy infringement
and inherent biases [10]. For instance, algorithms for face im-
age analysis have heavily relied on large-scale datasets [41],
[42], [51] containing images of individuals’ faces. While
essential for training robust models, the acquisition and the
release of these datasets have become increasingly problem-
atic: the utilization of real facial images raises significant
privacy concerns related, among others, to unauthorized face
recognition, compromising privacy and personal security.

In this scenario, synthetic data generated through novel
generative methods emerges as a promising solution to
address these pressing issues [1]. Indeed, synthetic facial data
offers a way to mitigate these privacy risks: by employing
generative methods such as Generative Adversarial Networks
(GANSs) [22], Variational Autoencoders (VAEs) [29] and
Diffusion Models [39], it is possible to generate highly
realistic facial images that do not directly correspond to any
real individual’s identity, thus granting anonymity.

Furthermore, the creation of traditional face-based datasets
has perpetuated biases that exist in society [26]. Biases re-
lated to ethnicity, gender, age, and other demographic factors
have been - inadvertently or not - embedded in these datasets,
leading to biased Al models [36]. Synthetic data presents an
opportunity to counteract these biases: by carefully control-
ling the attributes of synthetic faces, it is possible to contrast
the underrepresentation of specific groups, ultimately leading
to fairer face recognition technologies.
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Therefore, in this paper, we introduce ONOT, a novel
dataset of synthetic faces, meticulously crafted in adherence
to the principles outlined in the ISO/IEC 19794-5 stan-
dard [23], successively modified by ISO/IEC 39794-5 [24],
i.e. the reference standard in the context of face verification in
electronic Machine-Readable Travel Documents (eMRTD).
The standard describes the specific requirements for enroll-
ment images imposing strict quality criteria to be fulfilled
to enable effective automatic face verification: a summary of
these principles is reported in Table I. This ISO standard has
been designed starting from the guidelines initially provided
by the International Civil Aviation Organization (ICAO) for
passport photographs [46] (in the following, this standard is
referred also as ISO/ICAO).

More specifically, we take this standard as the inspiring
principle for our generation process, which is aimed at the
creation of high-quality and well-controlled images with
specific characteristics including, among others, frontal face
pose with uniform background and illumination, neutral
expression, and the absence of shadows (see Fig. 1). Then,
we aim to create a synthetic dataset combining Al-based
generative procedures, in terms of facial likeness and real-
ism, together with the strict ISO/ICAO requirements. These
unique features enable the use of the ONOT dataset for
a variety of vision-based tasks related to the analysis of
identity documents or, in general, in which there is the need
for high-quality and standard frontal images, including the
development of methods for Morphing Attack Detection [45]
or Face Quality Assessment [20], for which ad-hoc public
synthetic datasets are generally not available.

Summarizing, the ONOT dataset offers several key advan-
tages and features:

e ISO/ICAO compliance: the dataset is a pioneering
example of synthetic data specifically designed to meet
ISO/ICAO standard requirements, and its compliance
has been validated using a commercial SDK. To the
best of our knowledge, this is the first synthetic dataset
of its category in the literature.

o Facial realism: ONOT dataset presents high quality
and realism in the generated faces, thanks to the use
of a state-of-the-art generative method. The dataset
comprises a collection of several subjects, including
for each at least one ISO/ICAO compliant image and
multiple additional samples. Each facial attribute is
provided in dataset annotation.

o Identity check: rigorous verification procedures ensure
both intra-subject consistency (all images of the same
subject share the same identity) and inter-subject con-
sistency (each subject presents a distinct and unique
identity with respect to all the other subjects).

o Reproducibility: this dataset is highly reproducible and
expandable, as it provides comprehensive documenta-
tion regarding the model, and the image generation and
selection procedures. Indeed, we release the prompts
used for each generation, fostering transparency and
encouraging further research and data contributions.

No | Description of the test

1 Unique and valid face
2 Face fully included in image frame

Geometric tests

3 Eye distance
4 Horizontal/vertical position
5 Head image width/height ratio

Photographic tests

6 Face is correctly focused

7 Sharpness of the image

8 Face saturation

9 Image color conformance

10 | Shadows over the face

11 | Glasses with dark colored lenses or glare
12 | Cluttered background

Pose and facial attributes tests

13 | Gaze direction

14 | Mouth expression

15 | Correct position of shoulders

16 | Both eyes visible and open

17 | Eyes color

18 | Eyes occluded by glasses or hair
19 | Presence of glasses

20 | Glasses’ frames too heavy

21 Presence of hat/cap on head

TABLE I: Tests carried out by the commercial ICAO SDK
to decide whether an image is ISO/ICAO compliant. As
reported, tests range from geometric and photographic to
pose- and attribute-related aspects.

II. RELATED WORK

Due to the spread and efficacy of new Al-based generative
algorithms, several datasets that contain synthetic faces are
available in the literature [9]. The large majority of face-
based synthetic datasets have been collected specifically for
the Face Recognition task, and then they are created to have
a high number of images, identities, head poses, neglecting
specific standard requirements.

SynFace [37] addresses the challenges in collecting large-
scale real-world training data for face recognition, especially
considering label noise and privacy issues. The work iden-
tifies the performance gap between face recognition models
trained with synthetic and real face images as poor intra-class
variations and the domain gap between synthetic and real
images. The synthesis is based on the DiscoFaceGAN [17]
model and regards mostly frontal-view images, but the iden-
tity preservation between subjects is not evaluated.

In [3] DigiFace-1M, a large-scale synthetic dataset, is
presented. The dataset is designed to address the scarcity,
the biases and the label noise of diverse datasets for training
face recognition models. DigiFace-1M, created through the
framework presented in [47], provides a comprehensive set of
facial images with varied attributes, including ethnicity, age,
and facial expressions. The dataset is particularly notable for
its scale (1 million images), but unfortunately, the level of
realism seems to be limited.

The USynthFace dataset [8], generated through Disco-
FaceGAN [17], includes synthetic face images with variabil-
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Fig. 2: Steps for the generation of the ONOT dataset. Starting from the initial image generation procedure, we apply a
commercial SDK to verify if the generated images are compliant with the ISO/ICAO standard. The following steps regard
the verification of the intra-class consistency, i.e. all images of the same subject share the same identity and the inter-class
consistency, i.e. each subject presents a unique identity with respect to all the other generated subjects.

ity in identities, poses, illuminations, and expressions. In the
paper, the authors particularly emphasize the use of synthetic
data for training models in an unsupervised manner.

Differently, SFace [7] is created using a StyleGAN2-
ADA [28] generative model under class-conditional settings,
which generated 634k synthetic images, equally distributed
across 10k classes. The main limitations are due to the
limited variation in the same class and the demographic
bias inherited from StyleGAN2. These limitations have been
specifically addressed in [33] with GANDiffFace framework,
based on a combined use of GAN and diffusion models.

Recently, a variety of synthetic datasets have been gen-
erated through the use of diffusion models [35], [18]: these
datasets, in particular, are focused on identity preservation
and diversification through inversion of pre-trained face
recognition models (ID3PM [25]), style variation combined
with subject consistency (DCFace [6]) and the use of au-
thentic embeddings obtained from the authentic training
datasets to enhance the realism of generated images (IDift-
Face [6]). In the context of Face Morphing, a synthetic
dataset is proposed in [15]. The SMDD dataset contains 30k
morphing attack and 50 bona fide samples. The morphing
attack detection models [38] trained on SMDD demonstrated
high performance even when tested against unknown attack
types and morphing techniques, indicating its robustness and
generalizability. Unfortunately, we found that these images
do not pass the ISO standard checks (see Table I), resulting
often in morphed or bona fide images with low-quality or
visible artifacts.

In summary, the literature demonstrates significant
progress in the development and utilization of synthetic
facial image datasets. On the one hand, these datasets are
increasingly being recognized as valuable tools for address-
ing the challenges of privacy, biases, and data availability in
face recognition research. On the other hand, these datasets,
often explicitly created only for the face recognition task in
uncontrolled scenarios, tend to disregard the consistency of
synthesized identities and the need for standard images that
are used in document-related tasks.

ITI. DATASET GENERATION

A representation of the generation is provided in Figure 2.

A. Image generation

In this step, the goal is to generate facial images with
a high level of realism and quality, compliant with the
requirements of the ISO/ICAO standard.

To start the image generation process, 15k initial identities,
here referred to as pseudo-classes (since, at this step, it is
not guaranteed that different generated images correspond to
different real identities), are defined through a random seed
that, among others, contains information about the identity.
Each pseudo-class is defined by the combination of a prompt
and the initial seed. For each pseudo-class we generate 64
images, using a fixed negative prompt, a random positive
prompt and increasing the initial seed by 1. The generation
is based on a fine-tuned version of Stable Diffusion 1.5 [39],
namely Realistic Vision 5.1. The model is served using
Stable Diffusion Web UI [2]. Each image has a resolution
of 512 x 512 and is generated using the DPM++ SDE
Karras sampler [32], [27] with 25 steps. To generate the
15k identities (64 images per identity, for a total of 960k
generated images), we employ 32x A100 64GB Nvidia GPUs
for 14 hours in total.

Positive prompts are generated by randomizing values
inserted into a predetermined template. Specifically, to em-
ulate the characteristics of an official eMRTD picture, we
engineer the prompt to obtain images able to pass the
tests listed in Table I reflecting the ISO/ICAO requirements.
The main aspects we explicitly control are related to the
neutral expression upright frontal pose, bright background
and uniform lighting. These desired attributes are assigned
a higher weight than the rest of the prompt, given their
importance in the context of this dataset, as detailed in
the prompt template reported in Table II (in which the
negative prompt and two samples of positive prompts are
also reported). Properties such as gender and face traits are
chosen following a weighted selection algorithm, and the
probabilities are set as follows: 48% for male/female, 4%



(deformed iris, deformed pupils, semi-realistic, CGI, 3D, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of

frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands,

Ni%?]:w: poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross
promp proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, hair in front
of the eyes, hat, (shadows), (three-quarter pose), (face in profile:1.1)
Prompt ’AW front photo, face portrait photo of ({years} years old:1.1), {ethnicity} ({gender}:1.1), {hair color} hair, ({hair style} hair style:1.1),
P ({traits}:1.1), neutral expression, wearing dress, (white background:1.4), head horizontally aligned, (uniform lighting:1.4), top of the hair
template e )
visible, (passport photo:1.1)
RAW front photo, face portrait photo of (81 years old:1.1), African (female:1.1), black wavy hair, (braids hair style:1.1), (glasses and
Prompt freckles:1.1), neutral expression, wearing dress, (white background:1.4), head horizontally aligned, (uniform lighting:1.4), top of the hair

visible, (passport photo:1.1)

TABLE II: The negative prompt used for generating the images, the template of the positive prompt and one example of
prompt of a subject, as detailed in Section III-A. The extensive negative prompt ensures that the images have a natural look,
with realistic facial traits. The words within parentheses are assigned a greater weight by the model.

for non-binary; 23% for moles, freckles, moles and freckles;
2% for the other combinations of facial traits and attributes,
included the presence of the glasses. A comprehensive list
of these properties is given in Table III, which also includes
the file naming convention used for the dataset. To further
improve the variability of the dataset, we also include details
in the prompt about the hair color (e.g. blonde, brown) and
style (e.g. curly, straight, bold, with fringe), glasses type (e.g.
round lenses, metal glasses) and gender-specific traits (e.g.
beard), sampled through a uniform probability distribution.

B. ISO/IEC 39794-5 compliance

In this step, we aim to verify if each generated image
fulfills the ISO/ICAO quality requirements. This ISO/IEC
19794-5 standard [23], recently modified by ISO/IEC 39794-
5 [24], has been introduced to establish uniform guide-
lines and specifications for the exchange of biometric data,
specifically facial images, between different systems and
organizations. It was developed to address the need for
interoperability and consistency in the field of biometrics,
especially in applications based on identity verification and
authentication [40]. Then, the standard promotes compati-
bility between various biometric systems and helps prevent
data inconsistencies and errors when using automated facial
recognition technology [12].

The compliance verification procedure is carried out
through a commercial SDK?. Specifically, this SDK verifies
the presence of scene constraints (such as pose, and expres-
sion), photographic properties (e.g. lighting, positioning, and
camera focus), as well as digital image attributes (e.g. image
resolution, and image size). A comprehensive list of tested
features is reported in Table I. Upon the completion of the
validation, pseudo-classes that do not contain at least one
ISO/ICAO-compliant image are discarded.

C. Intra-class consistency

In this step, we aim to verify if the 64 images grouped in
each pseudo-class belong or not to the same identity. There-
fore, a face recognition pipeline is applied to each image.
In particular, we detect faces employing the MTCNN [49]

3https://www.correlance.com/cms/en/home

Field Description Values
m Model name S - Stable Diffusion
x{8}  Seed 00000000 - 99999999
Gg Gender GM - male
GF - female
GN - non-binary
Aaa Age A18-A99 years

Eee Ethnicity EEA - European/American
EAF - African

EIA - Indian-Asian

EAS - East-Asian

EME - Middle Eastern

TOO - none

TO1 - moles

TO2 - scars

TO3 - freckles

T10 - glasses

T11 - glasses and moles
T12 - glasses and scars
T13 - glasses and freckles
T14 - moles and freckles
T15 - glasses, moles,
and freckles

T25 - freckles and scars

0001 - 9999

FOO - digital
FO1 - Print&Scan (P&S)

Ttt Face traits

Innnn  Image number

Fff Image format

TABLE III: The file naming scheme used to save the images
to disk, which allows to understand the variety of the
generated elements included in the ONOT datasets.

face detector and align them following the SphereFace [31]
protocol. Any image that does not contain a face, or has
more than one face, is discarded. Finally, for each remaining
image, we extract its ArcFace [16] embedding.

We start by defining the similarity of faces ¢ and j as the
cosine distance of their respective embeddings e;, e;:

€ -€;
leilllle;ll
A cosine distance D¢ closer to O (or more specifically,
under a given threshold ¢) means that the two images’

embeddings are similar. Therefore, if D¢ (ei,ej) < t, we
can conclude that ¢ and j have the same facial identity.

Dc (e;,e;) =1 (1)
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Fig. 3: In addition to ISO/ICAO-compliant samples, other images are generated for each identity. As shown, intra-class
variance is present in terms of different head and body poses and facial traits.

The first step is to ensure that images within the same
pseudo-class are consistent, i.e. all images are similar enough
to all other images of the same class. Moreover, we require
that each pseudo-class must contain at least one ISO/ICAO-
compliant image.

More formally, given a set I of n images and a subset
C C I of ISO/ICAO-compliant images in the same given
pseudo-class, we find the largest subset V' C I so that:

V{i,j} €V Dc(e;,e;)) <tAVNC#D (2

To find the above-mentioned subset, we start by construct-
ing a similarity matrix S € R™*", which is defined as

1 ifi#jADc(e,e;) <t
Sij = - (€0r5) 3)
0 otherwise

The symmetric binary matrix S can be interpreted as
an adjacency matrix of an unweighted undirected similarity
graph GG, where each node represents an identity and each
edge indicates that two faces are similar enough. Then, the
set V that satisfies Equation 2 is found as the largest maximal
clique in G that contains at least one ISO/ICAO-compliant
image; all other images that are not part of such clique
are discarded. To enumerate all maximal cliques we employ
the Bron-Kerbosh algorithm [11] with pivoting [44], [14].
Despite having a worst-case time complexity of O (3V/3),
the running time of the algorithm remains practical given
that the graph GG contains at most 64 nodes.

The result of this procedure is shown in Figure 3, in which
for each line we report the images in the same pseudo-class

that we include in the dataset in addition to the ISO/ICAO
compliant ones.

D. Inter-class consistency

As the prompts for the different pseudo-classes may gen-
erate subjects that are too similar to each other, the next step
is to select the pseudo-classes that contain faces that are all
dissimilar enough.

More formally, given the set of all n pseudo-classes P,
we want to find a subset of classes @ C P so that:

V{Z7]}€Q7Z7é.7 DC(ei7ej)>t (4)

Note that after this step we can refer to the elements of @
as proper classes because each one contains exactly only one
homogeneous identity, and different classes represent differ-
ent identities. To find @), we compute the similarity matrix
S € R™*™ as defined by Equation 3; each cell represents the
comparison of the ISO/ICAO-compliant images’ embeddings
across all pseudo-classes. As before, S can be interpreted as
an adjacency matrix of an unweighted undirected similarity
graph G, where each node represents a pseudo-class and each
edge indicates that two pseudo-classes are similar enough.
Then, we note that finding () consists of computing the
maximum independent set in G. All pseudo-classes not part
of the found subset of nodes are discarded.

E. ICAO and identity consistency test statistics

As mentioned, the initial dataset generation includes 15k
different pseudo-classes. After the first ISO/ICAO compli-
ance test, 4032 identities survive: this reduction (—73%)
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Fig. 4: Samples of the subject variability included in the ONOT dataset. Different genders, ethnicities, ages and facial traits
are included in the dataset, enhancing the variability of the dataset. The naming convention is reported in Table III.

indicates a certain complexity in controlling specific face
characteristics, as further analyzed in the next section.

The following inter- and intra-class consistency tests are
based on a given threshold (¢) for the face verification
system [16]: in our case, we employ three distinct thresholds,
experimentally determined by the execution of a set of
20k impostor face verification attempts on a separate real
face dataset. The identified thresholds correspond to the
FMRlO(), FMRl()O(), FMRIOOOO’ and are respectively 0597,
0.493, and 0.413. We obtained this way three image subsets;
note that as the threshold values increase, the number of
images within each class grows, while the count of distinct
classes decreases. Specifically, after the identity consistency
test 55, 125 and 255 distinct identities remain, for the three
thresholds, respectively. These numbers reveal the challenges
of generating faces that combine strict ICAO-compliant
requirements and identity-based checks.

We observe these distinct subsets correspond to different
working scenarios: for instance, the use of a low threshold
implies a high level of similarity across different identities
and a lower intra-class variability, representing a challenging
benchmark for face analysis tasks since the resulting dataset
will include several cases of look-alike subjects. Vice versa,
a higher threshold implies the presence of more distinct
identities, but a higher level of intra-class variability, making
it suitable, for instance, to improve the robustness of FRSs
to typical variations of face appearance.

(b) P&S

(a) Digital

Fig. 5: Visual samples of the application of the P&S opera-
tion (see Sect. III-F) on two original images.

The ONOT dataset is released including the index anno-
tation files needed to reproduce the three subsets.

F. Print&Scan Generation

Finally, for each image available in the ONOT dataset,
we simulate the print and scan process (P&S) through the
method described in [19]. We include the P&S operation
since it is typical in procedures related to the issuance of
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Fig. 6: Age, traits, and ethnicity distributions of ONOT images. The blue, orange, and green bars respectively denote images
belonging to subsets defined by the three thresholds defined in Section III-E. The bottom three plots include only ISO/ICAO-
compliant images, while the top three include all images. The naming convention is reported in Table III.

electronic identity documents [4]: such processes commonly
entail the submission of a passport-sized photograph, which
is later scanned and compressed for storage in the document’s
chip. P&S images are released together with the original
version of the ONOT dataset. Figure 5 provides a visual
representation of the results of these operations.

IV. DATASET STATISTICS

Some examples representing the variability of the dataset
are depicted in Figure 4. In addition, main dataset statistics
are illustrated in Figure 6, in which the first line shows plots
computed on all the dataset images, while the second row
the plots computed only on the ISO/ICAO compliant images.

We observe that the majority of the identities that pass
the ICAO and identity consistency tests are in the range
of [21 — 60] years old, with the main peaks located in
[21—30] and [51 —60]. The second plots reveal that the most
common trait is represented by the combination of freckles
and moles (T14), followed by no specific attributes (T00),
freckles (TO1) and moles (T03): these percentages follow the
distribution detailed at the beginning of this section. Thus,
this indicates that generating faces with specific attributes
does not significantly influence compliance with the ICAO
test. Noticeably, the third plots reveal the presence of a
significant ethnic bias toward caucasian (EEA) subjects,
which comprises more than 40% of the dataset regardless of
the chosen subset. To investigate this behavior, we evaluate
the proportion of images grouped by ethnicity relative to the
total number of images before and after the checks detailed
in Section III-B. In particular, the proportion of images that
depict a caucasian subject initially accounts for 20.4% of
the dataset (since 5 different ethnicities are considered).
This proportion significantly increases to 45.6% after the
ICAO and identity consistency tests. Conversely, the East-

Asian (EAS) and Indian-Asian (EIA) ethnicities experience
a substantial reduction in representation, decreasing from
20.4% and 19.8% to 6.0% and 7.1% respectively. Finally,
Middle Eastern (EME) and African (EAF) ethnicities exhibit
minimal variation in representation in the dataset.

These observations indicate a potential bias in the em-
ployed face verification, which is less able to discriminate
identities in no-caucasian ethnicities, as suggested also in the
literature [13]. With respect to the commercial ICAO SDK
exploited, the slight difference in the distribution of the two
rows denotes that the software is more robust, having a more
uniform behavior across all ethnicities. Besides, these values
can also indicate a complexity in the generation of images
of a specific ethnicity, due to, for instance, an underrepre-
sentation bias in data used for training the generative model.

Moreover, we plot the scores’ distribution for the tests
reported in Table I in Figure 7. These scores are output by the
commercial [ICAO SDK validation tool and each produced
score is in the range [0, 1]. Following the official guideline
of the SDK, an image is considered ISO/ICAO-compliant if
all tests return a score greater or equal to 0.5 (red line in the
plot). Results indicate that two tests, specifically “shadows
over face” and “‘saturation”, pose notable challenges for the
images in the dataset. This highlights the difficulty faced by
the image generator in controlling lighting conditions and
saturation of the generated images, therefore significantly
impacting the number of images that pass the ISO/ICAO
compliance checks.

V. DISCUSSION AND FUTURE WORK

Despite the high quality of the generated images, the
prompt-based generation is complex, especially when strict
quality requirements have to be fulfilled. Indeed, there are
specific facial characteristics particularly challenging to ac-
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Fig. 8: Failure cases of the generation procedure.

curately control during the generation such as, as previously
mentioned, uniform lighting and skin color and the presence
of shadows. We hypothesize this is due to the nature of
the images used for training the generative model, mainly
belonging to unconstrained real-world scenarios with images
including, for instance, flashes and glares. Furthermore, we
observe the presence of a limited number of images present-
ing some generation artifacts, depicted in Figure 8, that are
difficult to detect through automatic face verification or face
quality analysis systems. For instance, the first two images
are correctly detected as faces by the used face detector [49],
while in the remaining images only a single face is detected.

Another critical aspect is the variability in generated
identities: indeed, starting from 15k pseudo-classes, only 255
identities survive the selection procedures (ICAO compli-
ance and identity consistency tests). In consideration of this
difficulty in controlling generated identities, we replicated
a similar generation experiment by forcing in the positive
prompt the generation of specific identities associated with
well-known individuals (e.g. actors, politicians, and the like).
In this case, starting from the same number of initial pseudo-
classes, there was an observed increase of 37% in surviving
identities, denoting the complexity of generating anonymous

identities from seed with respect to the generation of im-
ages of known identities. Moreover, we observe a certain
complexity also in generating multiple images of the same
identity: employing the same prompt with slightly different
seeds does not guarantee a constant identity across the
generated images, thus requiring intra-class consistency tests.

Finally, another significant challenge is posed by the
ISO/ICAO compliance verification tool: as many of these
tools are commercial and closed-source, the precise reasons
for a particular image failing a specific quality test are
difficult to determine; therefore, engineering prompts that
maximize the number of images that pass the ISO/ICAO
compliance checks proves to be arduous.

As future work, we plan to increment the number of
generated identities, and the release of a novel set of morphed
images created starting from ONOT bona fide subjects, using
multiple morphing algorithms. Another research topic should
regard the possibility of constraining the generation through
not only the input prompt, but also exploiting additional
multi-modal information sources (e.g. models, images) that
control specific elements (e.g. head pose, identity, age).
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