
Deep Joint Learning valuation of Bermudan Swaptions

Francisco Gómez Casanova1, Álvaro Leitao2,3,∗, Fernando de Lope Contreras1,
and Carlos Vázquez3,4

1BBVA, Spain
2Universitat Oberta de Catalunya (UOC), Spain

3CITIC Research Centre, University of A Coruña, Spain
4Department of Mathematics, University of A Coruña, Spain

April 18, 2024

Abstract

This paper addresses the problem of pricing involved financial derivatives by means of advanced of
deep learning techniques. More precisely, we smartly combine several sophisticated neural network-
based concepts like differential machine learning, Monte Carlo simulation-like training samples and
joint learning to come up with an efficient numerical solution. The application of the latter develop-
ment represents a novelty in the context of computational finance. We also propose a novel design of
interdependent neural networks to price early-exercise products, in this case, Bermudan swaptions.
The improvements in efficiency and accuracy provided by the here proposed approach is widely il-
lustrated throughout a range of numerical experiments. Moreover, this novel methodology can be
extended to the pricing of other financial derivatives.

1 Introduction

As in many areas of research requiring the use of intensive scientific computing tools to solve mathematical
models for real problems, there is an increasing use of deep learning and Artificial Neuronal Networks
(ANN) techniques to overcome the difficulties associated to the use of more traditional numerical methods.
This is also the case of the area of computational finance, where mathematical models associated to a large
variety of problems related to the pricing and risk management of more or less complex financial products
need to be efficiently solved. Among the variety of financial products, the class of financial derivatives
correspond to those that depend on the evolution of other financial products or instruments (underlying
assets): such as, equities, bonds, interest rates, foreign exchange rate, commodities, etc. We consider
early-exercise derivatives, which are a type of financial contracts that allows the holder to exercise it at
specific predetermined dates (exercise opportunities) prior to its expiration. This pricing problem has
been widely handled by “classical” (non-based on ANNs) methods, although multiple (computational)
challenges remain posed specially for the relatively complex financial derivatives. The early-exercise
derivative valuation can be formulated as a free-boundary problem associated to Partial Differential
Equations (PDEs), where not only the price of the derivative but also the exercise and non exercise
regions as well as the optimal exercise region must be identified, thus requiring the use of appropriate
numerical methods, like in [19, 34, 12, 6, 11, 4], for example. Further, as for many other financial contracts,
Monte Carlo methods can be employed in this context, typically relying on dynamic programming and
backward induction to obtain the optimal exercise policy. The most successful contributions following
this approach are based on the combination with appropriate regression techniques [27, 21, 23, 20, 3, 2].
Other methodologies that can be found in the literature employ trees [9], integration [15, 37] or Fourier
inversion [10] techniques. However, all the enumerated methods present important drawbacks (precision,
curse of dimensionality, general applicability, multiple evaluations, etc.) to be efficiently and robustly
used at practical level, specially in terms of computational cost, and prevent their utilisation for providing
accurate prices at the reasonable times required by the industry [17, 8].

∗Corresponding author.

1

ar
X

iv
:2

40
4.

11
25

7v
1

 [
q-

fi
n.

C
P]

 1
7

A
pr

 2
02

4

This paper addresses the problem of pricing involved financial derivatives by means of advanced forms of
deep learning and ANN. Although the proposed methodology can be applied to other products, we will
focus on the pricing of the Bermudan Swaption, which is a derivative whose underlying is the interest rate
swap. In the corresponding section, we will motivate the additional difficulties in the pricing of this early-
exercise interest rate derivative. In order to avoid some of the drawbacks described above when using
traditional numerical techniques, the ANN solutions have recently emerged as interesting alternatives,
whose main advantage is precisely that they decouple the expensive computations (carried on in training
phase) from the actual use. An already significant number of solutions based on ANNs for financial
problems have been proposed in the last few years [22]. Thus, ANNs have been applied for pricing all
types of financial derivatives, with [5, 17] and without [25] early-exercise features, recovering implied
volatilities [16, 26], solving valuation PDEs [32, 35], among others [13]. Still, there is much room to
explore within this novel field in general and, in particular, regarding its application in the early-exercise
pricing problem.
For this work, we employ a sophisticated form of ANN inspired in the developments proposed in [17],
where the so-called Differential Machine Learning concept was introduced. The general idea behind
it is to enhance the approximation power of an ANN by incorporating the information of the labels’
differentials (when available or easily computed). Thus, henceforth, we denote the here employed ANN
as Differential Artificial Neural Network (DANN). Also in [17], aiming to gain efficiency in the DANN
training phase, the authors propose the use of the so-called sampled payoffs as labels, instead of ground
truth prices. In the common pricing context, this means to generate a single Monte Carlo path of
the underlying model variable and consider the highly noisy price computed with it as the label to be
employed in the training phase. Then, an entire training set (with thousands or millions of samples)
can be generated at the cost of a classical Monte Carlo simulation-based pricing method. Here, we thus
perform a Monte Carlo simulation of the considered model with a suitable time discretization (depending
on the product at hand) and compute the corresponding prices/cash flows to be used as labels. Unlike
the original approach, where the authors generate the all the sampled payoffs under the same distribution
(i.e. with the same model parameters), in this work we take that idea a step further. Thus, with the
goal of covering most of the market situations (represented by the model parameters), we simulate each
of the Monte Carlo paths with a different set of parameters, such that, every single sample represents a
very noisy price for that particular setting. Then, the DANN trained with these labels is able to learn
the derivative prices for a wide set of market configurations, those defined in the ranges of the training
set. This makes a great difference with respect to any other “classical” methodologies where, in order
to obtain several prices, the corresponding algorithm needs to be repetitively executed (multiplying the
computational cost). Moreover, the presented approach can be somehow generalised (as we do in this
work), making that each sampled payoff is computed by averaging a bunch of few Monte Carlo realisations
which share the same distribution.
On top of the aforementioned approach, we introduce a novel strategy which intents to deepen in the idea
of providing more available information to the ANN with the aim of improving its training performance
and therefore producing more accurate estimations at similar computational cost. This new development
consists of incorporating related financial products to be estimated by the ANN whose ground truth
is “easy” to obtain. Then, besides the output/label of the ANN that represents the value of interest,
additional outputs/labels are considered. Ideally, these aside financial products must have a strong con-
nection with the original product (depending on the same model and market parameters). For example,
it is well known that a derivative with early-exercise features relies on some kind of linear combination
of the European counterparts. As we will see, this is precisely the type of relation that we exploit in this
work. The smart combination of this idea with the differential machine learning and the (generalised)
sampled payoffs constitutes the main contribution of this work, entailing several ways of improving the
estimations provided by the ANN-based solution proposed here.
The approach described in the previous paragraph shares common points to what is called joint learning
(also known as multi-task learning). This is a powerful machine learning paradigm that aims to improve
the performance of multiple related tasks by simultaneously learning them in a shared framework [7].
Unlike traditional single-task learning, joint learning leverages the inherent correlations and dependencies
between tasks (quantities of interest) to enhance the overall network’s generalization ability. By jointly
optimizing the ANN model on multiple outputs, it can effectively transfer knowledge and representations
learned from one output to benefit others, leading to more robust and efficient solutions [7]. Joint learning
finds application in various domains, such as natural language processing [36], computer vision [28],
and speech recognition [24], where tasks are interconnected and mutually beneficial learning can yield
significant performance gains. The flexibility and versatility of joint learning make it an increasingly

2

popular approach in the machine learning community, as it promotes better utilization of data and
ultimately paves the way for more intelligent and adaptable learning systems [31].
In the context of the previously described original aspects of this work, another contribution comes from
the use of the described DANN model combined with joint learning to solve the problem of pricing
early-exercise derivatives. As mentioned, Bermudan swaptions are considered, a very liquid and popular
product in the financial markets, that represents a paradigmatic example of interest rate derivative with
early-exercise features. Moreover, its valuation is rather challenging due to its particular properties,
especially this early-exercise opportunity at a finite set of prescribed dates. For this purpose, we propose
a novel design of interdependent DANNs which, once trained, encapsulate the optimal early-exercise
policy. More precisely, each of these DANNs estimates the value of the derivative at the corresponding
exercise time opportunity, which is employed for the DANN at the previous exercise date. This idea
can be understood as a large scale generalization of the classical regression-based methods, although
recalling that here we do not have a set of Monte Carlo simulations for the same underlying (with the
same parameters) but a bunch of single paths instead, the parameterizations of which are different. To
the best of our knowledge, this is the first time that this particular structure of interdependent DANNs
is introduced to solve the Bermudan derivatives valuation. Further, one final DANN makes use of the
ones codifying the early-exercise policy and performs the actual price estimation, following a traditional
supervised training but, again, employing noisy labels (and their differentials).
The rest of the paper is organized as follows. The next Section 2 simply reviews and establish the
formulation framework in terms of the mathematical models, financial products and pricing approaches.
The proper description and outcomes of the ANN-based solution proposed here are presented in Section
3. The obtained results with the application to Bermudan swaptions are shown in Section 4. Finally,
Section 5 concludes this work.

2 Problem formulation

This section is devoted to set both the financial models for the interest rate derivatives we will consider,
as well as the mathematical formulation that are followed throughout the paper. In view of the addressed
financial derivatives, the underlying stochastic factor is the interest rate. In order to describe the time
evolution of the over-night interest rate, we employ the well-known Linear Gauss Markov (LGM) model
proposed in [14, 15]. A brief description is presented, together with their most important properties and
the assumptions made. However, note that the deep learning approach here presented applies regardless
the chosen model. Next, we briefly introduce the mathematical formulation of the valuation problem of
both the European and the Bermudan swaptions under the LGM model, where the analytical formula
and an alternative definition are presented for each case, respectively.

2.1 Linear Gauss Markov model

As previously mentioned, the here considered short-rate dynamics is the one given by LGM model [14].
Due to its tractability and advantageous properties, this model is highly appreciated and used in the
industry. In particular, a risk neutral measure associated to suitable numeraire is directly available, and
there is a well-established connection with the celebrated Hull-White model [18]. Furthermore, LGM
model is rather simple (in its one-factor version), with a single state variable, the stochastic process x,
which evolves according to the equation:

dxt = α(t)dWt, x0 = 0, (1)

where W represents a standard Brownian motion under the risk neutral measure associated to the given
numeraire and the variance of xt is ζ(t) :=

∫ t

0
α2(τ)dτ . Note that x is a martingale under this risk neutral

measure.
Then, based on the state variable x, the numeraire can be defined as follows

N(t, xt) =
1

D(t)
exp

(
H(t)xt +

1

2
H2(t)ζ(t)

)
,

where D(t) denotes the discount factor for time t (observed in the market) and H(t) is a curve with a
similar interpretation as the mean reversion in the Hull-White model. Following existing literature, we
choose

H(t) =
1− exp(−κt)

κ
,

3

which entails that κ corresponds exactly to the Hull-White mean reversion. The function α(t) is also
related with the Hull-White mean reversion and volatility (see [14], for the details).
Under the aforementioned premises, the following formula for the value at time t of the zero coupon bond
with maturity T can be derived (see [14]),

Z(t, xt;T) =
D(T)

D(t)
exp

(
−(H(T)−H(t))xt −

1

2
(H2(T)−H2(t))ζ(t)

)
.

2.2 Valuation of European swaptions

A swaption is an option on a swap. The swap is a highly traded interest rate derivative consisting of
interchanging a series of future payments between two parties at some predefined dates, Ti, i = 1, . . . ,M .
One party pays a fixed amount given a fixed rate (fixed leg) while the other party pays a variable amount
which depends on the market evolution of a stochastic floating rate (floating leg). In its simple form, this
product is often known as interest rate swap (IRS). The IRS value1 can be entirely formulated in terms
of zero coupon bonds, namely,

VS(t, xt) = ϕ

(
Z(t, xt;T)− Z(t, xt;TM)−K

M∑
i=1

∆TiZ(t, xt;Ti)

)
where K is the fixed interest rate, T is the contract inception date, ∆Ti = Ti − Ti−1, and ϕ determines
whether the value is “seen” from the point of view of the party paying (swaption payer) the fixed amount
(ϕ = 1) or the party receiving (swaption receiver) it (ϕ = −1).
Thus, the European2 swaption payoff, provided that the exercise/maturity date is T , is given by

VE(T, xT) = max (VS(T, xT), 0) = max

(
ϕ

(
1− Z(T, xT , TM)−K

M∑
i=1

∆TiZ(T, xT , Ti)

)
, 0

)
whose value at time t < T reads

VE(t, xt) = N(t, xt)E

max
(
ϕ
(
1− Z(T, xT , TM)−K

∑M
i=1 ∆TiZ(T, xT , Ti)

)
, 0
)

N(T, xT)

∣∣∣∣∣Ft

 ,

where Ft represents the filtration at t.
Under the LGM model, an analytical solution for European swaptions can be straightforwardly obtained.
For the sake of brevity, only the final formula is provided (further details can be found in [14], for
example), which is given by

VE(t, xt) = ϕZ(t, xt, T)N

(
−ϕ

y∗T√
ζ(T)− ζ(t)

)

− ϕZ(t, xt, TM)N

(
−ϕ

y∗T + (H(TM)−H(T))(ζ(T)− ζ(t))√
ζ(T)− ζ(t)

)

− ϕK

M∑
i=1

∆TiZ(t, xt, Ti)N

(
−ϕ

y∗T + (H(Ti)−H(T))(ζ(T)− ζ(t))√
ζ(T)− ζ(t)

)
,

(2)

where N denotes the cumulative distribution function (CDF) of the standard normal distribution, yt =
xt +H(t)ζ(t) and y∗T is the unique solution that makes the payoff break-even. At today’s time, i.e., at
t = 0 with x0 = 0, the expression above can be further simplified, resulting in

VE(0, 0) = ϕD(T)N

(
−ϕ

y∗T√
ζ(T)

)

− ϕD(TM)N

(
−ϕ

y∗T + (H(TM)−H(T))ζ(T)√
ζ(T)

)

− ϕK

M∑
i=1

∆TiD(Ti)N

(
−ϕ

y∗T + (H(Ti)−H(T))ζ(T)√
ζ(T)

)
.

(3)

1For simplicity, here we assume that the nominal is a unit of currency.
2When the holder of the option can exercise it only at one specific time in the future.

4

2.3 Valuation of Bermudan swaptions

As described, under the LGM model, the European swaptions are readily priced. However, the valuation
of their Bermudan counterpart (the goal of this project) is much more challenging (no closed-form solution
is available, not even under the LGM), where the use of numerical approximations is mandatory. The
Bermudan-style derivatives allow to exercise the contract (the swaption in this case) at several agreed
future times. In order to try to simplify the computation of the value of Bermudan swaptions, we instead
consider the valuation of a related, but easier product to price, namely, the Cancellable IRS. There is a
direct connection between both financial instruments, defined by the following relationships:

V p
C = V p

S − V p
B ,

V r
C = V r

S − V r
B ,

(4)

where VS , VC , and VB denote the IRS, the Cancellable IRS and the Bermudan swaption prices, respec-
tively. The superscripts indicate whether the (underlying) swap is priced from the point of view of the
payer (p) or the receiver (r).
The Cancellable IRS allows to cancel (at some predefined times) the underlying IRS contract whenever
the holder position at that particular time instant is no longer beneficial. Mathematically, assuming
(without loss of generality) that the cancellation opportunities coincide with the IRS payment dates, the
price of the Cancellable IRS can be rewritten as

V p
C(t, xt)

N(t, xt)
= sup

τ∈{Ti/Ti>t}
E
[
max

(
V p
S (τ, xτ)

N(τ, xτ)
, 0

)]
,

V r
C(t, xt)

N(t, xt)
= sup

τ∈{Ti/Ti>t}
E
[
max

(
V r
S (τ, xτ)

N(τ, xτ)
, 0

)]
,

(5)

which enables the use of dynamic programming and backward induction to determine the optimal cancel-
lation policy and, then, solve the problem. This is typically addressed, specially in the financial derivatives
pricing context, by means of the combination of Monte Carlo simulation and regression techniques (see
the introduction for references).

2.4 Further details about the financial product

In this work, without any loss of generality, some assumptions/simplifications have been adopted:

• The underlying IRS is spot start (starting today) with payment frequency 1 year (in both legs)
associated to the tenor structure {T1, T2. . . . , TM}, and expiry in 10 years.

• For the Bermudan swaption (respectively for the Cancellable IRS), the first call date is 1 year after
the spot date of the underlying IRS, and the frequency of callability is also 1 year, i.e., the call
dates of the Bermudan swaption coincide with the payment dates of the IRS.

• When the Bermudan swaption is exercised, the payment corresponding to the exercise date is
assumed to be already paid, i.e, it is not included in the series of future payments.

• The notional is assumed to be the unit.

3 Deep learning for pricing Bermudan swaptions under LGM
model

We now move to the proper goal of this work, namely, the valuation of Bermudan swaptions by Deep
Learning/ANN approaches, recalling that an alternative, but related, product, i.e., the cancellable IRS,
is priced instead (see (4) and (5)). As previously indicated, the employed base network structure is the
DANN, which is combined with a Monte Carlo-like generation of “noisy” labels (the so-called sampled
payoffs), to come up with an algorithm to compute the value of the Cancellable IRS. This plain approach
will be coupled with the concept of joint learning (see Section 3.3) which, as we will see, provides a
remarkable enhancement.
As mentioned, the sampled payoffs, generated as Monte Carlo paths, are employed to feed/train the
DANN. Its generation is performed in terms of the parameter ranges described in Section 3.2, while

5

its corresponding differentials (required for training the DANN) are computed by Automatic Adjoint
Differentiation (AAD) [33]. Each path/sample is simulated by considering a different set of model and
market parameters, which then become inputs of the DANN. This means that the here proposed DANN
provides price estimations not only for a particular model configuration or market situation but also
for a much wider combination of those. This represents a major advantage with respect to classical
methods (including Monte Carlo and PDEs) or even plain applications of the DANN (see the seminal
work in [17]), where the solutions are computed given a particular setting, i.e. a re-computation or a
retraining are required every time the parameters of the addressed problem change. Moreover, the price
sensitivities (differentials with respect to the model parameters) are obtained for free, implicitly provided
by the advanced DANN structure design. However, this generalized simulation of training data based on
sampled payoffs is also the reason why the joint learning becomes necessary: the space of inputs turns
to be so big and the training data is highly “noisy” that the DANN model requires extra information to
reach the optimal solution with a manageable training set size at a reasonable computational cost. In
addition, the smart selection of the parameter ranges to cover the realistic market dynamics (and avoid
the less likely ones) also becomes a crucial aspect, which will be treated in Section 3.2.

3.1 DANNs design for the Cancellable IRS

As many other early-exercise derivative, the pricing methodology of a Cancellable IRS consists of two
parts. First, the cancellation policy needs to be determined following a backward induction, i.e., starting
from the last cancellation opportunity and iteratively computing the optimal cancellation strategy. Sec-
ond, the cancellation policy is employed on a newly generated set of Monte Carlo simulations (to avoid
biased estimations), thus obtaining the price of the Cancellable IRS.
In order to approximate the cancellation policy, we propose a sequence of interconnected DANNs where
a concrete DANN, associated with a cancellation opportunity, is employed (once trained) to compute
the labels of the subsequent DANN. This structured construction implies that the labels for the DANN
corresponding with the first cancellation opportunity depends on the estimations of all the “previous”
DANNs. This specific design gets inspiration from the classical regression-based methodologies. We
denote the sequence of DANNs as Backward DANNs. Once the cancellation policy is encapsulated in the
Backward DANNs, they can be employed over a newly generated set of Monte Carlo scenarios to compute
the “noisy” price (sampled payoff) at scenario level. Those samples become the labels of an additional
DANN, called here Forward DANN. Particularly, the Backward DANNs are utilised to determine whether
it is worth to cancel or not the IRS, incorporated in the methodology through an indicator function.
In Algorithms 1 and 2, the idea described above is mathematically represented. More precisely, for each
k-th simulated path, we denote by Θk the model parameters, byXk the path values of LGM state variable,
by Nk the path values of numeraire, and by CFk the future cash flows. The functions Ṽ t and V̄ 0 represent
the Backward DANNs and the Forward DANNs, respectively. The line marked by “Approximation by
DANN” represents the actual network training phase for which all the Monte Carlo paths are employed
to feed the DANN3.

Algorithm 1 Cancellation policy by the Backward DANNs.

Require: Θk, Xk(t), Nk(t,Xk(t)) and Fk(s, t,Θk, Xk) =
CFk(s,Θk,Xk(s))

Nk(t,Xk(t))

Ensure: V +
k = 0 and Ik = 1

for m = M − 1 . . . 1 do
Vk(tm,Θk, Xk(tm)) = Nk(tm, Xk(tm))

(
Fk(tm, tm+1,Θk, Xk) + Ik · V +

k

)
Ṽ tm(Θk, Xk(tm)) ≈ Vk(tm,Θk, Xk(tm)) ▷ Approximation by DANN.
Ik = 1{Ṽ t

m(Θk,Xk(tm))>0} ▷ Cancellation indicator (using the DANN approximation).

V +
k = Vk(tm,Θk,Xk(tm))

Nk(tm,Xk(tm)) ▷ Update V +
k for the next iteration.

end for

3.2 Training set generation

The first step for any ANN-based solution is the generation of the training set to be used to adjust the
free coefficients (weights) of the network. For this purpose, two aspects have a paramount importance:
the domain of the input space and the sampling distribution within that domain. The first point is

3The implementation is fully vectorized at time level so the values for each path are treated together in single vectors.

6

Algorithm 2 Pricing Cancellable IRS by the Forward DANN.

Require: Θ̂k, X̂k(t), Fk(s, t, Θ̂k, X̂k) =
CFk(s,Θ̂k,X̂k(s))

Nk(t,X̂k(t))
and Ṽk(t)

Ensure: V 0
k (Θ̂k) = 0 and Ik = 1

for m = 1 . . .M − 1 do
Ik = Ik · 1{Ṽk(tm,Θ̂k,X̂k(tm))>0} ▷ Cancellation indicator.

V 0(Θ̂k) = V 0(Θ̂k) + Ik · Fk(tm, tm+1, Θ̂k, X̂k) ▷ Update V 0.
end for
V̄ 0(Θ̂k) ≈ V 0

k (Θ̂k) ▷ Approximation by DANN.

determined by the problem at hand, so the domain in a derivative valuation context is often selected
based on the observed/expected market behaviour (past, present and future) or experience. The second
aspect is trickier since, although a uniform distribution seems often appropriate, an smart sampling taking
into account other factors like regions of more interest or with more error might provide a significant
prediction improvement of the ANN model (given a training time budget). Also the relation between the
inputs (model and market parameters) is an important aspect to be exploited, which can be employed to
avoid regions that represent unrealistic financial situations. In general, the generation of the training set
must incorporate any information which allows to explore only the regions of interest within the space
domain.
Having the aforementioned aspects in mind, we propose to generate the training data required in this
work employing the following strategies:

• Mean reversion. The Hull-White mean reversion parameter, κ, is uniformly distributed between
given upper and lower bounds, that is

κ = U(lκ, uκ).

• LGM volatility. The LGM volatility, α, is assumed to be a piecewise constant function of the
time. Further, a dependency on the κ parameter is often observed in the market. Thus, we intend to
incorporate that component in the samples’ generation. For that, we start by generating samples
of a forward “implied” volatility Σj for each of the prescribed volatility intervals (tj−1, tj], j =
1, . . . J . In order to produce volatilities which follow a certain structure and, again, avoid unrealistic
volatility patterns, we firstly introduce a parametric model, namely, the recognised Rebonato’s
parameterization [30], whose definition is

h(t) = (a+ bt) exp (−ct) + d

Then, the values for the implied volatilities are chosen as

Σj = h

(
tj−1 + tj

2

)
,

i.e., we evaluate the parametric function in the center of the interval of interest. To sample different
volatility structures, the values of the Rebonato’s model parameters can be randomly generated
from uniform distributions within provided suitable ranges, i.e.,

a = U(la, ua), b = U(lb, ub), c = U(lc, uc), d = U(ld, ud).

Once the implied volatilities are generated, the forward volatilities (the ones actually employed in
the simulation) are calculated under a prescribed relation with the model parameter κ. Assuming
we are in the Hull-White world, we take advantage of the equality

Σ2
j∆tj = α2

j

∫ tj

tj−1

exp (−2κ(tj − s)) ds.

After solving the integral and some algebraic manipulations, we obtain that

α2
j = 2κ

Σ2
j∆tj

1− exp(−κ∆tj)
,

7

where ∆tj = tj − tj−1 is the size of the j−th interval in the piecewise constant volatility function,
which is given by

α(t) =



α1, t ∈ (t0, t1],
α2, t ∈ (t1, t2],
α3, t ∈ (t2, t3],
α4, t ∈ (t3, t4],
...

...
αJ , t ∈ (tJ−1, tJ].

In Figure 1, an example of distributions of volatilities (generated with the prescribed values for
the Test Case III in Section 4.1.1) is presented, where only the first four values of the piecewise
function (those that will be employed in this work) are shown. We observe that the samples are
concentrated in the region of interest, determined by both the Rebonato’s parameterization and
the mean reversion, κ.

(a) α1. (b) α2.

(c) α3. (d) α4.

Figure 1: Histograms of the volatilites.

• Discount factors. Instead of directly addressing the discount curves, we will work with interest
rate curves. For that, the well-known Nelson-Siegel parametric model [29] is employed. Then,
the model parameters are sampled to obtain the required number of interest rate curves and,
subsequently, recover the corresponding discount factor curves. The model definition reads

R(t) = β0G0(t) + β1G1(t) + β2G2(t),

where
G0(t) = 1,

G1(t) =
1− exp

(
− t

τ

)
t
τ

,

G2(t) =
1− exp

(
− t

τ

)
t
τ

− exp

(
− t

τ

)
.

8

The basis functions are not arbitrary, but represent the basic components of an interest rate term
structure. The first basis function, G0, represents the long-term level. The second function, G1,
represents an exponential decay and allows the term structure to slope upwards (with β1 < 0)
or downwards (with β1 > 0). The third function, G2, produces a butterfly effect, i.e., β2 > 0 will
produce a hump and β2 < 0 will produce a trough. Finally, the parameter τ determines the location
of the hump or the trough, as well as its steepness.

Then, the Nelson-Siegel model parameters are randomly generated by

β0 = U(l0, u0), β1 = U(l1, u1), β2 = U(l2, u2), τ = U(lτ , uτ).

With the aim of generating realistic and up-to-date discount factors, the ranges of parameters are
selected relying on the current market situation.

Once we have generated as many interest rate curves as desired, the equivalent discount factors are
easily recovered from the discount curve constructed as

D(t) = exp

(
−
∫ t

0

R(s)ds

)
.

Next, in Figure 2, we present an example of distributions of discount factors at different time points,
namely, t = 1, t = 4, t = 7, and t = 10 (generated with the values prescribed for the Test Case III,
see Section 4.1.1).

(a) t = 1. (b) t = 4.

(c) t = 7. (d) t = 10.

Figure 2: Histograms of the discount factors at different time instants.

• Fixed rate. The fixed rate of the underlying swap K, is uniformly perturbed from the ATM level,
i.e., sampling the difference from the swap rate at time t = 0. Mathematically, we have

K = ATM +∆K,

9

where

ATM =
1−D(TM)∑M
i=1 ∆TiD(Ti)

,

with {Ti, i = 1, . . . ,M} being the set of swap payment times, and ∆K ∈ U(lK , uK) denotes the
strike spread to be sampled.

The design of training data generation is straightforwardly translated to the input layer of the DANN
where each entry represents one of the involved parameters in the training set definition. Thus, we then
consider ten inputs representing the following parameters: κ, a, b, c, d, β0, β1, β2, τ , and ∆K. For the
sake of simplicity (and with certain abuse of notation), we indistinguishably employ the previous forms
to refer both the parameters and the inputs.

3.3 Joint learning for Cancellable IRS: adding European swaptions as out-
puts

One of the main contributions of this work is the utilisation of the joint learning feature (in combination
with the DANN) to significantly enhance the prediction power (accuracy) of the ANN-based solution.
After the description of the proposed joint learning technique in this section, this enhancement will be
illustrated in Section 4.2.
In order to apply the joint learning, not only the Cancellable IRS is estimated by the ANN model,
but also extra related outputs/labels are considered. In this case, a set of European swaptions whose
maturities coincide with each of the cancellation times (what it is often called coterminal swaptions) are
chosen. As it is well-known that the Bermudan derivatives can be somehow seen as a combination of a
number of their European counterparts, this represents a natural choice. Also note that the values of the
European coterminal swaptions are often available in closed-form for many models in the literature. In
particular, under the LGM model used here, their price is given by (3). This aspect is of great importance
since, while the labels for the Cancellable IRS are noisy prices (sampled payoffs), the labels/prices of the
coterminal European swaptions are the ground truth. Intuitively, adding labels with exact (non-noisy)
values should help to improve the estimations provided by the whole DANN (at a prescribed training
time budget), besides more quantities need to be predicted, boosted by the joint learning effect.
Further, as has been mentioned throughout the paper, the joint learning approach is integrated within
an already advanced ANN structure, namely, the DANN. This integration is not trivial as it entails the
appearance of (cross) partial derivatives, implicating that the differential labels are no longer well-defined
as 1D-vectors. Alternatively, they can be defined as directional differentials with respect to some specified
linear combination of the outputs (see [17], for details). By taking a special combination of directions in
terms of unitary vectors, the Jacobian matrix is obtained, which facilitates the formal writing (in matrix
form) of the backpropagation equations of the DANN4. We then adapt our joint learning approach based
on European coterminal swaptions by following the described differential strategy relying on the Jacobian
matrices. This requires the computation of the coterminal swaptions differentials with respect to the
involved parameters (i.e., network’s inputs). Again, in this case, these differentials can be analytically
computed, since their exact formula can be obtained just by differentiating in expression (3).
The final DANN structure, considering joint learning, is schematically represented in Figure 3. This
example considers a DANN with three inputs and two outputs. The plain feed-forward part is represented
in lighter colors, while the differential (back-propagating) part is represented in darker ones. The values
of the inputs and the outputs are denoted by the vectors x and y, respectively. The intermediate results
of the hidden layers are denoted by z with a subscript identifying each layer. The feed-forward behaves
as usual, ignoring the biases in the example for simplicity. Next, in the second part, the DANN model
presents as many twin networks as outputs in the feed-forward part (two in the example), introducing the
differential component. This back-propagating part starts (following the base directional differentials)
with the partial derivatives of the outputs with respect to themselves, thus resulting in the 0’s and 1’s
which appear in the dark blue circles. Then, by applying the chain rule, the intermediate differentials
are recursively calculated across the hidden layers (dark green circles) up to the final “differential” layer
(dark red circles), where the partial derivatives of the outputs with respect to the inputs are obtained.
However, note that this procedure is computationally (and mathematically) treated as an integrated
bigger network, handling the back-propagation via matrix operations which are made explicit at the

4The multi-output backpropagation computation can be easily handled (and accelerated) by platforms like TensorFlow,
which directly benefits from the CPU or GPU parallelism. Therefore, the additional computation complexity will be
experienced as sublinear [17].

10

bottom of each layer of neurons. The ◦ operator denotes the element-wise product and I the identity
matrix. As previously mentioned, by proceeding in this way, we obtain the Jacobian matrix as output of
the whole differential part. Thus, the “differential” labels to be provided must be the partial derivatives
with respect to each input, here denoted by means of the convenient adjoint notation, namely, x̄. Finally,
we recall that the differential back-propagating network shares the weights with the feed-forward network.
These weights are updated aiming to minimize a loss function that combines the outputs of both parts
(feed-forward and differential) of the DANN model (see [17] for further details).

Figure 3: DANN structure considering multiple outputs, i.e., integrating the joint learning approach.

4 Numerical experiments

The goal of this section is to measure the impact of different aspects in the accuracy of the predictions
by the DANN. To do so, on the one hand, we follow an incremental procedure in terms of the involved
inputs (see Section 4.1.1) to have an intuition on the relevance of the different set of inputs. On the
other hand, we aim to assess the gain provided by the proposed joint learning strategy (see Section 4.2).
We complete the study by incorporating two additional features: the use of more Monte Carlo paths per
sample (see Section 4.3) and the use of extra temporal inputs to approximate the derivative price not
only at the value date but also at any (prescribed) future time instant (see Section 4.4).

4.1 Configuration

Regarding the hyperparameter configuration, after a systematic testing, we have chosen the structure
and training design described in Table 1, which is the same for all the networks.

Hyperparameter Value

Layers 4
Neurons 32
Epochs 128

Batch size 4096

Table 1: Hyperparameters.

11

The results included in this paper are mainly presented in the form of differences’ histograms. Those
represent the distribution of distances between the reference values from a validation set and the val-
ues/prices predicted by the trained DANNs. In the captions of each histogram, the mean absolute error
and the so-called interquantile interval can be found. The latter is a sort of confidence interval, meaning
that the 80% of the predictions have a deviation that falls into the provided interval. The ground truth
values (prices of Cancellable IRS) of the validation set are computed by a highly converged Monte Carlo
pricer based on the so-called Stochastic Grid Bundling Method (see [21], for details) which ensures a high
accuracy (below half basis point with n = 220), as empirically verified5. The size of the validation set
employed here is 4096.
Other considerations:

• The number of Monte Carlo simulation time steps are taken equal to the swap tenor.

• The data of the piecewise constant volatility are J = 3 and t0 = 0, t1 = 1, t2 = 5 and t3 = 10.

• Random variables samples are generated by antithetic variables techniques to reduce variance.

• Differentials are obtained via the AAD module of the TensorFlow package.

• The codes have been implemented in Python 3.8 with TensorFlow 2.7 on the OS Linux Ubuntu
20.04, processor CPU Intel Core i7-4720HQ 2.6GHz, RAM memory of 16GB and GPU Nvidia Tesla
V100. The computations are performed in single precision.

4.1.1 Test base cases

As mentioned, in order to keep more control over the obtained approximations by the DANN, we establish
incremental base test cases, which gives some substantial insights of how the estimations behave. To define
the test cases, the inputs are grouped depending on what they represent: mean reversion (κ), volatility
(a, b, c, and d), discount factors (β0, β1, β2, and τ), and strike spread (∆K). Then, each group of inputs
is incrementally incorporated to the DANN training. Note that the input layer size is kept invariant (10
inputs), but a specific group of inputs can be disabled by reducing its sampling domain to the minimum
such that the DANN treats that particular input as a constant. Thus, following this idea, the incremental
test cases are constructed (recalling that, with those input parameters, a set of Monte Carlo paths is
generated) as shown in Table 2.
The limits of the ranges for each parameter/input are selected such that a selected real market situation
is well represented.

4.2 Impact of joint learning

For each of the test cases defined above, we measure the actual performance of the whole “system” of
DANNs in estimating the price of the Cancellable IRS. In the experiments of this section, the training
set size is nb = 222 for the Backward DANNs and also nf = 222 for the Forward DANN. In the left
graph of Figures 4, 5, 6 and, 7, the differences distributions are depicted. Next, we incorporate joint
learning construction which, as mentioned, relies on the coterminal European swaptions. The results of
the DANN estimations with joint learning are presented in the right graph of the same Figures 4, 5, 6
and, 7.
From the results observed in the figures, we extract the following insights:

• In all cases the differences’ distributions are centered at cero, thus indicating that the DANN
predictions do not present bias.

• The incorporation of the inputs related with the discount factors and the volatility seems to make
the solution to be approximated more challenging.

• When the strike spread is included (test case IV) the DANN provides slightly better estimations.
Although this might seem counterintuitive, that behavior appears due to the effect of the strikes far
from ATM level (particularly those more in-the-money). As we measure the absolute differences,
the estimations of the DANN present a smaller deviation when the derivative price is lower. This
effect is implicitly present in the histograms, where a certain skewness is observed (more clearly
visible in the case employing joint learning, see Figure 7b).

5After a numerical study comparing the method against a Bermudan swaption pricer under the Hull-White model based
on PDEs, implemented within the QuantLib library [1].

12

Test Case I Test Case II
lκ = −0.05, uκ = 0.1 lκ = −0.05, uκ = 0.1
la = −10−5, ua = 10−5 la = 10−5, ua = 0.0075
lb = −10−5, ub = 10−5 lb = 0, ub = 0.0005
lc = −10−5, uc = 10−5 lc = 0, uc = 0.25
ld = 0.0075− 10−5, ud = 0.0075 + 10−5 ld = 10−5, ud = 0.0075
l0 = 0.02− 10−5, u0 = 0.02 + 10−5 l0 = 0.02− 10−5, u0 = 0.02 + 10−5

l1 = −10−5, u1 = 10−5 l1 = −10−5, u1 = 10−5

l2 = −10−5, u2 = 10−5 l2 = −10−5, u2 = 10−5

lτ = 1− 10−5, uτ = 1 + 10−5 lτ = 1− 10−5, uτ = 1 + 10−5

lK = −10−5, uK = 10−5 lK = −10−5, uK = 10−5

Test Case III Test Case IV
lκ = −0.05, uκ = 0.1 lκ = −0.05, uκ = 0.1
la = 10−5, ua = 0.0075 la = 10−5, ua = 0.0075
lb = 0, ub = 0.0005 lb = 0, ub = 0.0005
lc = 0, uc = 0.25 lc = 0, uc = 0.25
ld = 10−5, ud = 0.0075 ld = 10−5, ud = 0.0075
l0 = −0.005, u0 = 0.05 l0 = −0.005, u0 = 0.05
l1 = 0, u1 = 0.001 l1 = 0, u1 = 0.001
l2 = 0, u2 = 0.01 l2 = 0, u2 = 0.01
lτ = 0.01, uτ = 2 lτ = 0.01, uτ = 2
lK = −10−5, uK = 10−5 lK = −0.01, uK = 0.01

Table 2: Test cases.

(a) Abs. avg.: 4.3, (Q10, Q90) = (−5.7, 7.0). (b) Abs. avg.: 0.7, (Q10, Q90) = (−0.8, 1.4).

Figure 4: Pricing differences in basis points of Test Case I: Plain DANN (left) and DANN with joint
learning (right).

• An impressive (and general) reduction of the error thanks to the joint learning approach is achieved,
where both the average error and the interquantile interval are, at least, halved.

4.3 Impact of number of samples and Monte Carlo paths per sample

Next, we perform a more sophisticated experiment with the goal of testing the empirical convergence in
two senses: number of samples and Monte Carlo paths per sample. Firstly, we systematically increase the
number of samples to measure the impact of this factor in the final estimations. The number of samples
used to train the Backward DANNs is now set to nb = 223, while the number of the samples used to feed
the Forward DANN is chosen to be half (nf = 222), equal (nf = 223) or double (nf = 224). Secondly,
the number of Monte Carlo paths employed to obtain a sampled payoff is multiplied twice by a factor
of 4, i.e, nMC = 4 and nMC = 16 are tested (besides the single-path original setup). This represents a
generalisation of the current approach, making the labels a bit less “noisy” and serves to check whether

13

(a) Abs. avg.: 3.9, (Q10, Q90) = (−6.0, 5.7). (b) Abs. avg.: 1.8, (Q10, Q90) = (−1.0, 3.7).

Figure 5: Pricing differences in basis points of Test Case II: Plain DANN (left) and DANN with joint
learning (right).

(a) Abs. avg.: 8.3, (Q10, Q90) = (−10.0, 12.4). (b) Abs. avg.: 2.6, (Q10, Q90) = (−1.9, 5.1).

Figure 6: Pricing differences in basis points of Test Case III: Plain DANN (left) and DANN with joint
learning (right).

it is worth to arbitrarily increase the training set size or it is better to improve the quality of the labels.
Both approaches are combined with the joint learning component. The obtained results are shown in
Figures 8 and 9 when employing the plain DANN estimator or the DANN plus joint learning, respectively.

Some important lessons can be extracted from the results in Figures 8 and 9:

• As expected, systematically increase the number of samples provided to the DANN improves the
predictions, although the reduction of the interquantile intervals, i.e., in the deviations’ variance,
is rather limited.

• In contrast to the previous point, we again observe that the DANN trained relying on the joint
learning approach provides more accurate estimations, significantly reducing the variance.

• The effect of including more Monte Carlo paths per sample presents the expected behavior, i.e.,
when the number of paths is multiplied by four the error is approximately halved (according to the
theoretical convergence rate of Monte Carlo methods, n−1/2).

• When most of the differences fall below ±3 basis point, a certain level of saturation is observed
meaning that considering either more samples or more Monte Carlo paths per sample no longer
reduces the deviations in the predictions (or the reduction results to be negligible).

14

(a) Abs. avg.: 5.0, (Q10, Q90) = (−8.1, 7.4). (b) Abs. avg.: 2.3, (Q10, Q90) = (−4.8, 2.5).

Figure 7: Pricing differences in basis points of Test Case IV: Plain DANN (left) and DANN with joint
learning (right).

4.4 Valuation at future dates

The above described methodology can be generalized with the aim of pricing Cancellable IRS not only
at the value date (i.e. today’s time t = 0) but also at some prescribed future dates. For that purpose,
the input layer of the forward DANN needs to be enlarged to admit two new inputs: the valuation
time t > 0 and the state value of LGM process at that particular time instant xt (which is no longer
zero). Furthermore, since two additional inputs are included, a wider DANN is required to manage the
increasing complexity of the input’s space. Thus, we double the neurons per layer, up to 26 = 64. For
simplicity, and without any loss of generality, we only consider the dates coinciding with the cancellation
times, assuming that the owner of the product has not cancelled up to the given valuation date. This
choice of dates allows us to compare the estimations of the DANN with time component against the
trained Backward DANNs. Recall that these network models are trained to estimate the continuation
value just after the cancellation times, which is, by definition, the value of the product at that particular
time. In Figure 10, we present the predicted prices by the Backward DANNs and the Forward DANN
considering the same time instants and for a range of values of the LGM state variable. We observe that
the results are qualitatively very satisfactory, with a high degree of agreement. This also entails a sort of
validation for the Backward DANNs.
Next, a more quantitative experiment is carried out. We now compare the Forward DANN predictions
including the time component with respect to prices computed by means of our Monte Carlo-based pricer
(adapted to consider a valuation time different from the value date) which, as mentioned, ensures an
error below a half basis point. In this experiment, we also incorporate the joint learning feature, which
showed a successful performance in the case without time component. Again, the coterminal European
swaptions are the considered aside products, taking into account the valuation time and the LGM state
value at that specific time instant i.e., t and xt, respectively. Again, the valuation of these products can
be performed analytically, employing the expression (2). Note that the prices of the coterminal European
swaptions whose maturity is shorter than the handled time are set to zero. In Figure 11, the difference
distributions and the confidence intervals are shown. Once again, we observe that the DANN including
joint learning leads to improved estimations, achieving a reduction in the confidence intervals of around
3 basis points. In average, the gain in accuracy reaches 1 basis point.
The previous results are disaggregated in terms of the considered valuation times. The obtained differ-
ences’ distributions are presented in Figures 12 and 13. This disaggregated view offers more relevant
information, where the impact of the joint learning in the estimation is much clearer. In the following,
we highlight some of the observed outcomes:

• More accurate estimations for times closer to the end of the derivative contract are obtained, which
is explained by the much lower variability/complexity of the predicted prices when the number of
remaining payments in the underlying IRS is small. As we move to times closer to zero, the pricing
problem becomes more challenging and, consequently, the DANN predictions deteriorate.

• The inclusion of the joint learning approach in the DANN fitting process provides again a remarkable

15

(a) (Q10, Q90) = (−8.9, 8.8). (b) (Q10, Q90) = (−6.9, 5.9). (c) (Q10, Q90) = (−6.5, 3.4).

(d) (Q10, Q90) = (−3.6, 5.2). (e) (Q10, Q90) = (−2.5, 4.8). (f) (Q10, Q90) = (−3.0, 3.2).

(g) (Q10, Q90) = (−2.5, 2.7). (h) (Q10, Q90) = (−1.9, 2.7). (i) (Q10, Q90) = (−1.6, 2.3).

Figure 8: Pricing differences in basis points. Test Case IV. Plain DANN (no joint learning). Columns:
nf = 222 (left), nf = 223 (central), nf = 224 (right); Rows: nMC = 1 (top), nMC = 4 (middle), nMC = 16
(bottom).

improvement in the estimations, having more positive impact for shorter times where, as mentioned
above, more error has been observed when the plain DANN is employed. This very desirable effect
represents another relevant advantage provided by the joint learning strategy.

• The histograms of differences in the estimations provided by the DANN with joint learning present
fatter left tails, thus indicating that this ANN model tends to underestimate the correct value. This
effect appears due to the fact that the coterminal European swaptions are, by definition, cheaper
than the product at hand (cancelable IRS), pushing the estimations down. This is more pronounced
for shorter times, where the contribution of the coterminal swaptions is more important (the higher
the time, the more aside products with zero value), resulting in histograms that present a deeper
“unbiased” pattern.

5 Conclusions

In this work, an innovative solution for the Bermudan swaption valuation problem based on advanced deep
learning techniques has been proposed. In this setting, many additional very relevant components have
been added on top of classical ANN approach. Some of them are appropriate adaptations of existing
methodologies, like the use of sampled payoffs (highly noisy price values) as labels or the differential
machine learning network design. Those features have been carefully tested and analyzed in a challenging

16

(a) (Q10, Q90) = (−4.8, 2.7). (b) (Q10, Q90) = (−3.1, 2.9). (c) (Q10, Q90) = (−2.8, 2.8).

(d) (Q10, Q90) = (−4.1, 1.3). (e) (Q10, Q90) = (−2.1, 3.0). (f) (Q10, Q90) = (−0.4, 2.9).

(g) (Q10, Q90) = (−1.2, 3.0). (h) (Q10, Q90) = (−1.7, 2.1). (i) (Q10, Q90) = (−1.7, 2.1).

Figure 9: Pricing differences in basis points. Test Case IV. DANN with joint learning. Columns: nf = 222

(left), nf = 223 (central), nf = 224 (right); Rows: nMC = 1 (top), nMC = 4 (middle), nMC = 16
(bottom).

and practical financial problem, as it is the case of pricing Bermudan swaptions. Moreover, we have also
proposed a novel training strategy in quantitative finance, namely the joint learning, which has shown an
impressive performance. The idea behind our joint learning approach is to incorporate “similar” financial
products as outputs, aiming that they help in the training process to reach more accurate solutions for
complex derivatives at less/similar computational cost. More precisely, for pricing Bermudan swaptions,
we consider the equivalent pricing problem of pricing cancellable IRS and we choose a set of European
swaptions with maturities at the cancellation times as additional outputs for the joint learning strategy.
Throughout several experiments, the advantages of employing the proposed joint learning-based training
have been clearly highlighted.
Among the conclusions of this work, we also note that application of the set of proposed techniques can
be extended to the pricing of other financial products, such as autocallables on a basket of assets, for
which the Greeks can also be obtained. Also in this case, the joint learning strategy can be applied by
selecting the characteristics of the appropriate additional financial products. Some research work in this
direction has been already initiated by the authors.

Acknowledgements

The authors AL and CV acknowledge the support of Centre for Information and Communications Tech-
nology Research (CITIC). CITIC is funded by the Xunta de Galicia through the collaboration agreement

17

(a) t = 8 (b) t = 6

(c) t = 4 (d) t = 2

Figure 10: Predicted prices at different times: Backward DANN (blue points) vs. Forward DANN with
time (red circles).

(a) Abs. avg.: 4.9, (Q10, Q90) = (−6.8, 6.9). (b) Abs. avg.: 3.8, (Q10, Q90) = (−5.7, 3.3).

Figure 11: Pricing differences in basis points, compared against a Monte Carlo pricer: plain DANN (left)
and DANN with joint learning (right).

between the Conselleŕıa de Cultura, Educación, Formación Profesional e Universidades and the Galician
universities for the reinforcement of the research centres of the Galician University System (CIGUS).

18

(a) Abs. avg.: 3.1, (Q10, Q90) = (−4.2, 4.8). (b) Abs. avg.: 3.6, (Q10, Q90) = (−5.0, 5.9).

(c) Abs. avg.: 4.5, (Q10, Q90) = (−5.4, 6.8). (d) Abs. avg.: 5.9, (Q10, Q90) = (−8.5, 7.5).

(e) Abs. avg.: 7.9, (Q10, Q90) = (−10.1, 10.8).

Figure 12: Pricing differences in basis points, compared against a Monte Carlo pricer, of plain DANN at
t = 8, t = 6, t = 4, t = 2, and t = 0, from right to left and upper to bottom, respectively.

This research has been mainly funded under a contract between BBVA and CITIC. The contents of this
article represent only the authors’ views, and do not represent the opinions of any firm or institution.

19

(a) Abs. avg.: 2.2, (Q10, Q90) = (−3.3, 3.2). (b) Abs. avg.: 2.8, (Q10, Q90) = (−3.7, 3.9).

(c) Abs. avg.: 3.1, (Q10, Q90) = (−5.3, 2.9). (d) Abs. avg.: 3.7, (Q10, Q90) = (−6.9, 2.8).

(e) Abs. avg.: 3.7, (Q10, Q90) = (−7.3, 3.4).

Figure 13: Pricing differences in basis points, compared against a Monte Carlo pricer, of DANN with
joint learning at t = 8, t = 6, t = 4, t = 2, and t = 0, from right to left and upper to bottom, respectively.

References

[1] QuantLib. Available at: https://www.quantlib.org/.

[2] Íñigo Arregui, Álvaro Leitao, Beatriz Salvador, and Carlos Vázquez. Efficient parallel Monte-Carlo
techniques for pricing American options including counterparty credit risk. International Journal of
Computer Mathematics, pages 1–21, 2023.

20

[3] Iñigo. Arregui, Beatriz Salvador, and Carlos Vázquez. A Monte Carlo approach to American options
pricing including counterparty risk. International Journal of Computer Mathematics, 96(11):2157–
2176, 2019.

[4] Iñigo Arregui, Beatriz Salvador, Daniel Ševčovič, and Carlos Vázquez. PDE models for Amer-
ican options with counterparty risk and two stochastic factors: Mathematical analysis and nu-
merical solution. Computers & Mathematics with Applications, 79(5):1525–1542, 2020. DOI:
https://doi.org/10.1016/j.camwa.2019.09.014.

[5] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Pricing and hedging American-style options
with deep learning. Journal of Risk and Financial Management, 13(7), 2020.

[6] Alfredo Bermúdez, Maŕıa R. Nogueiras, and Carlos Vázquez. Numerical solution of variational
inequalities for pricing Asian options by higher order Lagrange–Galerkin methods. Applied Numerical
Mathematics, 56:1256–1270, 2006.

[7] Michael Crawshaw. Multi-task learning with deep neural networks: A survey, 2020.

[8] Oliver Ebner, Andreas Hirz, Lukas Smetana, and Karoline Vonach. Derivative pricing and risk
management with neural networks, November 2022. [Online at BankingHub: posted 11-November-
2022].

[9] Zineb El Filali Ech-Chafiq, Pierre Henry-Labordere, and Jérôme Lelong. Pricing Bermudan options
using regression trees/random forests, 2023.

[10] Fang Fang and Cornelis W. Oosterlee. Pricing early-exercise and discrete barrier options by Fourier-
cosine series expansions. Numerische Mathematik, 114(1):27–62, 2009.

[11] Javier Farto and Carlos Vázquez. Numerical methods for pricing callable bonds with notice. Applied
Mathematics and Computation, 161:989–1013, 2005.

[12] Peter A. Forsyth and Kenneth R. Vetzal. Quadratic convergence for valuing american options using
a penalty method. SIAM Journal on Scientific Computing, 23(6):2095–2122, 2002.

[13] Alessandro Gnoatto, Athena Picarelli, and Christoph Reisinger. Deep xVA solver: A neural net-
work–based counterparty credit risk management framework. SIAM Journal on Financial Mathe-
matics, 14(1):314–352, 2023.

[14] Patrick S. Hagan. Evaluating and hedging exotic swap instruments via LGM, 2002.

[15] Patrick S. Hagan. Methodology for callable swaps and Bermudan “exercise into” swaptions, 2004.

[16] Blanka Horvath, Aitor Muguruza, and Mehdi Tomas. Deep learning volatility: a deep neural network
perspective on pricing and calibration in (rough) volatility models. Quantitative Finance, 21(1):11–
27, 2021.

[17] Brian Huge and Antoine Savine. Differential machine learning, 2020.

[18] John Hull and Alan White. Pricing interest-rate-derivative securities. Review of Financial Studies,
3(4):573–92, 1990.

[19] P. Jaillet, D. Lamberton, and B. Lapeyre. Variational inequalities and the pricing of American
options. Acta Applicandae Mathematicae, 21:263–289, 1990.

[20] Shashi Jain, Álvaro Leitao, and Cornelis W. Oosterlee. Rolling Adjoints: Fast Greeks along Monte
Carlo scenarios for early-exercise options. Journal of Computational Science, 33:95–112, 2019.

[21] Shashi Jain and Cornelis W. Oosterlee. The Stochastic Grid Bundling Method: Efficient pricing of
Bermudan options and their Greeks. Applied Mathematics and Computation, 269:412–431, 2015.

[22] Sumit Kumar. A review of neural network applications in derivative pricing, hedging and risk
management. Academy of Marketing Studies Journal, 27(3):1–24, 2023.

[23] Álvaro Leitao and Cornelis W. Oosterlee. GPU acceleration of the Stochastic Grid Bundling Method
for early-exercise options. International Journal of Computer Mathematics, 92(12):2433–2454, 2015.

21

[24] Lin Li, Zheng Li, Yan Liu, and Qingyang Hong. Deep joint learning for language recognition. Neural
Networks, 141:72–86, 2021.

[25] Shuaiqiang Liu, Anastasia Borovykh, Lech A. Grzelak, and Cornelis W. Oosterlee. A neural network-
based framework for financial model calibration. Journal of Mathematics in Industry, 9(9), 2019.

[26] Shuaiqiang Liu, Álvaro Leitao, Anastasia Borovykh, and Cornelis W. Oosterlee. On a neural network
to extract implied information from American options. Applied Mathematical Finance, 28(5):449–
475, 2021.

[27] Francis A. Longstaff and Eduardo S. Schwartz. Valuing American options by simulation: A simple
least-squares approach. Review of Financial Studies, 14(1):113–147, 2001.

[28] Philip Müller, Georgios Kaissis, Congyu Zou, and Daniel Rueckert. Joint learning of localized
representations from medical images and reports. In Lecture Notes in Computer Science, pages
685–701. Springer Nature Switzerland, 2022.

[29] Charles R. Nelson and Andrew F. Siegel. Parsimonious modeling of yield curves. The Journal of
Business, 60(4):473–489, October 1987.

[30] Riccardo Rebonato, Kenneth McKay, and Richard White. The SABR/LIBOR market model: Pric-
ing, calibration and hedging for complex interest-rate derivatives. Wiley, 2009.

[31] Sebastian Ruder. An overview of multi-task learning in deep neural networks, 2017.

[32] Beatriz Salvador, Cornelis W. Oosterlee, and Remco van der Meer. Financial option valuation by
unsupervised learning with artificial neural networks. Mathematics, 9(1), 2021.

[33] Antoine Savine. Modern computational finance: AAD and parallel simulations. Wiley, 2018.

[34] Carlos Vázquez. An upwind numerical approach for an American and European option pricing
model. Appl. Math. Comput., 97:273–286, 1998.

[35] Joel P. Villarino, Álvaro Leitao, and José Antonio Garćıa-Rodŕıguez. Boundary-safe PINNs exten-
sion: Application to non-linear parabolic PDEs in counterparty credit risk. Journal of Computational
and Applied Mathematics, 425:115041, 2023.

[36] Zhihan Zhang, W. Yu, Mengxia Yu, Zhichun Guo, and Meng Jiang. A survey of multi-task learning
in natural language processing: Regarding task relatedness and training methods. In Conference of
the European Chapter of the Association for Computational Linguistics, 2022.

[37] Song-Ping Zhu, Xin-Jiang He, and XiaoPing Lu. A new integral equation formulation for american
put options. Quantitative Finance, 18(3):483–490, 2018.

22

	Introduction
	Problem formulation
	Linear Gauss Markov model
	Valuation of European swaptions
	Valuation of Bermudan swaptions
	Further details about the financial product

	Deep learning for pricing Bermudan swaptions under LGM model
	DANNs design for the Cancellable IRS
	Training set generation
	Joint learning for Cancellable IRS: adding European swaptions as outputs

	Numerical experiments
	Configuration
	Test base cases

	Impact of joint learning
	Impact of number of samples and Monte Carlo paths per sample
	Valuation at future dates

	Conclusions

