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Abstract

The operating environment of a highly automated ve-
hicle is subject to change, e.g., weather, illumination, or
the scenario containing different objects and other partic-
ipants in which the highly automated vehicle has to navi-
gate its passengers safely. These situations must be con-
sidered when developing and validating highly automated
driving functions. This already poses a problem for train-
ing and evaluating deep learning models because without
the costly labeling of thousands of recordings, not knowing
whether the data contains relevant, interesting data for fur-
ther model training, it is a guess under which conditions
and situations the model performs poorly. For this pur-
pose, we present corner case criteria based on the predic-
tive uncertainty. With our corner case criteria, we are able
to detect uncertainty-based corner cases of an object in-
stance segmentation model without relying on ground truth
(GT) data. We evaluated each corner case criterion using
the COCO and the NuImages dataset to analyze the poten-
tial of our approach. We also provide a corner case deci-
sion function that allows us to distinguish each object into
True Positive (TP), localization and/or classification corner
case, or False Positive (FP). We also present our first results
of an iterative training cycle that outperforms the baseline
and where the data added to the training dataset is selected
based on the corner case decision function.

1. Introduction
Various driving assistance systems rely on object detection,
such as pedestrian or traffic sign detection. Object detection
is also essential for highly automated driving, enabling the
vehicle to navigate safely among other road users. Object
instance segmentation further provides the instance mask
besides the object class and bounding box. The object in-

stance segmentation model must work properly even under
constantly changing weather, illumination, scenarios, par-
ticipants, and other conditions, including corner cases.

Corner Cases [3, 19, 39] are strongly related to anoma-
lies [9, 14, 37], outliers [14, 17], and novelties [9, 14] but
also cover samples where the model fails [12, 19, 22, 36]
and data relevant for model improvement [6, 39]. In [19], a
categorization of corner cases for perception in automated
driving is introduced, which includes a bunch of potential
corner case sources covering the sensor, data content, tem-
poral aspect, and the ML method. Corner cases of the ML
method [19] are caused due to a lack of knowledge as the
model has never encountered a similar sample before, the
applied ML method themselves or adversarial samples [13].
However, it is difficult to find the data we are looking for
because there are no labels, and we do not know whether
they represent corner cases for the model and thus provide
a value for training to improve the model.

Corner case detection enables data selection to be guided
to identify valuable data and label it more efficiently, of-
fering tremendous cost-saving potential. Besides, there are
also other use cases, e.g., active learning [25], novelty de-
tection [14, 37], and dataset construction, i.e., creating a
training and testing dataset covering all relevant and there-
fore crucial situations.

This article presents novel corner case criteria for de-
tecting uncertainty-based corner cases in an object instance
segmentation task. These criteria cover the uncertainty in
classification, bounding box regression, and instance mask
prediction. Our goal is to provide the reader with a clear un-
derstanding of how the corner case criteria are made up and
function. Furthermore, we evaluate the corner case crite-
ria and thus discuss the limitations and advantages of each
corner case criterion. The evaluation is based on two real
datasets, COCO [29] and NuImages [7], to show that our
corner case criteria are not dataset-specific and can be ap-
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plied to other datasets. A first approach shows that with our
corner case criteria as input feature and a decision function,
it is possible to detect corner cases based on the predictive
uncertainty and classify predicted objects as True Positive
(TP), localization and/or classification corner case, or False
Positive (FP) reliably.

The remainder of this article is structured as follows:
Section 2 provides a brief overview of related work. Sec-
tion 3 describes the overall approach and provides a basic
understanding of using the presented corner case criteria.
In Section 4, we explain each corner case criteria and eval-
uate their feature importance. Section 5 explains the exper-
imental setup. With the corner case criteria, we can classify
whether an object is a corner case or not in Section 6 and
also perform a cycle based model training (cf. Section 7).
Finally, Section 8 concludes the article’s key message and
provides possible future work.

2. Related Work
Before we continue, we should briefly discuss what
uncertainty-based corner cases are and how they are de-
fined. Regarding ML, corner cases are cases caused by an
erroneous, malfunction, or incorrect behavior of the trained
ML model [12, 19, 22, 36]. According to the examples
given in [19], these can be anomalies, outliers, novelties,
distribution shifts, and the ML model itself, which deliv-
ers erroneous predictions due to the implemented archi-
tecture, methodology, training parameters, etc. Investigat-
ing uncertainty is important for evaluating the prediction of
the model. Moreover, considering model performance, it
is possible to reveal information on individual samples or
identify samples in which the model is maximally uncertain
— which are corner cases.

Various approaches already address the challenge of
detecting corner cases, such as Out-of-Distribution de-
tection, e.g., using auxiliary Generative Adversarial Net-
works [33], uncertainty-based Out-of-Distribution [40] with
Monte-Carlo (MC) Dropout [11] or techniques for entropy
maximization [8]. Lis et al. [30], and Xia et al. [43] use
image resynthesis to detect pixel anomalies in image data.
Bolte et al. [4] also detect corner cases by fusing informa-
tion from semantic segmentation and object predictions. In
[34], Ouyang et al. present an approach for corner case
detection for a classification task using modified distance-
based surprise adequacy. Pfeil et al. [36] use ensembles to
detect corner cases in trajectory data, and in [42], a varia-
tional autoencoder is used.

However, we take a different approach by modeling the
uncertainty with MC-Dropout [11] comparable to [20, 21,
31, 38]. This allows us to derive the uncertainty with re-
spect to each detected object from the model results. Sub-
sequently, the criteria presented in this article are used to
identify corner cases based on the predictive uncertainty and

additionally to classify them into different corner case cate-
gories (cf. Section 4).

3. Overall Approach
Our approach aims to identify specific corner cases [19]
based on criteria derived from the uncertainty.

Input Image ML Model Sampling Predictive Distribution Clustering

Corner Case
Criteria

Corner Case Detection
Active Learning

Novelty Detection
Dataset Construction

Figure 1. Overall approach to derive and apply uncertainty-based
corner case criteria.

3.1. Uncertainty and Probabilistic Object Detection

We consider a probabilistic definition of object detec-
tors [10] and instance segmentation networks [15]. Prob-
abilistic object detection extends conventional object detec-
tion and instance segmentation by quantifying uncertainty.
Let D = {d1, . . . , dM}, M ∈ N+ denote object detec-
tions for a given input image I with width W and height
H . A detection dj incorporating instance segmentation is a
tuple (cj , bj ,mj)

1 consisting of information about the ob-
ject class score c = (c1 . . . ck) of k ∈ N+ classes, bounding
box b = (x1, y1, x2, y2) ∈ R4, and binary instance mask
m ∈ {0, 1}W×H . Our approach relies on the modeling of
the predictive distribution p(D|I) [1]. This predictive distri-
bution includes both the aleatoric and epistemic model un-
certainty [23]. However, modeling this distribution is chal-
lenging due to the high dimensionality of the input and the
target space (e.g., there can be any number of predictions
in the image). There are numerous methods for approxi-
mating this distribution, including Bayesian methods, vari-
ational inference, and sample-based representation of the
distribution.

Our approach relies on the latter (i.e., sampling from
p(D|I)), cf. [10, 20, 21, 31, 38]. There are numerous meth-
ods, including MC-Dropout [11], ensembles [26], which
also model epistemic uncertainty, or probFRCNN [15],
which only considers the aleatoric uncertainty. Our
experiments use an instance segmentation model with MC-
Dropout (modified Mask R-CNN model [21]) and cluster
multiple forward pass predictions R (repetitions) of the
same original input image. Hence, instead of M detections,
we end up with L ∈ N+ detections with L ≫ M . In the
following, we denote the set of detections (i.e., samples) as
D̃ = {d1, . . . , dL}. Subsequently, we cluster the samples

1For object detection, it is a tuple with class score and bounding box.
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Figure 2. Our approach assumes that the object instance segmen-
tation model plus a possible post-process (gray) provides several
predictions, consisting of class score c, bounding box b, and in-
stance mask m, per object detection Di. The prediction variance
is used to determine the uncertainty in the ML model. The un-
certainty analysis is utilized in the class score, bounding box, and
instance mask criteria (single knowledge criteria – blue) or com-
bined in the bounding box & mask criteria (combined knowledge
criteria – magenta). The values from the criteria are interpreted as
features to assign the object detections Di with a decision function
to one of the defined corner case categories. The defined categories
are True Positive (TP – green), False Positive (FP – red), and the
corner cases (yellow) for location (L-CC), class (C-CC), and both
(LC-CC).

from the predictive distribution based on the bounding
boxes (cf. [21]). After this step we have i-th clusters Di =

{{c(1)i , . . . , c
(Ni)
i }, {b(1)i , . . . , b

(Ni)
i }, {m(1)

i , . . . ,m
(Ni)
i }}

where c
(1)
i , b

(1)
i , and m

(1)
i denote the first detection as-

sociated with the i-th cluster. Moreover, let Ni ∈ N+

be the size of the i-th cluster. Clustering the detections
from the predictive distribution is the starting point for
our uncertainty-driven corner case criteria. An over-
all schematic representation of our approach to derive
uncertainty-based corner case criteria and possible applica-
tions using them is depicted in Fig. 1.

The key idea behind the uncertainty-based criteria is to
use them to detect corner cases. In other words, these cri-
teria should permit us to draw conclusions (in an unsuper-
vised fashion without any labels) about possible deficien-
cies in the model’s performance. In this context, we dif-
ferentiate between corner case categories introduced later
in Section 3.2. We derive the criteria based on the cluster-
ing and the associated classification scores, bounding boxes,
and instance masks. Our corner case criteria can be distin-
guished into single and combined knowledge criteria; see
Fig. 2. As single knowledge criteria in Section 4.1, 4.2, and
4.3, we refer to criteria that only use the uncertainty of one
feature, e.g., class score criteria, while combined knowl-
edge criteria in Section 4.4 use several sources, e.g., bound-
ing box and mask. Hence, it depends on the application
which criterion is useful for the uncertainty analysis. It is
also possible to exclude specific criteria if the model pro-
vides, for example, no instance mask.

Two further steps are necessary to enable the detection of

corner cases with the given uncertainty-based criteria. First,
the definition of corner case categories, as well as the con-
ditions that must apply so that a detected object may repre-
sent a corner case, see Section 3.2, and secondly, a decision
function that assigns the predicted detection Di to one of
the defined corner case based on the criteria, see Section 6.

3.2. Corner Cases Categories

To define corner case categories, we need an object-based
metric to decide if the detections are corner cases with
which the trained model has issues. Typically, we would
think of True Positive (TP), False Positive (FP), False Neg-
ative (FN), and True Negative as categories, but this sep-
aration is much too rough. Hence, we decided to use the
IoU = Area of Overlap

Area of Union = TP
TP+FP+FN combined with infor-

mation if the predicted class is correct or wrong to differ-
entiate the categories. With the metric in place, we defined
that a match of ground truth (GT) and detection Di with
an IoU > 0.5 and correct class is a good prediction (True
Positive (TP)). The threshold of IoU = 0.5 is freely se-
lectable and separates good object prediction where no fur-
ther model improvement is required from the rest. In the fu-
ture, this threshold might be too low, as a higher IoU value
would definitely be preferable. However, objects below an
IoU value of 0.5 are not considered in any mean average
precision (mAP) calculations, so we think these samples
improve the model the most. We also defined a lower limit
of IoU = 0.1 because, beyond a certain point, the match
between GT and prediction is too low. Altogether, we then
get the following corner case categories for the class assign-
ment of the object detections:
1. True Positive (TP): Class is correctly predicted, and

there is a match between detection Di and GT with an
IoU above 0.5.

2. Localization Corner Case (L-CC): Class is correctly pre-
dicted, but the match between detection Di and GT has
an IoU between 0.1 and 0.5.

3. Classification Corner Case (C-CC): Class is wrongly
predicted, but the match between detection Di and GT
is still above an IoU of 0.5.

4. Localization & Classification Corner Case (LC-CC):
Class is wrongly predicted, and the match between de-
tection Di and GT has an IoU between 0.1 and 0.5.

5. False Positive (FP): All detections Di with an IoU be-
low 0.1, which also includes all detections without a GT
match.

6. False Negative (FN): It would be very interesting to
know, but there is no way to get this information from
the model because there is no prediction to work with.

In [5, 24], we find an almost identical categorization with
the same metric where they talk about ML model errors
in image and video data instead of corner cases as we do.
But these model errors, i.e., corner cases, are exactly the
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problematic samples where the model needs further training
samples to improve. On top, the presented categories from
[5, 24] are used to evaluate the model results better but can
also be used for labeling the detections as we do. To then
classify the objects using the uncertainty-based corner case
criteria as features (cf. Section 4). Also, the purpose of the
categorization differs as [5, 24] uses them to compare the
ML model evaluation results. Apart from the different nam-
ing of the categories, one difference in the categorization is
that we do not consider duplicate detections as corner cases
—– we treat them as FP as another detection with a higher
IoU exists. [24] also has another category that deals with
a temporal error since video data is considered. This cat-
egory currently has no meaning because we consider only
single images and no sequences. However, this category
must be considered for potential corner cases as soon as our
methodology is applied to video data and temporal corner
cases arising from uncertainty.

4. Corner Case Criteria
The corner case criteria are essential to the approach pre-
sented in Section 3. Each criterion below is calculated based
on the knowledge of a single cluster Di, which describes
and quantifies the model’s uncertainty with a value. Be-
sides, we treat the detected objects separately and do not
aggregate them over one image to get one or multiple aver-
aged values for each image.

4.1. Class Score Criteria

First, we examine the class uncertainty, which greatly in-
fluences object detection since it determines which objects
are in the image. For the class score, we define four criteria
that address the confidence of the class probability. First,
we determine the detections’ mean class scores Dck and
standard deviation σck for all classes k, see Eq. 1. Then,
the index of k is calculated for the class with the highest
kmax = argmax Dck and second-highest k2nd class con-
fidence. In summary, we obtain four class score criteria
Dckmax , σckmax , Dck2nd , and σck2nd .

Dck =

∑N
j=1 c

k
j

N
, σck =

√∑N
j=1(c

k
j −Dck)2

N − 1
(1)

The class probability gives us the same information as any
other classification model without uncertainty modeling.
Still, in combination with the σ, we can measure how con-
fident the ML model is in its detections.

4.2. Bounding Box Criteria

For the spatial uncertainty of the model’s detections, i.e., the
bounding box predictions, we primarily consider the stan-
dard deviation of the four bounding box edges as a criterion

2 0 0 0 2 0 0 4 0 0 6 0 0
Pixe l
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Figure 3. Bounding box uncertainty. The standard deviation σb of
each bounding box edge is represented by red lines, and red dots
represent the spread of the bounding box center point. The blue
box with the truck in the middle represents the mean bounding
box.

for the bounding box uncertainty. An example of the bound-
ing box uncertainty is depicted in Fig. 3.

We first calculate the mean Db of the bounding box clus-
ter and then the standard deviation σb in Eq. 2.

Db =

∑N
j=1 bj

N
, σb =

√∑N
j=1(bj −Db)2

N − 1
(2)

To see if the standard deviation of the bounding boxes is
huge or small compared to its size, we normalize the stan-
dard deviation σb based on the mean bounding box size. A
low standard deviation σb indicates that the detector pre-
dicts the corresponding edge reliably. In contrast, a high
standard deviation σb indicates difficulties separating the
object from the neighboring object or background. Instead
of the format b = {x1, y1, x2, y2} also, b∗ = {cx, cy, w, h}
can be used, whereby it is to be considered that both variants
behave differently regarding the uncertainty. For example,
width w and height h describe only the uncertainty of the
bounding box size and no spatial uncertainty in the x- or
y-direction, as all others do.

We also consider the IoU between the mean bounding
box Db and all other predictions bj as a further criterion.
Therefore, we calculate the mean IoU ioub and the IoU
standard deviation σioub

in Eq. 3 and 4.

ioub =

∑N
j=1 IoU(bj , Db)

N
(3)

σioub
=

√∑N
j=1(IoU(bj , Db)− ioub)2

N − 1
(4)

The mean value ioub tells us how significant the overlap
is between the individual bounding boxes within a cluster.
The larger the value, the less uncertain the ML model is
about its predictions. The standard deviation of the IoU
σioub

, on the other hand, provides information about the
spread of the IoUs.
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(a) The left shows the binary mask mean Dm. In the right image, the
bounding box of the mask mean Dmbox is drawn in green, and the
bounding box mean Db in red.

(b) The left side shows the mean value of the masks as a heat map
before the binary mask was generated. The right shows the standard
deviation of the mask also in a heat map representation.

Figure 4. Instance mask uncertainty example.

4.3. Instance Mask Criteria

Besides the bounding box, the used detection model also
provides instance masks, which we use to analyze the spa-
tial uncertainty. In Fig. 4, we see an example of the mask
mean Dm (top left). Besides the mean, we also calculate
the mask’s standard deviation σm, which is depicted in the
bottom right of Fig. 4. The heat map of the standard de-
viation σm reveals that the model well recognizes the left
side of the driver’s cab since the standard deviation σm is
small and represented by a thin line. There is greater un-
certainty in the vicinity of the truck radiator as the area is
also slightly colored. However, the model shows the largest
uncertainty in the transition from truck to trailer, which the
intense coloring indicates.

We need some criteria for the instance mask to use this
knowledge. The first criterion reuses the bounding box un-
certainty criterion described in Eq. 2. To calculate the un-
certainty for the instance masks related to the individual
edges, the bounding box surrounding the mask must be de-
termined with mbox

j = {cx, cy, w, h} = size(mj). The
mean instance mask Dm of the object detection is calcu-
lated and converted to binary, by

Dm =

{
1 if

∑N
j=1 mj

N > 0.5

0 otherwise
. (5)

We obtain the mean value of the mask’s bounding box with
Dmbox

= {cx, cy, w, h} = size(Dm) and the standard de-
viation σmbox

with Eq. 6, which can be used to analyze the
edges of the mask bounding box. As with the bounding box
in Section 4.2, we normalize the standard deviation σmbox

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
Box / M a sk IoU
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Figure 5. Distribution of the IoU between the mean bounding box
Db (blue) or mean mask Dm (orange) and all other bounding box
bj or instance mask mj .

based on the mean mask bounding box size.

σmbox
=

√∑N
j=1(m

box
j −Dmbox

)2

N − 1
(6)

The next criterion we consider appears in [31] for result
evaluation purposes and is comparable to our bounding box
criterion Eq. 3 already listed above. Besides Eq. 3, we also
adapt Eq. 4, where the IoU(mj , Dm) calculation is slightly
changed and results from the mean instance mask Dm and
all other instance masks mj . As with the bounding box cri-
terion in Section 4.2, the mean ioum and the standard devi-
ation σioum

provide essential information about the similar-
ity of the masks in the cluster and their spatial uncertainty
with respect to the model prediction.

The first mask criterion interprets the instance mask like
a bounding box, which reduces the information when con-
sidering the uncertainty. Therefore, we propose another cri-
terion to capture the area of the binary instance masks better.
To do this, we first calculate the area for each instance mask
Aj =

∑H×W
mj and then the mean and standard devia-

tion with Eq. 7. We then normalize σAm
by the mean Am.

The standard deviation σAm
provides information about the

variance in the size of the mask. A small value is good
because all instance masks are similar in size. However,
σAm is not decisive whether they lie spatially together, but
this knowledge provides the mask IoU criterion ioum and
σioum

.

Am =

∑N
j=1 Aj

N
, σAm

=

√∑N
j=1(Aj −Am)2

N − 1
(7)

4.4. Bounding Box & Mask Criteria

Finally, we present criteria that combine the bounding box
and instance mask uncertainty. The assumption for these
criteria is that a well-trained ML model provides predictions
where the bounding box and instance mask match very well
and increase if not. In other words, they match regarding
location and size. The first criterion covers the mismatch
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in terms of IoU ioumis between the mean bounding box
Db and the mean bounding box enclosing the instant mask
Dmbox

by calculating the IoU between both. An example
is depicted in Fig. 4 (top right). A high IoU value indicates
that both matching well.

ioumis = IoU(Db, Dmbox
) (8)

The first criterion only considers the similarity of the mean
values but not the distribution of the predicted bounding
boxes or instance masks. However, to compare both distri-
butions, we must first calculate the IoU between the mean
and each predicted bounding box ioubj and instance mask
ioumj within the cluster. If the distribution of the bound-
ing boxes and instance masks is equal, then the two model
heads are identical in their predictions, even if the variance
of the distribution is large. If the distribution is unequal,
the predictions are unequal as the two model heads produce
contradictory predictions.

ioubj = IoU(bj , Db), ioumj
= IoU(mj , Dm) (9)

To obtain the IoU distribution, we use the kernel density
estimation Eq. 10 with a Gaussian kernel and compute the
probability distribution function with Eq. 11 [1]. An ex-
ample of the IoU distribution for the bounding box and in-
stance mask is shown in Fig. 5. The two distributions of the
bounding box and mask are not identical. In addition, the
distribution reveals the uncertainty arising from the instance
mask Fig. 4 and bounding box Fig. 3. Afterward, we obtain
the probability distribution function of the IoU kernel den-
sity estimation for the bounding box pb = f(ioubj ) and the
instance mask pm = f(ioumj

).

KDE(x, t) =
1

n

i=n∑
i=1

1

h
√
2π

exp−0.5(
xi−t

h )2 (10)

f(t) =

∫ 1

0

KDE(x, t) dx (11)

With both distributions at hand, we can calculate the
Kullback-Leibler-Divergence (KL) [1] to compare the
bounding box distribution with the mask distribution
KL(pb|pm) and the opposite KL(pm|pb). Besides, we
also calculated the Jensen-Shannon Distance (JS) [32]
JS(pb|pm) in Eq. 12 and the Wasserstein Distance [28]
EMD(pb|pm) in Eq. 13, also called Earth Mover Distance,
to compare both distributions. While the JS can be inter-
preted as merging and averaging the total KL divergence to
the average distribution of p+q

2 , the EMD is more complex.

JS(p, q) =

√
KL(p|m) + KL(q|m)

2
, m =

p+ q

2
(12)

While dij describes the distance between pi and qi, fij rep-
resents the flow. The flow between pi and qi has to be min-
imized to reduce the overall costs with

∑m
i=1

∑n
j=1 fij =

min(
∑m

i=1 pi
∑n

j=1 qj). If the optimal flow is found, the
EMD [28] is defined as

EMD(p, q) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1

∑n
j=1 fij

. (13)

4.5. Criteria Evaluation

Next, we examine the value of our proposed uncertainty-
based corner case criteria. To this end, we performed for-
ward and backward sequential feature selection2 in combi-
nation with a decision tree to determine the top 10 corner
case criteria for the classification task.

Top 10 features selected by forward sequential selection:
• class score criteria: σckmax , Dck2nd , and σck2nd

• bounding box criteria: x1, x2, w of σb, ioub, and σioub

• mask criteria: h of σm

• bounding box & mask criteria: KL(pb|pm)
Top 10 features selected by backward sequential selec-

tion:
• class score criteria: σckmax , Dck2nd , and σck2nd

• bounding box criteria: cx of σb, and ioub

• mask criteria: cx of σm, and σAm

• bounding box & mask criteria: ioumis, KL(pm|pb), JS
Furthermore, we evaluated the Pearson and Spearman

correlation of bounding box criteria and box IoU, instance
mask criteria and mask IoU, and bounding box & mask cri-
teria concerning box IoU and mask IoU (cf. Supplementary
Material, Section 10). The correlations were very low ex-
cept for some corner case criteria, which have better results
for the COCO and the NuImages dataset. These include
ioub and ioumis in correlation with the box IoU, as well as
ioum, σioum , ioumis and EMD in correlation with the mask
IoU. Overall, the mask criteria and bounding box & mask
criteria showed better correlation than the bounding box cri-
teria. However, in Section 6, we used all features for clas-
sification because the performance was worse when using
any subset of corner case criteria. This can also be assumed
due to the poor correlation, which requires all available in-
formation to be considered when classifying the objects.

5. Experimental Setup
As mentioned in Section 3, we used a modified Mask
R-CNN model [20, 21, 31, 38]. The major difference
in comparison to the original Mask R-CNN model from
He et al. [18] are the added MC-Dropout [11] layers to sam-
ple from the model, which allows us to model the predic-
tive uncertainty [23]. We used a dropout rate of 0.2 and
did R = 10 and R = 100 repetitions for each input im-
age to see the difference in the results, as it takes 10 times
longer to do 100 compared to 10 repetitions. In the best
case of 100 repetitions, we get 400 predictions if the input

2sklearn.feature_selection.SequentialFeatureSelector
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Mask R-CNN with no NMS Ni = 10 Ni = 100 no NMS Ni = 10 Ni = 100

Dataset COCO NuImages
Size of Test Subset (Images) 4952 14884
Labeled Objects (Test Subset) 36335 136074

Model Predictions 34827 67569 73344 106133 180557 197743

TP
Correct Class &
IoU > 0.5

16040 (46.1%) 23778 (35.2%) 24554 (33.5%) 59921 (56.5%) 100309 (55.6%) 106441 (53.8%)

L-CC
Correct Class &
0.5 > IoU > 0.1

3378 (9.7%) 3213 (4.8%) 2901 (4.0%) 11667 (11.0%) 9800 (5.4%) 7546 (3.8%)

C-CC
Wrong Class &
IoU > 0.5

1275 (3.7%) 1714 (2.5%) 1749 (2.4%) 3206 (3.0%) 4373 (2.4%) 4429 (2.2%)

LC-CC
Wrong Class &
0.5 > IoU > 0.1

1077 (3.1%) 1189 (1.8%) 1205 (1.6%) 2931 (2.8%) 3050 (1.7%) 2893 (1.5%)

FP No Matches 13057 (37.5%) 37675 (55.8%) 42935 (58.5%) 28408 (26.8%) 63025 (34.9%) 76434 (38.7%)
FN Missed Objects 14565 6441 5926 58349 18542 14765

Bounding Box mAPIoU>0.5 0.374 0.488 0.504 0.266 0.414 0.439
Mask mAPIoU>0.5 0.372 0.470 0.484 0.245 0.357 0.376

Table 1. Test dataset details, number of matching predictions, corner cases, and model performance.

images contain, for example, four objects. To cluster these
predictions, we used Bayesian Gaussian Mixture [2] in the
post-process, and as features, the bounding box parameters
b = (x1, y1, x2, y2) as described in [21]. We get four object
detections Di containing Ni = 100 predictions each under
ideal conditions. For comparison reasons, we also used the
original Mask R-CNN model and disabled Non-maximum
Suppression (NMS) as proposed in [10, 15, 16] to get, in
the best case, multiple predictions of each object to cluster
and determine the corner case criteria.

For the evaluation, we selected the COCO [29] and
NuImages [7] datasets to analyze our corner case crite-
ria because both datasets are very different. For example,
the NuImages test subset is around three times bigger than
COCO, as listed in Table 1. In both cases, we are using the
official validation subset as a test subset to evaluate the cor-
ner case criteria and the overall approach. Furthermore, we
randomly picked 10% from the training subset to get a new
validation split because both datasets offer only two labeled
subsets. With the rest of the training subset, we trained the
model. In the case of the COCO dataset, we trained the
model with all 81 provided classes. However, in the NuIm-
ages dataset, we trained the model with the following 17
classes (animal, child, pedestrian, other pedestrians (e.g.,
police), e-scooter, stroller, barrier, traffic cone, debris, bi-
cycle, motorcycle, car, bus, truck, trailer, off-highway, other
vehicles (e.g., police)). For the assignment of detection to
the corner case categories defined in Section 3.2, we use
the Hungarian Matching Algorithm [41] combined with the
class to identify the matches between GT and the predicted
object detections Di.

As mentioned before, both datasets are quite different.

Also, the mAP of the model performance differs; on the
COCO [29] dataset, the model is better than on the NuIm-
ages [7] dataset, which is surprising because COCO has 81
classes and NuImage 17. Since the model without NMS
misses many objects, the number of predicted objects is also
quite low compared to the MC-Dropout model. Another ex-
pected behavior also occurs, namely that more objects are
predicted as repetitions increase. The model ideally man-
ages to predict every object in the image at least once during
the repetition, which in turn also leads to objects being pre-
dicted where there are none (No Matches in Table 1). It is
also interesting to note that the predictions classified as cor-
ner cases have a similar quantity of objects. Our current as-
sumption for the MC-Dropout models is that the contained
objects overlap to a high degree, i.e., objects representing a
corner case at a repetition of 10 also represent one at 100
repetitions.

6. Corner Case Decision Function
With the criteria shown in Section 4, we have a proper base-
line to quantify how certain or uncertain the model is with
respect to its prediction about each object. It should also be
noted that we do not rely on GT data to calculate the corner
case criteria, apart from the training of the object detection
model in Section 5. The question is, can we classify the cor-
ner case categories from the overview in Section 4? – Yes,
to some extent.

A "corner case" decision function is needed to achieve
this goal. For this purpose, we used five different classifica-
tion methods from sklearn [35]: Decision Tree (DT), Ran-
dom Forest (RF), Support Vector Machine (SVM), Gaus-
sian Process Classifier (GPC), and a Multi-layer Perceptron

7



(MLP) classifier with only one hidden layer (100 neurons).
Besides that, all default parameter settings were kept.
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Dataset COCO NuImages

DT 0.56 0.5 0.43 0.56 0.5 0.43

RF 0.5 0.38 0.39 0.5 0.38 0.39

SVM 0.43 0.31 0.28 0.42 0.31 0.28

GPC 0.58 0.5 0.45 0.58 0.5 0.45

MLP 0.56 0.44 0.4 0.56 0.44 0.4

Table 2. Class-weighted F1-score results using Decision Tree
(DT), Random Forest (RF), Support Vector Machine (SVM),
Gaussian Process Classifier (GPC) and Multi-layer Perception
(MLP). Input features are the corner cases criteria (cf. Section 4),
derived from the mentioned Mask R-CNN model and the class la-
bels provided by the corner case categories (cf. Section 3.2).

As input feature, we used all presented corner case cri-
teria, and as output, the five classes: TP, L-CC, C-CC, LC-
CC, and FP (cf. Table 1). We trained each classifier model
with the validation dataset, but we had to use Random Un-
dersampling [27] because of the class imbalance. Table 2
reveals that the Gaussian Process Classifier outperforms all
other methods. Interestingly, the classification results for
the corner case criteria of the Mask R-CNN model with dis-
abled NMS are much better than for those models where
the corner case criteria were calculated on the MC-Dropout
model results. Thus, there seems to be a connection that
many object predictions (cf. Table 1), which mainly con-
cern non-existent objects, have a negative effect on the clas-
sification, e.g., COCO with a repetition of 10 and 100.

TP C-CC L-CC LC-CC FP

TP
C-

CC
L-

CC
LC

-C
C

FP

0.70 0.10 0.10 0.02 0.09

0.29 0.39 0.06 0.15 0.11

0.13 0.06 0.45 0.12 0.24

0.06 0.15 0.14 0.37 0.29

0.08 0.14 0.16 0.23 0.38 0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6. The Confusion matrix of our decision function, using a
Gaussian Process Classifier (Ni = 10) and presented corner cases
criteria as input, to distinguish objects in TP, corner case, or FP.

The class-weighted F1-score of the Gaussian Process

Classifier (Ni = 10) decision function is 0.5, and the re-
lated confusion matrix in Fig. 6 shows further details. A
breakdown of the corner cases into individual classes is pos-
sible to a certain extent. The L-CC and LC-CC corner cases
are challenging to separate from FP, which is not surprising
since FP contains object detections whose IoU is only min-
imally smaller than 0.1 and would otherwise perhaps rep-
resent a corner case. Furthermore, FP contains duplicates
of objects from other categories. This happens if there are
several matches for a GT label, but only the best match is
selected as a corner case or TP.

7. Corner Case Detection for Data Reduction

In this section, we apply our approach, as shown in Fig. 2, to
a real scenario where each data and annotation costs money.
Therefore, we evaluate using our corner case criteria to re-
duce the amount of training data so that we need fewer
annotations but still achieve good results compared to the
baseline model trained with the entire training dataset. We
perform multiple training cycles to improve the model it-
eratively by adding model-selected corner case data to the
training dataset to achieve this goal. We split the NuIm-
ages training dataset into four equal-sized subsets. In the
1st cycle, we train the model on the 1st training data subset
and execute the inference and corner case decision on the
2nd training data subset. Every image that contains at least
one corner case (L-CC, C-CC, or LC-CC) is added to the
training of the 2nd cycle, and we repeat the process.

Cycle 1: 13.6k Cycle 2: 25.5k Cycle 3: 37.2k Cycle 4: 48.4k All: 54.6k
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Figure 7. Four training cycles to iteratively improve the model
by adding model-selected corner case data to the training dataset.
Performance comparison between the cyclically trained model and
a baseline model trained with all data.

As shown in Fig. 7, the proportion of TP prediction on
the testing dataset increases after each training cycle, and
the FN decreases simultaneously. Adding only the model
detected corner cases to the training dataset improves the
model performance at each cycle iteration. We also see that
the number of corner cases (for the model) decreases due
to the improvement. Since we find a corner case in almost
every image, the reduction in training data used after four
cycles is moderate, with 6k images (~10%) compared to
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when all data is used. However, our model performs better
than the baseline trained on all data. In future works, it
would be interesting to investigate the model performance
if only images with two or more corner cases were added to
the training dataset, and we have maybe a reduction of 30%
or more and an even higher cost saving.

8. Conclusion and Future Work
The approach presented in this article aims to detect cor-
ner cases based on uncertainties and use them for better
model training (reduction of annotation costs). Therefore,
we introduce corner case criteria derived from the predic-
tive uncertainty of probabilistic object detectors. The corner
case criteria determine the uncertainty of the predicted class
score, bounding box, and instance mask, which classifies
the detected object. It should be noted that the criteria are
computed purely from the modeled uncertainty, assuming
a sampling predictive distribution with subsequent cluster-
ing, where no ground truth (GT) is required. The presented
corner case decision function utilizes the output of the cor-
ner case criteria as input features and assigns the detected
objects to one of the following corner case categories: True
Positive (TP), Localization Corner Case (L-CC), Classifi-
cation Corner Case (C-CC), Localization & Classification
Corner Case (LC-CC), and False Positive (FP). The clas-
sification results show we can identify many corner cases
based on the introduced criteria. On the other hand, it also
shows that the distinction between FP and corner cases is
challenging. Finally, we presented our first results on an it-
erative training cycle that outperforms the baseline model
by using the corner cases as a selection strategy for model
training to reduce costs regarding annotations.

In the future, we also want to investigate further how the
model performance behaves if we only add images to the
training dataset containing multiple corner cases and if our
results are also statistically consistent. With the ability to
detect and classify uncertainty-based corner cases, we are
also interested in developing relevance metrics to determine
the value of the recognized corner cases [6, 39]. To explic-
itly state how important or valuable a corner case is, e.g.,
concerning vehicle safety or model training.
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Criteria for Uncertainty-based Corner Cases Detection in Instance Segmentation

Supplementary Material

9. Overview
This supplementary material gives further information
about our main work, which has not been mentioned there
mainly due to space limitations.

10. Evaluation
We evaluate the corner case criteria listed in Section 4 by
testing them with our experimental setup from Section 5.

10.1. Class Score Uncertainty

We depict the results for the NuImages datasets in Fig. 8
to evaluate the class score criteria defined in Section 4.1.
The left y-axis of each plot shows the IoU between mean
bounding box Db and GT, while the right y-axis represents
the class score. The plot on the top contains the cases if
the class is correct: L-CC and TP. The middle presents the
cases LC-CC and C-CC, where the class is wrong, and the
last plot finally shows the FP. The x-axis represents the pre-
dicted objects. Detections are sorted by IoU and smoothed
to reveal the trend in class scoring criteria.

We note that the average σckmax is increasing while the
averaged Dckmax and IoU is decreasing, see Fig. 8 (top).
The middle plot behaves unusually because the Dckmax is
slowly decreasing and then stagnates while the σckmax is
decreasing along with the IoU, which is the opposite of the
behavior in the top plot of Fig. 8. In our opinion, this is
related to the increase of Dck2nd , which is shown in green
in Fig. 8. Dckmax in the bottom plot forms almost a perfectly
straight line with the value corresponding to approx. 0.67
for NuImages. The value of σckmax is almost constant. If we
take this value and look at the top plot, we see that Dckmax

is above this value if the class is correct and the standard
deviation is the same or smaller. In the middle of Fig. 8,
where the class is wrong, Dckmax is for most parts below
this value, and the standard deviation is the same or larger.
This circumstance indicates a threshold to separate correctly
and incorrectly classified objects.

10.2. Spatial Uncertainty

For the spatial uncertainty, we present three different groups
of criteria. The first group covers the bounding box un-
certainty (Section 4.2), the second the instance mask un-
certainty (Section 4.3), and the last group includes criteria
resulting from the combination of both uncertainties (Sec-
tion 4.4). We consider the correlation between the IoU and
the criteria to evaluate how well the model criteria describe
the model performance. The IoU is calculated between GT,
the mean bounding box (Box IoU), and the mean instance

(a) COCO Ni = 100 results.

(b) NuImages Ni = 100 results.

Figure 8. NuImages results for class score uncertainty. Object
evaluation of the max class score mean Dckmax (red), 2nd-max
class score mean Dck2nd (green), standard deviation σckmax (red
area) and mean sum (magenta).

mask (Mask IoU). Subsequently, the linear correlation is
calculated with Pearson (Pear.) and the monotonic corre-
lation with Spearman (Spear.). The monotonic correlation
is interesting as Box IoU and Mask IoU monotonically in-
crease. Table 3 lists the calculated correlation values. The
linear correlation is low, except for a few values. The Spear-
man correlation always delivers better results, but they are
moderate. The criteria that stand out the most are ioub

for the bounding boxes, ioum for the instance masks, and
ioumis for the combination of the bounding box and mask.
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Bounding Box Criteria

Criterion
COCO COCO COCO NuImages NuImages NuImages

no NMS Ni = 10 Ni = 100 no NMS Ni = 10 Ni = 100

Pear. Spear. Pear. Spear. Pear. Spear. Pear. Spear. Pear. Spear. Pear. Spear.
σb x1 -0.17 -0.05 -0.09 -0.05 -0.10 -0.17 -0.27 -0.35 -0.15 -0.26 -0.14 -0.38

y1 -0.16 -0.09 -0.10 -0.11 -0.13 -0.25 -0.21 -0.29 -0.12 -0.14 -0.16 -0.29
x2 -0.17 -0.05 -0.09 -0.06 -0.10 -0.19 -0.27 -0.35 -0.15 -0.26 -0.14 -0.39
y2 -0.16 -0.08 -0.10 -0.10 -0.13 -0.23 -0.20 -0.30 -0.13 -0.18 -0.17 -0.32
cx -0.17 -0.08 -0.09 -0.08 -0.10 -0.21 -0.27 -0.37 -0.15 -0.29 -0.14 -0.41
cy -0.16 -0.12 -0.10 -0.13 -0.13 -0.28 -0.21 -0.34 -0.14 -0.22 -0.16 -0.37
w -0.13 -0.06 -0.08 -0.07 -0.16 -0.21 -0.21 -0.31 -0.16 -0.23 -0.25 -0.40
h -0.15 -0.11 -0.10 -0.11 -0.18 -0.26 -0.21 -0.30 -0.13 -0.15 -0.22 -0.31

ioub 0.23 0.17 0.16 0.18 0.24 0.33 0.35 0.43 0.23 0.35 0.32 0.50
σioub

0.02 0.06 -0.02 -0.03 -0.14 -0.19 -0.01 -0.10 -0.09 -0.17 -0.21 -0.33

Mask Criteria
σmbox cx -0.20 -0.11 -0.08 -0.11 -0.09 -0.24 -0.32 -0.37 -0.14 -0.30 -0.14 -0.42

cy -0.16 -0.13 -0.09 -0.15 -0.13 -0.29 -0.21 -0.36 -0.16 -0.28 -0.17 -0.43
w -0.19 -0.11 -0.12 -0.11 -0.20 -0.25 -0.34 -0.33 -0.24 -0.30 -0.32 -0.45
h -0.20 -0.13 -0.13 -0.14 -0.21 -0.29 -0.32 -0.34 -0.19 -0.25 -0.25 -0.41

ioum -0.22 -0.17 -0.15 -0.19 0.29 0.35 -0.34 -0.38 -0.24 -0.37 0.40 0.56
σioum 0.31 0.22 0.21 0.22 -0.20 -0.25 0.47 0.47 0.31 0.43 -0.30 -0.44
σAm -0.06 0.01 -0.11 -0.15 -0.21 -0.31 -0.09 -0.07 -0.17 -0.32 -0.29 -0.50

Bounding Box & Mask Criteria

B
ox

Io
U

ioumis 0.29 0.34 0.25 0.29 0.27 0.30 0.45 0.56 0.38 0.49 0.39 0.49
KL(pb|pm) 0.07 0.19 0.10 0.16 0.06 0.07 0.08 0.10 0.15 0.28 0.12 0.19
KL(pm|pb) -0.09 0.18 -0.06 0.13 -0.07 0.07 -0.12 -0.04 -0.07 0.22 -0.08 0.17
JS 0.14 0.14 0.12 0.13 0.12 0.13 0.15 0.25 0.19 0.25 0.20 0.26
EMD -0.01 0.30 0.06 0.25 0.13 0.24 0.04 0.06 0.15 0.44 0.31 0.44

M
as

k
Io

U

ioumis 0.34 0.33 0.26 0.28 0.28 0.30 0.58 0.59 0.40 0.47 0.40 0.47
KL(pb|pm) 0.08 0.22 0.11 0.17 0.07 0.08 0.27 0.35 0.16 0.30 0.15 0.21
KL(pm|pb) -0.06 0.26 -0.07 0.14 -0.07 0.09 0.20 0.32 -0.07 0.26 -0.07 0.21
JS 0.19 0.21 0.15 0.15 0.16 0.16 0.15 0.27 0.24 0.30 0.25 0.31
EMD 0.01 0.31 0.06 0.25 0.14 0.25 0.46 0.50 0.17 0.44 0.34 0.45

Table 3. Correlations of Bounding Box Criteria and Box IoU, Instance Mask Criteria and Mask IoU, and Bounding Box & Mask Criteria
with Box IoU and Mask IoU.

11. Examples
This section depicts a few examples of object detections
(Fig. 9) and the calculated criteria values (Table 4).
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(a) True Positive Prediction (TP-P), truck

car background pedestrian truck motorcycle
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(b) True Positive Prediction (TP-P), car

pedestrian background child traffic_cone other_pedestrian
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(c) Localization Corner Case (L-CC), pedestrian

motorcycle car background bicycle truck
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(d) Classification Corner Case (C-CC), car

car motorcycle background barrier bicycle
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(e) Localization & Classification Corner Case (LC-CC), motorcycle

pedestrian background child other_pedestrian car
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(f) False Positive Prediction (FP-P)
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(g) False Positive Prediction (FP-P)

Figure 9. Uncertainty results of some NuImages examples.
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NuImages examples

9a 9c 9b 9d 9e 9f 9g

Corner Case Categories TP-P TP-P L-CC C-CC LC-CC FP-P FP-P

GT
Box IoU 0.65 0.795 0.376 0.752 0.344 0.0 0.0

Mask IoU 0.571 0.653 0.222 0.494 0.136 0.0 0.0

Class Score Criteria

Dckmax 0.871 0.852 0.686 0.761 0.501 0.563 0.523

σckmax 0.214 0.069 0.108 0.29 0.322 0.054 0.174

Dck2nd 0.063 0.14 0.279 0.114 0.311 0.392 0.339

σck2nd 0.16 0.068 0.096 0.158 0.343 0.048 0.1

Bounding Box Criteria

σb

x1 0.032 0.105 0.098 0.129 0.02 0.123 0.627

y1 0.072 0.055 0.042 0.051 0.06 0.051 0.028

x2 0.125 0.031 0.145 0.072 0.038 0.098 0.379

y2 0.027 0.036 0.024 0.047 0.027 0.013 0.062

cx 0.068 0.052 0.118 0.077 0.024 0.109 0.493

cy 0.042 0.025 0.016 0.03 0.027 0.029 0.038

width 0.12 0.116 0.076 0.14 0.038 0.046 0.316

heigth 0.068 0.079 0.059 0.078 0.075 0.048 0.058

ioub 0.822 0.824 0.765 0.849 0.896 0.852 0.456

σioub
0.092 0.053 0.06 0.108 0.054 0.113 0.327

Instance Mask Criteria

σmbox

cx 0.069 0.064 0.119 0.077 0.024 0.163 0.678

cy 0.041 0.04 0.045 0.033 0.015 0.127 0.073

width 0.123 0.129 0.101 0.126 0.04 0.088 0.308

heigth 0.069 0.144 0.056 0.063 0.035 0.232 0.078

ioum 0.835 0.774 0.751 0.896 0.94 0.813 0.343

σioum
0.09 0.072 0.084 0.134 0.029 0.196 0.288

σAm
0.159 0.222 0.109 0.078 0.044 0.251 0.311

Bounding Box & Mask Criteria

ioumis 0.952 0.654 0.808 0.918 0.814 0.301 0.362

KL(pb|pm) 0.049 0.294 0.254 0.214 3.057 0.235 0.162

KL(pm|pb) 0.044 0.697 0.383 0.401 0.44 0.959 0.135

JS(pb|pm) 0.107 0.278 0.258 0.236 0.349 0.269 0.188

EMD(pb|pm) 0.266 0.424 0.684 0.169 1.966 0.42 0.241

Table 4. Corner Case Criteria Results of the NuImages examples form Fig.9.
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