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Photonic structures and time-crystals, wherein time is incorporated as an additional degree of
freedom for light manipulation, have necessitated the development of analytical and semi-analytical
tools. However, such tools are currently limited to specific configurations, leaving several unexplored
physical phenomena akin to photonic time-crystals elusive. In this communication, using a coupled-
wave theory approach, we unveil the occurring light propagation phenomena in a time-periodic bi-
isotropic medium whose permittivity, permeability, and chirality parameter are periodic functions of
time. Contrary to their static counterparts, we demonstrate that the considered dynamic medium
couples only co-handed counter-propagating waves. In cases of non-constant impedance, we prove
that two first-order momentum gaps are formed in the Brillouin diagram, resulting in parametric
amplification with different amplification factors and corresponding momenta for the right- and left-
handed modes, respectively. The presence of chirality plays a major role in manipulating lightwave
signals by controlling the center of resonance, the corresponding bandwidth, and the amplification
factor in a distinct fashion for each mode. For a finite “time-slab” of the medium, we analytically
derive the scattering coefficients as functions of time and momentum, discussing how extreme values
of optical rotation grant access to the temporal analog of the chirality-induced negative refraction
regime. Finally, we demonstrate the mechanism under which elliptical polarizations may change field
orientation whilst the electric field propagates in a momentum gap, thus simultaneously showcasing
parametric amplification.

I. INTRODUCTION

When a lightwave encounters a spatial interface between two media with different electromagnetic properties, energy
(i.e., frequency) is conserved, but momentum is not due to the broken translational invariance of space [1]. On the
contrary, as demonstrated in Morgenthaler’s seminal work [2], when an electromagnetic wave encounters a temporal
interface where the electromagnetic properties of the medium abruptly change at a certain moment, translational
symmetry, and thus momentum, is conserved (see Noether’s theorem, e.g., in [3]), while energy is not. One of the
intriguing consequences of such frequency alteration is the occurrence of both forward and backward reflections [4–6],
which were recently experimentally observed in [7].

While the notion of incorporating time as an additional degree of freedom has shown great promise in the realm
of plasma physics, particularly in understanding how rapid ionization properties can affect the plasma permittivity
[8], its direct application in light manipulation within optics and photonics have remained elusive for several decades.
Nevertheless, the rapid expansion of photonic time-crystals [9, 10], artificial meta-media [11, 12], as well as highly
nonlinear materials [13–16], has provided the necessary framework for realizing exotic wave phenomena. These range
from parametric amplification [17], traveling wave modulation [18], dynamic spherical scattering [19], non-reciprocity
[20], and compensation of the lines of forces [21], to broadband coherent wave control [22], unidirectional spectral
effects [23], enhanced absorption and impedance matching [24–27]Firestein2022, axion response in space-time crystals
[28], and event cloaking [29], to name a few.

With maturing technology for time-modulation of a medium’s parameters, a natural step forward is to explore
the temporal modulation of electromagnetic chirality, as initially suggested in [30]. In its well-studied spatial form,
chirality results from two distinct mechanisms: magneto-electric coupling originating from molecular-scale mirror
symmetry breaking and helical stacking of birefringent layers [31, 32]. Regarding the former, its hallmark effect is
circular birefringence, whereby contra-handed circular polarizations propagate at different speeds [33]. The temporal
analog of such optical activity was first demonstrated in [34], and subsequently discussed in [30, 35], wherein circular
birefringence is manifested as two orthogonal circular polarizations with different frequencies for an abrupt tempo-
ral change of the medium’s properties. On the other hand, the latter mechanism manifests as the circular Bragg
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phenomenon, whereby co-handed (with the medium’s structural handedness) circularly polarized light is strongly
backscattered whilst contra-handed light is transmitted [36–38]. The temporal analog of opalescence due to Bragg
scattering in cholesteric liquid crystals was first investigated in [39], resulting in an “Archimedes’ screw” capable of
dragging and amplifying light. Within the same framework, [40] examined the case where the principal axes of an
anisotropic permittivity tensor periodically wiggle.

By combining the coupled-wave theory description of [41] with the Möbius transformation method of [42], it was
demonstrated in [43] that a periodic temporal modulation of a medium’s permittivity results in a regime where
parametric amplification occurs. For uniform modulation, analytic expressions were derived for the dispersion char-
acteristics and the scattering coefficients, offering straightforward insights into the amplification mechanism. Inspired
by the spatial version of periodic chiral structures, as seen in works such as [44–46], the present paper examines a
medium in which the permittivity, the permeability, and the chirality are periodic functions of time. The focus is on
how chirality influences the dispersion properties and optical response of the examined medium, demonstrating that
chirality can indeed provide a unique opportunity to impart exotic properties to light propagation.

In particular, we demonstrate that for non-constant impedance, two first-order momentum gaps emerge: one corre-
sponds to left-handed modes, whilst the other corresponds to the orthogonal mode. These two parametric amplification
regimes are distinct, centered at different frequencies, with the dc-term of chirality controlling the locations of the
central resonances. Additionally, both the dc- and ac-terms of chirality exert control over the resonances’ bandwidths,
as well as over the maximum achieved amplification. For a finite “time-slab” of the medium, if the values of the
chirality are relatively small, the scattering coefficients reach levels similar to those of the achiral case. On the other
hand, when the chirality is comparable to the medium’s time-averaged refractive index, it becomes possible to access
negative refracting states in the temporal domain. In these states, the direction of time-propagation and the temporal
handedness of counter-propagating modes are interchanged. Lastly, we illustrate that the impact of chirality, even in
cases where it assumes small values, is more pronounced on the rotation of the plane of polarization of a wave incident
to a slab of the considered medium.

The manuscript is structured as follows: In Sec. II, we model the medium under consideration via the Condon con-
stitutive relations. Due to homogeneity, by employing the Beltrami fields, we reduce the problem of electromagnetic
wave propagation in such a bi-isotropic medium to that of wave propagation in a regular isotropic medium. In Sec.
III, we introduce coupled-wave theory that aims to describe the wave propagation within the temporally-modulated
complex medium via expressions that offer straightforward insights. In Sec. IV, we discuss the dispersion character-
istics and the density of states, demonstrating the impact of chirality on the parametric amplification regime. In Sec.
V, we examine the propagation of electromagnetic waves through a finite “time-slab” of the medium. We calculate
the medium’s response in terms of scattering coefficients and subsequently discuss the influence of giant chirality in
the temporal analog of the negative refraction regime due to chirality. Moreover, we explore the dynamic evolution of
the polarization state of an electromagnetic wave as it propagates through the slab. Finally, in Sec. VI, we summarize
the impact of chirality on wave propagation in the examined medium.

II. CONSTITUTIVE RELATIONS AND THE BELTRAMI FIELDS

When it comes to the simplest bi-isotropic reciprocal medium, characterized by a relative permittivity ϵr, per-
meability µr, and chirality parameter gr, Maxwell’s under-determined equations are typically supplemented by the
so-called Tellegen constitutive relations [47]. In this study, we will be examining a medium whose relative parameters
are periodic functions of time, sharing the same period T > 0, i.e., f (t) = f (t+ T ), where f = {ϵr, µr, gr} ∈ R. The
chosen modulation profiles are

f = f̄ + δf
eiΩt + e−iΩt

2
, (1)

where Ω = 2π/T is the temporal modulation frequency and δf ≪ 1 represents the (weak) modulation strength of each
parameter. The aforementioned connections are valid for instantaneous responses; otherwise, they must be replaced by
convolution integrals [48]. Such instantaneous responses have been experimentally observed for all-optical modulation
near the zero index of refraction regime [10]. For example, in [49], the response time of transparent conduction oxides
(such as ITO [50]) was found to be of the same order of magnitude as the cycle of radiation (a few femtoseconds).
Furthermore, in [16], aside from single-cycle response, high modulation depths were demonstrated (≈ 0.5 times the
real part of the refractive index).

While the Tellegen model has been successfully employed in [34] to analyze the temporal analog of optical activity,
at least as an approximation, it is essential to acknowledge that electromagnetic chirality fundamentally arises from
spatial dispersion [51]. Therefore, the Tellegen formalism must be used with care. To address this concern, Mostafa et
al. proposed in [30] the utilization of the Condon model [52] instead, which was demonstrated in [53] to be invariant
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under duality transformations, thus meeting the primary criterion for physically accepted constitutive relations. The
primary rationale for employing the Condon model, in lieu of the Tellegen formalism, was that chirality could be
introduced via the gyrotropic parameter, g, which is essentially non-dispersive [30] when considered at frequencies
substantially lower than the resonances of the chiral molecules (here, meta-atoms) [54].

In accordance with the notation of [55], the symmetrized Condon model can be expressed as

d = ϵrE− gc0
∂h

∂t
and b = µrh+ gc0

∂E

∂t
, (2)

where we have introduced the auxiliary fields d = ϵ−1
0 D, b = (η0/µ0)B, and h = η0H, which have the same dimensions

as E. Here, E and B are the complex-valued phasors of the primitive electromagnetic fields, while D and H are those
of their associated stimulated excitation fields. Additionally, ϵ0, µ0, c0 = 1/(ϵ0µ0)

1/2, and η0 = (µ0/ϵ0)
1/2 denote the

free-space permittivity, permeability, phase velocity of light, and impedance, respectively. The dimensionless chirality
parameter is defined as gr = ωc0g, with ω being the angular frequency, ensuring clarity in distinguishing it from the
conventional gyrotropy, such as the off-diagonal element of the permittivity tensor in the Faraday medium of [56].

Due to the fact that circularly birefringent media possess an inherent circular basis, with circular polarizations
being always eigenmodes of the isotropic case [57], and since all the constitutive parameters in Eq. (2) are scalars [58],
we may utilize the so-called Beltrami fields. These are postulated as [59]

E(±) =
1

2
(E± iηh) and h(±) =

1

2
[h∓ (i/η)E] , (3)

where η = (µr/ϵr)
1/2

and the subscript notation “+” (respectively, “−”) denotes left- (respectively, right-) handed
modes. Crucially, the fields of Eq. (3) are self-dual to the actual electric and magnetic excitation fields, respectively.
This implies their invariance under duality transformations, as detailed in [60]. Consequently, these fields satisfy
Maxwell’s equations being self-dual to their corresponding actual fields, thus leaving Maxwell’s equations invariant
under duality transformations.

The ultimate purpose of this approach is to reduce the problem of wave propagation in a bi-isotropic medium to
that of propagation in a regular isotropic medium. This can indeed be achieved under two conditions, referred in
Chap. 2 of [61] as wavefield postulates (sic). The first requirement is that each of the wavefields,

(
E(+),h(+)

)
and(

E(−),h(−)

)
, will be “experiencing” an effective relative permittivity and permeability given by [30, 34]

ϵ(±) = ϵr

(
1± gr

nr

)
and µ(±) = µr

(
1± gr

nr

)
, (4)

respectively, where nr = (ϵrµr)
1/2

. Consequently, the equivalent isotropic medium has constitutive relations given by
[53, 61] (

d(±)

b(±)

)
=

(
ϵ(±) 0
0 µ(±)

)(
E(±)

h(±)

)
. (5)

The second requirement stipulates that if E and h satisfy Maxwell’s equations, so are the individual wavefields of
Eq. (3). Wherefore, the two wavefields are independent, i.e., decoupled. However, it is important to note that this
condition can only be fulfilled in homogeneous media, where the constitutive parameters remain constant throughout
space. Given that we are dealing with a scenario involving global time modulation, which necessitates that at some
moment, t0, we start modulating the medium’s parameters for all points in space (at least for those traversed by the
lightwave), the wavefields in Eq. (3) will remain decoupled [62].

In the coupled-wave theory approach we take in this paper, we will be considering a sum of counter-propagating
plane waves. This implies that the initial wave (before the start of the modulation) is already propagating and imparts
a particular k-content, with k being the wavenumber, that is conserved [63]. In our analysis, we will demonstrate
how this wave evolves over time as the medium’s parameters periodically change. It is worth noting that the initial
wave may be anharmonic; hence, in reality, the medium may not need to be dynamically changing in infinite space
but only in the space where the wave is propagating.

The second postulate appears contradictory to the prevailing coupling mechanism in the spatial counterpart of
the scenario under consideration, where strong coupling arises primarily between contra-handed counter-propagating
modes [44–46]. However, this apparent contradiction is expected due to the conservation of momentum, which is a
characteristic feature of time-varying media [63, 64], that forbids any chirality-reversing local reflections.
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III. COUPLED-WAVE THEORY DESCRIPTION

In a source-free medium, since the excitation d(±)-fields are solenoidal, combining Faraday’s and Ampère-Maxwell’s

macroscopic curl relations, ∇×E(±) = −c−1
0 ∂b(±)/∂t and ∇×h(±) = c−1

0 ∂d(±)/∂t, respectively, with the constitutive
relations of Eq. (5), we obtain

c20∇2d(±) = ϵ(±)

∂µ(±)

∂t

∂d(±)

∂t
+ ϵ(±)µ(±)

∂2d(±)

∂t2
. (6)

For a plane wave that is axially propagating along, say, the z-direction, since momentum is conserved, Eq. (6) leads
to two distinct equations via separation of the variables [65]. Thus, we may decompose the excitation fields as
d(±) (z, t; k) = ds

(±) (z; k) d
t
(±) (t; k), where ds

(±) = ds(±)ê(±) and dt(±) denote the (vectorial) spatial and the (scalar)

temporal parts of the field, respectively. Since the wavefields decomposition splits the power carried by the wave into
two independent orthogonal circular polarizations [60], we have

ê(±) =
1√
2

(
1
±i

)
, (7)

where “+” (respectively, “−”) indicates left- (respectively, right-) handed circular polarization [66].
Whence, upon substituting the decomposed field into Eq. (6) and separating the variables, with −k2 being the

separation constant, we arrive at two equations. Specifically, for the spatial part of the field, Eq. (6) leads to the
usual Helmholtz wave equation

d2ds
(±)

dz2
+ k2ds

(±) = 0 , (8)

whereby assuming that both wavefields propagate in the positive (spatial) direction, the solutions to Eq. (8) are

ds
(±) = ds(±)e

ikzê(±) . (9)

Accordingly, for the temporal part, Eq. (6) leads to

d2dt(±)

dt2
+ [θ1](±)

ddt(±)

dt
+ [θ2](±) d

t
(±) = 0 , (10)

where we have compactly written

[θ1](±) =
1

µ(±)

dµ(±)

dt
and [θ2](±) =

k2c20
ϵ(±)µ(±)

. (11)

As reviewed in Appx. A, taking the Fourier expansions of the functions in Eq. (11),

[θ1,2](±) =

+∞∑
n=0

[
θ̃1,2

]n
(±)

cos (nΩt) ,

the retained terms for weak modulation amplitudes are

[θ1,2](±) ≈
[
θ̄1,2
]
(±)

+ [δθ1,2](±)

eiΩt ∓ e−iΩt

2
. (12)

For the [θ1](±) coefficients, the dc-terms and the amplitudes of the modulation depths are found to be

[
θ̄1
]
(±)

= 0 and [δθ1](±) = iΩ

(
δµr

µ̄r
+

δnr,(±)

n̄r,(±)
− δnr

n̄r

)
, (13a)

respectively, whereas for the [θ2](±) coefficients the equivalent terms are

[
θ̄2
]
(±)

=
k2c20
n̄2
r,(±)

and [δθ2](±) = −2k2c20
δnr,(±)

n̄3
r,(±)

, (13b)
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respectively; for brevity, the meaning of each symbol is explicitly defined in Appx. A, but the notation is clear: barred
values correspond to dc-terms, while the δ-symbols correspond to first-order modulation strengths.
It is easily understood from Eqs. (12) and (13a) that under the assumption of weak modulation, if we set t0 = 0,

then [θ1](±) (t0) = 0. These observations naturally guide us to the field transformation [67]

yt(±) = exp

(
1

2

∫ t

t0

[θ1](±)dt
′
)
dt(±) , (14)

that renders Eqs. (10) as two Hill equations, namely

d2y(±)

dt2
+ [θ](±) y(±) = 0 . (15)

The identified coefficients in Eq. (15) are

[θ](±) = [θ2](±) −
1

2

d[θ1](±)

dt
− 1

4
[θ1]

2
(±) , (16)

with Fourier components, as per the [θ2](±) expansions in Eq. (12) (n.b. the minus sign between the exponentials),

[
θ̄
]
(±)

=
[
θ̄2
]
(±)

+
1

8
[δθ1]

2
(±) ,

[δθ](±) = [δθ2](±) − i (Ω/2) [δθ1](±) . (17)

Analogously to the application of coupled-wave theory in spatially modulated dielectric media, such as structurally
chiral media [55] or conventional (uniform) Bragg gratings [42], we seek an ansatz to Eq. (15). As the d(±)-fields are
axiomatically decoupled in a homogeneous bi-isotropic medium and, contrary to the spatial case of [44–46], strong
coupling is expected to occur only between co-handed counter-propagating modes, we elect

yt
(±) =

[
yt(±)

]+
e−iω0,(±)t +

[
yt(±)

]−
eiω0,(±)t . (18)

The “+” (respectively, “−”) superscript sign in the amplitudes denote forward and backward temporal reflections.
The gyrotropy-perturbed angular frequency is

ω0,(±) = ω0

(
1∓ ḡr

n̄r

)
, where |ḡr| < n̄r , (19)

with ω0 being the central (i.e., design) angular frequency (cf. Eq. (4) of [30] but with the opposite harmonic convention).
Of course, “negative time” is merely an algebraic trick, as time only travels in one direction: the positive. Nonethe-

less, Eq. (18) becomes meaningful when we reinstate the eikz terms previously omitted (cf. Eq. (9)). Indeed, when
a wave, A+ei(kz−ωt), encounters a temporal interface where the refractive index abruptly changes, reflection occurs,
with the reflected wave typically given by A−e−i(kz+ωt). Now, since momentum is conserved, and the minus sign
in front of the reflected wave’s wavenumber lacks meaning, following the convention of [68], we take the complex
conjugate, (A−)

∗
ei(kz+ωt), noting that both expressions have the same real part. By omitting the spatial term in

the exponential, Eq. (18) is now fully justified. Such a time reversal is intimately linked to negative frequencies (cf.
ωt = (−ω)(−t)) and can be understood in terms of phase conjugation (see Fig. 4 of [69]) or negative refraction [70].
For ḡr = 0, Eq. (18) reduces to the ansatz of achiral media (cf. Eq. (4) of [43]), whereas |ḡr| = n̄−1

r marks the
entrance to the negative refraction due to chirality regime [71], but in the temporal domain (see [72]). Manifestly,
the expansion of Eq. (18) aims to use the eigenmodes of pure circular birefringence (cf. Eq. (3)) as the basis, and
treat chirality as a perturbation (see Appx. B of [55] and [73]). As we prove in Sec. VB, the notation in Eq. (18)
remains nominal, since in a negative refracting state, the direction of phase propagation and the temporal handedness
of counter-propagating modes are interchanged.

Thence, substituting Eq. (18) into Eq. (15), we apply the slowly varying envelope approximation. Under this
adiabatic approximation, the time-dependence of the amplitudes appearing in Eq. (18) is considered sufficiently
mild, i.e., |d2yt(±)/dt

2| ≪ 2ω0|dyt(±)/dt|, except at the temporal boundaries. As derived in Appx. B, phase-matching

potentially synchronous terms yields two distinct coupled-wave systems:

dA(±)

dt
= M(±) ·A(±) , (20)
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where A(±) =
([

yt(±)

]+ [
yt(±)

]−)⊺
, with ⊺ indicating transpose, and the characteristic matrices read

M(±) =

(
iω̄(±) iχ(±)e

−i2δω0,(±)t

−iχ(±)e
i2δω0,(±)t −iω̄(±)

)
. (21)

In the matrices of Eq. (21), we have

ω̄(±) =
ω2
0,(±) −

[
θ̄
]
(±)

2ω0,(±)
, (22)

the detuning parameters are given by

δω0,(±) = ω0

(
1∓ ḡr

n̄r

)
− Ω

2
, (23)

and the identified coupling coefficients by

χ(±) = −
[δθ](±)

4ω0,(±)
. (24)

As we show in Appx. C, the coupled-wave equations of Eq. (20) have analytic solutions in closed forms, which, for
t0 = 0, may be expressed in a matrix notation as

A(±) (t) = S(±) (t) ·A(±) (0) . (25)

The components of the transfer matrices are

S(±) =

(
e−iδω0,(±)tp+(±) e−iδω0,(±)tq+(±)

eiδω0,(±)tq−(±) eiδω0,(±)tp−(±)

)
,

where by setting

δω̃(±) = δω0,(±) + ω̄(±) , (26)

we can write

p±(±) = cosh
(
∆(±)t

)
± i

δω̃(±)

∆(±)
sinh

(
∆(±)t

)
,

q±(±) = ±i
χ(±)

∆(±)
sinh

(
∆(±)t

)
, (27)

with ∆(±) =
[
χ2
(±) − δω̃2

(±)

]1/2
.

IV. DISPERSION CHARACTERISTICS

A. Parametric amplification

Developing the first row of Eq. (25) for the wave travelling forwards, it is immediately apparent from the various
exponential terms that the possible angular frequencies are ω(±) = Ω/2± i∆(±), or, equivalently,

ω(±) =
Ω

2
+ s

{[
ω0

(
1∓ ḡr

n̄r

)
+ ω̄(±) −

Ω

2

]2
− χ2

(±)

}1/2

, (28)

where s = sign(δω̃(±)); the choice of sign in front of the square root is dictated by the physical necessity that ω(±) → 0
as ω0 → 0 and that ω(±) → ω0,(±) as ω0 → +∞ (see [42, 43]). All branches of the dispersion relation in Eq. (28) are
plotted as a Brillouin diagram in Fig. 1, where the ω(+)-curves are associated with left-handed eigenmodes, whereas
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FIG. 1. Brillouin diagram illustrating the dispersion of each eigenmode supported by a periodically modulated bi-isotropic
medium. When ḡr = 0, the ω(±) curves become degenerate, and the sole momentum gap is centered at 0.5. Switching the
chirality on, the two branches of Eq. (28) are separated, forming two distinct first-order momentum gaps, each for a different
mode. For the left- (respectively, right-) handed mode, the resonances are shifted at the angular frequencies of Eq. (29a)
(respectively, Eq. (29b)). The base parameters are: for the permittivity, ϵ̄r = 1 and δϵr = 0.1; for the permeability, µ̄r = 1 and
δµr = 0; and for the chirality parameter, ḡr = 0.1 and δgr = 0.01.

the ω(−)-curves are associated with right-handed eigenmodes. Two first-order momentum gaps are formed, each
corresponding to orthogonal modes. The modulation depth contributes to the elevation of the imaginary part in Eq.
(28), thereby leading to the emergence of parametric amplification, as depicted by the dashed lines. The segments of
the hyperbolas represent passbands, wherein, in the absence of absorption, a wave propagates without alteration.

For both polarizations, the nonzero imaginary part of the angular frequency inside the photonic bandgap gives rise
to a regime wherein parametric amplification ensues [17]. Such a behavior is expected regardless of the presence or
absence of magneto-electric coupling. Indeed, a closer examination of the effective permittivity and permeability in

Eq. (4) reveals that the impedance of the equivalent isotropic medium, η(±) =
(
µ(±)/ϵ(±)

)1/2
, is independent of the

chirality. Moreover, for ϵ̄r ̸= µ̄r (and/or δϵr ̸= δµr), the impedance varies over time, resulting in backscattering (i.e.,
bandgaps [21]), independently of ḡr and δgr. Nonetheless, as we subsequently discuss, chirality provides control over:
(a) the locations of the momentum gaps, (b) their corresponding bandwidths, and (c) the amplification factors.

As anticipated, both the left- and the right-handed eigenmodes can be amplified, albeit at different angular frequen-
cies. To identify the frequencies for which the largest moduli of the imaginary parts of ω are achieved, i.e., the centers
of the two resonances, we can simply equate the detuning parameters of Eq. (23) to zero. Hence, the momentum gap
for the left-handed eigenmodes will be centered at

ωcntr
(+) =

Ω

2

(
1− ḡr

n̄r

)−1

, (29a)

whereas for the right-handed eigenmodes at

ωcntr
(−) =

Ω

2

(
1 +

ḡr
n̄r

)−1

. (29b)

Upon inspection of Eqs. (29a) and (29b), it is clear that the presence of chirality shifts the centers of the resonances,
towards the red or the blue, depending on the sense of rotation (i.e., the sign of ḡr). Importantly, such a shift is
induced only by the presence of the chirality parameter’s dc-term. Whether the chirality is time-modulated or not,
ḡr offers control over the location of the resonances, closely resembling the case where a structurally chiral medium is
infiltrated by a chiral fluid [55]. We note that in the static medium of [55], the shift induced by the presence of chirality
is linear with respect to the Bragg wavelength. In our example, however, as is customary to examine the dispersion
characteristics in the frequency domain, such dependence is manifested as an inverse law, but the shifting-mechanism
is similar.
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FIG. 2. The combined influence of the dc- and ac-terms of the chirality on the bandwidth of the momentum gap associated with
each eigenmode for the parameters of Fig. 1. The transparent (respectively, opaque) surface corresponds to the left- (respec-
tively, right-) handed mode. For the left- (respectively, right-) handed mode, ∆ω+ (respectively, ∆ω−) increases (respectively,
decreases) monotonically with ḡr in a parabolic pattern, and there is a linear and consistently decreasing trend with δgr for
both handednesses.

On the other hand, the modulation strength of the chirality affects the coupling between co-handed counter-
propagating modes, which can be clearly demonstrated after some algebraic manipulations of Eq. (24):

χ(±) =

(
ω2
0 −

[
θ̄2
]
(±)

2ω0,(±)

)
δnr,(±)

n̄r,(±)
− ω2

0

2ω0,(±)

δnr

n̄r
. (30)

As a validity check, in the absence of magneto-electric coupling, Eq. (30) reduces to χ(±) = − (ω0/2) (δnr/n̄r), thus
corroborating Eq. (6) in [43]. The coupling coefficients are directly related to the momentum gap bandwidth, which
can be estimated by setting ∆(±) = 0. It turns out that the limiting frequencies are given by

∆ω(±)

Ω
≈ n̄rδnr

2n̄r,(∓)
, (31)

for each handedness, respectively.
Although the simple formulae in Eq. (31) clearly illustrate the dependence of the bandwidths of the parametric

amplification regimes on the dc-term of the chirality, they do not account for the influence of the chirality’s modulation
strength. Therefore, in Fig. 2, we present plots of the solutions to the equations ∆(±) = 0 for various values of ḡr and
δgr, without neglecting higher-order terms. As shown, for both the left- and the right-handed modes, the dependence of
∆ω(+) and ∆ω(−) on ḡr follows a parabolic pattern, with the former increasing and the latter decreasing monotonically.
Additionally, the dependence on δgr exhibits a linear and consistently decreasing trend for both handednesses.
Likewise, the presence of chirality also affects the maximum values of the imaginary parts of ω(±), i.e., the amplifi-

cation factors. To provide an estimation of this parameter, we shall examine the system on-resonance. In such case,
Eq. (28) yields ∣∣Im (ω(±)

)∣∣
δω̃(±)=0

= χ(±) . (32)

Hence, the dependence of the amplification factors on the chirality is clear (cf. the approximate expression of Eq.
(30)); we revisit this point in Sec. VA.

B. Density of states

Should we consider the number of angular frequencies lying between ω0 and ω0 + dω0, where dω0 is infinitesimal,
to be uniform, then the corresponding number of states in the range ω to ω +dω is simply (dω/dω0) dω0. Therefore,
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FIG. 3. Density of states in the vicinity of the first-order momentum gap for both eigenmodes, as per Eq. (33) and for the
parameters of Fig. 1. By contrast to their spatial counterparts, in temporally modulated media, these curves are interpreted as
the group velocity. At the edges of the momentum gaps (cf. the asymptotic dashed lines), the group velocity diverges. While
not fundamentally forbidden, the group velocity becomes infinite at positions where standing waves are formed.

dω/dω0 may be regarded as the “density of states” in angular frequency space. Differentiating Eq. (28), we arrive at
the approximate expression

dω(±)

dω0
≈ Re

 δω̃(±)

(
1∓ n̄−1

r ḡr
)(

δω̃2
(±) − χ2

(±)

)1/2
 . (33)

As illustrated in Fig. 3, where Eq. (33) is plotted, the density of states diverge at each band-edge of the momentum
gaps (where ∆(±) = 0). In the case under consideration, the density of states is the group velocity (aside from a
factor of c0) and not its inverse, as is the case in spatially modulated dielectric media. This raises the question: can
the group velocity exceed the speed of light in vacuum? As extensively explained in Brillouin’s book (see pp. 74–79 of
[74]), the group velocity can indeed surpass the speed of light at near-absorption frequencies (here, near amplification
regimes). Nevertheless, the more physically pertinent signal velocity is neither negative nor faster than the speed
of light [75]. By contrast to stationary media, where infinite group velocity plays a pivotal role, e.g., in distributed
feedback lasers [76], in temporal media, the group velocity diverges at positions where standing waves are formed [77].

V. WAVE PROPAGATION THROUGH A FINITE “TIME-SLAB”

A. Scattering coefficients

We may now consider the electromagnetic response of a finite “time-slab” of the medium under discussion. Such
a slab is defined as a homogeneous, isotropic, and achiral medium in which, at a certain moment, say, t0 = 0, its
permittivity, permeability, and chirality begin to vary periodically with time, as per Eq. (1), and continue until a
moment t when the medium’s parameters return to their pre-modulation values (cf. Fig. 1 of [78]).
Hence, ∆t = t− t0 can be regarded as the duration of the slab, akin to the length of a Bragg grating. Modulating a

medium for numerous periods (e.g., setting ∆t = 10T ) undoubtedly presents significant experimental challenges, with
notable concerns being raised regarding temporal dispersion and input power demands (see [79]). Nevertheless, recent
experimental demonstrations involving highly nonlinear materials, such as ITO [50], in the epsilon-near-zero regime
[13–16], hold substantial promise; for a comprehensive discussion on various experimental approaches we recommend
Sec. V of [63].

Considering the solutions of the coupled-wave equations given by Eq. (25) in terms of the transformed fields of Eq.

(14), and by applying the only physically meaningful initial condition,
[
dt(±)

]−
(t0) = 0, as seen in [80], we can define
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the backward and forward reflection coefficients in terms of the original excitation fields as

r(±) =

[
dt(±)

]−
(t)[

dt(±)

]+
(t0)

= e
ϕ+
(±)q−(±) , (34a)

t(±) =

[
dt(±)

]+
(t)[

dt(±)

]+
(t0)

= e
ϕ−
(±)p+(±) , (34b)

respectively, where

ϕ±
(±) = −1

2

∫ t

t0

[θ1](±)dt
′ ± iδω0,(±)t . (35)

The formulae in Eq. (34) can be interpreted as the sum of the distributed (in time) chirality-preserving local
reflections. However, these coefficients represent the total backward and forward reflection only when dealing with
impedance-matched media, where the “surrounding” medium is the pre- (and post-) modulation medium. However,
we can match the auxiliary electric excitation fields, d(±), and the auxiliary magnetic fields, b(±), at the two temporal
boundaries [2, 81], and derive the temporal Fresnel coefficients. These turn out to be [82]

ρ1→2 =
η2 − η1
2η2

and τ1→2 =
η2 + η1
2η2

, (36)

where 1 → 2 indicates the backward/forward reflection coefficient upon incidence from a medium with impedance η1
to a medium with impedance η2. Subsequently, by inserting the coefficients of Eq. (36) into a two-by-two matrix, as
done, e.g., in [62, 80], we can cascade the two matrices at the interfaces with the one appearing in Eq. (25), when
transformed back to the original excitation fields, to obtain the total reflection coefficients. The associated backward

and forward intensity reflectances will then be R(±) =
∣∣ρ2→1r(±)ρ1→2

∣∣2 and T(±) =
∣∣τ2→1t(±)τ1→2

∣∣2, respectively.
These are plotted for both polarizations in Fig. 4, where the time duration of the slab is taken ∆t = 10T for
illustration purposes, and the reflectances are plotted as a function of the spatial frequency at a snapshot at t = ∆t.

0.35 0.40 0.461 0.5 0.564 0.60 0.65
kc0=(+7nr)

0.00

0.43

0.862
1.00

1.43

1.862
2.00

F
or

w
ar

d
(B

ac
k
w
ar

d
)
re
.
ec

ta
n
ce

,
T

(R
) T(+)

R(+)

T(!)

R(!)

T(') !R(')

FIG. 4. Electromagnetic response of a finite “time-slab” of the considered medium for the parameters of Fig. 1 and for the
slab’s time duration being ∆t = 10T . The resonance on the right- (respectively, left-) hand side of the figure corresponds to
the parametric amplification of the left- (respectively, right-) handed eigenmode, inside the associated momentum gaps. The
emphasized bold frequencies are those for which the maximum reflectance is achieved and are slightly different from those
seen in Fig. 1. An increment in the slab’s time duration will force the resonances to become sharper, thus bringing the peak
reflectances at the exact Bragg frequencies of Eqs. (29). For both handednesses, the energy “pseudo-conservation” relation
T(±) −R(±) = 1 is upheld (cf. the orange dashed line).

The angular frequencies to which the resonance maxima correspond differ slightly from those shown in Figs. 1 and
3. However, this discrepancy has a mundane origin, resulting from the always-in-phase waves not having enough
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time to produce a sharper, albeit crucially not steeper, resonance. Nevertheless, an increase in the permittivity’s
modulation depth augments the linewidth of the bandgap, further substantiating the Bragg-like features in the
occurring amplification mechanism.

In Fig. 4, we further plot the differences T(±) − R(±), which are clearly equal to unity for all frequencies and
both polarizations. This “pseudo-conservation” relation is a well-known property of periodically modulated temporal
media [63], and it resemblances the conservation relation of PT -symmetric systems (see [83]). Furthermore, it holds
independently of the modulation profile, as indicated in [84]. It appears that such a conservation relation is also
satisfied in the presence of a periodically modulated magneto-electric coupling. This is a predictable outcome, as
for all the medium’s parameters being real, the characteristic matrix of Eq. (C2) is traceless and Hermitian, which
guarantees that the transfer matrix of Eq. (C3) is SU(1, 1)-symmetric [42].
As indicated by Eq. (32), the presence of magneto-electric coupling has a straightforward effect on the amplification

factor. By quantitatively describing the enacted amplification process via, say, the forward intensity reflectance (i.e.,
the transmittance), we can promptly demonstrate the dependence of the maximum amplification on the dc- and
ac-terms of the chirality. Focusing on the on-resonance case, Eqs. (27) and (34b) dictate that

TPeak
(±) =

∣∣t(±)

∣∣2∣∣∣
δω0,(±)=0

= cosh2
(
χ(±)∆t

)
, (37)

where for the considered geometry the τ -coefficient of Eq. (36) has been canceled out. From Eq. (37) it is easy to see
that the aforementioned conservation relation follows from the usual hyperbolic trigonometric identity. If the momen-
tum gap is centered at the angular frequency given by Eq. (29a) (respectively, Eq. (29b)) for the left- (respectively,
right-) handed eigenmode, the transparent (respectively, the opaque) surface in Fig. 5 shows the maximum forward
intensity reflectance achieved. Clearly, for both handednesses, the higher the value of ḡr, the greater the peak of the
forward intensity reflectance. By contrast, with increasing values of δgr, the peak of the forward intensity reflectance
for the left- (respectively, right-) handed eigenmodes increases (respectively, decreases).

FIG. 5. The peak forward intensity reflectances for both handednesses, as per Eq. (37), for varying values of the dc- and
ac-terms of the chirality within the context of Fig. 1 and for ∆t = 10T . Each point on the transparent (respectively, opaque)
surface represents the maximum amplification achieved at the angular frequency of Eq. (29a) (respectively, Eq. (29b)) for the
left- (respectively, right-) handed eigenmode. For both handednesses, the peak of the forward intensity reflectance increases
with higher values of ḡr. With increasing values of δgr, the peak for the left- (respectively, right-) handed eigenmodes increases
(respectively, decreases).

B. Negative refraction due to giant chirality

Scrutinizing Eqs. (18) and (19), it becomes apparent that for extreme values of the chirality parameter [85–87], the
signs of ω0,(±) are swapped. Reminiscent of the static case, for ḡr > n̄r (respectively, ḡr < −n̄r), Eq. (19) implies
that for the left- (respectively, right-) handed eigenmode, the direction of phase propagation between the (nominally)
forward and backward propagating waves is interchanged. Notwithstanding, unlike the static scenario, the discussion
on the modes’ handedness is slightly more complicated.
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Indeed, returning back to the Beltrami fields in Eq. (3), for ḡ ∈ (−n̄r, n̄r), the eigenmodes propagating in the
positive direction are

E+
(±) = Q+

(±)

ei(kz−ω0,(±)t)
√
2

(
1
±i

)
, (38a)

whereas those propagating in the negative direction are

E−
(±) = Q−

(±)

ei(kz+ω0,(±)t)
√
2

(
1
±i

)
, (38b)

where Q±
(±) are time-dependent amplitudes. We note that hitherto, the subscript notation “±,” indicating the

polarization state of each wavefield, was associated with the spatial part of the field, and therefore signified the fields’
sense of rotation in space.
Should we drop the kz-term, by setting Q+

(−) = 0 and Q+
(+) = 0, respectively, Eq. (38a) yields

Re
(
E+

(±)

)
=

|Q+
(±)|√
2

 cos
[
ω0,(±)t+ arg

(
Q+

(±)

)]
± sin

[
ω0,(±)t+ arg

(
Q+

(±)

)] , (39a)

provided that Im (n̄r) = 0; otherwise, an exponential damping in the amplitudes must be included. Accordingly, upon
setting Q−

(−) = 0 and Q−
(+) = 0 in Eq. (38b), we obtain, respectively,

Re
(
E−

(±)

)
=

|Q−
(±)|√
2

 cos
[
ω0,(±)t+ arg

(
Q−

(±)

)]
∓ sin

[
ω0,(±)t+ arg

(
Q−

(±)

)] . (39b)

For ḡr ∈ (−n̄r, n̄r), the interpretation of Eqs. (38a) and (38b) is straightforward: they inform us about which
direction of phase propagation is considered positive. Regarding the associated handedness of each mode, we underline
that within the context of purely temporal media, one must distinguish between spatial and temporal handedness.
The former, found on examining Eqs. (38a) and (38b) by taking a snapshot of the field, can be a right- or a left-handed
helix in space. The latter, on the other hand, found on examining Eqs. (39a) and (39b) for a fixed point in space
as time evolves, can be a right- or a left-handed spiral in time. In our problem, the spatial helix is fixed due to
conservation of momentum, so the decomposed wavefields remain decoupled. However, the temporal spiral may well
change handedness.

In particular, for ḡr > n̄r (respectively, ḡr < −n̄r), ω0,(+) (respectively, ω0,(−)) becomes negative. As a result, the
direction of phase propagation between Eq. (38a) and Eq. (38b) for the “+” (respectively, “−”) mode is changed,
and the same thing happens for the sense of the temporal rotation, as the y-component of the vectors in Eqs. (39a)
and (39b) changes signs. Under corresponding preconditions, giant chirality can grant access to higher order Bragg
resonances (n.b. Hill’s determinant of the Floquet theory predicts momentum bandgaps centered at ω = NΩ/2, N ∈ N
[88]). Naturally, coupled-wave theory concentrated around the first harmonic needs to be modified to that of Sec. 4
in [41], but the intuition is clear.

C. Polarization dynamics

No definitive discussion on bi-isotropic media can be reached without exploring the influence of chirality on the
polarization of electromagnetic waves when transmitted through such media. However, in the context of pure tem-
poral modulation, the conventional interpretation of polarization can be somewhat misleading. Indeed, consider
the transverse component of the electric field of a plane electromagnetic wave propagating along, say, the z-axis,
E⊥ = (Ex, Ey)

⊺
ei(kz−ωt). It is possible to fix z = z0 in the laboratory and track the loci of the trace of the electric

field vector as time progresses (for harmonic waves, ωt ∈ [0, 2π] is sufficient). Clearly, this approach is not directly
applicable in a temporal slab, given the changing nature of ω.

Nevertheless, it is feasible to parameterize the field in terms of the spatial component z instead of t and observe
the loci of the tip of the electric field vector at a specific moment over a cycle of points along the z-axis (i.e., for
kz ∈ [0, 2π]). The objective of such a parameterization is clear: to convey how the electric field vector is influenced by
propagation through a medium. This is illustrated in Fig. 6, where the pre-modulation elliptically polarized wave is
depicted alongside the post-modulation wave. The transmitted wave is evidently still elliptically polarized, albeit with
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the plane of polarization rotated. Furthermore, since the incident wave has been deliberately chosen to be elliptically
polarized, containing unequal amounts of right and left circular polarizations, upon entering the temporal slab, its
angular frequency undergoes a split due to temporal circular birefringence. Subsequently, as the angular frequency of
each polarization falls within distinct momentum gaps, each component undergoes amplification, albeit in a distinct
manner due to the different amplification factors for each handedness. The recombined wave at the output is then
amplified, and this characteristic is manifested as the area difference between the two circles in Fig. 6, each with a
diameter equal to the major axis of the respective ellipse.

Another merit of the depiction in Fig. 6 is that it allows observations on the impact of the simultaneous existence
of modulated chirality and permittivity/permeability on polarization. In fact, as can be seen, even for small values
of chirality where the scattered intensities reach levels similar to those of the achiral case (e.g., for the parameters of
Fig. 1, T chiral

(+) /T achiral
(+) ≈ 1.055), the polarization rotation is significant (in this instance, ∆ϕ ≈ π/6). Furthermore,

when the permittivity is modulated in such a fashion that parametric amplification occurs, we observe that the major
(and minor) axes of the initial ellipse are increased, signifying an amplified wave.

-1.2 -1 0 1 1.2
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-1.2
-1

0

1
1.2

E
y "?

Input polarization
Output polarization

FIG. 6. Elliptical trajectory of the electric field just before (purple ellipse) and right after (orange ellipse) the passage of the
wave through a temporally modulated bi-isotropic medium. The parameters are those of Fig. 1, and the snapshot has been
taken at t0 = 2.5T .Both ellipses are inscribed in circles with diameters equal to the corresponding major axes of the ellipses,
so that amplification is demonstrated as the area difference between the two circles. For such a time duration, the polarization
rotation due to temporal circular birefringence is ∆ϕ ≈ π/3.

With the aforementioned considerations, it is arguably more illustrative to refer to “polarization dynamics,” com-
prehended in the traditional sense of depicting how the tip of the electric field vector evolves over time. Thus, for
t ∈ (−∞, 0−], let us consider only the forward traveling plane electromagnetic wave

Ein
⊥ = α(+)e

i(kz−ω0t)ê(+) + α(−)e
i(kz−ω0t)ê(−) , (40)

where α(+) and α(−) denote the amounts of left and right circular polarizations, respectively; for α(+) ̸= α(−), Eq,

(40) describes an elliptically polarized wave. Upon entering the temporal slab at t = 0+, and for t ∈ (0+,∆t−],
the angular frequency undergoes a downshift (respectively, upshift) for the left- (respectively, right-) handed mode.
Therefore, the two circular modes of Eq. (40) experience different frequencies, a manifestation of temporal circular
birefringence (cf. Fig. 2 in [34]). Then, for t ∈ [∆t+,∞), the post-modulation electric field is

Eout
⊥ =

(
τ2→1t(+)e

−iω0,(+)∆tτ1→2

)
α(+)e

i(kz−iω0t)ê(+)

+
(
τ2→1t(−)e

−iω0,(−)∆tτ1→2

)
α(−)e

i(kz−iω0t)ê(−) ,

whereby it is evident that by the time the wave exits the temporal slab, the plane of its elliptical polarization has
been approximately rotated by ω0(ḡr/n̄r)∆t, which is the temporal analog of the result obtained in Sec. III of [44].
Consequently, similar to their spatial counterparts, temporally modulated bi-isotropic media can function as active

polarization rotators, with their optical rotatory power defined in terms of ◦/s instead of ◦/mm. Moreover, owing
to the dispersion properties of media with periodically time-varying permittivity, the temporal slab also acts as a
gain medium, amplifying the output wave (cf. the major and minor axes of the output ellipse compared to those of
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the input in Fig. 6 and in Fig. 7 for t > ∆t+). Remarkably, the proposed medium serves as an ideal platform for
polarization control, where we can simultaneously control both the polarization rotation and the level of the output
signal. Applications in, e.g., optical modulation [89], are expected to emerge.

If we wish to rotate the plane of polarization of an elliptically polarized wave by an angle ∆ϕ, then for a particular
value of the dc-term of the chirality, we may set the time duration of the slab to ∆t = (n̄r/ḡr) (∆ϕ/Ω). In Fig. 7, the
dynamic evolution of the electric field with time is depicted as an elliptically polarized wave encounters a medium
whose permittivity, permeability, and chirality periodically vary with time. If the desired rotation is ∆ϕ = π/2, by
appropriately choosing the slab’s time duration, the plane of an elliptically polarized wave is rotated by π/2. Such
a choice of the slab’s time duration does not exactly achieve the targeted ∆ϕ, as this would require considering the
phase response of the optically active temporal Bragg grating. Nevertheless, the approximation is evidently sufficient.

FIG. 7. Dynamic evolution of the electric field vector in time as an initially elliptically polarized light, composed of circular

components α(+) = 0.4 and α(−) =
(
1− α2

(+)

)1/2
, passes through a temporal slab of a time-varying bi-isotropic medium with

parameters as those of Fig. 1. The slab’s time duration has been set to ∆t = (n̄r/ḡr) (∆ϕ/Ω) = 5T , so that the initial plane of
polarization is rotated, approximately, by π/2 upon transmission. Note the field discontinuity as the wave exits the temporal
slab due to the failure of impedance matching, precisely at t = ∆t.

VI. CONCLUSIONS

The physics of dynamic media, where permittivity varies with time rather than space, is at the forefront of photonic
research, coupled with experimental validation and demonstration. In this study, we harnessed the temporal dimension
and combined it with chirality to investigate a temporally modulated bi-isotropic medium with constitutive parameters
that are periodic functions of time. This medium was found to support two orthogonal circular polarizations with
distinct frequencies. In the vicinity of these frequencies and under specific conditions found in our analysis, regimes of
parametric amplification emerge. Notably, the presence of chirality results in the formation of two momentum gaps,
each corresponding to orthogonal polarizations, whereby modes of different handedness exhibit amplification.

Utilizing coupled-wave theory, we elucidate how the presence of chirality influences the centers, bandwidths, and
associated amplification factors of the first-order momentum gaps. The electromagnetic response of a “time-slab” of
the medium validates our findings and further clarifies the energy “pseudo-conservation” relationship in such media.
For weak chirality, the intensity scattering coefficients reach similar levels to the achiral case, whereas for chirality
values comparable to the medium’s time-averaged refractive index, we demonstrate the mechanism under which one
of the two modes enters a negative refracting state.

Importantly, by presenting an alternative parameterization of polarization and examining its dynamical evolution,
we show that even for weak values of chirality, where the scattering coefficients are at the same levels as in the achiral
case, polarization rotation can become significant. With the simultaneous existence of periodicity in both permittivity
and chirality, we outline the route towards the ideal optical modulator. Through this, we aim to simultaneously control
the polarization of the signal along with its output power.

Potential applications of the proposed medium span diverse areas, ranging from enhancing electron transport in
organic semiconductors [90] and advancing broadband wireless communications [91] to enabling vectorial polarime-
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try imaging [92], optimizing efficiency in OLED displays [93], and facilitating the development of asymmetrically
transmitting photonic devices [94].
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APPENDICES

Appendix A: Fourier expansions of the characteristic coefficients

Considering the modulation profile of each relative parameter, as given by Eq. (1), the time-local refractive index
is approximated as

nr = (ϵrµr)
1/2 ≈ n̄r + δnr

eiΩt + e−iΩt

2
,

where n̄r = (ϵ̄rµ̄r)
1/2

and δnr = (η̄/2) δϵr + (2η̄)
−1

δµr, with η̄ = (µ̄r/ϵ̄r)
1/2

. Accordingly,

n(±) =
(
ϵ(±)µ(±)

)1/2 ≈ n̄r,(±) + δnr,(±)
eiΩt + e−iΩt

2
,

where n̄r,(±) = n̄r ± ωc0ḡr and δnr,(±) = δnr ± ωc0δgr.
As a prelude for approximating the [θ1](±) coefficients, we find the Fourier expansion

h(±) = 1± gr
nr

≈ h̄(±) + δh(±)
eiΩt + e−iΩt

2
, (A1)

where h̄(±) = n̄r,(±)/n̄r and δh(±) = δnr,(±)/n̄r −
(
n̄r,(±)/n̄

2
r

)
δnr. Furthermore, we calculate

1

f

∂f

∂t
= iΩ

eiΩt − e−iΩt

2f̄/δf + eiΩt + e−iΩt
= −Ω

sinΩt

f̄/δf + cosΩt
.

Since | cosΩt| ≤ 1 and f̄/δf ≫ 1, the Taylor expansion of the denominator of the fraction above leads to

1

f

∂f

∂t
≈ iΩ

δf

f̄

eiΩt − e−iΩt

2
. (A2)

Expanding now [θ1](±) as

[θ1](±) =
1

µ(±)

dµ(±)

dt
=

1

µr

dµr

dt
+

1

h(±)

dh(±)

dt
,

we utilize Eqs. (A1) and (A2), and write

[θ1](±) ≈ [θm](±)

eiΩt − e−iΩt

2
,

where [θm](±) = iΩ
(
δµr/µ̄r + δnr,(±)/n̄r,(±) − δn/n̄r

)
.

Regarding the [θ2](±) coefficients, we can readily write

[θ2](±) =
k2c20
n2
(±)

≈
[
θ̄2
]
(±)

+ [δθ2](±)

eiΩt + e−iΩt

2
, (A3)

where
[
θ̄2
]
(±)

= k2c20/n̄
2
r,(±) and [δθ2](±) = −2k2c20δnr,(±)/n̄

3
r,(±), provided that δnr,(±) ≪ 1. Conversely, we have

avoided the formal integral-definitions for the [θ2](±)-coefficients, as seen in Appx. D of [95], and contend that the

approximations of Eq. (A3) are indeed acceptable for weak modulation depths.
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Appendix B: Derivation of the coupled-wave equations

Calculating the first and second time-derivatives of the ansatz in Eq. (18), we can neglect second time-derivatives
in the amplitudes, within the context of the slowly varying envelope approximation. Thence, substituting Eq. (18)
and the two calculated expressions into Eq. (15), also considering Eq. (17), we obtain

− 2iω0,(±)

d[yt(±)]
+

dt
e−iω0,(±)t + 2iω0,(±)

d[yt(±)]
−

dt
eiω0,(±)t +

([
θ̄
]
(±)

− ω2
0,(±)

)
[yt(±)]

+e−iω0,(±)t

+
([

θ̄
]
(±)

− ω2
0,(±)

)
[yt(±)]

−eiω0,(±)t + [yt(±)]
+[δθ](±)

ei(Ω−ω0,(±))t + e−i(Ω+ω0,(±))t

2

+ [yt(±)]
−[δθ](±)

ei(Ω+ω0,(±))t + e−i(Ω−ω0,(±))t

2
= 0 . (B1)

We note the subtlety that, in this instance, contrary to that of [43], the terms
[
θ̄
]
(±)

− ω2
0,(±) ought to be retained.

We now move on to applying the classic perturbation theory by introducing the phase-mismatch, δω0,(±), of Eq.
(23). Whence, the various exponential terms appearing in Eq. (B1) become:

ei(Ω−ω0,(±))t = ei(Ω/2−δω0,(±))t ,

e−i(Ω+ω0,(±))t = e−i(3Ω/2+δω0,(±))t ,

ei(Ω+ω0,(±))t = ei(3Ω/2+δω0,(±))t ,

e−i(Ω−ω0,(±))t = e−i(Ω/2−δω0,(±))t .

By time-averaging upon several cycles, all synchronous terms may be grouped in the vectorial-differential form of Eq.
(20), provided that δω0,(±) ≈ 0.

Appendix C: Solutions of the coupled-wave equations

Starting from the system in Eq. (20), it is convenient to rotate the fields into a new basis,[
ỹt(±)

]±
= e∓iω̄(±)t

[
yt(±)

]±
, (C1)

which will transform the characteristic matrix in Eq. (21) into the Hermitian (for real parameters) and traceless

M̃(±) =

(
0 iχ(±)e

−i2δω̃(±)t

−iχ(±)e
i2δω̃(±)t 0

)
. (C2)

The coupled-wave equations corresponding to the transformed fields of Eq. (C1) have analytic solutions in a closed
form (cf. Eq. (3) of [96]), with an SU (1, 1) underlying symmetry. For t0 = 0, they can be cast as

Ã(±) (t) = S̃(±) (t) · Ã(±) (0) , (C3)

where Ã(±) =
([

ỹt(±)

]+ [
ỹt(±)

]−)T
and the components of the transfer matrices are

S̃(±) =

(
e−iδω̃(±)tp+(±) e−iδω̃(±)tq+(±)

eiδω̃(±)tq−(±) eiδω̃(±)tp−(±)

)
,

with p±(±) and q±(±) being those of Eq. (27).

Having solved the coupled-wave equations for the rotated system, it is straightforward to express the general solution
to Eq. (20) as per Eq. (25), where

S(±) (t) = Φ−1
(±) (t) · S̃(±) (t) ·Φ(±) (0) ,
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with Φ(±) = diag
(
e−iω̄(±)t, eiω̄(±)t

)
.
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[20] D. L. Sounas and A. Alù, Non-reciprocal photonics based on time modulation, Nat. Photonics 11, 774 (2017).
[21] J. B. Pendry, E. Galiffi, and P. A. Huidobro, Gain in time-dependent media–a new mechanism, J. Opt. Soc. Am. B 38,

3360 (2021).
[22] E. Galiffi, G. Xu, S. Yin, H. Moussa, Y. Ra’di, and A. Alù, Broadband coherent wave control through photonic collisions
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