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Fig. 1: Left: path-traced image of a 36 GB HiP-CT dataset, rendered in 95 seconds on a high-end GPU. Right: Gaussian splat
representation of the same dataset requiring 69 MB and rendered at 60 frames per second. The rendering resolution is 2048x2048
pixels.

Abstract—
Interactive photorealistic visualization of 3D anatomy (i.e., Cinematic Anatomy) is used in medical education to explain the structure of
the human body. It is currently restricted to frontal teaching scenarios, where the demonstrator needs a powerful GPU and high-speed
access to a large storage device where the dataset is hosted. We demonstrate the use of novel view synthesis via compressed 3D
Gaussian splatting to overcome this restriction and to enable students to perform cinematic anatomy on lightweight mobile devices
and in virtual reality environments. We present an automatic approach for finding a set of images that captures all potentially seen
structures in the data. By mixing closeup views with images from a distance, the splat representation can recover structures up to the
voxel resolution. The use of Mip-Splatting enables smooth transitions when the focal length is increased. Even for GB datasets, the
final renderable representation can usually be compressed to less than 70 MB, enabling interactive rendering on low-end devices using
rasterization.

Index Terms—Novel view synthesis, cinematic volume rendering, 3D Gaussian splatting

1 INTRODUCTION

Cinematic Anatomy is an immersive anatomy learning application
developed by Siemens Healthineers, which is designed to improve
anatomy education through the use of photorealistic 3D visualization
and cinematic rendering [12]. Instead of real 3D anatomy models it
utilizes volume data provided by medical devices such as computed
tomography (CT) and magnetic resonance imaging (MRI) scanners.

The application is used in the field of anatomy education, specifi-
cally for teaching the diverse and complex individual human anatomy,
anatomical variations, pathology, and age-related degeneration. It aims
to enhance learners’ competency with immersive photorealistic 3D visu-
alization of anatomy. In contrast to idealized anatomy models, learning
with image data from real patients provides a complete experience of
the patient journey from hospitalization to rehabilitation.

Additionally to stereoscopic projection modes for frontal educa-
tion, Cinematic Anatomy also supports augmented and virtual reality
headsets for personalized learning experiences. The portability of the
created content is however often limited by the data size, especially
when employing data from high-resolution imaging modalities like
photon-counting CT, 7 Tesla MRI and phase-contrast CT [50]. Thus,
Cinematic Anatomy is mostly used in frontal teaching scenarios, where
the demonstrator uses a powerful GPU and has high-speed access to a
large storage device where the dataset is stored.

We demonstrate that the limitations of Cinematic Anatomy can be
addressed via novel view synthesis [35], a computer vision technique
that reconstructs a volumetric radiance field of a scene from images
of this scene. The reconstructed field can then be rendered with direct
volume ray-casting from arbitrary views. With novel view synthesis
from pre-rendered anatomy images, time consuming path-tracing can
be avoided at demonstration time. On the other hand, visualization
parameters such as transfer functions are baked into the volumetric
radiance field and cannot be changed. We address this restriction by
using compressed 3D Gaussian splatting for novel view synthesis. The
resulting renderable representation has such a small memory footprint
that multiple representations under different transfer function settings
can be prepared and stored.

3D Gaussian splatting (3DGS) has been proposed by Zwicker et
al. [61] to efficiently compute the projections of 3D Gaussian kernels
onto the 2D image plane. Differentiable 3DGS [25] optimizes the
number and parameters of the Gaussian kernels that are used to rep-
resent the scene. The Gaussians are optimized in a training process
to reproduce initial images of the scene when rendered. Compressed
3DGS [38] has significantly reduced the memory consumption of the
reconstructed Gaussian representation. Since it uses GPU rasterization,
it runs efficiently even on mobile devices and can be integrated seam-
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lessly into VR/AR environments. Fig. 1 demonstrates these properties
with a high-resolution CT scan.
Contribution. To enable compressed 3DGS for Cinematic Anatomy,
we make the following contributions:

• We present an automatic approach for finding a set of images that
captures all potentially seen structures under the current transfer
function setting.

• We extend 3DGS [61] with differentiable alpha channel rendering
to create background-free reconstructions.

• We embed Mip-Splatting [59] to account for different levels of
detail and enable smooth transitions when the focal length is
increased.

• We analyze the quality, performance and memory requirements
with a number of high-resolution medical datasets that are ren-
dered using a publically available Cinematic Anatomy tool.

Our results demonstrate that even for multiple transfer function
settings the overall memory requirement is significantly below of what
is required by the initial dataset. For each single setting, the renderable
representation is so small that it can be quickly downloaded over low-
bandwidth channels and rendered on mobile devices. This enables
Cinematic Anatomy with datasets that are initially so large that they do
not even fit into the VRAM of high-end GPUs. Rendering performance
is about two orders of magnitudes faster than optimized path-tracing,
with almost no perceptible loss of image quality. This even facilitates
the use of cinematic anatomy in mobile VR/AR environments with
GPU multi-view rendering for stereoscopic displays.
Limitations. Besides the outlined strengths, 3DGS comes with the fol-
lowing limitations for Cinematic Anatomy: Firstly, lighting conditions
are baked into the 3D Gaussian representation and cannot be changed
during rendering. Secondly, the use of preset transfer functions hinders
exploratory tasks, where domain experts might want to interactively
perform changes of transfer function parameters. Thirdly, for highly
transparent settings the quality of 3DGS currently decreases, requiring
further research on tailored solutions to effectively cope with such
scenarios.

2 RELATED WORK

Differentiable 3D Gaussian splatting (3DGS) [25] builds upon elliptical
weighted average (EWA) volume splatting [61] to efficiently compute
the projections of 3D Gaussian kernels onto the 2D image plane. In
addition, the number and parameters of the Gaussian kernels that are
used to model the scene are optimized with differentiable rendering.
Mip-Splatting [59] modifies 3DGS by integrating anti-aliasing with a
3D smoothing and a 2D Mip filter. It achieves improved quality of novel
views at scales the Gaussian representation has not been optimized for.
A number of approaches have concurrently proposed to convert the
3D Gaussian representations generated by 3DGS into a more compact
form [27, 38]. These works have shown that for typical scenes the
memory requirements of 3DGS can be brought below 50 MBytes,
without any noticeable differences in the reconstructed images.

3DGS falls into the category of methods for novel view synthe-
sis, and it overcomes in particular the difficulties of voxel-based ap-
proaches [15, 44] to deal with sparsity. Even though approaches based
on adaptive hash grids [37], tensor decomposition [9] or variants us-
ing dedicated compression schemes [29, 42] can effectively reduce the
required memory, due to the use of volume ray-casting they require
high-end GPUs to achieve reasonable rendering performance. The
same limitation holds for differentiable volume rendering [55], which,
similar in spirit to 3DGS, optimizes optical properties on a dense voxel
grid using image-based loss functions.

An alternative approach for generating a compact volumetric repre-
sentation is by means of Scene Representation Networks [11, 34, 40],
i.e., fully-connected neural networks which have been introduced ini-
tially to encode a surface model as an implicit 3D function. Lu et
al. [30] demonstrate the use of SRNs for volume data compression.
By overfitting a network to a volume dataset, the network learns a
compact latent space representation from which the initial dataset can

be reconstructed. This, however, comes at the expense of subsequent
network evaluations during rendering. This makes even the perfor-
mance of GPU-friendly implementations [53] fall significantly below
the performance of 3DGS.

While 3DGS uses rendered images of a volume dataset to build a
renderable 3D object representation for novel view synthesis, light-
field rendering [18, 28] aims at generating novel views by interpolation
between given images. Light-field rendering has been used to accelerate
novel-view synthesis for volume data [5, 8, 49], yet it is fair to say that
it cannot compete with 3DGS with respect to quality and memory
requirements.

To generate the images that are used by 3DGS, we use Cinematic
Rendering, a volumetric Monte Carlo path tracing algorithm developed
by Siemens Healthineers. It is integrated into the teaching application
Cinematic Anatomy, which was developed in collaboration between
the Johannes Kepler University Linz and Siemens Healthineers. A
first prototype was installed at the Ars Electronica Center in Linz in
2015 in the Deep Space 8k digital experience space [14], a 16-by-
9-meter wall projection space providing stereoscopic 8k resolution
experiences to more than 100 visitors at a time. Since then, regular
interactive visualizations of clinical volumetric DICOM data have been
made available to the public. Furthermore, it has been incorporated
into anatomy lectures for medical students and staff. In 2021, the
JKU medSPACE, a lecture space for teaching anatomy, located at
the Johannes Kepler University in Linz was opened. Developed and
implemented by the Ars Electronica Futurelab, the JKU medSPACE
shows anatomy in quadruple stereoscopic 3D 4K projection at 14×7
meters. It utilizes Cinematic Anatomy to provide virtual anatomy
education to medical students and staff. Several studies have shown
the benefits of using photo-realistic volumetric rendering of clinical
volume data for teaching and understanding anatomy [3, 4, 17, 43].

While our work builds upon 3DGS to interactively perform Cin-
ematic Anatomy, other works have previously attempted to improve
the performance of path tracing via image denoising [20–22], photon
mapping [60], illumination caching [62] and adaptive temporal sam-
pling [33]. Despite achieving remarkable performance gains at high
quality, it is worth noting that these approaches cannot overcome the
major limitation of interactive Cinematic Anatomy, i.e., it requires a ren-
dering system with enormous memory resources to host high-resolution
medical scans, as well as huge amounts of computing power to perform
ray tracing with such data.

3 CINEMATIC ANATOMY PIPELINE

The different stages of the proposed pipeline for cinematic anatomy
are shown in Fig. 2. It starts with reading a medical dataset, for which
then one or multiple so-called presets are selected by the user. A preset
includes the transfer function setting as well as material classifications
and fixed clip planes that are used to reveal certain anatomical structures.
For each preset, a set of views capturing all potentially seen structures
in the data at varying resolution are computed (cf. Sec. 4.1). In this way,
also structures which are not seen when generating images with camera
positions on a surrounding sphere are recovered in the final object repre-
sentation. These views are handed over to a physically-based renderer,
i.e., a volumetric path tracer, which renders one image for every view
using the corresponding preset (cf. Sec. 4.2). Once all images for a se-
lected preset have been rendered, 3DGS is used to generate a set of 3D
Gaussians with shape and appearance attributes so that their rendering
matches the given images. Once the Gaussians are computed via differ-
entiable rendering, they are compressed using sensitivity-aware vector
quantization and entropy encoding (cf. Sec. 4.3). The final compressed
3DGS representation is rendered with WebGPU using GPU sorting and
rasterization of projected 2D splats, with a pixel shader that evaluates
and blends the 2D projections in image space.

4 METHODS

4.1 View selection
Our approach iteratively generates a sequence of different viewpoints,
so that every new viewpoint can recover as many as possible voxels
which have not (or not sufficiently) been covered so far. While we use
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Fig. 2: Cinematic anatomy pipeline for a 1510×1706×1415 HiP-CT dataset requiring 3.6 GB of memory. Numbers below each stage indicate the
required memory at this stage and its computation times. 3D Gaussian splatting (3DGS) optimization uses 99 path traced images, and first generates
the raw Gaussian representation in 48 minutes before it is compressed to 33 MB in 5 minutes.

this approach in a fully automated manner in this work, in practice an
initial set of views would be placed uniformly around the object and
additional views would be recommended and accepted or denied by a
domain expert.

Our approach shares similarities with techniques that automatically
optimize visualization parameters to find a single best viewpoint, using
image-based loss functions to guide an optimizer toward this optimum
[10, 23, 46–48, 58]. Viewpoint quality metrics for isosurface rendering
were developed by Takahasi et al. [45] and Marsaglia et al. [31], based
on applying entropy to either the rendered images or derived fields
such as depth. Bordoloi et al. [6] introduce the use of per-voxel signifi-
cance measures to quantify image entropy. Different viewpoint search
algorithms using a given number of views on a sphere surrounding the
volume were investigated in [32]. While these approaches first gener-
ate many possible viewpoints and select the best one using sampling,
Weiss and Westermann [54] embed the optimization into the volume
rendering process and let the optimizer converge to the best viewpoint.

Once a preset is selected, our method starts with computing an occu-
pancy volume indicating for every voxel whether it contains material
or not. A per-voxel visibility volume is initialized to zero. In the first
phase, a set of camera positions (always looking at the center of the
dataset) are generated on an ellipsoid entirely containing the dataset.
The camera is moved toward or away from the center using a random
offset. For each camera pose, for every non-empty voxel the transmit-
tance along a view ray to this voxel is computed, and the per-voxel
visibility is updated with the maximum of the current value and the
transmittance.

The second phase generates additional views that cover as many as
possible previously unseen structures, i.e., it selects camera poses that
maximize the voxel visibility gain, which is defined as the increase of
the visibility values by the transmittance values that are computed for
a camera pose. We use Bayesian optimization [16, 36] for generating
the new poses, which solves the optimization problem maxθ∈D f (θ)
for a black box function f : D → R with domain D. In our setting, f
is the function that maps the camera parameters to the voxel visibility
gain. The goal of Bayesian optimization is to minimize the number
of function evaluations. For this, a probabilistic (usually Gaussian)
surrogate model and an acquisition function are applied. The former
expresses Bayesian believe about the output of the objective function
derived from prior evaluations, while the latter is used for selecting
the next set of parameters for evaluation of the objective function. We
make use of a publically available Python library [39] for perform-
ing the optimization process. For the acquisition function, the Upper
Confidence Bound (UCB) [7] is used with parameter κ = 10.

We iteratively generate additional camera poses by initializing the
Bayesian optimizer with K = 128 randomly sampled candidate camera
poses in each iteration. A candidate camera pose is discarded and re-
sampled if the bounding box of the data lies outside the view frustum
or the camera position is inside an occupied voxel. Then, Bayesian

optimization is started to iteratively sample another set of K candidate
camera poses. Here, it utilizes the prior that has been captured through
previous camera poses to guide the optimization process. Only the best
candidate pose is finally selected per iteration.

4.2 Image generation

We render volume data with Monte Carlo volume path tracing [2,
2, 12, 13, 24, 26] from multiple views to generate a set of training
images. Rendering starts by tracing paths from the detector pixels of
a virtual camera into the scene. A transfer function is used to map
the scalar quantities of the 3D scans to an emissive color and density.
Delta tracking [56] is applied to decide whether at a sample point a
scattering event, absorption event or null collision occurred. In the
case of an absorption event, the path is terminated and the emissive
color is regarded as the contribution of the path. In the case of a
scattering event, the Henyey-Greenstein phase-function [19] is applied
to determine the next direction along which the ray is followed. In the
case of a null-collision, the path is followed unchanged.

Additionally to the semi-transparent volumetric component, opaque
isosurfaces can be embedded into the rendering process. For this, the
local density gradient magnitude at each sampling point is computed,
and an intersection with a surface is assumed when the gradient mag-
nitude exceeds a user-specified iso value. The iso surface can also
be colored by applying a transfer function that maps density to color.
Global shading is computed by generating a reflection event for the
surface with the new ray direction being sampled proportional to the
probability density function (PDF) of a chosen bidirectional reflectance
distribution function (BRDF) of the surface. This process is repeated
until the ray leaves the volume domain or an absorption event happens.
Absorption may be determined by a fixed maximum number of scatter
events or using Russian roulette.

High dynamic range light maps are employed to look up lighting
information contributions from the environment. We also support syn-
thetic local light sources. Next event estimation is used to importance
sample rays towards the light source and potentially reduce the vari-
ance of the rendered image. All Monte Carlo samples are accumulated
and averaged in a floating-point accumulation buffer. A tone-mapping
pass maps the accumulated result into the final lower dynamic range
output buffer. For fast image generation, we apply performance opti-
mization methods such as empty-space skipping and memory coherent
scattering. The latter optimization ensures that rays of neighboring pix-
els are scattered in the same direction, thus ensuring optimized cache
utilization.

4.3 Compressed Differentiable 3D Gaussian Splatting

With differentiable 3DGS, the object is described by a set of 3D Gaus-
sians

G(x) = αe−
1
2 xT Σ−1x. (1)
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Fig. 3: Illustration of Gaussian splatting. Each 3D Gaussian has an
opacity and a set of SH coefficients, to evaluate the per-pixel opacity and
view-dependent color of the Gaussian’s 2D projection.
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Fig. 4: Test image reconstruction using different initialization schemes.
Experiments were performed with Fullbody.

Each Gaussian is centered at x ∈R3, and a covariance matrix Σ ∈R3×3

is used to describe its orientation and shape. A Gaussian has an opacity
α ∈ [0,1], and a view-dependent color that is represented by a set of
spherical harmonics (SH) coefficients. For each view, SH coefficients
are multiplied with the view direction to obtain the color [25].

The 2D projection of a 3D Gaussian is a 2D Gaussian with covari-
ance

Σ
′ = JWΣW T JT , (2)

where W is the view transformation matrix and J is the Jacobian of the
affine approximation of the projective transformation. By computing
the exponential decay of color and opacity across the 2D projection,
at each pixel the color and opacity that is seen along the ray of sight
through the 3D Gaussian can be reconstructed (see Fig. 3). A final pixel
color C is then computed by blending the contributions of all Gaussians
in sorted order:

C = ∑
i∈N

ciαi

i−1

∏
j=1

(1−α j). (3)

Here, N is the number of Gaussians affecting a pixel, and ci, αi, re-
spectively, are the view-dependent color of a Gaussian and its opacity,
modulated by the exponential falloff from the projected Gaussian’s
center point.

While Zwicker et al. [61] model a 3D scalar field via a set of 3D
Gaussians so that the field can be reconstructed sufficiently well, Kerbl
et al. [25] optimize the position, shape, opacity and SH coefficients of
each 3D Gaussian so that their rendering matches a set of initial images
of the object. The optimization is performed via differentiable render-
ing, by taking into account the changes in pixel color due to changes
of the 3D Gaussian parameters. In the optimization process, initially
selected 3D Gaussians are removed (if no contribution), adaptively split
and their shapes and appearance attributes are modified to minimize an
image-based loss function.

4.3.1 Compression
Due to the use of per-splat SH coefficients and shape attributes, the 3D
Gaussian splat representation can become memory consuming and take
up hundreds of MB or even GB per scene. Niedermayr et al. [38] have
proposed strategies for compressing this representation. SH coefficients
and Gaussian shape parameters are encoded into compact codebooks
via sensitivity-aware vector quantization. To reduce the error intro-
duced by vector quantization, the parameters are then fine-tuned on the
training images after compression. To represent the scene parameters
with fewer bits, quantization-aware training [41] is used. The final
set of 3D Gaussians is linearized along a space-filling curve in the 3D
domain. In this way, spatial coherence is maintained in the linearized
sequence, and entropy encoding can be used to further compress the
sequence of splat parameters.

For volume reconstruction, we have modified the compression
scheme in the following way: Firstly, since Cinematic Anatomy re-
quires the entire dataset in focus, we remove the scaling factor that is
stored per Gaussian to represent scenes with objects in focus (small
Gaussians) and surrounding background (large Gaussians). We call this
strategy high-rate-compression (HR-compression). Since quantization
of SH coefficients and shape parameters can introduce compression
errors, we provide a variant that compress the final Gaussian representa-
tion at no perceivable loss in reconstruction quality. Therefore, we only
use quantization-aware training to reduce all scene parameters but the
Gaussians’ positions to an 8-bit representation during optimization. Po-
sitions are encoded using 16 bit floating point numbers. We will subse-
quently call this strategy high-quality-compression (HQ-compression).
On average, it gives a compression factor of 26× compared to the
uncompressed 3DGS representation, bringing all scenes bellow 170
MB.

4.3.2 Volume Guided Initialization
When using 3DGS, an initial set of 3D Gaussian kernels is first selected.
These Gaussians are then removed, split or re-positioned, and the
shape and appearance of the Gaussian kernels is optimized. Kerbl et
al. [25] obtain the initial positions of the 3D Gaussians from the given
images with structure from motion, or with random initialization were
Gaussians are randomly positioned in the scene. For volume rendering,
we randomly place Gaussians within the volume bounding box and
set their initial color to grey. All other parameters are initialized as
proposed by Kerbl et al. [25].

Since in Cinematic Anatomy the 3D object and presets are known,
an interesting question is whether the optimization process can be
accelerated by initially placing Gaussians at locations were they will
end up anyway. Thus, we initially position one Gaussian at every
non-empty voxel in a low resolution version of the volume, and set the
Gaussians’ initial colors and opacities via the transfer function. Regions
that are under-sampled by the initial sampling will be nevertheless
represented by Gaussians due to adaptive splitting and relocation during
optimization.

In Fig. 4 we exemplarily compare the effectiveness of the different
initialization schemes based on optimization convergence for one of
our test datasets. An initialization with the Gaussians’ positions and
colors from a previous reconstruction is used as gold standard. As
can be seen, while all initialization techniques reach the same level of
fidelity, volume-guided initialization does so with less iteration steps.
However, it is fair to say that in all of our experiments the performance
improvements were overall not significant, so that we decided to use
random initialization in all upcoming tests.

4.3.3 Alpha Channel Reconstruction
In contrast to classical novel view synthesis, where only RGB colors
are reconstructed, in volume rendering applications also the per-pixel
accumulated opacity (i.e., alpha) needs to be reconstructed for blending
correctly over the background. We extended 3DGS to allow for the
differentiable rendering of images with alpha channel. Similar to
Kerbl et al. [25] we use a combination per pixel L1 and SSIM Loss to
faithfully reconstruct the alpha channel of the training images. This
greatly improves the reconstruction quality as we show in Sec. 5.4.
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Fig. 5: From left to right, Brain (3224×3224×3585), Kidney (1510×1706×1415) and Fullbody (317×317×835). All images rendered at full HD with
HR-compressed 3D Gaussian splatting using < 70 MB per dataset at > 30 frames per second.

4.3.4 Mip Splatting

Scenes rendered with 3DGS can show severe artifacts when novel
camera perspectives diverge from those the 3D Gaussian representation
was optimized for. Yu et al. [59] name the following two reasons for this
behavior: Firstly, the 3D Gaussian representation exhibits frequencies
that are too high to be faithfully reconstructed by the used sampling
rate. Secondly, during splat-based rendering, a 2D dilation filter is
applied that causes artefacts when zooming out and 2D splats become
too small.

The problem is mitigated by introducing a 3D smoothing (i.e., low-
pass) filter which constrains the size of the 3D Gaussians based on the
maximal sampling frequency induced by the input views. A 2D Mip
filter is applied in image space to avoid under-sampling. We observe
that this extension to 3DGS significantly improves the fidelity of the
reconstructed volumes for varying zoom levels.

5 RESULTS

We analyze the performance, memory consumption and quality of
the proposed pipeline for Cinematic Anatomy with a variety of high-
resolution medical datasets showing different anatomical structures.

Our 3DGS implementation is a modification of the code implemen-
tation provided by Kerbl et al. [25]. For compression and rendering, we
use the settings described in [38] and their publicly available WebGPU
renderer.

5.1 Datasets

The hierarchical phase-contrast tomography (HiP-CT) data was ac-
quired at the European Synchrotron Radiation Facility (ESRF) in the
context of the Human Organ Atlas project [51]1.

Kidney is a HiP-CT scan from beamline 5 of the complete left
kidney from body donor LADAF-2020-27 downsampled to 50.16 µm
resolution (1510×1706×1415 voxels in size) and quantized to 8 bit
precision.

Brain is a HiP-CT scan from beamline 18 of the complete brain of
body donor LADAF-2021-17 downsampled for rendering to 46.84 µm
resolution (3224×3224×3585 voxels in size) and quantized to 8 bit
precision. While the kidney data set is publically available, the brain
data has not been published yet.

Fullbody is a human CT angiography scan at resolution 317×317×
835 from collection [52], image id s0287. The dataset contains some
semi-transparent material that shows significant differences under di-
rectional lighting. It is rendered under complex lighting conditions to
demonstrate reconstruction quality also in this situation.

1https://human-organ-atlas.esrf.eu

Table 1: Memory and preprocessing statistics using HR-compression.
Timings given for 2048×2048 training images.

Path Tracing 3DGS
Size Time Views Size Time Gaussians

Brain 36.4 GB 158 Min 99 69 MB 106 Min 4.8 M
Kidney 3.6 GB 6 Min 101 33 MB 53 Min 2.3 M
Fullbody 0.2 GB 23 Min 99 7 MB 50 Min 0.9 M

All datasets are shown in Fig. 5. For each dataset, between one and
three rendering presets have been used, which include segmentations,
the selected transfer function and lighting conditions. 3DGS optimiza-
tion has been performed training images of resolution 2048×2048.

5.2 Preprocessing

With a GPU providing sufficient RAM, the initial images of all datasets
can be generated with the publically available Cinematic Anatomy
package2, e.g. on an NVIDIA RTX 8000/A6000 GPU with 48GB
RAM and using the built in animation system to generate the views.
All images used as training and test data in our experiments have been
rendering on a research version providing batch rendering support,
running on an NVIDIA A100 GPU for the Brain data and NVIDIA
RTX A5000 for the Kidney and Fullbody data. Note that rendering
HipCT in its original resolution on a single GPU requires bricking the
data into multiple smaller blocks. This increases the rendering times
drastically, since path tracing requires streaming each block multiple
times from the CPU to the GPU.

Tab. 1 shows in columns Size the size of each dataset in GB com-
pared to the size of the final Gaussian representation in MB, when
compressed using HR-compression. Column Views shows the number
of training images used for differentiable Gaussian splatting optimiza-
tion. Columns Time show the times to render the initial images via
path tracing, and the computation times for generating the compressed
Gaussian representations. Note that 90% of the latter time are required
by the optimization to generate the 3D Gaussian representation, and
only about 10% are consumed by the compression. Column Gaussians
gives the number of 3D Gaussians in the final representation. Note
that for the body scan, the used preset uses a lung mask-dependent and
clip-plane dependent transfer function, which slows down the rendering
considerably. As can be seen in columns Size, the compressed Gaussian
representation is so small that it can be downloaded over low-bandwidth
channels and rendered on mobile devices equipped with mid- or even
low-end GPUs.

2https://siemens-healthineers.com/cinematic-anatomy
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5.3 View Selection

Automatic view selection is demonstrated with Fullbody, which exhibits
a lot of structures which are not visible from cameras placed on an
ellipsoid around the volume. As a baseline we reconstruct the volume
with images from 256 randomly placed cameras on the ellipsoid. For
comparison, we reduce this number to 128, and generate 128 additional
cameras with the proposed view selection algorithm (see Fig. 6). As
can be seen, overall improved reconstruction quality of parts not seen
with random camera selection is achieved.

With View Selection Without View Selection

Fig. 6: Our view selection algorithm generates cameras covering unseen
parts of the volume like the inside of the rib cage. The renderings show
the improvement in reconstruction.

5.4 Quality Evaluation

To support a qualitative analysis, Fig. 9 and Fig. 10 compare test
images that have not been seen during 3DGS optimization to the same
views rendered with HQ-compressed and HR-compressed 3DGS. Close-
up views emphasize that only very subtle color shifts between path
traced images and images generated via HR-compressed 3DGS can
be observed. HQ-compression leads to an increase in memory of a
factor of three, yet differences in image quality are further reduced and
become so small that they are hardly noticeable by eye.

To quantify these differences, Tab. 2 shows the average SSIM and
PSNR between the test images and the novel views rendered with
HR-compressed 3DGS.

Table 2: Quantitative evaluation of HR-compression, using 2048×2048
training images and averaged over all presets.

SSIM PSNR PSNR (Alpha)
Scene

Brain 0.72 23.23 34.09
Kidney 0.84 25.80 30.20
Fullbody 0.87 26.90 29.57

For PSNR and SSIM only pixels which are not empty (alpha > 0)
in the rendered and ground truth image are considered. PSNR (Alpha)
measures the PSNR for the alpha channel between rendered images
and ground truth.

It is worth noting here, that significant losses in reconstruction qual-
ity are introduced when differentiable 3DGS is used for solely optimiz-
ing RGB color (see Fig. 7 for an example). As can be seen, extending
3DGS so that also opacity is considered in the optimization process
improves greatly the reconstruction quality and removes unwanted
artifacts caused by the background.

In a final experiment we shed light on the capabilities of 3DGS
to reconstruct semi-transparent regions in a dataset. Fullbody, with
a corresponding preset, is used here as an example. The preset has
been selected so that certain tissue types in the dataset become semi-
transparent. The bottom images in Fig. 10 show the application of this
preset, including a test image and the corresponding novel views gener-
ated with compressed 3DGS. It can be seen that overall the novel view
matches the test images fairly well. When looking at the closeup views,

Fig. 7: Color-only reconstruction (left) leads to reconstruction artifacts,
which disappear when 3DGS is optimized for color and opacity (right).

however, one sees that some small details are not reconstructed accu-
rately, and that especially the semi-transparent structures are blurred
out in the final images.

To further shed light on this situation, we have also experimented
with a setting with strong directional lighting from the used environment
map. In such a setting, one observes some high-frequency illumination
variations especially in the volumetric regions, making it more difficult
for 3DGS to accurately recover the structures. Interestingly, Fig. 8
demonstrates that the reconstruction of illumination variation works
very well and does not show any severe reconstruction artefacts. At
the same time, the semi-transparent regions are again blurred out to a
certain extent. We believe that 3DGS has in particular problems with
settings where the view rays accumulate matter over a long distance
through semi-transparent, yet heterogeneous regions. In such situations,
a subtle change of the camera pose can lead to strong changes of the
per-pixel accumulated colors and opacities. Thus, 3DGS needs to be
optimized for a significantly increased number of parameters, requiring
far more Gaussians to accurately represent the data.

Ground Truth Reconstruction

Fig. 8: Complex view-dependent lighting effects are well preserved
by compressed 3DGS, even for semi-transparent material. The tissue
marked with a red box shows high-frequent color variation under different
perspectives.

5.5 Rendering Performance
In a pre-render pass on the GPU, view frustum culling of Gaussians
is performed, and the remaining Gaussians are depth-sorted to enable
order-dependent blending. This pass consumes roughly 10% of the
entire rendering time. The implementation by Niedermayr et al. [38]
uses the GPU Onesweep algorithm by Adinets and Merrill [1] for
sorting. The radix sort implementation computes digit histograms and -
via (chained) prefix sums - the global and bin-relative offsets of each
digit in the final output. The implementation is tailored for sorting
large sets of keys, and it works in-place in GPU memory. Gaussians are
rendered as screen-aligned quadrilaterals, and a pixel-shader evaluates
the Gaussians’ colors and opacities. Of the rendering time roughly
30% and 70% are respectively devoted to sorting / geometry processing
(including rasterization) and fragment processing in the pixel shader.

Tab. 3 shows that the rendering times even on an integrated iGPU
is higher than 10 frames per second for the biggest dataset Brain. On
current mid- to high-end GPUs, 60 frames per second can be achieved
for all datasets. This makes the Cinematic Anatomy pipeline especially
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Brain Ours (High Quality) Ours (HR-Compression) Ground Truth

Kidney Ours (High Quality) Ours (HR-Compression) Ground Truth

Fullbody Ours (High Quality) Ours (HR-Compression) Ground Truth

Fig. 9: Quality comparison for HQ-compressed and HR-compressed Gaussian representations. All images are from the test set.
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Kidney Ours (High Quality) Ours (HR-Compression) Ground Truth

Fullbody Ours (High Quality) Ours (HR-Compression) Ground Truth

Fullbody Ours (High Quality) Ours (HR-Compression) Ground Truth

Fullbody Ours (High Quality) Ours (HR-Compression) Ground Truth

Fig. 10: Quality comparison for HQ-compressed and HR-compressed Gaussian representations. All images are from the test set.
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Brain Ours Ground Truth

Fig. 11: With a headlight, 3DGS faces problems in some places to accu-
rately reconstruct structures with high-frequent changes in illumination.

appealing for applications where stereoscopic rendering is required.
While low memory consumption facilitates efficient rendering on mo-
bile devices, for instance, in mobile AR applications, high rendering
performance is required to render two images (one for the left and one
for right eye) at sufficient frame rates.

Brain Fullbody Kidney
NVIDIA RTX 4070 TI Super 65 226 170
NVIDIA RTX A5000 68 341 199
AMD Ryzen™ 9 7900X iGPU 12 42 16

Table 3: Rendering performance at 2048x2048 resolution in frames per
second, averaged over all training images and presets. For the iGPU a
resolution of 1024x1024 is used.

6 DISCUSSION AND OUTLOOK

Our evaluations show that compressed 3DGS enables interactive Cine-
matic Anatomy with datasets so large that this would have been impos-
sible. This is possible by restricting to static presets. We are confident
that this limitation is acceptable for educational use since not more than
a few transfer function settings are usually selected. Since the memory
requirements of compressed 3DGS are so low, a separate Gaussian
representation can be computed for each preset.

In the images we have used so far to perform a qualitative com-
parison between compressed 3DGS and path tracing, static lighting
conditions have been simulated with an environment map that does not
change relative to the object. Thus, the object points are seen under
the same lighting condition in every view, resulting in rather smooth
illumination when changing the perspective under which the viewer
looks at the object. This, however, changes when a headlight is used,
and a point’s illumination varies with varying camera position. The
use of a headlight is demonstrated in Fig. 11. Notably, while most
regions can be resolved very well by 3DGS, in some other regions the
novel views show reconstruction artifacts. The strong variation of the
reflected light under an illumination that changes in every image cannot
be captured well by the 3D Gaussian representation. One approach
we see to address this limitation is via re-lighting. By generating train-
ing images with optical material properties instead of illumination, it
might be possible to better recover highly varying lighting conditions
at runtime.

An important component in volume rendering applications is an
interactively moveable clip plane. Since 3DGS can only handle static
scenes, previously unseen objects that become visible due to applying
a clip plane (or points that are clipped away and reveal other points)
cannot be recovered. Current extensions of 3DGS to 4DGS [57, 57]
do not seem applicable in our scenario since they assume that only
the positions of visible points change, but not the number of points.
Another possibility is to allow only changes of the clip plane in discrete
steps, and to compute a separate Gaussian representation for each step.
We are confident that a fairly compact representation can be obtained

(a) Reconstruction (b) Ground Truth

Fig. 12: Compressed 3DGS with a semi-transparent skull dataset. Fine
details are blurred out in the reconstruction.

by progressively encoding the object points that appear and disappear
when making subsequent steps.

As we have demonstrated, highly transparent volumes cannot be
handled very well by 3DGS. Another example demonstrating this is
shown in Fig. 12. As long as the volume is homogeneous and doesn’t
contain too many interior structures, a quite accurate reconstruction can
be achieved. However, we have observed that with increasing depth
complexity it becomes more and more difficult for 3DGS to represent
all possible color and opacity distributions with a reasonable number of
3D Gaussians. A possible strategy to address this limitation might be
to augment 3DGS with 3D Gaussians that are optimized with respect
to an object-space loss, similar in spirit to EWA volume splatting [61].

7 CONCLUSION

In this work we have demonstrated the use of differentiable 3D Gaus-
sian splatting for novel view synthesis from path traced images of high
resolution medical datasets. We have shown that the 3D Gaussian
representation can be compressed — at hardly perceivable loss in im-
age quality — to a size that enables download and storage on even
mobile devices. Even though the Gaussian representation needs to
be re-generated for every selected preset, even when many different
presets are used the overall memory is still far below the memory re-
quired by the dataset. Computationally expensive path or ray tracing
can be avoided at rendering time, enabling fast display on mid- and
even low-end devices.

We have also pointed at current limitations of 3DGS in the en-
visioned scenario. As the most crucial ones we see the current ab-
sence of support for clip planes and the quality degradation when
semi-transparent volume rendering is performed. We have sketched
future research directions to address these limitations, and we are confi-
dent that significant improvements in such scenarios can be achieved.
Another challenging aspect that needs to be addressed in the future is
the handling of time-varying dataset. We see more and more scanning
technologies that can accurately measure blood flow and deforming
tissue. Tailoring 3DGS for interactively monitoring and inspecting such
dynamic processes is another important goal.
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