
LEARNING FROM UNLABELLED DATA WITH TRANSFORMERS: DOMAIN ADAPTATION
FOR SEMANTIC SEGMENTATION OF HIGH RESOLUTION AERIAL IMAGES

Nikolaos Dionelis1, Francesco Pro2, Luca Maiano2, Irene Amerini2, Bertrand Le Saux1

1 European Space Agency (ESA), ESRIN, Φ-lab, Italy
2Sapienza University of Rome, Italy

ABSTRACT

Data from satellites or aerial vehicles are most of the times
unlabelled. Annotating such data accurately is difficult, re-
quires expertise, and is costly in terms of time. Even if Earth
Observation (EO) data were correctly labelled, labels might
change over time. Learning from unlabelled data within a
semi-supervised learning framework for segmentation of aerial
images is challenging. In this paper, we develop a new model
for semantic segmentation of unlabelled images, the Non-
annotated Earth Observation Semantic Segmentation (NEOS)
model. NEOS performs domain adaptation as the target do-
main does not have ground truth masks. The distribution
inconsistencies between the target and source domains are due
to differences in acquisition scenes, environment conditions,
sensors, and times. Our model aligns the learned representa-
tions of the different domains to make them coincide. The
evaluation results show that it is successful and outperforms
other models for semantic segmentation of unlabelled data.

Index Terms— Semantic segmentation, Unlabelled data

1. INTRODUCTION

Importance and overview. Remote Sensing (RS) images
from satellites or aerial vehicles can be used to map trees and
land cover classes [1]. While both RS technology and AI for
data analysis continue to advance [2], the integration and use
of airplanes and drones for localized studies is nowadays also
increasing. Supervised learning has shown good performance
for classification and segmentation. However, it requires high-
quality handcrafted large labelled datasets. Learning from
unlabelled data is challenging as the performance of models
depends highly on the size and quality of the data. However,
for real-world applications [3], labelling large datasets is labo-
rious, expensive, and time-consuming. This holds for Earth
Observation (EO), where huge amounts of data are produced
daily. Also, data from satellites or aircrafts usually require
domain expertise. Furthermore, labels for specific geographi-
cal regions may change over time (task of change detection)
due to nature (seasonality), man-induced changes, and natural
hazards (volcano eruptions). Also, for specific regions, some
labels might be incorrect (task of learning from noisy labels).

Because many satellites and aerial images are unlabelled, it
is challenging to effectively use these data. Developing semi-
supervised learning methods is crucial to improve generaliza-
tion performance. Semi-supervised learning, which involves
training on both a labelled dataset, where both images and their
annotations are provided, and on an unlabelled set, with only
image data, is a more realistic setting than supervised learning,
as in RS, unlabelled data are plentiful, while labelled data can
be hard to find. This holds for semantic segmentation (pixel-
level labels) [1], which requires assigning a class label to each
pixel [4, 5] by understanding its semantics. This task is crucial
for several applications, including land cover mapping and
urban change detection. In this work, we propose a method
to perform semantic segmentation on unlabelled datasets, and
we evaluate it on the unlabelled Cross-View USA (CVUSA)
dataset [6]. To the best of the authors’ knowledge, accurate
semantic segmentation on the CVUSA aerial dataset, which is
used for cross-view aerial-ground matching [7, 8] and has no
land cover label annotations, has not yet been performed.

Domain adaptation. In this paper, we develop a model
for semantic segmentation of aerial images, the Non-annotated
Earth Observation Semantic Segmentation (NEOS) model.
NEOS makes the learned representations of the different do-
mains to coincide. This is achieved by minimizing the distribu-
tion differences of the different domains. Hence, we enforce
the model to be able to work well with the different datasets
that have distribution inconsistencies due to differences in ac-
quisition scenes, environment conditions, sensors, and times.
Our model performs semantic segmentation on the unlabelled
dataset CVUSA. During training, a loss function is minimized
that makes the network to align the latent features of the dif-
ferent domains to minimize distribution differences. Our main
contribution is the development of a novel model for semantic
segmentation of aerial images that do not have ground truth
segmentation masks, also performing domain adaptation.

2. RELATED WORK

Domain adaptation methods in deep learning, as well as
in RS, have been developed recently. Furthermore, domain
adaptation methods for classification and segmentation have
also been developed. Models trained on data from one domain
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may not generalize well on other domains. Even in one domain,
accurate semantic segmentation is challenging. There may be
a loss in accuracy when deploying a model on unseen data due
to a shift between the distributions in the source and target
domains [9]. Domain adaptation tries to overcome this [10, 11].
Domain gaps are common in aerial images [12, 13], e.g. region
change. In [8], no off-the-shelf semantic segmentation model
transferred well/ accurately on the aerial CVUSA dataset.

Architectures. Several models have been developed re-
cently for semantic segmentation, including Transformer (e.g.
SegFormer [14]), encoder-decoder like SegNet or U-Net with
skip connections, Fully Convolutional Network (FCN), and
dilated convolutions with larger receptive field to capture long-
range information. SegFormer [14] for semantic segmentation
combines the Transformer with an efficient Multi-Layer Per-
ceptron (MLP) decoder and outputs multi-scale features. The
decoder combines these multi-scale feature maps, which use
local and global attention. UNetFormer is a UNet-like archi-
tecture for segmentation based on a ResNet encoder and a
Transformer decoder [15]. It uses efficient attention in the
decoder to model global and local information. The Segment
Anything Model (SAM) [16] has also been recently proposed
for instance segmentation, but not semantic segmentation.

Unsupervised adaptation. In the Unsupervised Domain
Adaptation (UDA) setting, the model is trained on both la-
belled and unlabelled data from the source and target domains,
respectively. Accurate real-world semantic segmentation with-
out labels is non-trivial. Domain Symmetric Networks (Sym-
Net) [17, 12] design the source and target domains classifier
symmetrically to learn domain-invariant features for effective
domain adaptation. The model Source Hypothesis Transfer
(SHOT) [18] uses hypothesis transfer, training only the back-
bone and making the classifier of the network non-trainable.
We focus on the scenario in which the number of classes and
the classes themselves are the same in the source and target
domains, the closed-set setting [12, 19]. The aim is to achieve
good performance during inference on the target domain test
dataset, as well as on the source domain test dataset [10, 20].

Semi-supervised learning methods for segmentation in
deep learning, as well as in RS, have been developed. Semi-
supervision [5, 21], which is halfway between supervised and
unsupervised learning, deals with settings where labelled sets
of data and their targets are provided and unlabelled sets with
data only are available. Unlabelled data help the learning
process to improve performance. To improve generalization
[21, 22], models should be able to handle labelled and unla-
belled data, as well as operate within a multi-task optimization
framework [5] performing unsupervised minimization tasks.

3. PROPOSED METHODOLOGY

Flowchart. NEOS is presented in Fig. 1. The input is the
image from labelled and unlabelled datasets. The output is the
estimated semantic segmentation mask. NEOS is based on the
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Fig. 1. Flowchart of NEOS for semantic segmentation using
domain adaptation on datasets with no ground truth labels.

SegFormer B5 [14] architecture and uses a second output for
the feature misalignment loss term for domain adaptation.

Loss function. NEOS minimizes a loss comprising the
terms: (a) cross-entropy for pixel-level classification which
is computed using the input labelled images and their corre-
sponding ground truth segmentation masks, (b) (1 - Dice score)
for segmentation, and (c) the features misalignment loss. The
latter is for domain adaptation to enforce the model to be able
to work well with the different datasets. Here, an architecture
with two heads is used. The first two loss terms control the first
output head for accurate segmentation and classification on
the different labelled datasets, while the features misalignment
loss, which controls the second output head, enforces the net-
work to reduce the distance between the latent representations
of the labelled and unlabelled data in the cross-entropy metric.
This forces the features to achieve manifold alignment of the
embeddings of the different domains. We denote the data by x
and the ground truth masks by y. Now, the cost function is:

argminf L, L = L0(x, y) + λ1L1(x, y) + λ2L2(x), (1)

where we denote our model by f(·), the first, second, and third
loss terms by L0, L1, and L2, respectively, and the hyperpa-
rameters of the second and third losses by λ1 and λ2.

The first term of our model’s objective loss function is:

L0 = − 1

NWH

N∑
j=1

W∑
i=1

H∑
l=1

log
exp(fyj,i,l

(xj))∑K
k=1 exp(fk,i,l(xj))

, (2)

where W and H are the width and height of the images, i and l
the indices for the width and height, N the number of samples,
j their index, K the number of classes, and k their index. In
(2), the N training samples originate from Q labelled datasets.
This affects both xj and yj,i,l. The features before the normal-
ized exponential, i.e. softmax, are denoted by fyj,i,l

(xj). The
model computes the estimated probability of the labels for the
cross-entropy loss to reward correct classification, penalizing
deviation from the correct class. The estimated semantic seg-
mentation mask, ŷj,i,l is the pixel-wise class label. Here, for
the labelled data, to perform accurate classification, NEOS
minimizes (2), which is the pixel-wise cross-entropy loss.

Next, the second term of the loss function, L1 in (1), is:



Fig. 2. Evaluation of NEOS in accuracy (Acc), F1-score (F1)
and IoU on the dataset Potsdam with the class Clutter [12].

1 −
2
∑N

j=1

∑W,H
i=1,l=1 gj,i,lsj,i,l∑N

j=1

∑W,H
i=1,l=1 gj,i,l +

∑N
j=1

∑W,H
i=1,l=1 sj,i,l

, (3)

where gj,i,l is the true binary indicator of the class label, and
sj,i,l is the estimated semantic segmentation probability out-
putted by the model. The N samples originate from Q labelled
datasets. This affects both gj,i,l and sj,i,l. To perform accurate
segmentation on the labelled data, NEOS minimizes (3), the
Dice loss. Next, the third term of the loss function, L2, is:

L2 =
1

J

J∑
j=1

log
exp(fzj (xj))∑M

m=1 exp(fm(xj))
, (4)

where the true domain label is denoted by zj , and the number
of domain labels by M . The samples originate from Q labelled
and R unlabelled datasets. For domain adaptation, NEOS min-
imizes (4). To improve generalization (better performance),
we perform data augmentation to incorporate invariances into
the model. We regularize and enforce the model to generalize
and be robust to data transformations, and we also perform
downsampling, having inputs at different multi-scale levels.

4. EVALUATION AND RESULTS

Labelled and unlabelled datasets. We train NEOS on the
aerial image datasets: labelled Potsdam and Vaihingen, and
unlabelled CVUSA by performing domain adaptation. We test
NEOS on Potsdam and Vaihingen, as well as on CVUSA. We
also compare our model to other baseline models, including
SAM [16]. For the labelled datasets, the classes are: Buildings
(blue colour), Trees (green), Cars (yellow), Low vegetation
(cyan), Roads (white), and Clutter (red) [23, 24]. Also, for
the different datasets and the domain adaptation loss term, as
well as the tags for the different datasets, Tag A is used for the
dataset Potsdam, Tag B for Vaihingen, and C for CVUSA.

Evaluation of NEOS on Potsdam. We evaluate NEOS
on the dataset Potsdam in Fig. 2. In this experiment, the class

Fig. 3. Per-class F1-score evaluation (in %) of NEOS on the
Potsdam dataset including the class Clutter in the evaluation.

a) Input b) NEOS (Ours) c) Ground truth

Fig. 4. Semantic segmentation masks by NEOS on Potsdam.

Clutter is considered in the evaluation. Here, the evaluation is
based on the accuracy, F1-score, and Intersection over Union
(IoU) metrics. It can be observed in Fig. 2 that the proposed
model outperforms all the other baseline models [23]. In Fig. 3,
we evaluate the per-class F1-score performance of NEOS on
Potsdam. In Fig. 4, we present NEOS qualitative results.

Evaluation of NEOS on Vaihingen. We evaluate NEOS
in Fig. 5 in accuracy, F1-score and IoU. Here, the results of
NEOS on Vaihingen are comparable to other models. In Fig. 6,
we also evaluate the F1-score of NEOS for each class [15]. For
Roads, Buildings and Cars, NEOS outperforms other models.

Evaluation on the unlabelled dataset CVUSA. We evalu-
ate NEOS on the unlabelled dataset aerial CVUSA. The testing
is done on a dataset that does not have ground truth masks. In
Fig. 7, we present the qualitative results of NEOS. We observe
in (b) and (e) that NEOS performs semantic segmentation and
is able to recognize effectively classes such as Roads and Low
vegetation. This holds for NEOS for the vertical roads that
have shadows (occlusion) in (a)-(b). In the next paragraphs,
we present a numerical evaluation of NEOS on the unlabelled
CVUSA dataset and a further comparison to other models.

In Fig. 7, we examine the qualitative results of NEOS, and
we also do this at large scale, automating the process. We as-
sess the performance of NEOS on many images, and to capture
the big picture, we evaluate NEOS numerically by computing
the Segments of Predictions and Inputs Error (SPIE). We first
perform detection of segments on the estimated mask and input
images, and for this, we use a variant of SAM [26]. Then, the



Fig. 5. Evaluation of NEOS on Vaihingen in Acc, F1 and IoU.

Fig. 6. Per-class F1-score evaluation of NEOS on Vaihingen.

Table 1. Evaluation of NEOS on the CVUSA dataset, on both
the aerial (Aer) and street (Str), and the improvement (I) over
the base model.

SPIE for aerial & street Aer I Aer Str I Str

NEOS (Ours) 0.047 32% 0.041 21%

Base model, SegFormer 0.069 N/A 0.052 N/A

CNN-based using Eq. (1) 0.064 7.2% 0.049 5.8%

error is calculated and normalized. For perfect segmentation
without considering semantic information (no labels), SPIE is
zero. For completely inaccurate segmentation, SPIE is equal
to one. SPIE is the mean residual image where the residual is
between the estimated mask and the input after being modified
by a detection of segments algorithm, and its definition is:

SPIE =
1

R

R∑
j=1

g(f(xj))− g(xj) (5)

where f(·) is NEOS from (1) (or another model), R the num-
ber of evaluation samples, and g(·) a detection of segments
algorithm. We use SPIE as an indicator of good performance
and as an empirical metric that works in practice. Using SPIE
in (5), the numerical results match the qualitative results we
obtain. In addition, we have also included the code in [27].

a) Input b) NEOS (Ours) c) samgeoHQ

d) Input e) NEOS (Ours) f) samgeoHQ

Fig. 7. Qualitative evaluation of NEOS on the unlabelled
CVUSA aerial dataset, and comparison to samgeoHQ [25].

We evaluate NEOS numerically on CVUSA in Table 1 us-
ing SPIE, and we compare with other models for semantic seg-
mentation. The improvement of NEOS for aerial images over
the base model, SegFormer [14], is 32%. NEOS also outper-
forms [14] for street images when we use the labelled dataset
CityScapes [28] for the domain adaptation loss in Sec. 3.

Further comparison of NEOS to other models. In Fig. 7,
we examine the results of NEOS and its comparison to SAM
[16]. NEOS performs joint classification and segmentation,
while SAM does not consider semantics [29]. There are sev-
eral variants of SAM: Geospatial SAM [25] fine-tunes [16] on
aerial data. SAM-HQ [30] achieves improved accuracy (Fast-
SAM [31], speed). Semantic SAM (SSAM) [32, 33] modifies
[16] to perform semantic (rather than instance) segmentation,
but not for aerial data. We examined the performance of SAM
and its variants on the unlabelled CVUSA dataset. In Fig. 7,
samgeoHQ [25], which does not perform semantic segmenta-
tion, is sensitive to even small changes in the scene. For scenes
with details, we need to adjust the several tunable parameters
of SAM to control how dense the estimated masks are. For
NEOS, we do not need to adjust its parameters, and this can
potentially lead to improved user convenience and ease of use.

5. CONCLUSION

We have developed a semantic segmentation method that is
effective for unlabelled datasets. The results show that NEOS
outperforms other models. We have used the unlabelled aerial
CVUSA dataset, where accurate semantic segmentation has
not yet been performed, to the best of the authors’ knowledge,
and we plan to also use the results for cross-view geo-location
matching to accurately match aerial and street images [34, 35].
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