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ABSTRACT

The Composed Image Retrieval (CIR) task aims to retrieve target images using a composed query
consisting of a reference image and a modified text. Advanced methods often utilize contrastive
learning as the optimization objective, which benefits from adequate positive and negative examples.
However, the triplet for CIR incurs high manual annotation costs, resulting in limited positive
examples. Furthermore, existing methods commonly use in-batch negative sampling, which reduces
the negative number available for the model. To address the problem of lack of positives, we propose
a data generation method by leveraging a multi-modal large language model to construct triplets for
CIR. To introduce more negatives during fine-tuning, we design a two-stage fine-tuning framework
for CIR, whose second stage introduces plenty of static representations of negatives to optimize the
representation space rapidly. The above two improvements can be effectively stacked and designed to
be plug-and-play, easily applied to existing CIR models without changing their original architectures.
Extensive experiments and ablation analysis demonstrate that our method effectively scales positives
and negatives and achieves state-of-the-art results on both FashionIQ and CIRR datasets. In addition,
our methods also perform well in zero-shot composed image retrieval, providing a new CIR solution
for the low-resources scenario.

1 Introduction

Composed Image Retrieval (CIR) aims to retrieve images given a query composed of a modified text and a reference
image. Unlike the standard text-to-image retrieval tasks, the modified text in CIR describes the unsatisfied attributes
of the reference image or the new attributes based on the reference image. CIR provides a new idea for iteratively
optimizing the retrieval results based on the current text-to-image retrieval and thus has become a popular research task
in the multi-modal field. Previous research on CIR typically involves model architecture Vo et al. (2019); Delmas et al.
(2022); Baldrati et al. (2024) and optimization objectives Baldrati et al. (2024); Wen et al. (2023); Liu et al. (2023c);
Bai et al. (2023). The methods for the model architecture focus on better representation and fusion methods for texts
and images. The contribution of the works in this aspect includes (1) introducing vision-language pre-trained models,
like CLIP Radford et al. (2021), BLIP Li et al. (2022), as the backbone Baldrati et al. (2024); Wen et al. (2023); Liu
et al. (2023c); Bai et al. (2023) and (2) designing the novel late fusion Vo et al. (2019); Wen et al. (2023); Baldrati
et al. (2024) or early fusion Levy et al. (2024); Liu et al. (2023c); Bai et al. (2023) modules to fuse the reference image
and the modified text to obtain the single query representation. Therefore, the popular model architecture in CIR can
be illustrated in Fig.1(a), which consists of a query encoder and a target image encoder. In practice, a collection of
image candidates is first converted into image representations by the image encoder for rapid indexing. When the
user gives a reference image and a modified text, they are forwarded to the query encoder to fusion and obtain the
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(a) Illustration of the Composed Image Retrieval (CIR) task
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(b) Our proposed method effectively scales the number of positive and negative examples in the CIR task to a level comparable to
other computer vision tasks and models.

Figure 1: Task introduction and the motivation of this work.

query representation. Finally, the query representation is computed with the dot product or cosine similarity with all
representations of candidate images, and the image with the top similarity is considered the target image.

The works for optimization objective Wen et al. (2023); Bai et al. (2023) focus on aligning the query representation
with the target image representations. Advanced methods use contrastive learning van den Oord et al. (2018) to align
the representations of queries and images. The key to contrastive learning is to select correct and sufficient positives and
negatives. The annotated triplets in the dataset, in the form of (reference image, modified text, target image), usually are
regarded as positive examples, while negative examples are generated by replacing the target images with other ones in
the mini-batch. However, as shown in Fig.1(b), there are two challenges with these works: (1) The number of manually
annotated triplets (2̃0K) is deficient, leading to a lack of sufficient positive examples for the model. As a comparison, in
other tasks using contrastive learning like visual representation learning Deng et al. (2009), image-text retrieval Lin
et al. (2014); Plummer et al. (2015), and image retrieval Ong et al. (2017), the number of positive examples is at least
60k; (2) Previous CIR tasks typically use in-batch negative sampling, with around 128 negative examples, while many
successful works in contrastive learning use over 4k negative examples Chen et al. (2020); He et al. (2020); Li et al.
(2022). Existing works ignore these two problems at the data level, resulting in the inability of contrastive learning to
fulfill its capabilities.

Therefore, this work is based on a universal and simple motivation: to scale the number of positive and negative samples
of the CIR task to the same scale as other tasks with contrastive learning. To construct more positives for CIR, we
propose a novel data generation method based on the multi-modal Large Language Model (MLLM). Specifically, we
design a four-step pipeline to automatically construct positive samples, which includes (1) caption generation with
MLLM; (2) reference-target image pair matching; (3) modified text generation based on templates; and (4) positive
example construction. With the help of our method, plenty of acceptable positive examples can be generated without
any manual annotation, scaling the triplet number from 20k to 100k without the use of external datasets (Fig.1(b)). To
introduce more negatives for CIR, we design a two-stage fine-tuning framework. Specifically, in the first stage, we
follow previous works Baldrati et al. (2022); Wen et al. (2023); Liu et al. (2023c); Bai et al. (2023) and use in-batch
negative sampling to enable the model to learn initial representation space for CIR; while in the second stage, we
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initialize the model trained in the first stage and freeze the target image encoder, only fine-tuning the query encoder.
The frozen target image encoder introduces a large number of static representations of negatives at once (Fig.1(b)),
guiding query encoders to optimize representation space rapidly. Note that the second stage has only about 1/20 of the
time overhead of the first stage and can be easily superimposed on existing advanced models in CIR.

To verify the effectiveness of our method, we experiment extensively with both the full-supervised and zero-shot settings.
For the full-supervised setting, we adopt our method in four advanced models in CIR with different backbones, achieving
a 1%-6% performance improvement on the popular FashionIQ and CIRR datasets, reaching a new state-of-the-art. For
the zero-shot setting, the model needs to be built without requiring human-labeled triplets for training. We apply our
method to in-domain and out-of-domain image datasets to construct sufficient positives and negatives for CIR. With
fewer image scales than the baselines, the superior performance of our method demonstrates the ease with which our
method can be applied to low-resource scenarios.

The contributions of our paper can be summarized as follows:

• We propose a data generation method with the multi-modal large language model to scale positive examples in
CIR, which can automatically build high-quality positive examples based on image datasets only.

• We propose a two-stage plug-to-play framework to scale negative examples during fine-tuning, whose second
stage can be quickly adapted to almost any model in CIR with 1/20 time overhead of the first stage.

• Extensive experiments and analysis under the full-supervised and zero-shot setting demonstrate the effective-
ness and superiority of our proposed method, which achieves state-of-the-art performance on both FashionIQ
and CIRR datasets.

2 Related Work

Composed Image Retrieval. The recent paradigm in CIR Vo et al. (2019); Zhang et al. (2022); Zhao et al. (2022);
Baldrati et al. (2022) consists of three main steps: (1) extracting the representation of both images and sentences;
(2) fusing the representations of sentences and reference images to obtain query representations; (3) aligning the
representations of queries and target images with similar semantics. For the first step, early models in CIR utilize
two separate encoders Vo et al. (2019); Dodds et al. (2020); Kim et al. (2021); Xu et al. (2023a) while recent CIR
models Liu et al. (2021); Zhao et al. (2022); Baldrati et al. (2022); Wen et al. (2023) exploit pre-trained vision-language
encoders Lu et al. (2019); Radford et al. (2021) as the backbone. Some works Zhao et al. (2022); Baldrati et al. (2022)
simply use the global representations extracted from these pre-trained encoders while other works Xu et al. (2023a);
Wen et al. (2023); Zhang et al. (2022) integrate local and global representations. For the second step, some works Vo
et al. (2019); Zhao et al. (2022); Baldrati et al. (2022); Wang et al. (2022) leverage weights or gating mechanisms, while
other works Xu et al. (2023a); Zhang et al. (2022) design combining modules like cross-modal transformer. For the
third step, the most commonly used loss functions in CIR are triplet loss Schroff et al. (2015); Zhang et al. (2022); Chen
and Bazzani (2020), contrastive learning van den Oord et al. (2018); Vo et al. (2019); Baldrati et al. (2022); Lee et al.
(2021); Zhao et al. (2022); Wen et al. (2023); Wang et al. (2022). Recent advanced methods in the CIR predominantly
employ a combination of dual encoders and contrastive learning with in-batch negative sampling. We treat the models
obtained from these methods as the first-stage models and continue to train them in the second stage to improve CIR
performance further.

Data Generation for CIR InstructPix2Pix Brooks et al. (2023) first uses GPT-3 to generate modified text for captions
and then utilizes a diffusion model to generate images for these texts. COVR Ventura et al. (2024) mine similar
captioned videos from a large database and use a language model to generate modified text that describes the differences
between the videos, resulting in the WebVid-CoVR dataset with 1.6 million triplets. CASE Levy et al. (2024) uses a
data roaming approach that rephrases labels from a large-scale VQA dataset into a form suitable for composed image
retrieval. CompDiff Gu et al. (2023) constructs triplets for CIR datasets by automatically generating modified texts
and corresponding images using large language models and diffusion models. Unlike these works that often require
generating images or well-labeled datasets, our method is built on a real image collection without the need for any
additional manual annotation and leverages the capabilities of MLLM to construct triplets.

Negative Sampling in Contrastive Learning. In the realm of contrastive learning, negative sampling techniques
have evolved to enhance model performance: the in-batch negative sampling from SimCLR Chen et al. (2020) selects
negative examples from the same batch, while the memory bank approach in Bank Wu et al. (2018) utilizes a stored
set of past instances for more diverse negatives. Additionally, MoCo He et al. (2020) employs a moving average of
representations to create dynamic negatives, contributing to robust representation learning. Compared to Memory Bank
and MoCo, our method does not dynamically update the negatives with the aid of additional queues or momentum
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encoders; instead, it fine-tunes the model for the second stage by introducing a large number of static negative samples
at once.

3 Method

3.1 Preliminary

Suppose a CIR dataset consists of N annotated triplets, where the ith triplet xi is denoted as

xi = (ri,mi, ti), ri, ti ∈ Ω,mi ∈ T (1)

where ri, mi, and ti represent the reference image, the modified text1, and the target image of the ith example,
respectively, while Ω is the candidate image set containing all reference and target images of the triplets and T is the
text set containing all modified texts. The CIR task aims to use the reference image ri and the modified text mi to
compose a query qi, and retrieve the target image ti from the candidate set Ω with qi.

Then, we describe the classical paradigm of CIR. Multiple annotated triplets are combined into a mini-batch, and the
reference images and modified texts in the same batch are then encoded using a query encoder F (·) query representations.
The target images are encoded using an image encoder G(·) to obtain target image representations. For simplicity,
we rewrite the representations for the triplet (ri,mi, ti) as qi = F (ri,mi) and ti = G(ti), respectively. The cosine
similarity f(·, ·) is then adopted to calculate the similarity between the query and target image representations. Recall
that current methods based on contrastive learning usually treat the annotated examples as positive examples and treat
the examples obtained by replacing the target image in the positive examples with another image in the mini-batch as
the negatives. Then contrastive learning is used to pull the query representations and target image representations in
positive examples closer while pushing query representations and target image representations in negative examples
further, which can be expressed as

Lt
cl =

1

B

B∑
i=1

− log(
exp(f(qi, ti)/τ)∑B
j=1 exp(f(qi, tj)/τ)

) (2)

where B is the batch size and τ is a temperature hyper-parameter.

Despite the good results achieved with this current paradigm, the lack of negative and positive examples still severely
limits the performance of contrastive learning. To address these problems, we first propose a method of scaling positive
examples using a multi-modal large language model (MLLM). Then, we investigate the impact of different types of
negative examples on CIR performance and find that using negative examples obtained by replacing the target image is
simple and most effective. Therefore, we propose a two-stage fine-tuning strategy, scaling negative examples using a
caching technique based on existing models.

3.2 Scaling Positive Examples

Due to the high cost of manually labeling triplets, we propose a simple but effective method with a multi-modal
Large Language Model (MLLM) to construct the triplets for CIR. As shown in Fig,2, given an image dataset2

D = {I1, I2, ..., IM} with size M , our method consists of four steps: (1) Generating a suitable caption for each image
to obtain the image-text pairs; (2) Constructing M (reference image, target image) pairs; (3) Generating modified texts
for image pairs using the captions; (4) Combining the modified texts and image pairs to form triplets.

Caption Generation We introduce a MLLM gmllm(·, ·) to generate a corresponding caption for each image in the
dataset. Specifically, we design a prompt template Pcap(type, k) to guide the MLLM to obtain a brief caption for each
image under constrained conditions, where type and k are two dataset-specific parameters

to simulate the type and length of modified text in the real dataset. For an image Ii in the candidate image set, we input
Ii and Pcap together into the MLLM to obtain the corresponding caption Ci:

Ci = gmllm(Ii, Pcap(type, k)). (3)

Then we can obtain M image-text pairs {(I1, C1), ..., (IM , CM )}. In practice, the Pcap used in this work is written as
follows:

1In this work, we refer to the text in the CIR triplet as a "modified text", which is also referred to as a "modification sentence" or
"modification text" in other works.

2Image dataset here could be Ω in the CIR dataset or any image dataset.
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Scaling Positive Examples
Step 1: Caption Generation

MLLM

Image 
Captioning

Prompt

Step 4: Positive Example Construction

Scaling Negative Examples

A white bookshelf with books and a plant in a room

A bookshelf 
instead of 

A room

A dog 
instead of 
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Black and white 
zebra print dress

Lion face t-shirt with 
"New" written on it.

Query
Encoder

Target
Encoder

Step 2: Negative Sampling In Batch Step 3: Negative Sampling In Candidate Set
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Learning
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Step 1: Constructing Negative Examples

a dog

bulldog

a dog

lying

a dog

a shelf 

a dog

a dog

Replacing Reference Replacing Modified Text Replacing Target Replacing Query

A living room with a 
blue couch, green 
pillows

Prompt Template

A white bookshelf with 
books and a plant in a 
room

A white bookshelf with books and a plant in a room,  
instead of A living room with a blue couch, green 
pillows

Step 3: Modified Text Generation

Step 2: Image Pair Match

Image Encoder

FashionGeneral

Figure 2: Overview of Our Framework of Scaling Positive Examples and Negative Examples. We abbreviate some of
the modified texts due to space constraints.

Please briefly describe the {type} in {k} words.

Image Pair Match After obtaining the image-text pair, we need to match two image-text pairs to generate a quadruplet.
Regarding the image in an image-text pair as the reference image, the naive method randomly chooses the image from
another image-text pair as the target image. However, a randomly selected target image may be too similar to the
reference image to construct precise modified text or too dissimilar to help models improve performance. Therefore,
we introduce a uni-modal image encoder gimg(·) to get the representation of every image and calculate the pairwise
similarity between two different images Ii and Ij :

simij = f(gimg(Ii), gimg(Ij)) (1 ≤ i, j ≤ M, i ̸= j) (4)

Then we can rank the similarities related to Ii in descending order. Only one image whose similarity rank is between
[c0, c1)(c0 < c1) will be chosen as the target image, where c0 and c1 are two hyper-parameters. In practice, we regard
each image in the dataset D as the reference image and sample a target image for each image. We denote the target
image for image Ii as Iti , therefore, we can get M (reference image, target image) pairs {(I1, It1), ..., (IM , ItM )}. We
combine these image pairs with their corresponding captions to form M quadruplets:

{(I1, C1, I
t
1, C

t
1), ..., (IM , CM , ItM , Ct

M )} (5)

Modified Text Generation Given one quadruplet (Ii, Ci, I
t
i , C

t
i ) by the last step, we use a prompt template

Ptempk
(k ∈ {0, 1, 2} to form a modified text mtempk

i :

mtempk

i = Ptempk
(Ci, C

t
i ) (6)

In this work, we consider three types of templates below.

Ptemp0: {Ct
i} instead of {Ci}

Ptemp1: Unlike {Ci}, I want {Ct
i}

Ptemp2: {Ct
i}

Note that we attempt to use LLM to post-process the generated modified text. The first method involves using LLM to
make the modified text more diverse and fluent. The second method uses in-context learning to make LLM mimic the
modified text in annotated datasets. However, based on our experiments, neither of these methods surpasses the prompt
template method. Specific results can be found in supplementary materials.
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Positive Example Construction Finally, we could combine image pairs from the second step with the modified
texts obtained in the third step to get new M triplets {(Ii,mtemp

i , Iti )}. So, we can obtain an expanded dataset that is
comparable in size to the original dataset. We could use these new examples as a complement to the annotated dataset.
We could also use these examples to train a model from scratch, thus allowing for fully automated training of a CIR
model without human involvement.

3.3 Scaling Negative Examples

Recent works in visual contrastive representation learning Wu et al. (2018); He et al. (2020) have shown that scaling
negative numbers can effectively improve performance. However, existing works in CIR employ in-batch negative
sampling strategies, restricting the model from seeing enough negatives. Furthermore, recalling that the labeled data in
CIR is a triplet, it is theoretically possible to construct negative examples by replacing any element in the triplet. Most
works Vo et al. (2019); Baldrati et al. (2024); Wen et al. (2023); Bai et al. (2023) only use the "replace the target image"
strategy to construct negative samples without additional interpretation. Therefore, we first explore the performance
impact of different methods of constructing negative examples and find that "Replacing the target image" leads to more
true and hard negatives than other methods with the popular CIR datasets. After determining the method of negative
example construction, we propose a two-stage fine-tuning strategy for CIR that leverages a two-stage framework to
scale negative examples during fine-tuning.

1 2 3 420
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FashionIQ

1 2 3 4

40

60

80
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m
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CIRR 

Figure 3: Performance of four different methods on negative example construction. The number on the horizontal axis
corresponds to the serial number before the different replacing methods in Section 3.3.

Constructing Negative Examples Considering the annotated data in CIR are triplets, for triplet (ri,mi, ti), there
are four methods of negative example construction by randomly sampling another triplet (rj ,mj , tj):

1. Replacing the reference image, obtaining (rj ,mi, ti);
2. Replacing the modified text, obtaining (ri,mj , ti);
3. Replacing the target image, obtaining (ri,mi, tj);
4. Replacing the whole query pair, i.e. the reference image and modified text, obtaining (rj ,mj , ti).

Most previous works use only the third method Vo et al. (2019); Delmas et al. (2022); Baldrati et al. (2024); Wen
et al. (2023); Bai et al. (2023); Liu et al. (2023c), and Wang et al. (2022) uses the first three methods jointly. However,
none of the existing works have explored all four methods completely. To this end, we compare these four negative
construction methods while other settings remain the same. As shown in Fig.3, we find that constructing the negative
examples by replacing target images works best. Based on the examples in Fig.2, we can observe that the other three
methods easily generate relatively simple or false negatives. For example, since some modified texts (e.g., "a dog") only
describe the target image, replacing the reference image with another image can lead to false negatives. Similarly, if the
reference image is very similar to the target images, this type of data leads the model to directly use the reference image
to retrieve the target image, making it easy to generate false negatives when replacing the modified text (e.g., "dog" and
"lying"). Lastly, replacing the whole query pair leads to the simple negatives as the reference image and modified text
significantly differ from those in the positive example (e.g., "sofa+shelf" and "llama+dog"). Compared with the other
three methods, "replacing the target image" is inherently aligned with the final application scenario, and the probability
of generating false negatives is relatively low. In the supplementary materials, we report the performance of every
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combination of four types of negative examples. The experimental results suggest that incorporating other types of
negative examples may lead to increased overhead and potentially compromise model performance. For this reason, we
keep consistent with previous work and only consider the negative example type of replacing the target image.

Two-Stage Fine-tuning Previous work on extended negative examples, such as Memory Bank Wu et al. (2018) and
MoCo He et al. (2020), has focussed on visual representation learning, whose models typically follow a simple Siamese
network architecture. However, CIR tasks require an information fusion of visual and language, and different methods
follow different backbones, such as CLIP Radford et al. (2021), BLIP Li et al. (2022), and BLIP-2 Li et al. (2023).
Therefore, we propose a more general two-stage framework to ensure fast adaptation of different models in CIR (Right
half of Fig.2). Specifically, in the first stage, we fine-tune both the query encoder and the target encoder with in-batch
negative sampling as in Eqn.2 following previous works Baldrati et al. (2024); Liu et al. (2023c); Bai et al. (2023);
while in the second stage, we freeze the target encoder and only fine-tune the query encoder. Therefore, all candidate
images, i.e., the entire Ω, can advance past the frozen target image encoder, cached before the second fine-tuning stage.
Finally, for triplet (mi, ri, ti), we utilize all non-target images from the candidate set, i.e. Ω− {ti}, to form negative
examples. The contrastive loss for the second stage can be expressed as

L2rd
cl =

1

B

B∑
i=1

− log
exp(f (qi, ĝ(ti)) /τ)∑

tj∈Ω exp (f (qi, ĝ(tj)) /τ)
(7)

where ĝ(.) represent the frozen target image encoder. It is worth noting that the second stage is very efficient. According
to our estimates on different baselines, one training epoch on average takes 12 minutes, and typically 50 epochs
are needed for the first stage, resulting in a total duration of around 10 hours. While in our additional second stage,
pre-computing representations take an average of 10 minutes, with each epoch taking 5 minutes, and only 5 epochs are
required, around half an hour in total.

4 Experiments

4.1 Experimental Setup

4.1.1 Baselines

To evaluate the superiority of our method, we conduct experiments on four advanced models in CIR: TG-CIR Wen et al.
(2023), CLIP4CIR Baldrati et al. (2024), BLIP4CIR Liu et al. (2023c) and SPRC Bai et al. (2023).

TG-CIR Wen et al. (2023) uses CLIPViT-B/16 as the backbone, which exploits the global and local attribute representa-
tions and information from the target image to guide both query fusion and metric learning.

CLIP4CIR Baldrati et al. (2024) uses CLIPResNet50x4 as the backbone, which simply regards element-wise sum as a
fusion approach.

BLIP4CIR Liu et al. (2023c) uses BLIPbase as the backbone, which adopts the fusion encoder of BLIP to fuse the
reference image tokens and modified text tokens. We do not include an extra re-ranker to ensure the evaluation protocols
are consistent.

SPRC Bai et al. (2023) uses BLIP-2pretrained-vitl as the backbone, which exploits the QFormer Li et al. (2023) as an
encoder for query and target image sharing.

4.1.2 Training Protocol

We directly use checkpoints released by baseline works as the first stage models to avoid retraining. For the second
stage, we calculate image representations for all images before training and only finetune the query encoder using
scaled positives and negatives for 5 epochs. For the main results in section 4.2, we only use images in Ω, so it can be
fairly compared to any model that uses the original dataset.

4.1.3 Evaluation Datasets

We evaluate our model on two commonly used CIR datasets: FashionIQ Wu et al. (2021) and CIRR Liu et al. (2021).

FashionIQ Wu et al. (2021) consists of 30,134 examples extracted from 77,684 images crawled from fashion websites.
These images are categorized into Dress, Shirt, and Top&Tee. The modified text is manually annotated for each pair
of reference and target images. As in Baldrati et al. (2022); Zhang et al. (2022); Zhao et al. (2022), we use 18,000
examples for training and 6,016 validation examples for testing since the "real" test set is unavailable.
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Table 1: Average token length calculated by LLAVA Tokenizer Liu et al. (2023a) of the modified text and triplet count
statistics for the annotated and generated training sets.

Dataset Annotated Generated
Token Triplet Token Triplet

FashionIQ Wu et al. (2021) 7.8 18k 16.5 96k
CIRR Liu et al. (2021) 15.4 28k 20.9 128k

Table 2: Evaluation results of various models on FashionIQ. The best results are in boldface.

Methods Backbone
Dress Shirt Top&Tee Average

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Rmean

CIRPLANT Liu et al. (2021) w/o VLP 17.45 40.41 17.53 38.81 21.64 45.38 18.87 41.53 30.20

ARTEMIS Delmas et al. (2022) w/o VLP 27.16 52.40 21.78 43.64 29.20 54.83 26.05 50.29 38.17

ComqueryFormer Xu et al. (2023b) w/o VLP 28.85 55.38 25.64 50.22 33.61 60.48 29.37 55.36 42.37

PL4CIR Zhao et al. (2022) CLIP 33.60 58.90 39.45 61.78 43.96 68.33 39.02 63.00 51.01

TG-CIR Wen et al. (2023) CLIP 35.55 59.44 40.24 62.37 43.65 67.36 39.81 63.06 51.44

+SPN CLIP 36.84 60.83 41.85 63.89 45.59 68.79 41.43 64.50 52.97

CLIP4CIR Baldrati et al. (2022) CLIP 38.18 62.67 44.01 64.57 45.39 69.56 42.52 65.60 54.06

+SPN CLIP 38.82 62.92 45.83 66.44 48.80 71.29 44.48 66.88 55.68

BLIP4CIR Liu et al. (2023c) BLIP 44.22 67.08 45.00 66.68 49.72 73.02 46.31 68.93 57.62

+SPN BLIP 44.52 67.13 45.68 67.96 50.74 73.79 46.98 69.63 58.30

SPRC Bai et al. (2023) BLIP-2 49.18 72.43 55.64 73.89 59.35 78.58 54.92 74.97 64.85

+SPN BLIP-2 50.57 74.12 57.70 75.27 60.84 79.96 56.37 76.45 66.41

CIRR Liu et al. (2021) (Composed Image Retrieval on Real-life images) contains 21,552 real-life images from the web
taken from NLV R2, a popular natural language reasoning dataset. CIRR contains 36,554 examples, of which 28,225
examples are used for training, 4,181 for validation, and 4,148 for testing. In addition, the images in this dataset are
divided into several semantically similar groups to evaluate Rsubset@K metric (see below).

4.1.4 Evaluation Metrics

Recall@K (R@K) is the proportion of queries for which the retrieved top K images include the correct target image.
Recallsubset@K (Rsubset@K) is nearly the same as R@K but the model only retrieves inside the semantically similar
group of the reference image. For the FashionIQ dataset, following previous works Bai et al. (2023); Liu et al. (2023c);
Baldrati et al. (2022), we evaluate our model through R@K (K = 10, 50) on the original protocol. As in Zhao
et al. (2022), we also report the mean of all R@K scores as Rmean. For the CIRR dataset, following previous works
Baldrati et al. (2022); Liu et al. (2023b), we evaluate our model through R@K (K = 1, 5, 10, 50) and Rsubset@K
(K = 1, 2, 3). As in Bai et al. (2023), we also report (R@5+Rsubset@1)/2 as Rmean.

4.1.5 Implementation Details

We use LLaVA-v1 Liu et al. (2023a) as a multi-modal large language model for caption generation. We use the advanced
model unicomViT-L/14 An et al. (2023) for the unimodal image encoder. As used by CLIP4CIR Baldrati et al. (2024),
we leverage AdamW Loshchilov and Hutter (2019) optimizer. All experiments are conducted on a single Tesla V100
GPU. We manually tune τ ∈ {0.01, 0.02, 0.03, 0.05} and learning_rate ∈ {2e− 6, 5e− 6, 6e− 6, 1e− 5, 2e− 5}.
Detailed hyper-parameters are reported in the supplementary materials.

We analyze the modified text in the two datasets using LLAVA tokenizer Liu et al. (2023a) and count the average
annotated token length in Table 1. For FashionIQ, we set type to the name of the split, i.e., dress/shirt/top tee, and k
to 5. For CIRR and Conceptual Caption, we set type to "image" and k to 10 in the image captioning template. The
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Table 3: Performance comparison of various models on CIRR. The best results are in boldface.

Methods Backbone
Recall@K Rsubset@K

Rmean
K=1 K=5 K=10 K=50 K=1 K=2 K=3

CIRPLANT Liu et al. (2021) w/o VLP 19.55 52.55 68.39 92.38 39.20 63.03 79.49 45.88

ARTEMIS Delmas et al. (2022) w/o VLP 16.96 46.10 61.31 87.73 39.99 62.20 75.67 43.05

ComqueryFormer Xu et al. (2023b) w/o VLP 25.76 61.76 75.90 95.13 51.86 76.26 89.25 56.81

TG-CIR Wen et al. (2023) CLIP 45.23 78.34 87.13 97.30 72.84 89.25 95.13 75.59

+SPN CLIP 47.28 79.13 87.98 97.54 75.40 89.78 95.21 77.27

CLIP4CIR Baldrati et al. (2022) CLIP 42.80 75.88 86.26 97.64 70.00 87.45 94.99 72.94

+SPN CLIP 45.33 78.07 87.61 98.17 73.93 89.28 95.61 76.00

BLIP4CIR Liu et al. (2023c) BLIP 44.77 76.55 86.41 97.18 74.99 89.90 95.59 75.77

+SPN BLIP 46.43 77.64 87.01 97.06 75.74 90.07 95.83 76.69

SPRC Bai et al. (2023) BLIP-2 51.96 82.12 89.74 97.69 80.65 92.31 96.60 81.39

+SPN BLIP-2 55.06 83.83 90.87 98.29 81.54 92.65 97.04 82.69

detailed data statistics for both the generated and annotated triplets are provided in Table 1. For both datasets, we set c0
to 10000. We set c1 to 20000 for FashionIQ and 15000 For CIRR.
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Figure 4: Discussion of the core components in the method. The results shown in the figures are on the validation set.

4.2 Main Results

We compare our method against the following baseline methods: CIRPLANT Liu et al. (2021), ARTEMIS Delmas et al.
(2022), ComqueryFormer Xu et al. (2023b), PL4CIR Zhao et al. (2022), TG-CIR Wen et al. (2023), CLIP4CIR Baldrati
et al. (2022), BLIP4CIR Liu et al. (2023c), SPRC Bai et al. (2023). Details about these models can be found in
supplementary materials. We abbreviate the method of scaling positive examples as SP, the method of scaling negative
examples as SN, and the superposition of the two methods as SPN.

Results on FashionIQ Table 2 illustrates the comparison between our model and other recent studies on FashionIQ.
It demonstrates that our plug-and-play approach improves the effectiveness of all four baseline models with different
architectures. SPN boosts the R@10 metric for TG-CIR by 3.8%, CLIP4CIR by 4.1%, BLIP4CIR by 1.5%, and SPRC
by 2.6%. SPN enhances the R@50 of TG-CIR by 3%, CLIP4CIR by 2%, BLIP4CIR by 1%, and SPRC by 2%. This
mainly benefits from more negative and positive examples in contrastive learning, which allows the model to learn a
better representation.
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Results on CIRR Table 3 illustrates the comparison between our model and other recent studies on CIRR. It shows
that SPN also improves the performance of all four baseline models. SPN increases the R@1 of TG-CIR by 4.5%,
CLIP4CIR by 5.9%, BLIP4CIR by 3.7%, and SPRC by 6%. SPN improves the R@5 of TG-CIR by 1%, CLIP4CIR
by 2.9%, BLIP4CIR by 1.4%, and SPRC by 2.1%. This proves our method works well for images in both general
and fashion scenes. SPN promotes the Rsubset@1 of TG-CIR by 3.5%, CLIP4CIR by 5.6%, BLIP4CIR by 1%, and
SPRC by 1.1%. The objective of the subset test is to justify whether the model can distinguish between hard negative
examples Liu et al. (2021). Such a boost indicates that our model can learn more fine-grained representations than the
base model, thus distinguishing harder negative examples.

Table 4: Ablation results on CLIP4CIR.

Model FashionIQ CIRR
R@10 R@50 R@1 R@5 Rsubset@1

CLIP4CIR 42.52 65.60 43.96 77.68 70.84
+SP 43.83 66.66 44.75 79.45 72.85
+SN 43.43 66.45 46.35 79.67 73.07
+SPN 44.48 66.88 46.97 80.29 74.17

4.3 Ablation Study

Contribution of SP and SN To evaluate the effectiveness of SP and SN, we train CLIP4CIR using several variants of
our method and test on the validation set of CIRR and FashionIQ. SP variant conducts contrastive learning with in-batch
negative sampling on the scaled positive examples. SN variant only scales negative examples without exploiting new
positive examples. The results illustrate that removing either SN or SP significantly decreases performance. SP and SN
can improve the baseline model by 1.3% to 3.1% on the two datasets, respectively. SN is more effective for the CIRR
dataset. SP is more useful for the FashionIQ dataset. We attribute this phenomenon to the fact that the modified texts
are more complex in the CIRR dataset and that contrast learning is more lacking in negative than positive examples.
While the modified texts are simple in FashionIQ, the situation is exactly the opposite.

Discussion on k Since the LLAVA tokenizer utilizes the BPE tokenization method, which typically results in a word
count to token count ratio of 1:2. So the corresponding word counts for FashionIQ are around 4, and for CIRR, they are
around 8. Therefore, we experiment with k values that approximate the word count of the modified text in the annotated
triplets. As shown in Fig.4(a), we find that slightly exceeding the annotated word count yields better results, as lower or
higher values lead to performance degradation.

Discussion on MLLM Model The MLLM we use can be replaced with any model that can generate captions for
images, so we try three representative models LLAVA Liu et al. (2023a), BLIP Li et al. (2022), and BLIP-2 Li et al.
(2023) in Table 4(b). We find that LLAVA, with great instruction fine-tuning, works best among the three models. But
surprisingly, BLIP works better than BLIP-2. This suggests that BLIP-2’s ability to follow image captioning instructions
is not very good. At the same time, using different MLLMs consistently yields better results than w/o SP, indicating
that our method is insensitive to different MLLMs.

Discussion on Number of Positive Examples SP allows for constructing many triplets based on images, so we
consider exactly how many additional triplets on top of the existing ones work best. As shown in Fig 4(c), as the number
of positive examples rises, the effect of the model increases and then decreases, with the best results when increasing
nearly 60% of the number of original triplets, that is 12k for FashionIQ and 16k for CIRR.

Discussion on Image Pair Match In Fig.4(d), we explore four methods for constructing image pairs. The first method
involves selecting target images with the highest similarity to the reference image. The second method entails choosing
target images with moderate similarity to the reference image. The third method focuses on selecting target images with
the lowest similarity to the reference image, while the fourth method involves selecting target images randomly from
the entire set. Our findings indicate that the second method consistently produces superior results across both datasets.
This observation can be attributed to the higher quality of triplets generated through this selection approach compared
to the others.

Discussion on Prompt Templates We can combine three prompt templates in 7 ways. For two or more combinations
of templates, we obtain a corresponding number of modified texts for each triplet and randomly select one during
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Table 5: Zero-shot results.

Model FashionIQ CIRR
R@10 R@50 R@1 R@5 Rsubset@1

Out-of-Domain Image Dataset

CLIP Radford et al. (2021) 19.04 35.03 12.65 38.41 34.29
PIC2WORD Saito et al. (2023) 24.70 43.70 23.90 51.90 -
SEARLE-OTI Baldrati et al. (2023) 27.61 47.90 24.87 52.31 53.80
SPN-CC 28.97 49.54 34.34 65.42 64.87

In-Domain Image Dataset

SPN-IN 31.11 52.19 36.55 67.69 67.28

training. As shown in Fig.4(e), we find that for CIRR, a mixture of the first two works best. For FashionIQ, only the
third works best. This indicates that in FashionIQ, more modified texts directly describe the target image.

Discussion on Number of Negative Examples Because SN could exploit many images as negative examples, an
experiment is conducted to verify the relationship between the number of negative examples and the performance.
As shown in Fig 4(f), the model performs better as the number of negative examples rises and works best when all
images in the candidate image set are used as negative examples, which is 24k for FashionIQ and 16k for CIRR. We
additionally scale negative examples with images from external MSCOCO datasets. However, we observe a decline in
performance.

4.4 Results of Zero-Shot CIR

Zero-shot CIR is aimed at building a CIR model without requiring human-labeled triplets for training Saito et al. (2023).
For comparison under the zero-shot setting, we introduce two advanced baselines for zero-shot CIR, PIC2WORD Saito
et al. (2023) and SEARLE Baldrati et al. (2023). Following these two baselines, we use CLIPViT-L/14 as the backbone.
Before training, we use the method described in Section 3.2 to generate a CIR dataset from an image dataset. Then
contrastive learning with in-batch negative sampling is used for first-stage fine-tuning and the method described in
Section 3.3 is used to scale negative examples for second-stage fine-tuning.

Neither of these baselines uses an in-domain image dataset for training. Therefor, we also utilize images from the
out-of-domain dataset Conceptual Caption (CC3M), comprised of 3.3 million image-caption pairs from the Internet, to
generate positive examples for a fair comparison with PIC2WORD. Specifically, we randomly select the 50k images
in CC3M to construct the CIR dataset due to computing resource limitations. The number of 50k images is equal to
1.7% of that PIC2WORD used and 50% of that SEARLE used. We abbreviate our model trained with this setting as
SPN-CC. As shown in Table 5, SPN-CC gets the best results while using the least amount of images. This suggests
that, given a collection of images out of the domain, our method can automatically construct appropriate triplets and
train an acceptable model in the zero-shot setting. We also explore the setting of in-domain images, i.e., those in
FashionIQ and CIRR, and abbreviate the model trained with this setting as SPN-IN. Under this setting, SPN-IN yields
better results than SPN-CC using out-of-domain data. This suggests that if in the future we need to do a composed
image retrieval task for a new scene but with few labeling costs, an accepted solution is to use our SPN method to
automatically construct the positive examples within this scene and train a model from scratch.

4.5 Case Study

Fig.5 indicates the retrieval cases of CLIP4CIR w/o and w SPN. The first example is selected from CIRR, and the
second one is from FashionIQ. For both examples, we can find that using SPN allows us to learn more of the rarer
concepts (e.g. "llama", "logo"), thus enhancing the base model. In the meantime, we can find that the base model has
difficulty in retrieving the correct image when the reference and target images are very different (e.g., "panda" and
"llama", "dress" and "tee"), and SPN narrows this gap. More examples can be found in supplementary materials.

5 Conclusion

The Composed Image Retrieval (CIR) task uses a composed query to retrieve target images. While existing methods
have achieved impressive results, limited labeled data and contrastive learning with in-batch negative sampling limit
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blue wresting 
logo tee shirt

Shows three llamas of 
different colors, one of 
which is similarly black 
and white.

w/o SPN

w SPN

w SPN

w/o SPN

Figure 5: Comparison of retrieval results between the CLIP4CIR model w/o and w SPN.

the performance of their methods. To address these problems, we first propose a data generation method using a
multi-modal large language model to scale positives. We then propose a two-stage fine-tuning framework to scale
negatives, introducing static representations of negatives in the second stage. These improvements are plug-and-play,
enhancing existing CIR models without architecture changes. Extensive experiments show that we obtain state-of-the-art
results on the FashionIQ and CIRR datasets. Moreover, our method could be applied to zero-shot composed image
retrieval, offering a novel solution for unannotated CIR scenarios.
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