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Abstract

Model averaging methods have become an increasingly popular tool for improving
predictions and dealing with model uncertainty, especially in Bayesian settings. Re-
cently, frequentist model averaging methods such as information theoretic and least
squares model averaging have emerged. This work focuses on the issue of covariate
uncertainty where managing the computational resources is key: The model space
grows exponentially with the number of covariates such that averaged models must
often be approximated. Weighted-average least squares (WALS), first introduced
for (generalized) linear models in the econometric literature, combines Bayesian and
frequentist aspects and additionally employs a semiorthogonal transformation of the
regressors to reduce the computational burden. This paper extends WALS for general-
ized linear models to the negative binomial (NB) regression model for overdispersed
count data. A simulation experiment and an empirical application using data on doctor
visits were conducted to compare the predictive power of WALS for NB regression to
traditional estimators. The results show that WALS for NB improves on the maximum
likelihood estimator in sparse situations and is competitive with lasso while being
computationally more efficient.

Keywords: WALS, model averaging, negative binomial regression, count data
JEL Classification: C51, C25, C13, C11

∗Corresponding author: Kevin Huynh, Faculty of Business and Economics, University of Basel, Peter
Merian-Weg 6, 4052 Basel, Switzerland, E-Mail: kevin.huynh@unibas.ch

ar
X

iv
:2

40
4.

11
32

4v
1 

 [
ec

on
.E

M
] 

 1
7 

A
pr

 2
02

4

mailto:kevin.huynh@unibas.ch


1 INTRODUCTION

1 Introduction

In many empirical applications, model uncertainty emerges for a variety of reasons. For
example, competing theories exist that can describe the data, or different assumptions are
imposed on the data-generating process (DGP). The two most common approaches for
dealing with model uncertainty are model selection and model averaging. In model selection,
the user selects the best performing model according to an estimation criterion and then
carries out inference based on the chosen model. This approach is problematic because the
uncertainty in the initial model selection step is often ignored, which could lead to overly
confident decisions and predictions (Steel, 2020). In contrast, model averaging accounts
for model uncertainty by averaging over a set of candidate models, typically aiming at
improving predictive accuracy (Ando and Li, 2014).

As datasets become larger, researchers commonly find themselves in high-dimensional
settings with many potential covariates to model their response variable. Choosing appro-
priate regressors is particularly difficult in these situations because the number of candidate
models grows exponentially with the number of regressors, i.e. for k regressors, 2k different
subsets exist that may be considered as candidates. For the same reason, managing the
model space and computational resources is key to applying model averaging procedures
in the presence of covariate uncertainty. Bayesian model averaging (BMA) provides two
general approaches: 1. Markov chain Monte Carlo methods (MCMC) and 2. non-MCMC
approximation methods, see e.g. Hoeting et al. (1999, p. 384 ff.) for an early overview.
A common solution adopted in frequentist model averaging (FMA), e.g. in Zhang et al.
(2016), is to prescreen for a viable set of models. In contrast, weighted-average least squares
(WALS), first proposed by Magnus et al. (2010) for the linear regression model and then
extended by De Luca et al. (2018) to generalized linear models (GLMs), omits a preselection
of models by combining Bayesian and frequentist aspects and, especially, leveraging a
semiorthogonal transformation of the regressors allowing for fast computation times. Earlier
work by Heumann and Grenke (2010) generalizes WALS to logistic regression using a similar
transformation as in De Luca et al. (2018).

Most of the literature, particularly in economics, has focused on model averaging for
linear regression models. However, many interesting applications require nonlinear models,
e.g. classification, count data modeling and survival analysis. The negative binomial (NB)
distribution, especially of type 2 (NB2), is a popular distribution featuring overdispersion
for count data regression, see e.g. Cameron and Trivedi (1986) and Cameron et al. (1988)
for applications in health economics. Notably, the NB2 regression model is not a GLM
when its dispersion parameter is estimated from the data. Deb and Trivedi (2002) extend
it to hurdle and finite mixture models and Greene (2008) develops a more general form,
called NBP, which encompasses the NB of type 1 and 2.

Despite its wide application, very limited literature exists on model averaging methods for
the NB regression model that jointly estimate the regression coefficients and the dispersion
parameter. One of the few open-source packages for model averaging is BMA by Raftery
et al. (2020), which currently supports BMA for GLMs and survival models. Hence, it is
only able to fit an NB2 with pre-specified dispersion parameter, which is a GLM.
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2 SETUP

In this paper, I extend WALS GLM by De Luca et al. (2018) to the NB2 regression model
(WALS NB) to account for covariate uncertainty in the specification of the linear predictor.
WALS is particularly well suited as it elegantly circumvents a preselection of models by
transforming the regressors, allowing me to focus on the averaging procedure. Analogous
to De Luca et al. (2018), I first derive the one-step maximum likelihood estimator based on
a Taylor expansion of the NB2 log-likelihood function and then employ a transformation
akin to the semiorthogonal transformation used in WALS GLM.

At the time of writing, the asymptotic distribution of the WALS estimator for GLMs is
still an open research topic and its variance estimator has been a subject of debate. Recent
work by De Luca et al. (2022) proposes a new estimator for the variance of WALS in the
linear regression model instead of the Bayesian posterior variance that has traditionally
been used. De Luca et al. (2023) further analyze the confidence and prediction intervals of
WALS in the linear model and propose a new simulation-based method that corrects for
bias in the WALS estimator. In contrast, this work focuses on the predictive power of model
averaging and leaves the challenging issue of inference (after model averaging) for future
research. Model averaging estimators typically improve the predictive accuracy compared
to using a single model. For example, in an early application of BMA, Madigan and Raftery
(1994) find that BMA achieves better logarithmic predictive score than any single model.
Moreover, Min and Zellner (1993) show that the expected squared error loss of predictive
mean forecasts is always minimized by BMA, if the data-generating model is included in
the model space considered for averaging. In this paper, I compare the proposed WALS NB
method to traditional maximum likelihood (ML) estimation of the NB2 regression model
in a simulation experiment using the classical precision measure, root mean squared error
(RMSE), and scoring rules (Gneiting and Raftery, 2007) as measures for the distributional
fit. Finally, the method is also compared to the lasso estimator (Wang et al., 2016) in
an empirical application on modeling doctor visits. Both the simulation experiment and
the empirical application show that WALS NB improves on the ML estimator in sparse
situations with few observations and many covariates. In the latter, its fit is competitive
with lasso while being computationally more efficient.

2 Setup

The setup and derivation of WALS NB mostly follow the steps in De Luca et al. (2018)
for WALS GLM. Assume that data yi, i = 1, 2, . . . , n, are conditionally independent given
k-dimensional regressors xi and follow an NB2 distribution with mean µi and dispersion
parameter ρ, i.e. yi|xi ∼ NB2(µi, ρ). As in the standard GLM setup, I model the mean
using an inverse link function h on µi := µ(η(β, xi)) = h(η(β, xi)) with linear predictor
ηi := η(β, xi) = x⊤i β and regression coefficients β. The NB2 distribution has the probability
mass function

f(yi|µi, ρ) =
Γ(yi + ρ)

Γ(ρ)Γ(yi + 1)

µyii ρ
ρ

(µi + ρ)yi+ρ
, yi ∈ N0, ρ > 0, (2.1)
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2 SETUP

where Γ is the gamma function, and its conditional variance is given by

σ2i := Var(yi|µi, ρ) = µi +
µ2i
ρ
. (2.2)

A distribution from the exponential family has the following density

f(yi|θi) = exp(yiθi − b(θi) + l(yi)),

where b and l are known functions. Typical formulations as in e.g. Fahrmeir et al. (2013,
p. 301) include a dispersion parameter which, without loss of generality, I set equal to one.
Moreover, the following two identities hold for the mean and variance

µi =
∂b(θi)

∂θi
, σ2i =

∂2b(θi)

∂θ2i
.

For WALS estimation, I rewrite the NB2 probability mass function into a similar form
as the exponential family with a log-link on ρ by using

θi := θ (µi, ρ(α)) = θ (h (η(β, xi)) , ρ(α)) = log

(
µi

µi + ρ

)
= log(µi)− log(µi + ρ),

ρ(α) = exp(α).

Thus, the probability mass function becomes

f(yi|θi, ρ) = exp (yiθi + ρ log(1− exp(θi)) + log Γ(yi + ρ)− log Γ(ρ)− log Γ(yi + 1)) ,

where I dropped the dependence of θ on µ and ρ, and of ρ on α for notational brevity.
From the last line, we can identify the following building blocks of the exponential family:

b(θi, ρ) = −ρ log(1− exp(θi)),

l(yi, ρ) = log Γ(yi + ρ)− log Γ(ρ)− log Γ(yi + 1).

Thus, for fixed ρ, the NB2 is a member of the exponential family and leads to a GLM.
However, ρ is estimated from the data in the WALS procedure and, hence, the underlying
model is not a GLM anymore. Furthermore, I separate l(yi, ρ) into two terms using

a(yi, ρ) := log Γ(yi + ρ)− log Γ(ρ), d(yi) := − log Γ(yi + 1),

so the NB2 probability mass function can be rewritten as

f(yi|θi, ρ) = exp(yiθi − b(θi, ρ) + l(yi, ρ)) = exp(yiθi − b(θi, ρ) + a(yi, ρ) + d(yi)),

which will simplify the derivation of the WALS estimator later.
I allow for uncertainty in the specification of the linear predictor while assuming that the

(conditional) probability mass function of yi and the inverse link h are correctly specified.
First, collect over all observations n the response yi to an n-vector y and the regressors xi
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3 ML ESTIMATION

to an n× k matrix X that contains x⊤i as ith row. Then, partition the regressors into focus
and auxiliary regressors X = (X1, X2), where Xp is an n× kp matrix with ith row equal to
x⊤ip, p = 1, 2, and k1 + k2 = k. Further, let β = (β⊤1 , β

⊤
2 )

⊤ so the linear predictor can be
expressed as ηi = x⊤i1β1 + x⊤i2β2. Stacking the linear predictors over all n observations then
gives the vector η(β) = X1β1 +X2β2.

Consider averaging over models containing all focus regressors X1 but arbitrary subsets
of the k2 auxiliary regressors in X2, which leads to a total of 2k2 possible models. The
jth model is represented by the restriction R⊤

j β2 = 0, where Rj denotes a k2 × rj matrix
of rank 0 ≤ rj ≤ k2, such that R⊤

j = (Irj , 0) or column-permutations thereof. Thus, the
matrix Rj specifies which auxiliary regressors are excluded from the jth model and its rank
rj denotes the number of excluded auxiliary regressors. Note that 0 represents a scalar,
vector or matrix filled with zeroes of matching dimension unless otherwise stated. For
example, 0 in R⊤

j = (Irj , 0) is an rj × (k2 − rj) matrix.

3 ML estimation

I start with the classical maximum likelihood estimator of the NB2 regression model. Under
conditional independence, the (conditional) log-likelihood is

ℓ(β, α) =
n∑

i=1

log f
(
yi|θ(µi(β), ρ(α)), ρ(α)

)
=

n∑
i=1

[yiθi − b(θi, ρ) + a(yi, ρ) + d(yi)]

= constant +
n∑

i=1

[yiθi − bi + ai] ,

(3.1)

where bi := b(θi, ρ) and ai := a(yi, ρ). In the following, I will generally omit the dependence
of θ, µ, η, ρ, b and a on their parameters to reduce clutter. Moreover, only the log-link is
considered for the mean (and dispersion) parameter, i.e. h(ηi) = exp(ηi), but the general
notation using h is retained in many places below to facilitate comparisons with WALS
GLM by De Luca et al. (2018) and to allow easier extension of the method to other link
functions in the future.

The score functions follow:

sp(β, α) :=
∂ℓ(β, α)

∂βp
=

n∑
i=1

[
yi
∂θi
∂ηi

− ∂bi
∂θi

∂θi
∂ηi

]
xip =

n∑
i=1

vi[yi − µi]xip, p = 1, 2,

sα(β, α) :=
∂ℓ(β, α)

∂α
=

n∑
i=1

[
yi
∂θi
∂ρ

− ∂bi
∂θi

∂θi
∂ρ

− ∂bi
∂ρ

+
∂ai
∂ρ

]
∂ρ

∂α
=

n∑
i=1

κi
∂ρ

∂α
,

with

vi := v(ηi, ρ) :=
∂θi
∂ηi

,

κi := κ(ηi, ρ, yi) := yi
∂θi
∂ρ

− ∂bi
∂θi

∂θi
∂ρ

− ∂bi
∂ρ

+
∂ai
∂ρ

= −yi − µi
µi + ρ

+ log(ρ)− log(µi + ρ) + di(yi + ρ)− di(ρ),
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3 ML ESTIMATION

where di(x) := ∂ log Γ(x)/∂x is the digamma function. Furthermore, let H(β, α) be the
negative Hessian of the log-likelihood, which is composed of several submatrices that are
listed below. The first components are

Hpq(β, α) := −∂
2ℓ(β, α)

∂βp∂β⊤q

= −
n∑

i=1

[
yi
∂2θi
∂η2i

−

(
∂2bi
∂θ2i

(
∂θi
∂ηi

)2

+
∂bi
∂θi

∂2θi
∂η2i

)]
xipx

⊤
iq

=
n∑

i=1

[
v2i σ

2
i − ωi(yi − µi)

]
xipx

⊤
iq =

n∑
i=1

ψixipx
⊤
iq, p, q = 1, 2,

where

ωi := ω(ηi, ρ) :=
∂2θi
∂η2i

, ψi := ψ(ηi, ρ, yi) := v2i σ
2
i − ωi(yi − µi).

The next submatrices are defined as

Hpα(β, α) := −∂
2ℓ(β, α)

∂βp∂α

=
n∑

i=1

[
−yi

∂2θi
∂ηi∂ρ

+

(
∂2bi
∂θ2i

∂θi
∂ρ

+
∂2bi
∂θi∂ρ

)
∂θi
∂ηi

+
∂bi
∂θi

∂2θi
∂ηi∂ρ

]
xip

∂ρ

∂α

= Hαp(β, α)
⊤, p = 1, 2.

They further simplify thanks to

∂2bi
∂θ2i

∂θi
∂ρ

+
∂2bi
∂θi∂ρ

= −
(
µ2i
ρ

+ µi

)
1

µi + ρ
+
µi
ρ

= 0, (3.2)

so Hpα(β, α) may be rewritten as

Hpα(β, α) = −
n∑

i=1

ci[yi − µi]xip
∂ρ

∂α
, p = 1, 2,

using ci := c(ηi, ρ) = ∂2θi/∂ηi∂ρ. Finally, the last part is

Hαα(β, α) := −∂
2ℓ(β, α)

∂α2
= −

n∑
i=1

[
∂κi
∂ρ

(
∂ρ

∂α

)2

+ κi
∂2ρ

∂α2

]
= −

n∑
i=1

[
kig

2 + κiϱ
]
,

with

ki := k(ηi, ρ, yi) :=
∂κi
∂ρ

= yi
∂2θi
∂ρ2

−
(
∂2bi
∂θ2i

∂θi
∂ρ

+
∂2bi
∂θi∂ρ

)
∂θi
∂ρ

− ∂bi
∂θi

∂2θi
∂ρ2

− ∂2bi
∂θi∂ρ

∂θi
∂ρ

− ∂2bi
∂ρ2

+
∂2ai
∂ρ2

(3.2)
=

yi − µi
(µi + ρ)2

+
µi

ρ(µi + ρ)
+ tri(yi + ρ)− tri(ρ),
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3 ML ESTIMATION

where tri(x) := ∂2 log Γ(x)/∂x2 is the trigamma function, and

g := g(α) :=
∂ρ

∂α
, ϱ := ϱ(α) :=

∂2ρ

∂α2
.

The ML estimator for the jth model solves the following constrained optimization
problem

max
β,α

ℓ(β, α)

subject to R⊤
j β2 = 0.

(3.3)

As a first step towards the solution, I construct the Lagrangian

L(β, α, νj) = ℓ(β, α)− ν⊤j (R
⊤
j β2),

where νj denotes the rj-vector of Lagrange multipliers. Setting the first derivatives equal
to zero yields the system of nonlinear equations

s1(β, α) = 0, s2(β, α)−Rjνj = 0, sα(β, α) = 0, R⊤
j β2 = 0. (3.4)

Following De Luca et al. (2018, p. 3 f.), I consider a one-step ML estimator that approximates
the solution of the system. In contrast to iterative procedures such as Newton-Raphson,
which are typically used for solving nonlinear equation systems, the one-step ML estimator
admits closed-form expressions.
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3 ML ESTIMATION

3.1 One-step ML estimator

In the remainder of the paper, I assume that all necessary conditions for the algebraic
manipulations, e.g. rank conditions on the regressor matrix X, are satisfied. Detailed proofs
are found in Appendix A.

I expand the estimating equations of (3.4) (except for R⊤
j β2 = 0) around starting

values β̄ = (β̄⊤1 , β̄
⊤
2 )

⊤ and ᾱ. Further, ρ̄ = ρ(ᾱ), since the mapping from α to ρ is strictly
monotonic (log-link). Using a first-order Taylor expansion and ignoring the remainder term
yields

0 ≈ s̄1 − H̄11(β1 − β̄1)− H̄12(β2 − β̄2)− H̄1α(α− ᾱ),

0 ≈ s̄2 − H̄21(β1 − β̄1)− H̄22(β2 − β̄2)− H̄2α(α− ᾱ)−Rjνj ,

0 ≈ s̄α − H̄α1(β1 − β̄1)− H̄α2(β2 − β̄2)− H̄αα(α− ᾱ),

0 = R⊤
j β2,

(3.5)

where s̄p := sp(β̄, ᾱ), H̄pq := Hpq(β̄, ᾱ) and H̄pα = Hpα(β̄, ᾱ), p = 1, 2. In the following, all
quantities evaluated at (β̄, ᾱ) are denoted by a bar and the approximations in (3.5) are
treated as equalities for a simpler notation.

First, consider the unrestricted model with Ru = 0. Define the data transformations

ȳ := X̄1β̄1 + X̄2β̄2 + ū, X̄p := Ψ̄1/2Xp, p = 1, 2,

ȳ0 := ȳ − ḡΨ̄−1/2C̄(y − µ̄)ᾱ, ū := Ψ̄−1/2V̄ (y − µ̄),
(3.6)

which involve the n× n matrices

V̄ := V (η̄, ρ̄) := diag (v(η̄1, ρ̄), v(η̄2, ρ̄), . . . , v(η̄n, ρ̄)) ,

Ψ̄ := Ψ(η̄, ρ̄, y) := diag (ψ(η̄1, ρ̄, y1), ψ(η̄2, ρ̄, y2), . . . , ψ(η̄n, ρ̄, yn)) ,

C̄ := C(η̄, ρ̄) := diag (c(η̄1, ρ̄), c(η̄2, ρ̄), . . . , c(η̄n, ρ̄)) ,

and the n-vectors µ̄ := µ(η̄) := (h(η̄1), h(η̄2), . . . , h(η̄n))
⊤ and η̄ := (η̄1, η̄2, . . . , η̄n)

⊤ =

X1β̄1 + X2β̄2 with η̄i := η(β̄, xi). Using the log-link further guarantees rank(Ψ̄) = n

because ψ(η̄i, ρ̄, yi) = µ̄iρ̄(yi + ρ̄)/(µi + ρ̄)2 > 0 since µ̄i > 0, ρ̄ > 0 and yi ≥ 0 for all i.
Moreover, define

t̄ := ḡκ̄⊤1− ḡ(y − µ̄)⊤C̄η̄ − (ḡ2k̄⊤1+ ϱ̄κ̄⊤1)ᾱ,

with n-vectors

k̄ := k(η̄, ρ̄, y) := (k̄1, k̄2, . . . , k̄n)
⊤, κ̄ := κ(η̄, ρ̄, y) := (κ̄1, κ̄2, . . . , κ̄n)

⊤,

where k̄i := k(η̄i, ρ̄, yi), κ̄i := κ(η̄i, ρ̄, yi) and 1 := (1, . . . , 1)⊤ is an n-vector filled with ones.
Notice the slight abuse in notation, where µ, k and κ are vector-valued functions here,
whereas they were scalar-valued in the sections before. Furthermore, let

ϵ̄ :=
ḡ

ḡ2k̄⊤1+ ϱ̄κ̄⊤1
, q̄ := C̄(y − µ̄).

Then, the solution to the linearized system of likelihood equations (3.5) can be expressed
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3 ML ESTIMATION

in closed form as

β̃1u =

[(
X̄⊤

1 X̄1

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X1

)−1

+

{(
X̄⊤

1 X̄1

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X1

)−1(
X̄⊤

1 X̄2

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X2

)(
X̄⊤

2 M̄1X̄2

n

)−1

·
(
X̄⊤

2 X̄1

n
+
ḡϵ̄

n
X⊤

2 q̄q̄
⊤X1

)(
X̄⊤

1 X̄1

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X1

)−1}](
X̄⊤

1 ȳ0
n

− t̄ϵ̄

n
X⊤

1 q̄

)
−
[(

X̄⊤
1 X̄1

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X1

)−1(
X̄⊤

1 X̄2

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X2

)(
X̄⊤

2 M̄1X̄2

n

)−1

·
(
X̄⊤

2 ȳ0
n

− t̄ϵ̄

n
X⊤

2 q̄

)]
,

β̃2u = −
[(

X̄⊤
2 M̄1X̄2

n

)−1(
X̄⊤

2 X̄1

n
+
ḡϵ̄

n
X⊤

2 q̄q̄
⊤X1

)(
X̄⊤

1 X̄1

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X1

)−1

·
(
X̄⊤

1 ȳ0
n

− t̄ϵ̄

n
X⊤

1 q̄

)]
+

(
X̄⊤

2 M̄1X̄2

n

)−1(
X̄⊤

2 ȳ0
n

− t̄ϵ̄

n
X⊤

2 q̄

)
,

α̃u = − t̄+ ḡ(y − µ̄)⊤C̄(X1β̃1u +X2β̃2u)

ḡ2k̄⊤1+ ϱ̄κ̄⊤1
,

where

M̄1 = (In + ḡϵ̄Ψ̄−1/2q̄q̄⊤Ψ̄−1/2)

−
[
(X̄1 + ḡϵ̄Ψ̄−1/2q̄q̄⊤X1)(X̄

⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1(X̄⊤
1 + ḡϵ̄X⊤

1 q̄q̄
⊤Ψ̄−1/2)

]
,

is a symmetric matrix. In contrast to De Luca et al. (2018), M̄1 is not idempotent anymore
due to the rank-1 perturbation in In + ḡϵ̄Ψ̄−1/2q̄q̄⊤Ψ̄−1/2, which is a consequence of the
additional dispersion parameter ρ in the NB2 model compared to GLMs.

Likewise, consider the general one-step ML estimator for the jth model. Define the
symmetric and idempotent k2 × k2 matrix

P̄j :=

(
X̄⊤

2 M̄1X̄2

n

)−1/2

Rj

(
R⊤

j

(
X̄⊤

2 M̄1X̄2

n

)−1

Rj

)−1

R⊤
j

(
X̄⊤

2 M̄1X̄2

n

)−1/2

,

the k1 × k2 matrix

Q̄ :=

(
X̄⊤

1 X̄1

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X1

)−1(
X̄⊤

1 X̄2

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X2

)(
X̄⊤

2 M̄1X̄2

n

)−1/2

,

and the following transformation of the unrestricted one-step ML estimator β̃2u

ϑ̃ :=

(
X̄⊤

2 M̄1X̄2

n

)1/2

β̃2u. (3.7)

Then, analogous to Proposition 1 of De Luca et al. (2018), I obtain the one-step ML
estimator for the jth model in the following proposition.

9



3 ML ESTIMATION

Proposition 3.1 (One-step ML estimators). The one-step ML estimators of β1, β2 and α
based on the jth model are

β̃1j = β̃1r − Q̄W̄jϑ̃,

β̃2j =

(
X̄⊤

2 M̄1X̄2

n

)−1/2

W̄jϑ̃,

α̃j = − t̄+ ḡ(y − µ̄)⊤C̄(X1β̃1j +X2β̃2j)

ḡ2k̄⊤1+ ϱ̄κ̄⊤1
,

where

β̃1r =

(
X̄⊤

1 X̄1

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X1

)−1(
X̄⊤

1 ȳ0
n

− t̄ϵ̄

n
X⊤

1 q̄

)
,

is the fully restricted one-step ML estimator of β1 and W̄j = Ik2 − P̄j.

3.2 Transformed model

The WALS NB estimator relies on a preliminary transformation of the auxiliary regressors
to reduce the computational burden, akin to WALS for the linear regression model (Magnus
et al., 2010) and GLMs (De Luca et al., 2018).

First, scale the focus regressors by defining

Z̄1 := X̄1∆̄1, Z1 := X1∆̄1, γ1 := ∆̄−1
1 β1, (3.8)

with the k1 × k1 diagonal matrix ∆̄1 := diag
(
X̄⊤

1 X̄1/n
)−1/2 such that diag

(
Z̄⊤
1 Z̄1/n

)
=

(1, . . . , 1). The only purpose of the transformation is to improve the numerical accuracy by
normalizing all regressors to be the same scale in Z̄1 (De Luca et al., 2018, p. 5). It further
implies

Z̄1γ1 = X̄1β1,

β1 = ∆̄1γ1,

M̄1 = (In + ḡϵ̄Ψ̄−1/2q̄q̄⊤Ψ̄−1/2)

−
[
(Z̄1 + ḡϵ̄Ψ̄−1/2q̄q̄⊤Z1)(Z̄

⊤
1 Z̄1 + ḡϵ̄Z⊤

1 q̄q̄
⊤Z1)

−1(Z̄⊤
1 + ḡϵ̄Z⊤

1 q̄q̄
⊤Ψ̄−1/2)

]
,

(3.8)
= (In + ḡϵ̄Ψ̄−1/2q̄q̄⊤Ψ̄−1/2)

−
[
(X̄1 + ḡϵ̄Ψ̄−1/2q̄q̄⊤X1)(X̄

⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1(X̄⊤
1 + ḡϵ̄X⊤

1 q̄q̄
⊤Ψ̄−1/2)

]
,

so scaling by ∆̄1 has no effect on M̄1. Next, transform the auxiliary regressors by

Z̄2 := X̄2∆̄2Ξ̄
−1/2, Z2 := X2∆̄2Ξ̄

−1/2, γ2 := Ξ̄1/2∆̄−1
2 β2, (3.9)

where

Ξ̄ :=
∆̄2X̄

⊤
2 M̄1X̄2∆̄2

n
, (3.10)

10



3 ML ESTIMATION

and I assumed X̄⊤
2 M̄1X̄2 to be positive definite so Ξ̄1/2 exists. Furthermore, the k2 × k2

diagonal matrix ∆̄2 := diag
(
X̄⊤

2 M̄1X̄2/n
)−1/2 is chosen such that diag(Ξ̄) = (1, . . . , 1).

Unlike the matrix ∆̄1, the transformation by ∆̄2 serves the dual purpose of improving
numerical accuracy and making the WALS NB estimator equivariant to scale transformations
of the auxiliary regressors. Otherwise it would be only scale equivariant for the focus
regressors (De Luca and Magnus, 2011, p. 528).

Notice that combining (3.9) and (3.10) leads to

Z̄⊤
2 M̄1Z̄2

n
= Ik2 . (3.11)

In contrast to De Luca et al. (2018), M̄1Z̄2/
√
n is not semiorthogonal1 anymore, since M̄1

is not idempotent. The transformation further implies

Z̄2γ2 = X̄2β2,

β2 = ∆̄2Ξ̄
−1/2γ2.

Using (3.8) and (3.9) I can show for the unrestricted model that

η = Z1γ1 + Z2γ2 = X1β1 +X2β2,

so the linear predictor stays the same for the unrestricted model. Therefore, all the
quantities that only depend on ᾱ and indirectly on β̄ via

η̄ = X1β̄1 +X2β̄2 = Z1γ̄1 + Z2γ̄2,

where γ̄1 = ∆̄−1
1 β̄1 and γ̄2 = Ξ̄1/2∆̄−1

2 β̄2, remain the same (e.g. µ̄, Ψ̄, Q̄, ḡ, t̄, . . . ), as
they do not depend on β̄ directly. Note that De Luca et al. (2018, p. 6) suggest using
the fully iterated unrestricted ML estimates as starting values β̄ and ᾱ. In this case, the
starting value of the dispersion parameter ᾱZ for the transformed regressors Z is identical
to ᾱ for the original regressors X since the estimated conditional means are equal, i.e.
h(η(β̄, xi)) = h(η(γ̄, zi)) for all i, where z⊤i is the ith row vector of Z = (Z1, Z2).

3.3 One-step ML estimation of transformed models

It follows from Proposition 3.1 using (3.11) that the one-step ML estimators for the jth
transformed model are given by

γ̃1j = γ̃1r − D̄Wj γ̃2u,

γ̃2j =

(
Z̄⊤
2 M̄1Z̄2

n

)−1/2

W̄Z,jϑ̃Z =Wj γ̃2u,

α̃j = − t̄+ ḡ(y − µ̄)⊤C̄(Z1γ̃1j + Z2γ̃2j)

ḡ2k̄⊤1+ ϱ̄κ̄⊤1
,

(3.12)

1Semiorthogonality is defined as AA⊤ = I or A⊤A = I for a general (non-square) matrix A (Zhang,
2017, p. 104).
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3 ML ESTIMATION

where the fully restricted and unrestricted estimators are

γ̃1r =

(
Z̄⊤
1 Z̄1

n
+
ḡϵ̄

n
Z⊤
1 q̄q̄

⊤Z1

)−1(
Z̄⊤
1 ȳ0
n

− t̄ϵ̄

n
Z⊤
1 q̄

)
= ∆̄−1

1 β̃1r,

γ̃1u = γ̃1r − Q̄Z γ̃2u = ∆̄−1
1

[
β̃1r − Q̄ϑ̃

]
= ∆̄−1

1 β̃1u,

γ̃2u = −
(
Z̄⊤
2 Z̄1

n
+
ḡϵ̄

n
Z⊤
2 q̄q̄

⊤Z1

)(
Z̄⊤
1 Z̄1

n
+
ḡϵ̄

n
Z⊤
1 q̄q̄

⊤Z1

)−1(
Z̄⊤
1 ȳ0
n

− t̄ϵ̄

n
Z⊤
1 q̄

)
+

(
Z̄⊤
2 ȳ0
n

− t̄ϵ̄

n
Z⊤
2 q̄

)
= Ξ̄1/2∆̄−1

2 β̃2u,

(3.13)

with

Q̄Z =

(
Z̄⊤
1 Z̄1

n
+
ḡϵ̄

n
Z⊤
1 q̄q̄

⊤Z1

)−1(
Z̄⊤
1 Z̄2

n
+
ḡϵ̄

n
Z⊤
1 q̄q̄

⊤Z2

)
:= D̄.

Exploiting R⊤
j Rj = Irj , the following terms simplify

P̄Z,j = Rj(R
⊤
j Rj)

−1R⊤
j = RjR

⊤
j =: Pj ,

W̄Z,j = Ik2 − P̄Z,j = Ik2 − Pj =:Wj .

Analogous to ϑ̃, using (3.11) yields

ϑ̃Z =

(
Z̄⊤
2 M̄1Z̄2

n

)1/2

γ̃2u = γ̃2u.

As a direct consequence of (3.11), both Pj and Wj become nonrandom projection
matrices that are different from P̄j and W̄j used for the estimation with the untransformed
regressors. Furthermore, Wj reduces to a diagonal matrix with k2 − rj ones and rj zeros
on its main diagonal. The hth diagonal element of Wj is zero, when the hth component
of γ2 is constrained to be zero in the jth model. Otherwise, the hth component is one.
Combining this observation with γ̃2j from (3.12), it follows that all models that include the
hth column of Z2 as regressor will have the same estimator for the hth component, namely
the hth component of γ̃2u.

Note that the jth model for the transformed regressors is generally not equivalent
to the jth model of the untransformed regressors because the restriction in (3.4) differs.
The exceptions are the unrestricted model u and the fully restricted model r, where the
restriction is irrelevant:

1. For the unrestricted model, the restriction matrix is zero, i.e. Ru = 0.

2. For the fully restricted model, the restriction matrix is the identity matrix, i.e.
Rr = Ik2 . However, this is equivalent to estimating an unrestricted model containing
only the focus regressors.

This implies that γ̃2j ̸= Ξ̄1/2∆̄−1
2 β̃2j for j /∈ {u, r} and k2 ≥ 2 auxiliary regressors. For

k2 = 1, there exist only two models: 1. the unrestricted and 2. the fully restricted model,
so j ∈ {u, r}. The results are summarized in Corollary 3.2.

12



4 WALS NB MODEL AVERAGING ESTIMATOR

Corollary 3.2. Let u and r be the indices that denote the unrestricted and fully restricted
estimators with Ru = 0 and Rr = Ik2, respectively. Then, for j ̸= {u, r} and k2 ≥ 2:

γ̃1j ̸= ∆̄−1
1 β̃1j , γ̃2j ̸= Ξ̄1/2∆̄−1

2 β̃2j .

For k2 = 1, either j = u or j = r holds, so the general relationships for the unrestricted
and fully restricted estimators apply:

γ̃1u = ∆̄−1
1 β̃1u, γ̃2u = Ξ̄1/2∆̄−1

2 β̃2u,

and
γ̃1r = ∆̄−1

1 β̃1r, γ̃2r = 0.

4 WALS NB model averaging estimator

Consider the model averaging estimators of γ1, γ2 and α

γ̂1 =

2k2∑
j=1

λj γ̃1j , γ̂2 =

2k2∑
j=1

λj γ̃2j , α̂ =

2k2∑
j=1

λjα̃j ,

where λj are data-dependent model weights satisfying the restrictions

0 ≤ λj ≤ 1,
2k2∑
j=1

λj = 1, λj = λj(
√
nγ̃2u). (4.1)

Note that the regularity condition λj = λj(
√
nγ̃2u) is equivalent to the condition on the

model weights used by Hjort and Claeskens (2003).
From (3.12) I get

γ̂1 = γ̃1r − D̄Wγ̃2u = γ̃1r − D̄γ̂2,

γ̂2 =Wγ̃2u,

α̂ = − t̄+ ḡ(y − µ̄)⊤C̄(Z1γ̂1 + Z2γ̂2)

ḡ2k̄⊤1+ ϱ̄κ̄⊤1
,

(4.2)

where W =
∑2k2

j=1 λjWj is a diagonal matrix with entries wh ∈ [0, 1], because Wj is a
diagonal matrix with entries wj,h ∈ {0, 1}, h = 1, 2, . . . , k2 (notice the slight abuse of
notation: h is used as an index here and does not refer to the inverse link). Next, I can
transform α̂ to an estimate for ρ by applying the inverse of the log-link, i.e. ρ̂ = exp(α̂).
Furthermore, using γ̂1 and γ̂2, the WALS estimators of the original parameters β1 and β2
are given by

β̂1 = ∆̄1γ̂1, β̂2 = ∆̄2Ξ̄
−1/2γ̂2.

The final step in completing the WALS NB model averaging estimator is to estimate
the model weights λj . However, notice that both γ̂1 and α̂ can be expressed as functions of
γ̂2. Therefore, it is sufficient to find an expression for γ̂2 instead of directly estimating the
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4 WALS NB MODEL AVERAGING ESTIMATOR

weights λj . Similar to De Luca et al. (2018, p. 6), I construct γ̂2 as a Bayesian shrinkage
estimator by exploiting the approximate normality and independence of γ̃2u under the local
misspecification framework (see e.g. Hjort and Claeskens, 2003). First, let the auxiliary
parameters be β2 = δ/

√
n, where δ is an unknown constant vector that represents the

departure of the DGP from the unrestricted model. Then, if the fully iterated ML estimator
of the unrestricted model is used as starting values β̄1, β̄2 and ᾱ and mild regularity
conditions are assumed, I can show that

√
nγ̃2u ≈ N (

√
nγ2n, Ik2) = N (d, Ik2), (4.3)

in large samples, where γ2n = d/
√
n, d = Ξ1/2∆−1

2 δ, Ξ = plim Ξ̄ and ∆2 = plim ∆̄2 (see
the supplementary materials for more details). Further, consider γ̂2 from (4.2) and assume
analogously to De Luca et al. (2018, p. 6) that each diagonal element wh, h = 1, 2, . . . , k2,
of W only depends on the hth component

√
nγ̃2u,h of

√
nγ̃2u. Then, (4.3) implies that the

components of γ̂2 are also approximately independent. This assumption further simplifies
the estimation problem by reducing the k2-dimensional problem of estimating γ̂2 to k2

times a one-dimensional problem of estimating each element of γ̂2. Moreover, γ̂2,h is a
shrunken version of γ̃2u,h because 0 ≤ wh ≤ 1, therefore, γ̂2 is a shrinkage estimator of γ2n.

The previous two observations suggest that the Bayesian posterior mean is a suitable
shrinkage estimator for

√
nγ2n,h. Thus, the hth component of the WALS NB estimator γ̂2

follows as

γ̂2,h =
E(
√
nγ2n,h|

√
nγ̃2u,h)√

n
=

E(dh|
√
nγ̃2u,h)√
n

, dh ∼ f, (4.4)

where
√
nγ̃2u,h ≈ N (dh, 1) with prior mean dh, which is the hth element of d and is assumed

to have a symmetric and unimodal prior f (see section 9 of Magnus and De Luca (2016)
for more details on the prior and the estimation). Notice again that γ̂2,h lies between 0 and
the ‘observed data’ γ̃2u,h.

Magnus and De Luca (2016) require the desirable properties of robustness2, neutrality3

and minimax regret4 for the prior f , which further motivates the use of the Bayesian
posterior mean as the shrinkage estimator in γ̂2,h. The reflected Weibull, under suitable
parameter values, is a prior that fulfills all the properties mentioned above. In contrast,
the Laplace prior is neutral but not robust (Magnus and De Luca, 2016, p. 132). However,
it admits a closed-form expression for the posterior mean in (4.4) (see e.g. Theorem 1 in
Magnus et al., 2010) and therefore calculating the posterior mean under the Laplace prior
is computationally less complex than under the reflected Weibull, which requires numerical
integration.

2A prior π(γ) is robust if the posterior mean m(x) based on π satisfies x−m(x) → 0 as x → ∞.
3A prior π(γ) is neutral if the prior median of γ is zero and the prior median of |γ| is one.
4Regret is defined as difference between risk and the infimum of risk, where risk is defined as expected

squared loss.
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5 PERFORMANCE METRICS

5 Performance metrics

In order to compare the performance of WALS NB with other methods, I first need to
define performance metrics. The classical performance measure for regression is the RMSE,
which is given by

RMSE =

√√√√ 1

n

n∑
i=1

(µ̂i − yi)2, (5.1)

where µ̂i is the predicted mean for observation i. However, I would like to evaluate the fit of
an entire distribution and not only the expectation. Traditional measures used in machine
learning such as (R)MSE only focus on point predictions, i.e. the conditional expectation
of the fitted distribution, in relation to the observed values and do not make judgment on
other aspects of the fitted distribution. Czado et al. (2009) recommend scoring rules for
evaluation of count data models, which have also been used in Kolassa (2016). WALS NB
and all other methods considered in this paper fit an entire (conditional) distribution for
each individual that allows probabilistic predictions/forecasts, which is exactly the scenario
for which scoring rules provide quality assessment (Gneiting and Raftery, 2007, p. 359).
For count data, a probabilistic forecast is a predictive probability distribution P̂ on the set
of nonnegative integers N0 (Czado et al., 2009, p. 1254).

Following Czado et al. (2009, p. 1256), I take scoring rules to be penalties I wish to
minimize. Specifically, the penalty s(P̂ , y) is incurred when the forecaster quotes predictive
distribution P̂ and count y is realized. Moreover, let s(P̂ , Q) denote the expected value of
s(P̂ , ·) under distribution Q

s(P̂ , Q) =

∫
s(P̂ , y)dQ(y).

In practice, the average over suitable pairs (P̂ , y) is used:

S :=
1

n

n∑
i=1

s(P̂i, yi), (5.2)

where P̂i refers to the ith predictive distribution and yi the ith observed count. In the
simulation experiment and empirical application of Sections 6 and 7, respectively, scores
will always refer to a suitable average.

Suppose the forecaster has predictive distribution Q available. Then the forecaster has
no incentive to predict any P̂ ̸= Q and is encouraged to quote her true belief, P̂ = Q, if the
scoring rule is strictly proper. Strict propriety is defined by

s(Q,Q) ≤ s(P̂ , Q),

with equality if and only if P̂ = Q, and encourages honest quotes (Czado et al., 2009, p. 1256;
Gneiting and Raftery, 2007, p. 360). If s(Q,Q) ≤ s(P̂ , Q) for all P̂ and Q, then the scoring
rule is only proper. Since only strict propriety ensures that both calibration (consistency
with actual realizations) and sharpness (concentration of the predictive distribution) of
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6 SIMULATION EXPERIMENT

the predictive distribution are addressed (Winkler, 1996), I exclusively use strictly proper
scoring rules.

Czado et al. (2009, p. 1256 f.) propose a number of strictly proper scoring rules for
count data. It is a priori unclear which scoring rule to use unless there is a unique and
clearly defined underlying decision problem. Since probabilistic forecasts often have many
uses, it is appropriate to use a variety of scores to take advantage of their differing emphases
(Czado et al., 2009, p. 1257). In this paper, I use the logarithmic (log), Brier and spherical
score, which I briefly summarize here: Let p̂y := P̂ (Y = y) denote the probability mass at
count y (for continuous distributions it is the density at y), then the log score is defined as

logs(P̂ , y) = − log(p̂y). (5.3)

The sum of log scores corresponds to the negative log-likelihood. Further define

||p̂||2 =
∞∑
r=0

p̂2r , (5.4)

where the infinite sum may be truncated if no closed-form expression exists. The quadratic
score, also called Brier score, is then

qs(P̂ , y) = −2p̂y + ||p̂||2. (5.5)

The spherical score uses the same components differently:

sphs(P̂ , y) = − p̂y
||p̂||

. (5.6)

6 Simulation experiment

The aim is to compare the performance of WALS NB with the traditional ML estimator of
the NB2 regression model in a controlled environment. The DGP is inspired by the local
misspecification framework so I can assess the influence of varying numbers of focus and
auxiliary regressors.

The dependent count variable is sampled from an NB2 using a log-link, i.e.

yi|xi ∼ NB2(µi, ρ),

µi = exp(α+ x⊤i β),

xi
i.i.d.∼ N (0,Σk),

(6.1)

for i = 1, 2, . . . , n, where xi = (x⊤i1, x
⊤
i2)

⊤ is a random vector of dimension k = k1 + k2

composed of k1 focus regressors xi1 and k2 auxiliary regressors xi2. Analogously, the
coefficient vector is separated into two parts: β = (β⊤1 , β

⊤
2 )

⊤. Inspired by the simulation
experiments in Zhang and Liu (2019) and De Luca et al. (2023), who compare confidence
and prediction intervals of model averaging methods for the linear regression model, I
choose the regressors to be multivariate normal because it allows me to analyze the effect of
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Figure 1: Visualization of count variable y in the training set of the first simulation run of
setting k1 = 10, k2 = 100, ρ = 1, b = 0 with n = 4000 observations.

the correlation between the regressors on the performance of the methods. For simplicity, I
specify each element of xi to have variance 1 and pairwise correlation b, i.e.

Σk =


1 b · · · b

b 1 · · · b
...

...
. . .

...
b b · · · 1

 .

The same offset α = log(3) is used in all experiments such that the DGP produces reasonable
counts, see Figure 1 for a visualization of a training set from a specific run.

Moreover, the regression coefficients are generated as follows: Define the vectors β̄1 :=
(β̄1,1, β̄1,2, . . . , β̄1,10)

⊤ and β̄2 := (β̄2,1, β̄2,2, . . . , β̄2,100)
⊤. Then, the maximum number of

regression coefficients k1 = 10 and k2 = 100 are randomly sampled once according to the
following rules:

• β̄1: Each element β̄1,j , j = 1, 2, . . . , 10, is drawn independently with 50% chance from
U(−0.25,−0.1) or from U(0.1, 0.25), so that both positive and negative coefficients
are present.

• β̄2: Each element is drawn independently from a uniform, i.e.

β̄2,m ∼ U(−0.01, 0.01), m = 1, 2, . . . , 100.

The simulations then only take the first k1 and k2 values from these vectors as regression co-
efficients β1 and β2. For example, in the setting k1 = 5, k2 = 10, β1 = (β̄1,1, β̄1,2, . . . , β̄1,5)

⊤

and β2 = (β̄2,1, β̄2,2, . . . , β̄2,10)
⊤. Hence, the magnitude of the elements in β2 is much

smaller than in β1, therefore the regressors xi2 are considered auxiliary regressors and the
main variation is driven by xi1. Table C.1 and C.2 in Appendix C show the entries of β̄1
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Table 1: Simulation design – Parameters and choice of values

Parameter Description Values

k1 # focus regressors 1, 5, 10
k2 # auxiliary regressors 1, 5, 10, 20, 50, 100
n # training observations 500, 1000, 2000, 3000, 4000
b correlation coefficient of regressors 0, 0.3, 0.5, 0.9
α constant log(3)
ρ dispersion parameter 1, 1.5, 2
R # runs 300
– Each simulation scenario is a unique combination of the parameter values, which

produces 1080 scenarios in total.

and β̄2, respectively.
All values of the parameters used in the experiment are summarized in Table 1. A total

of 1080 scenarios consisting of all combinations of the parameters are simulated for R = 300

runs each.
I compare six different procedures that are named according to the pattern ‘method-

specification’. The two methods are called ‘walsNB’, which estimates the NB2 regression
model using WALS NB, and ‘ML’, which uses maximum likelihood. For WALS NB
procedures, the Weibull prior is used as it theoretically provides the best tradeoff between
robustness and regret, for more details see Magnus and De Luca (2016, p. 130 ff.). The
results for other priors are expected to be quite similar as WALS for the linear regression
model has empirically shown to be relatively insensitive to the choice of the prior (De Luca
et al., 2022).5

The procedures considered are

1. walsNB-dgp: Emulates the DGP (6.1) by including xi1 and a constant as focus
regressors and xi2 as auxiliary regressors.

2. walsNB-aux: Includes only a constant as focus regressor and the ‘true’ regressors xi
as auxiliary.

3. ML-U: Includes a constant and the ‘true’ regressors xi.

4. ML-focus: Only includes the focus regressors xi1 and a constant.

5. ML-AC: Only includes the auxiliary regressors xi2 and a constant.

6. oracle: The true model of the DGP (6.1) that is not estimated.

The second WALS NB specification, walsNB-aux, is included to analyze the extent
to which prior information about the focus regressors in walsNB-dgp affects performance.
Ideally, including xi1 as focus regressors in the procedure should improve performance as
they are the covariates that dominate and should therefore be included in all submodels of

5I also conducted the simulation experiment using the Laplace prior and the results are similar to the
ones using the Weibull prior.
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WALS NB. However, in walsNB-aux their coefficients are also subjected to the regularization
of the Bayesian estimation step, which may improve performance. Thus, a priori it is
unclear which model will dominate.

All ML specifications are estimated using a log-link for the mean parameter, while the
dispersion parameter is estimated directly without a link (default setting). Moreover, I
increase the maximum number of iterations for both the alternation process between IRLS
and ML estimation of ρ and the IRLS algorithm itself from the default setting of 25 to
2500 to increase the odds for convergence. The remaining settings, e.g. convergence criteria,
are left at their default values.

Moreover, the WALS NB specifications use a log-link for the mean and dispersion
parameter following the DGP (6.1) and are initialized using the ML estimates of the
unrestricted model, which are given by the ML-U procedure (using the increased maximum
number of iterations as described above). This initialization is recommended by De Luca
et al. (2018, p. 4) as it produces lower RMSE for the WALS GLM estimator in their
Monte Carlo simulations (see Table 3 in De Luca et al., 2018, p. 11) compared to using
the estimates of the fully restricted model as starting values. It further ensures that (4.3)
approximately holds for the one-step estimators of the auxiliary regression coefficients,
which I exploit in the Bayesian estimation step to reduce the k2-dimensional posterior mean
estimation to k2 one-dimensional problems (see Section 4).

Finally, the Weibull prior for all WALS specifications uses the parameters recommended
in Magnus and De Luca (2016, p. 132), which are minimax regret solutions for the normal
location problem.

In order to compare the performance of the procedures, I follow the benchmark experi-
ments framework of Hothorn et al. (2005, p. 681 f.) and more specifically the ‘Simulation
Problem’. The simulation is structured to emulate the typical use of the methods: For
each scenario and run, a training sample of size n is generated, where all procedures are
applied and performance criteria are computed on an independently generated validation
set that is fixed in size to ne = 4000 to avoid any variation due to its size. I do not
employ hypothesis tests to check if the performance differences are significant because the
simulation experiment itself is already computationally intensive due to the large number
of parameter settings.

I consider the RMSE as a classical precision measure for regression and additionally
log, Brier and spherical scores to assess the distributional fit as described in Section 5. For
the scoring rules, the average is taken over the validation sample as in (5.2). Further, I
truncate the infinite sum in ||p̂|| from (5.4) used in the Brier and spherical score at the count
r = 150 because the response typically does not exceed 150 and it would be meaningless to
extrapolate beyond the observed data. See Figure 1 for a visualization of the training data
of a single simulation run of the setting k1 = 10, k2 = 100, ρ = 1, b = 0 (this setting should
maximize the range of y, since k1 = 10 and k2 = 100 allow for the largest possible means
µi and ρ = 1 maximizes variance), where the response only ranges between 0 and 71.

In the following, only the scenarios highlighting the differences between the procedures
are discussed. For more results, see the supplementary materials.
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6 SIMULATION EXPERIMENT

6.1 Varying the number of regressors

First, I analyze how the procedures behave when the number of regressors is varied. In
the following plots, the points represent the mean validation metric over all successful runs
of the experiment, i.e. R = 300 if the method never fails to converge. The total number
of failed runs is given below the corresponding points in the plots and the shaded area
displays the interquartile range (the box of a boxplot) of the validation metric.
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Figure 2: Mean validation RMSE and quartiles varying n and k2
The remaining parameters are fixed at k1 = 1, ρ = 1 and b = 0. The shaded areas show the interquartile
range. The number below a point indicates how often the method failed to converge in this particular
setting.

Figure 2 shows that walsNB-aux performs similarly to walsNB-dgp in terms of mean
validation RMSE when we vary k2 with fixed k1 = 1, ρ = 1 and b = 0, because most of
the regressors are auxiliary and the former includes all regressors as auxiliary. Moreover,
both WALS NB specifications outperform ML-U on average when k2 ≥ 20 and n is small
(n ≤ 2000). In fact, WALS NB specifications show lower mean validation RMSE than
all ML specifications in these scenarios, except for ML-focus that contains only the focus
regressors. For k2 = 100 and n < 2000 the ‘typical’ performance of walsNB-dgp and
walsNB-aux is also better than ML-U and ML-AC as their interquartile ranges do not
overlap. On the other hand, when k2 is small and/or n is large, their interquartile ranges
are similar. The largest difference in mean RMSE is observed at n = 500, k1 = 1, k2 = 100

where walsNB-aux exhibits around 8.9% lower mean RMSE than ML-U. ML-focus performs
the best in all scenarios, especially when k2 is large and n small.

Therefore, if we know the focus regressors, then ML-focus yields the best fit in very
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6 SIMULATION EXPERIMENT

sparse situations with few observations. Otherwise, walsNB-dgp and walsNB-aux are
better than using all regressors in the large regression model ML-U. The outperformance
in walsNB-dgp and walsNB-aux compared to ML-U is likely due to the reduced variance
thanks to the Bayesian regularization step, which typically reduces variance and leads to
lower RMSE via the bias-variance trade-off. In reality it is unlikely that we can exactly
identify which regressors are the focus regressors, so walsNB-aux offers a great alternative
that does not require variable selection. In all scenarios, it performs at least as well as
ML-U but better when the data is sparse and few observations are available. For large n or
small k2, all procedures fit the data equally well as their mean validation RMSE converges
to the RMSE of the oracle.
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Figure 3: Mean validation RMSE and quartiles varying n and k1
The remaining parameters are fixed at k2 = 1, ρ = 1 and b = 0. The shaded areas show the interquartile
range.

When I vary k1 with fixed k2 = 1, ρ = 1 and b = 0 in Figure 3, the picture changes. In
all scenarios, ML-AC returns the highest RMSE and the remaining specifications perform
similarly as their interquartile ranges overlap. Increasing k1 shifts the ‘RMSE-curve’ up
for all procedures, including the oracle, while retaining their relative order. This behavior
is explained by the form of the variance of the NB2 distribution in (2.2). The more focus
regressors with large coefficients are included, the more likely it is that the conditional
expectation µi is large, which increases the variation of the response yi since the conditional
variance is monotonically increasing in µi. Thus, even if we could exactly estimate the true
β1 and β2, the RMSE would still increase due to the increased conditional variance, which
is demonstrated by the behavior of the oracle.

The same patterns hold for the validation log score. Firstly, Figure 4 shows that WALS
NB specifications generally perform better than ML specifications in terms of log score,
when the number of auxiliary regressors is high compared to the number of focus regressors
and few observations are available. The exception is again ML-focus, which performs the
best across all scenarios. The largest difference in mean log score between walsNB-aux and
ML-U is realized at k1 = 1, k2 = 100 and n = 500 where the mean log score of walsNB-aux
is around 3.9% lower. Moreover, the typical performance of walsNB-aux is also better
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Figure 4: Mean validation log score and quartiles varying n and k2
The remaining parameters are fixed at k1 = 1, ρ = 1 and b = 0. The shaded areas show the interquartile
range. The number below a point indicates how often the method failed to converge in this particular
setting.

than ML-U in this scenario as their interquartile ranges do not overlap. For large n the
distributional fit of all models is similar because the mean log scores converge to the log
score of the oracle.

Secondly, similar to the results for RMSE in Figure 3, I find a small upwards shift of
the mean validation log scores in Figure 5 when increasing k1 given k2 = 1. As expected,
the distributional fit of ML-AC, which only includes the auxiliary regressors, is the worst
among the procedures when k1 ≥ 5. Finally, the interquartile range of all models except
ML-AC overlap, so their performance in terms of log score typically does not differ. The
relative ranking of the procedures for the Brier and spherical score is the same as for the
log score, so their results are only shown in the supplementary materials.

In summary, the WALS NB specifications generally outperform ML-U in terms of RMSE
and log score when the number of auxiliary regressors is very large relative to the number
of focus regressors and when the number of observations is small. This is in line with the
results from Abadie and Kasy (2019) for the pretest estimator, which is the predecessor of
the WALS estimator: The authors consider a ‘Spike and Normal’ process for noisy estimates
X̂1, X̂2, . . . , X̂k of e.g. the coefficients from a linear regression model (Abadie and Kasy, 2019,
p. 746): The estimates X̂j are assumed to follow X̂j ∼ N (mj , s

2
j ) for j = 1, 2, . . . , k, e.g. X̂j

are elements of the ordinary least squares (OLS) estimator in a linear regression model
with homoskedastic normal error terms. In this setup, the mean mj can be regarded as the
true value of the regression coefficient that is estimated as X̂j . The idea is that regularized
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Figure 5: Mean validation log score and quartiles varying n and k1
The remaining parameters are fixed at k2 = 1, ρ = 1 and b = 0. The shaded areas show the interquartile
range.

estimators such as lasso, ridge, and pretest modify the OLS estimator X̂j . Furthermore, the
mean mj is set to zero (spike) with a fixed probability p, and with probability 1− p the
coefficient follows mj ∼ N (m0, s

2
0) for all j. Under this setting, the authors show that the

pretest estimator exhibits smaller integrated risk (integrated expected squared error over
the space of distributions of the data distribution, see Abadie and Kasy (2019, p. 745 f.) for
details) than lasso and ridge, when the process is very sparse, i.e. p is high and m0 is large,
so many coefficients are set to zero and the non-zero coefficients are far away from zero.
The results further agree with the Monte Carlo simulations of De Luca et al. (2023) for
WALS in the linear regression model: The authors find that the ratio of the MSE of OLS
relative to the MSE of WALS increases when the number of auxiliary regressors k2 becomes
larger. Moreover, for all k2, the ratio decreases when the sample size n increases. Both
observations are in line with Figure 2, where walsNB-dgp dominates in terms of (R)MSE
compared to the unrestricted estimator ML-U when n is small and k2 is large.

6.2 Varying ρ and b

I fixed k1 = k2 = 5 so that varying the correlation b affects the correlation within focus
and auxiliary regressors, as well as the correlation between focus and auxiliary regressors.
In contrast, if I had set k1 = k2 = 1, only the correlation between focus and auxiliary
regressors would be modified.

Figure 6 shows that for fixed b = 0 and k1 = k2 = 5, all procedures yield similar
mean validation RMSE across all ρ, except for ML-AC, which exhibits much higher values
compared to the other methods. Note that the mean validation RMSE generally decreases
for all procedures, even the oracle, when ρ increases. This is due to the fact that higher ρ
leads to less overdispersion, i.e. lower conditional variance, resulting in lower RMSE for all
procedures.

Increasing the correlation b between all regressors for fixed ρ = 1 and k1 = k2 = 5 in
Figure 7, the mean validation RMSE shifts down for all procedures, especially for ML-AC
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Figure 6: Mean validation RMSE and quartiles varying n and ρ
The remaining parameters are fixed at b = 0 and k1 = k2 = 5. The shaded areas show the interquartile
range.
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Figure 7: Mean validation RMSE and quartiles varying n and b
The remaining parameters are fixed at ρ = 1 and k1 = k2 = 5. The shaded areas show the interquartile
range.

as it only includes the auxiliary regressors and a constant. The larger the correlation, the
better it can compensate the lack of focus regressors. Generally, the choice of regressors
matters less for prediction when the regressors are highly correlated as each of them will
contain similar information for the prediction task. The remaining procedures perform very
similarly when increasing b and converge to the mean validation RMSE of the oracle for
large n. Except for ML-AC in the cases with b < 0.9, the typical RMSE of the procedures
are comparable as the interquartile ranges overlap and have similar widths in all scenarios.

The results for the mean validation log score when varying ρ and b with fixed k1 = k2 = 5

in Figure 8 and Figure 9 are qualitatively the same as for the mean validation RMSE.
Interestingly, I also observe a downward shift in the mean validation log score for all
procedures and n when I increase ρ. The argument used to explain the downward shift
for the mean validation RMSE, namely that the variance around the conditional mean is
lower the higher ρ, does not hold anymore since less overdispersion does not necessarily
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lead to lower log scores. Intuitively, less overdispersion leads to less variation around the
conditional mean that could allow for a more precise estimation of the conditional mean,
resulting in an improved distributional fit and, hence, a lower log score.

Finally, Figure 9 shows the mean validation log scores varying n and the correlation
b. Similar to the RMSE, the mean validation log scores generally decrease across all n,
when b is increased. The reduction is especially large for ML-AC due to the same reasons
as for the RMSE in Figure 7. The remaining procedures perform very similarly: Their
mean validation log scores are similar and converge to the oracle when n is large and their
interquartile ranges overlap.

The relative ranking of the procedures for the Brier and spherical score is similar to
that for the log score, so their plots are only shown in the supplementary materials.
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Figure 8: Mean validation log score and quartiles varying n and ρ
The remaining parameters are fixed at b = 0 and k1 = k2 = 5. The shaded areas show the interquartile
range.
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Figure 9: Mean validation log score and quartiles varying n and b
The remaining parameters are fixed at ρ = 1 and k1 = k2 = 5. The shaded areas show the interquartile
range.
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7 Empirical illustration

The aim of the empirical illustration is to compare the predictive performance of WALS
NB with ML and lasso estimation of the NB2 regression model on real data, and to
check whether the observations from the simulation experiment translate to a real-world
application.

I use the cross-sectional data set called ‘DoctorVisits’, which derives from the 1977-1978
Australian Health Survey and was analyzed in Cameron and Trivedi (1986) and Mullahy
(1997). The dataset contains n = 5190 observations from individuals over 18 years of age
on twelve variables, including the response visits, which describes the number of doctor
visits in a two-week period before the interview. It further provides explanatory variables
such as income and age, as well as health-related variables like recent illnesses and health
insurance coverage. The data are available via the R package AER (Kleiber and Zeileis,
2008) as DoctorVisits based on the original from the Journal of Applied Econometrics
Data Archive.6
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Figure 10: Visualization of visits in DoctorVisits

Table D.1 and D.2 in Appendix D provide a description and summary statistics of
the variables in the DoctorVisits dataset. Further, Figure 10 shows a visualization of the
response visits, which clearly exhibits overdispersion and will be modeled using regression
models for count data. For the computation of the Brier and spherical score, I truncate the
infinite sum in ||p̂|| from (5.4) at the largest observed count of the dataset, which is 9.

Inspired by the applications of Rupp et al. (2012, p. 2 f.) and Faber et al. (2020,
p. 164 f.) in quantum chemistry, I apply K-fold cross-validation (CV) to produce ‘learning
curves’ that allow me to compare the performance of the procedures for different sizes of
the training set. Algorithm 1 illustrates the process for generating a K-fold cross-validated
learning curve for any evaluation metric and procedure.

6https://www.journaldata.zbw.eu/dataset/heterogeneity-excess-zeros-and-the-structure-
of-count-data-models
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Algorithm 1 K-fold cross-validated learning curves

1. Randomly split dataset D := {(yi, xi)}i=1,2,...,n intoK parts D1,D2, . . . ,DK of roughly
the same size (see implementation of cv() of mboost (Hofner et al., 2014) for more
details, size of last partition will be smaller if n/K is not an integer). Then, the
training and validation set Tk and Vk for each fold k = 1, 2, . . . ,K are defined as

Tk := {Dj : j ̸= k}, Vk := Dk.

Further, let τk : {1, 2, . . . , |Tk|} → {1, 2, . . . , n} be an indexing function that maps
the index of the observations of Tk to the original dataset D.

2. Specify the grid for the number of training observations t = (t1, t2, . . . , tL) with
tL ≤ tmax, where tmax = |D| −maxk |Dk| is the largest possible size of the training
set.

3. For l = 1, 2, . . . , L:

(a) For procedure m = 1, 2, . . . ,M :

i. For k = 1, 2, . . . ,K:
A. Fit and tune procedure m on data Tl,k := {(yτk(r), xτk(r))}r=1,2,...,tl .
B. Compute validation metric ŝl,m,k on Vk.

ii. Output the cross-validated metric for training size tl: ŝl,m = 1
K

∑K
k=1 ŝl,m,k.

4. The learning curve for each m = 1, 2, . . . ,M plots ŝl,m against tl for l = 1, 2, . . . , L.

Note that only the training sets Tl,k vary in size but the validation sets Vk remain the
same. Similar to Meek et al. (2002, p. 398), the training sets Tl,k are nested, i.e. Tl,k ⊂ Tl+1,k

for l = 1, 2 . . . , L− 1. For all experiments below, I use K = 10 folds.
I compare procedures that differ in the estimator and specification of the mean, where

the choices for the latter are inspired by the applications in Cameron and Trivedi (1986,
p. 46 ff.). The different combinations of estimator and specification are named following
the pattern: ‘estimator-specification’. Again, ‘walsNB’ and ‘ML’ represent the WALS NB
and ML estimator, respectively, while ‘lasso’ estimates the NB2 regression model using the
lasso estimator of Wang et al. (2016) (see Appendix B for details). I consider a total of six
estimator-specification combinations:

1. walsNB-main: Includes all covariates linearly as auxiliary regressors and only a
constant as focus regressor.

2. walsNB-main-focus: Includes all covariates and a constant linearly as focus regressors,
a quadratic term for age and two-way interactions between health and gender, health
and age, health and income, and finally gender and illness as auxiliary regressors.

3. walsNB-int: Includes all regressors of walsNB-main-focus (including interactions) as
auxiliary and only a constant as focus regressor.

4. ML-main: Includes all covariates linearly and a constant and hence uses the same
regressors as walsNB-main.
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7 EMPIRICAL ILLUSTRATION

5. ML-int: Includes all regressors of ML-main but adds a quadratic term for age and
two-way interactions between health and gender, health and age, health and income,
and finally gender and illness. Counterpart of walsNB-main-focus and walsNB-int.

6. lasso-int: Includes all covariates linearly, a quadratic term for age and two-way
interactions between health and gender, health and age, health and income, and
finally gender and illness in the fitting process. Depending on the choice of the
regularization parameter, not all the aforementioned regressors have to be included
in the final model. In contrast, a constant is always included.

All procedures are fitted using a log-link for the mean parameter. WALS NB procedures
use the Laplace prior because the Weibull led to numerical instabilities in some small
subsamples resulting from the numerical integration procedure required for computing
the posterior mean of the auxiliary regression coefficients in (4.4). The parameters of the
Laplace prior are taken from Magnus and De Luca (2016, p. 132), which are minimax
regret solutions for the normal location problem. The remaining settings for WALS NB
and ML specifications are retained from the simulation experiment of Section 6. Notably,
all WALS NB specifications use the unrestricted ML estimator for NB2 as starting values
for the regression coefficients and the dispersion parameter. By unrestricted, I refer to the
unrestricted model given the covariates that are included in the specification, i.e. ML-main
for walsNB-main and ML-int for, both, walsNB-main-focus and walsNB-int.

The lasso specification ‘lasso-int’ performs tuning (maximizing 10-fold CV log-likelihood)
in the training set Tl,k of each fold k (and each training set size tl), as recommended by
Hothorn et al. (2005, p. 679) who include tuning and final model fit in the estimation
process. This is sensible, as tuning of the regularization parameter is key to the performance
of lasso. Different values of the regularization parameter correspond to different levels of
regularization and the regressors included in the model may also differ. Moreover, the
method also standardizes the regressors in the training set of each fold to have zero mean
and unit variance before estimation (i.e., it uses the estimated means and variances of the
regressors in the subsample and not over the entire dataset).

In Figure 11 and Table 2 we observe that all WALS NB specifications except for walsNB-
main-focus outperform the ML specifications in terms of RMSE for all numbers of training
observations. The differences are particularly large for small training sets, e.g. for tl = 500

the CV RMSE of walsNB-int is almost 19% smaller than ML-int. Except for tl < 1500,
walsNB-int and walsNB-main also outperform the lasso specification lasso-int. Further, note
that walsNB-int outperforms walsNB-main-focus although the only difference between the
two procedures is that the latter specifies some of the covariates as focus regressors. This
observation seems to contradict the results of the simulation experiment, where walsNB-dgp
and walsNB-aux perform very similarly even though the latter considers all covariates as
auxiliary regressors and the former considers part of them as focus regressors. However,
walsNB-dgp chooses the same focus regressors as the DGP of the simulation, which is
unlikely in empirical applications.

The CV log scores in Figure 12 and Table 3 show that all procedures perform similarly
in terms of the distributional fit. Moreover, the curves decrease as I increase the number of
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Table 2: 10-fold CV RMSE varying tl, DoctorVisits

Training obs. tl 500 1000 1500 2000 2500 3000 3500 4000 4671

walsNB-main 0.838 0.886 0.807 0.756 0.747 0.746 0.750 0.756 0.760
walsNB-main-focus 1.012 1.068 0.893 0.789 0.768 0.765 0.767 0.774 0.780
walsNB-int 0.837 0.864 0.797 0.753 0.745 0.742 0.743 0.746 0.752
ML-main 1.013 0.950 0.873 0.794 0.771 0.766 0.774 0.781 0.785
ML-int 1.032 0.956 0.885 0.792 0.769 0.762 0.764 0.770 0.776
lasso-int 0.791 0.826 0.831 0.772 0.761 0.753 0.759 0.764 0.776

– All figures rounded to three decimal places.
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Figure 11: 10-fold CV RMSE varying tl, DoctorVisits

training observations and flatten at about 2000 observations. This shows that the methods
are able to ‘learn’ more (i.e. improve the fit in terms of log score), when more training
observations are available but stop ‘learning’ at some point, i.e. when the curves flatten.

The other metrics for distributional fit, Brier and spherical score, show qualitatively
similar results but the curves are flatter, hence the results are only shown in the supple-
mentary materials. This further underlines that the distributional fit of the methods does
not improve drastically when the dataset becomes larger.

Note that WALS NB specifications are computationally less demanding than lasso,
while performing similarly in terms of CV RMSE and log score. They do not require
any tuning unlike lasso, which performs an ‘internal’ 10-fold CV to choose the optimal
regularization parameter. Consequently, the fitting times of WALS NB are typically shorter
than those of lasso and competitive with the ML specifications. Of course, one may change
the parameters of the fitting algorithm of lasso to improve the computing time. However,
it should not result in better performance metrics as the current setup already favors lasso:
It allows many iterations in the fitting algorithm and, thus, a high chance for convergence.

In conclusion, all WALS NB specifications, except for walsNB-main-focus, perform
better than the ML specifications in terms of RMSE, while metrics for the distributional
fit such as log, Brier and spherical score are similar or minimally worse than the ML
specifications. Moreover, the RMSE is similar or slightly lower than for lasso at large tl,
while demanding less computational resources as WALS NB does not require tuning by CV.
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8 CONCLUSION

Table 3: 10-fold CV log score varying tl, DoctorVisits

Training obs. tl 500 1000 1500 2000 2500 3000 3500 4000 4671

walsNB-main 0.639 0.628 0.623 0.622 0.622 0.622 0.621 0.621 0.620
walsNB-main-focus 0.642 0.629 0.624 0.622 0.621 0.621 0.621 0.620 0.620
walsNB-int 0.642 0.629 0.626 0.625 0.623 0.623 0.623 0.622 0.621
ML-main 0.640 0.627 0.622 0.621 0.620 0.621 0.620 0.620 0.620
ML-int 0.644 0.630 0.626 0.624 0.622 0.622 0.622 0.621 0.621
lasso-int 0.637 0.626 0.623 0.622 0.622 0.622 0.621 0.620 0.620

– All figures rounded to three decimal places.
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Figure 12: 10-fold CV log score varying tl, DoctorVisits

8 Conclusion

This paper extends the WALS approach to NB2 regression models (WALS NB) for count
data based on WALS GLM of De Luca et al. (2018) and compares its predictive performance
to the traditional ML and lasso estimator in simulated and real count datasets using the
classical measure RMSE and strictly proper scoring rules.

In the simulation experiment, WALS NB outperforms the ML estimator in very sparse
situations, i.e. where the number of auxiliary regressors is large and the number of training
observations is small. When increasing the number of training observations, WALS NB
and the unrestricted ML estimator converge in all performance metrics. Interestingly,
whether WALS NB includes all regressors as auxiliary regressors or parts of them as focus
does not change the results substantially. This shows that specifying all regressors as
auxiliary is a reasonable choice if no prior information is available on the importance of the
individual regressors. Moreover, it highlights that the regularized Bayesian estimation of
the coefficients of the auxiliary regressors is key for the performance of WALS NB.

The empirical illustration emphasizes the results found in the simulation experiment:
For small training sets, WALS NB using all covariates as auxiliary regressors outperforms
all ML specifications in terms of RMSE while yielding a comparable distributional fit
measured by strictly proper scores. Only the lasso estimator yields lower RMSE for small
training sets. However, it is more computationally demanding than WALS NB due to the
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additional 10-fold CV that is run for determining the optimal regularization parameter.
This highlights an important advantage of WALS compared to other model averaging
techniques: low computational costs. Moreover, WALS NB using all covariates as auxiliary
regressors outperformed all other specifications of WALS NB. Thus, if only the predictive
power is of concern, WALS NB is a viable alternative to established estimation methods
for the NB2 regression model that is easy to specify (choose all regressors as auxiliary),
regularized and computationally efficient.

For future research, it would be interesting to generalize WALS to hurdle or zero-
inflation models to handle count data with excess zeros. Thus far, WALS has been limited
to univariate response variables, therefore extending the methodology to multivariate
outcomes would allow a larger variety of applications, such as joint modeling of related
count processes. Lastly, an investigation of the large sample properties of WALS could
improve our understanding of statistical inference after model averaging.
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APPENDIX

Appendix

A Proofs

Proof of Proposition 3.1. I start by rewriting the equation system from (3.5) using the
data transformations in (3.6). Notice that

X̄⊤
p V̄ (y − µ̄) =

n∑
i=1

v̄i(yi − µ̄i)xip,

X̄⊤
p X̄q =

n∑
i=1

ψ̄ixipx
⊤
iq,

for p, q = 1, 2, so the first equation of (3.5) can be expressed as

0 = X̄⊤
1

(
X̄1β̄1 + X̄2β̄2 + Ψ̄−1/2V̄ (y − µ̄)− ḡΨ̄−1/2C̄(y − µ̄)ᾱ− X̄1β1 − X̄2β2

+ ḡΨ̄−1/2C̄(y − µ̄)α
)
.

Using ȳ0 from (3.6), the expression can be written more compactly as

0 = X̄⊤
1

(
ȳ0 − X̄1β1 − X̄2β2 + ḡΨ̄−1/2C̄(y − µ̄)α

)
. (A.1)

Following the same steps, the second equation of (3.5) becomes

0 = X̄⊤
2

(
ȳ0 − X̄1β1 − X̄2β2 + ḡΨ̄−1/2C̄(y − µ̄)α

)
−Rjνj . (A.2)

Analogously, the third equation in (3.5) can be expressed as

0 = ḡκ̄⊤1− ḡ(y − µ̄)⊤C̄η̄ + ḡ(y − µ̄)⊤C̄(X1β1 +X2β2) + (ḡ2k̄⊤1+ ϱ̄κ̄⊤1)(α− ᾱ),

= t̄+ ḡ(y − µ̄)⊤C̄(X1β1 +X2β2) + (ḡ2k̄⊤1+ ϱ̄κ̄⊤1)α.
(A.3)

Assuming ḡ2k̄⊤1+ ϱ̄κ̄⊤1 ̸= 0, I can solve (A.3) for α:

α = − t̄+ ḡ(y − µ̄)⊤C̄(X1β1 +X2β2)

ḡ2k̄⊤1+ ϱ̄κ̄⊤1
. (A.4)

Let us combine (A.1) and (A.2) into a larger matrix equation. First, move some terms
so they become

X̄⊤
1 X̄1β1 + X̄⊤

1 X̄2β2 = X̄⊤
1 ȳ0 + X̄⊤

1 Ψ̄−1/2C̄(y − µ̄)ḡα,

X̄⊤
2 X̄1β1 + X̄⊤

2 X̄2β2 = X̄⊤
2 ȳ0 + X̄⊤

2 Ψ̄−1/2C̄(y − µ̄)ḡα−Rjνj .

Using Ψ̄−1/2X̄p = Xp, p = 1, 2, collect both equations to(
X̄⊤

1 X̄1 X̄⊤
1 X̄2

X̄⊤
2 X̄1 X̄⊤

2 X̄2

)(
β1

β2

)
=

(
X̄⊤

1 ȳ0

X̄⊤
2 ȳ0

)
+

(
X⊤

1 C̄(y − µ̄)

X⊤
2 C̄(y − µ̄)

)
ḡα−

(
0

Rj

)
νj .
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Inserting (A.4) and rearranging yields(
X̄⊤

1 X̄1 X̄⊤
1 X̄2

X̄⊤
2 X̄1 X̄⊤

2 X̄2

)(
β1

β2

)
=

(
X̄⊤

1 ȳ0

X̄⊤
2 ȳ0

)
− t̄ḡ

ḡ2k̄⊤1+ ϱ̄κ̄⊤1

(
X⊤

1 C̄(y − µ̄)

X⊤
2 C̄(y − µ̄)

)

− ḡ2

ḡ2k̄⊤1+ ϱ̄κ̄⊤1

(
X⊤

1 C̄(y − µ̄)(y − µ̄)⊤C̄X1β1

X⊤
2 C̄(y − µ̄)(y − µ̄)⊤C̄X1β1

)

− ḡ2

ḡ2k̄⊤1+ ϱ̄κ̄⊤1

(
X⊤

1 C̄(y − µ̄)(y − µ̄)⊤C̄X2β2

X⊤
2 C̄(y − µ̄)(y − µ̄)⊤C̄X2β2

)

−

(
0

Rj

)
νj ,

which can be further rewritten, using ϵ̄ and q̄ as defined in Section 3.1, to

Ā

(
β1

β2

)
=

(
X̄⊤

1 ȳ0

X̄⊤
2 ȳ0

)
− t̄ϵ̄

(
X⊤

1 q̄

X⊤
2 q̄

)
−

(
0

Rj

)
νj , (A.5)

with

Ā :=

(
X̄⊤

1 X̄1 + ḡϵ̄X⊤
1 q̄q̄

⊤X1 X̄⊤
1 X̄2 + ḡϵ̄X⊤

1 q̄q̄
⊤X2

X̄⊤
2 X̄1 + ḡϵ̄X⊤

2 q̄q̄
⊤X1 X̄⊤

2 X̄2 + ḡϵ̄X⊤
2 q̄q̄

⊤X2

)
.

Then, consider the partitioned inverse

Ā−1 =

(
Ā11 Ā12

Ā21 Ā22

)
,

with elements

Ā11 = (X̄⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1

+

[
(X̄⊤

1 X̄1 + ḡϵ̄X⊤
1 q̄q̄

⊤X1)
−1(X̄⊤

1 X̄2 + ḡϵ̄X⊤
1 q̄q̄

⊤X2)(X̄
⊤
2 M̄1X̄2)

−1

· (X̄⊤
2 X̄1 + ḡϵ̄X⊤

2 q̄q̄
⊤X1)(X̄

⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1

]
, (A.6)

Ā12 = − (X̄⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1(X̄⊤
1 X̄2 + ḡϵ̄X⊤

1 q̄q̄
⊤X2)(X̄

⊤
2 M̄1X̄2)

−1 = Ā21⊤, (A.7)

Ā22 = (X̄⊤
2 M̄1X̄2)

−1. (A.8)

It is assumed that X̄⊤
2 M̄1X̄2 is positive definite so all elements of the partitioned inverse of

Ā−1 exist.
Using the Sherman-Morrison-Woodbury formula, I can rewrite the following inverse if

(1 + ḡϵ̄q̄⊤X1(X̄
⊤
1 X̄1)

−1X⊤
1 q̄) ̸= 0 as

(X̄⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1 = (X̄⊤
1 X̄1)

−1 − (X̄⊤
1 X̄1)

−1(ḡϵ̄X⊤
1 q̄q̄

⊤X1)(X̄
⊤
1 X̄1)

−1

1 + ḡϵ̄q̄⊤X1(X̄⊤
1 X̄1)−1X⊤

1 q̄
. (A.9)

Therefore, (X̄⊤
1 X̄1+ ḡϵ̄X

⊤
1 q̄q̄

⊤X1)
−1 exists if (1+ ḡϵ̄q̄⊤X1(X̄

⊤
1 X̄1)

−1X⊤
1 q̄) ̸= 0 and X̄⊤

1 X̄1 is
invertible. The latter is easily shown because rank(X̄1) = rank(Ψ̄−1/2X1) = rank(X1) = k1

(assumed X1 to have full column rank) and rank(Ψ̄−1/2) = n, otherwise I would not be
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able to compute Ψ̄−1/2. Thus, X̄1 has full column rank and rank(X̄⊤
1 X̄1) = k1.

Let β̃1u and β̃2u denote the solution of the unrestricted model, then plugging Ru = 0

into (A.5) yields the unrestricted equation system

Ā

(
β̃1u

β̃2u

)
=

(
X̄⊤

1 ȳ0

X̄⊤
2 ȳ0

)
− t̄ϵ̄

(
X⊤

1 q̄

X⊤
2 q̄

)
. (A.10)

Further, let β̃1j and β̃2j denote the solution of the jth model. Using (A.5) then yields

Ā

(
β̃1j

β̃2j

)
=

(
X̄⊤

1 ȳ0

X̄⊤
2 ȳ0

)
− t̄ϵ̄

(
X⊤

1 q̄

X⊤
2 q̄

)
−

(
0

Rj

)
ν̃j . (A.11)

Combining (A.10) and (A.11), I can find an explicit solution for νj as they imply

Ā

(
β̃1j

β̃2j

)
= Ā

(
β̃1u

β̃2u

)
−

(
0

Rj

)
ν̃j ,

then multiply with Ā−1 so(
β̃1j

β̃2j

)
=

(
β̃1u

β̃2u

)
−

(
Ā11 Ā12

Ā21 Ā22

)(
0

Rj

)
ν̃j . (A.12)

Multiply both sides by
(
0 R⊤

j

)
and note that by (3.3) R⊤

j β̃2j = 0, then

(
0 R⊤

j

)(β̃1j
β̃2j

)
=
(
0 R⊤

j

)(β̃1u
β̃2u

)
−
(
0 R⊤

j

)(Ā11 Ā12

Ā21 Ā22

)(
0

Rj

)
ν̃j

0 = R⊤
j β̃2u −R⊤

j Ā
22Rj ν̃j

→ ν̃j = (R⊤
j Ā

22Rj)
−1R⊤

j β̃2u, (A.13)

assuming the inverse (R⊤
j Ā

22Rj)
−1 exists. Plug (A.13) into (A.12) for

β̃1j = β̃1u − Ā12Rj(R
⊤
j Ā

22Rj)
−1R⊤

j β̃2u,

β̃2j = β̃2u − Ā22Rj(R
⊤
j Ā

22Rj)
−1R⊤

j β̃2u.

Now, insert (A.7), (A.8) and introduce n so

β̃1j = β̃1u +

[(
X̄⊤

1 X̄1

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X1

)−1(
X̄⊤

1 X̄2

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X2

)(
X̄⊤

2 M̄1X̄2

n

)−1/2

·
(
X̄⊤

2 M̄1X̄2

n

)−1/2

Rj

(
R⊤

j

(
X̄⊤

2 M̄1X̄2

n

)−1

Rj

)−1

R⊤
j

(
X̄⊤

2 M̄1X̄2

n

)−1/2

·
(
X̄⊤

2 M̄1X̄2

n

)1/2

β̃2u

]
= β̃1u + Q̄P̄jϑ̃.

(A.14)
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Moreover, introduce n also for β̃2j which yields

β̃2j = β̃2u −
[(

X̄⊤
2 M̄1X̄2

n

)−1

Rj

(
R⊤

j

(
X̄⊤

2 M̄1X̄2

n

)−1

Rj

)−1

R⊤
j

(
X̄⊤

2 M̄1X̄2

n

)−1/2

·
(
X̄⊤

2 M̄1X̄2

n

)1/2

β̃2u

]
= β̃2u −

(
X̄⊤

2 M̄1X̄2

n

)−1/2

P̄j

(
X̄⊤

2 M̄1X̄2

n

)1/2

β̃2u

=

(
X̄⊤

2 M̄1X̄2

n

)−1/2

(Ik2 − P̄j)ϑ̃

=

(
X̄⊤

2 M̄1X̄2

n

)−1/2

W̄jϑ̃.

In order to obtain the estimator of the fully restricted model β̃1r, I set Rr = Ik2 .
Combined with (A.14) this leads to

β̃1r = β̃1u + Q̄ϑ̃ (A.15)

↔ β̃1u = β̃1r − Q̄ϑ̃. (A.16)

Insert (A.16) in (A.14) to get
β̃1j = β̄1r − Q̄W̄jϑ̃.

What remains to be derived are β̃1u and β̃2u. First, multiply (A.10) with Ā−1 for(
β̃1u

β̃2u

)
=

(
Ā11 Ā12

Ā21 Ā22

)(
X̄⊤

1 ȳ0

X̄⊤
2 ȳ0

)
− t̄ϵ̄

(
Ā11 Ā12

Ā21 Ā22

)(
X⊤

1 q̄

X⊤
2 q̄

)
.

Inserting (A.6), (A.7) and (A.8) results in

β̃1u =

[
(X̄⊤

1 X̄1 + ḡϵ̄X⊤
1 q̄q̄

⊤X1)
−1

+

{
(X̄⊤

1 X̄1 + ḡϵ̄X⊤
1 q̄q̄

⊤X1)
−1(X̄⊤

1 X̄2 + ḡϵ̄X⊤
1 q̄q̄

⊤X2)(X̄
⊤
2 M̄1X̄

⊤
2 )−1

(X̄⊤
2 X̄1 + ḡϵ̄X⊤

2 q̄q̄
⊤X1)(X̄

⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1

}]
(X̄⊤

1 ȳ0 − t̄ϵ̄X⊤
1 q̄)

− (X̄⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1(X̄⊤
1 X̄2 + ḡϵ̄X⊤

1 q̄q̄
⊤X2)(X̄

⊤
2 M̄1X̄

⊤
2 )−1(X̄⊤

2 ȳ0 − t̄ϵ̄X⊤
2 q̄).

(A.17)
and

β̃2u = − (X̄⊤
2 M̄1X̄2)

−1(X̄⊤
2 X̄1 + ḡϵ̄X⊤

2 q̄q̄
⊤X1)(X̄

⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1(X̄⊤
1 ȳ0 − t̄ϵ̄X⊤

1 q̄)

+ (X̄⊤
2 M̄1X̄2)

−1(X̄⊤
2 ȳ0 − t̄ϵ̄X⊤

2 q̄).

(A.18)
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Plugging β̃1u and β̃2u into (A.15) and exploiting (3.7) yields

β̃1r = (X̄⊤
1 X̄1 + ḡϵ̄X⊤

1 q̄q̄
⊤X1)

−1(X̄⊤
1 ȳ0 − t̄ϵ̄X⊤

1 q̄)

=

(
X̄⊤

1 X̄1

n
+
ḡϵ̄

n
X⊤

1 q̄q̄
⊤X1

)−1(
X̄⊤

1 ȳ0
n

− t̄ϵ̄

n
X⊤

1 q̄

)
.

(A.19)

Finally, insert β̃1j and β̃2j in (A.4) for the estimator of the dispersion parameter

α̃j = − t̄+ ḡ(y − µ̄)⊤C̄(X1β̃1j +X2β̃2j)

ḡ2k̄⊤1+ ϱ̄κ̄⊤1
.

The proposition collects the solutions for β̃1j , β̃2j , α̃j and β̃1r.

Proof of Corollary 3.2. I prove the first statement in Corollary 3.2 by contradiction.
Assume for j ̸= {u, r} that the jth model for the transformed regressors Z and untransformed
regressors X are equivalent so we can transform the estimators for the auxiliary variables
into each other, i.e. γ̃2j = Ξ̄1/2∆̄−1

2 β̃2j . The assumption requires the restrictions in the
estimation for the transformed and untransformed regressors (see (3.5)) to be equivalent,
i.e.

R⊤
j γ̃2j = R⊤

j β̃2j . (∗)

Without loss of generality, I analyze the special case k2 = 2, where γ̃2j = (γ̃2j,1, γ̃2j,2)
⊤

and β̃2j = (β̃2j,1, β̃2j,2)
⊤, and the jth model is assumed to set γ̃2j,2 = β̃2j,2 = 0 via the

restriction matrix R⊤
j = (0, 1). Define the elements of Ξ̄1/2 to be

Ξ̄1/2 =

(
ξ11 ξ12

ξ21 ξ22

)
,

and ∆̄−1
2 reduces to a 2× 2 diagonal matrix ∆̄−1

2 = diag(∆̄11
2 , ∆̄

22
2 ).

Under the assumption γ̃2j = Ξ̄1/2∆̄−1
2 β̃2j , the restriction in the estimation of the jth

model for the transformed regressors is

R⊤
j γ̃2j = R⊤

j Ξ̄
1/2∆̄−1

2 β̃2j

=
(
0 1

)(ξ11 ξ12

ξ21 ξ22

)(
∆̄11

2 β̃2j,1

∆̄22
2 β̃2j,2

)
= ξ21∆̄

11
2 β̃2j,1 + ξ22∆̄

22
2 β̃2j,2 = 0,

while the restriction in the estimation of the jth model for the untransformed regressors is

R⊤
j β̃2j = β̃2j,2 = 0.

Therefore, generally R⊤
j γ̃2j ̸= R⊤

j β̃2j so the restrictions in the estimator using the trans-
formed and untransformed regressors differ, which contradicts (∗). Consequently, γ̃2j =
Ξ̄1/2∆̄−1

2 β̃2j cannot generally hold for k2 > 2 as it does not even hold for k2 = 2. By
extension, γ̃1j ̸= ∆̄−1

1 β̃1j because the restrictions in the estimation differ, which finishes the
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proof of the first part of the corollary.
For k2 = 1, there exist only two models: 1. the unrestricted and 2. the fully restricted

model so j ∈ {u, r}. In this case, the general results γ̃1u = ∆̄−1β̃1u, γ̃2u = Ξ̄1/2∆̄−1
2 β̃2u and

γ̃1r = ∆̄−1
1 β̃1r from (3.13) apply. Finally, the fully restricted model fulfills R⊤

r γ̃2r = γ̃2r = 0,
which finishes the proof of the second part of the corollary.

B Software and implementation

The simulation experiment of Section 6 is performed on the scientific computing center
sciCORE at the University of Basel (https://scicore.unibas.ch/) with R version 4.3.0 (R
Core Team, 2023), while the empirical illustration of Section 7 is computed on a local machine
running R version 4.3.1. Models estimated by WALS are fitted using the newly developed
R package WALS version 0.2.4 (Huynh, 2023) available from the Comprehensive R Archive
Network (CRAN, https://cran.r-project.org/package=WALS). WALS is based on the
MATLAB code version 2.0 for WALS in the linear regression model by Magnus and De Luca
(2016) which can be downloaded from https://www.janmagnus.nl/items/WALS.pdf. The
dependencies of WALS along with the particular versions used are: Formula version 1.2-5
(Zeileis and Croissant, 2010), MASS version 7.3-60 (Venables and Ripley, 2002) and Rdpack
version 2.5 (Boshnakov, 2023). Standard NB2 regressions use glm.nb() from MASS. The
function uses an algorithm that alternates between fitting the coefficients β of the NB2
regression for fixed dispersion parameter ρ using IRLS (iteratively reweighted least squares)
and then maximizing the log-likelihood with respect to ρ given β. Moreover, training and
validation splits for K-fold CV in Section 7 are generated using the function cv() of mboost
version 2.9-8 (Hofner et al., 2014) and the computations are parallelized over the number
of training observations tl using parallel. The lasso estimation of ‘lasso-int’ in Section 7 is
performed using cv.glmregNB() from mpath version 0.4-2.23 (Wang, 2023).

Finally, the integral in (4.4) is evaluated numerically for all priors except for the Laplace
prior. Numerical integration is performed using the integrate() function of stats, which
uses an adaptive quadrature method with the basic step being a Gauss-Kronrod quadrature
(for more details see the code documentation).

Computational details

The lasso estimator of the NB2 regression model maximizes the following penalized objective
function from Wang et al. (2016, p. 2687 f.):

max
β,ρ

L(β, ρ) = max
β,ρ

ℓ(β, ρ)− n · d
p∑

j=1

|βj |

 ,

where β = (β0, β1, . . . , βp)
⊤, β0 is the constant and d ≥ 0 is the regularization parameter.

Moreover, ℓ(β, ρ) is the log-likelihood from (3.1) and the penalty term is scaled by the
sample size n such that the penalty does not vanish when the number of observations
becomes large. Notice that neither the constant β0 nor the dispersion parameter ρ are
regularized, but only the ‘true’ regression coefficients βj , j > 0, are regularized.
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The optimal regularization parameter d for ‘lasso-int’ in Section 7 is determined by
maximizing the 10-fold CV log-likelihood, where candidates {d1, d2, . . . , dH} are generated
by first running the method on the entire training set (ignoring the folds) and setting
dH such that an intercept only model is estimated. Then, the minimum value is set as
d1 = a · dH , 0 < a < 1. The remaining values are determined by an evenly spaced grid on
the log scale, i.e. between log(d1) and log(dH).

The implementation alternates between P iterations of 1. the coordinate descent algo-
rithm described in Wang et al. (2016, p. 2690 f.) to estimate the regression coefficients
β given a value of the dispersion parameter ρ and 2. maximizing the log-likelihood with
respect to ρ given the estimate of β. The latter uses theta.ml() from MASS (Venables and
Ripley, 2002) but limits its number of iterations to 10. The alternation process is stopped
when certain convergence criteria are met. For the estimation of ‘lasso-int’ in Section 7,
the maximum allowed number of iterations (until convergence) for the coordinate descent
algorithm is increased to 2500 from the default setting of 1000. Furthermore, I also increase
the maximum number of alternations between coordinate descent and ML estimation of
the dispersion parameter ρ from 10 to 1000. The remaining settings are left at their default
values, see the documentation of mpath (Wang, 2023) for more details.

A caveat for the results of ‘lasso-int’ on the DoctorVisits dataset is that the ML
estimation of ρ often reaches its internal iteration limit within the alternation process
between coordinate descent, for estimating the regression coefficients, and ML estimation
of ρ using theta.ml() from MASS. Ideally, I could increase the number of iterations used
in theta.ml(), however, the implementation of lasso in mpath uses a fixed number of 10
iterations. I compensate for this by allowing the alternation process to run a maximum of
1000 iterations (instead of the default 10) until convergence before it is forced to terminate.
The idea is that, even if theta.ml() does not converge in an iteration of the alternation
process, the alternation process can go through many iterations, where theta.ml() is run
in each round.

Tables are generated using xtable version 1.8-4 (Dahl et al., 2019) and stargazer version
5.2.3 (Hlavac, 2022), and some plots use ggplot2 version 3.4.4 (Wickham, 2016) with themes
from ggthemes version 4.2.4 (Arnold, 2021). LATEX expressions are inserted with latex2exp
version 0.9.6 (Meschiari, 2022). Finally, results are partly processed with abind version
1.4-5 (Plate and Heiberger, 2016) before plotting.

C Additional tables for the simulation experiment

Table C.1: Values of β̄1

1 2 3 4 5 6 7 8 9 10

-0.1518 -0.197 0.1401 0.1328 -0.155 0.1775 0.1403 0.1272 0.1778 -0.1602
– All figures rounded to four decimal places.
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D Additional tables for the empirical illustration

Table D.1: Variable descriptions for DoctorVisits

Variable Description

visits # of doctor visits in past two weeks.
genderfemale = 1 if individual is female.

Omitted reference category: male.
age Age in years divided by 100.
income Annual income in tens of thousands of dollars.
illness # of illnesses in past two weeks.
reduced # of days of reduced activity in past two weeks due to illness or

injury.
health General health questionnaire score using Goldberg’s method.
privateyes = 1 if individual has private health insurance

Omitted reference category: individual has no private health in-
surance.

freepooryes = 1 if individual has free government health insurance due to low
income.

freerepatyes = 1 if individual has free government health insurance due to old
age, disability or veteran status.
Omitted reference category: individual has no free government
health insurance.

nchronicyes = 1 if individual has a chronic condition which does not limit
activity.

lchronicyes = 1 if individual has a chronic condition which limits activity.
Omitted reference category: individual has no chronic condition.

– Reproduced based on the documentation of DoctorVisits in AER (Kleiber and Zeileis,
2008).
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Table D.2: Summary statistics for DoctorVisits

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

visits 0.302 0.798 0 0 0 0 9
health 1.218 2.124 0 0 0 2 12
genderfemale 0.521 0.500 0 0 1 1 1
age 0.406 0.205 0.190 0.220 0.320 0.620 0.720
income 0.583 0.369 0 0.250 0.550 0.900 1.500
illness 1.432 1.384 0 0 1 2 5
reduced 0.862 2.888 0 0 0 0 14
privateyes 0.443 0.497 0 0 0 1 1
freepooryes 0.043 0.202 0 0 0 0 1
freerepatyes 0.210 0.407 0 0 0 0 1
nchronicyes 0.403 0.491 0 0 0 1 1
lchronicyes 0.117 0.321 0 0 0 0 1
age2 0.207 0.186 0.036 0.048 0.102 0.384 0.518
health×genderfemale 0.695 1.752 0 0 0 0 12
health×age 0.503 1.013 0 0 0 0.570 8.640
health×income 0.643 1.378 0 0 0 0.750 16.500
genderfemale×illness 0.839 1.312 0 0 0 1 5

– St. Dev. : Standard deviation, Pctl(25): 25% quantile, Pctl(75): 75% quantile.
– × indicates interaction between two variables.
– Number of observations N = 5190.
– All figures rounded to three decimal places.
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Supplementary materials

S1 Asymptotic distribution of one-step ML estimators

Following De Luca et al. (2018, p. 4), I use the local misspecification framework with true
auxiliary parameters set to

β2 =
δ√
n
, (S1.1)

so the true parameter vector φ = (β⊤1 , β
⊤
2 , α)

⊤ converges to φ0 = (β1, 0, α) for n → ∞.
Note that the asymptotics in this paper all refer to the case of n→ ∞.

I start the derivation by noting the asymptotic distribution of the fully iterated ML
estimator of the unrestricted model β̌1u, β̌2u and α̌u. Under the usual ML regularity
conditions (see e.g. Crowder, 1976), it holds

√
n

β̌1u − β1

β̌2u − β2

α̌u − α

 d−→ N (0,Ω), Ω =

Ω11 Ω12 Ω1α

Ω21 Ω22 Ω2α

Ωα1 Ωα2 Ωαα

 :=

I11 I12 I1α
I21 I22 I2α
Iα1 Iα2 Iαα


−1

= I−1,

where I := I(φ0) is the information matrix evaluated at φ0. For the remainder, I will
restrict the analysis to the one-step ML estimators for the regression coefficients. The
asymptotic distribution including the dispersion coefficient can be derived analogously.

Let φ̄ = (β̄⊤1 , β̄
⊤
2 , ᾱ)

⊤ collect the starting values and assume φ̄− φ = Op(1/
√
n), then

the unrestricted one-step ML estimator has the same asymptotic distribution as the fully
iterated ML estimator (see e.g. Theorem 3.5 in Newey and McFadden, 1994), i.e.

√
n

(
β̃1u − β1

β̃2u − β2

)
d−→ N (0,ΩS), ΩS =

(
Ω11 Ω12

Ω21 Ω22

)
. (S1.2)

Using Ipα = 0 = I⊤
αp, p = 1, 2 (Lawless, 1987, p. 211), the elements of ΩS can be expressed

as
Ω11 = I−1

11 + I−1
11 I12(I22 − I21I−1

11 I12)−1I21I−1
11 ,

Ω12 = −I−1
11 I12(I22 − I21I−1

11 I12)−1 = Ω⊤
21,

Ω22 = (I22 − I21I−1
11 I12)−1.

(S1.3)

If the DGP is included in the set of models considered for averaging, using the fully iterated
ML estimator of the unrestricted model as starting values ensures, under the usual ML
regularity conditions, that φ̄− φ = Op(1/

√
n) (De Luca et al., 2018, p. 4).

The following proposition utilizes the aforementioned ingredients and provides the
asymptotic distribution of the one-step ML estimators for the jth model:
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Proposition S1.1 (Asymptotic distribution of one-step ML estimators). In addition to
(S1.1), assume that the usual ML regularity conditions hold (see e.g. Crowder, 1976). If
φ̄− φ = Op(1/

√
n), then as n→ ∞,

√
n

(
β̃1j − β1

β̃2j − β2

)
d−→ N

((
QPjΩ

−1/2
22 δ

−Ω
1/2
22 PjΩ

−1/2
22 δ

)
,

(
I−1
11 +QWjQ⊤ −QWjΩ

1/2
22

−Ω
1/2
22 WjQ⊤ Ω

1/2
22 WjΩ

1/2
22

))
,

where Ipq denotes the pqth submatrix of I(φ0). Further, Ω22 = (I22 − I21I−1
11 I12)−1,

Q = I−1
11 I12Ω1/2

22 , Pj = Ω
1/2
22 Rj(R

⊤
j Ω22Rj)

−1R⊤
j Ω

1/2
22 and Wj = Ik2 − Pj.

Proof of Proposition S1.1. Let me first consider the asymptotic distribution of ϑ̃. Equa-
tion (3.7) implies

√
n(ϑ̃− ϑ) =

(
X̄⊤

2 M̄1X̄2

n

)1/2√
n(β̃2u − β2) +

[(
X̄⊤

2 M̄1X̄2

n

)1/2

− Ω
−1/2
22

]
δ,

where ϑ := Ω
−1/2
22 β2. Next, I analyze the probability limit of X̄⊤

2 M̄1X̄2/n. As n→ ∞

plim
X̄⊤

2 M̄1X̄2

n
= plim

(
H̄22

n
− 1

n

H̄2αH̄α2

H̄αα

−

{(
H̄21

n
− 1

n

H̄2αH̄α1

H̄αα

)(
H̄11

n
− 1

n

H̄1αH̄α1

H̄αα

)−1

·
(
H̄12

n
− 1

n

H̄1αH̄α2

H̄αα

)})

= I22 −
I2αIα2
Iαα

−
(
I21 −

I2αIα1
Iαα

)(
I11 −

I1αIα1
Iαα

)−1(
I12 −

I1αIα2
Iαα

)
.

Lawless (1987, p. 211) derived in equation (2.7b), that Ipα = 0, p = 1, 2. Combined with
(S1.3) this yields

plim
X̄⊤

2 M̄1X̄2

n
= Ω−1

22 . (S1.4)

Thus, using (S1.2) I get
√
n(ϑ̃− ϑ)

d−→ N (0, Ik2). (S1.5)

Now, I show the asymptotic distribution for all restricted estimators. First, I need the
asymptotic distribution of the fully restricted estimator. From (A.15) I deduce

√
n(β̃1r − β1) =

√
n(β̃1u − β1) + Q̄

√
n(ϑ̃− ϑ) + Q̄Ω

−1/2
22 δ.

Since
plim Q̄ = I−1

11 I12Ω1/2
22 =: Q,

which is the same as in Proposition 2 of De Luca et al. (2018, p. 4) for WALS GLM because
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α is asympotically independent of β1 and β2 in the NB2 model, it follows that

√
n(β̃1r − β1)

d−→ N (I−1
11 I12δ, I−1

11 ). (S1.6)

This is equivalent to the asymptotic distribution of the fully restricted one-step ML estimator
of the WALS GLM model in equation (A.4) of De Luca et al. (2018, p. 14). Furthermore,
β̃1r and ϑ̃ are also asymptotically independent as their joint asymptotic distribution is a
multivariate normal with covariance Ω12Ω

−1/2
22 + I−1

11 I12Ω1/2
22

(S1.3)
= 0.

Finally, I have all ingredients to derive the asymptotic distribution of the general
one-step ML estimator. Proposition 3.1 implies

√
n(β̃1j − β1) = Q̄P̄jΩ

−1/2
22 δ + (

√
n(β̃1r − β1)− Q̄Ω

−1/2
22 δ)− Q̄W̄j

√
n(ϑ̃− ϑ),

and

√
n(β̃2j − β2) =

[(
X̄⊤

2 M̄1X̄2

n

)−1/2

W̄jΩ
−1/2
22 − Ik2

]
δ +

(
X̄⊤

2 M̄1X̄2

n

)−1/2

W̄j

√
n(ϑ̃− ϑ).

Together with (S1.5) and (S1.6), the fact that β̃1r and ϑ̃ are asymptotically independent,
and the probability limits

plim P̄j = Ω
1/2
22 Rj(R

⊤
j Ω22Rj)

−1R⊤
j Ω

1/2
22 =: Pj ,

plim W̄j = Ik2 − Pj =: Wj ,

they imply the joint asymptotic distribution of β̃1j and β̃2j from the proposition.

S2 Asymptotic distribution of one-step ML estimators in transformed
models

In order to establish the asymptotic distribution of the one-step ML estimators in the
transformed models, it is necessary to determine the probability limits of the matrices
involved in the transformation from X to Z. Firstly, ∆̄1 converges in probability to a
constant matrix ∆1, i.e.

plim ∆̄1 =: ∆1,

because plim X̄⊤
1 X̄1/n = I11 is constant and ∆̄1 = diag

(
X̄⊤

1 X̄1/n
)−1/2. By the same line

of reasoning,
plim ∆̄2 =: ∆2,

which is constant because ∆̄2 = diag
(
X̄⊤

2 M̄1X̄2/n
)−1/2 and plim = X̄⊤

2 M̄1X̄2/n
(S1.4)
= Ω−1

22

is constant. Thus, the probability limit of Ξ̄ follows as

plim Ξ̄ = plim
∆̄2X̄

⊤
2 M̄1X̄2∆̄2

n

(S1.4)
= ∆2Ω

−1
22 ∆2 =: Ξ.

Similar to De Luca et al. (2018, p. 5), let γ10 = ∆−1β1 and γ2n = Ξ1/2∆−1
2 β2, then
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Proposition S1.1 implies

√
n

(
γ̃1j − γ10

γ̃2j − γ2n

)
d−→ N

((
DPjd

−Pjd

)
,

(
J −1
11 +DWjD⊤ −DWj

−WjD⊤ Wj

))
, (S2.1)

where d = Ξ1/2∆−1
2 δ, D = plim D̄ = J −1

11 J12, J11 = plim Z̄⊤
1 Z̄1/n = ∆1I11∆1 and

J12 = plim Z̄⊤
1 Z̄2/n = ∆1I12∆2Ξ

−1/2. Therefore, I can approximate the distribution of
√
nγ̃2u in large samples with

√
nγ̃2u ≈ N (

√
nγ2n, Ik2) = N (d, Ik2).

S3 Additional results for the simulation experiment

S3.1 Results for alternative scoring rules
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Figure S3.1: Mean validation Brier score and quartiles varying n and k2
The remaining parameters are fixed at k1 = 1, ρ = 1 and b = 0. Each point represents the mean over all
successful runs of the experiment, i.e. over R = 300 when it never fails to converge. The shaded areas show
the interquartile range. The number below a point indicates how often the method failed to converge in
this particular setting.
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Figure S3.2: Mean validation Brier score and quartiles varying n and k1
The remaining parameters are fixed at k2 = 1, ρ = 1 and b = 0. Each point represents the mean over all
successful runs of the experiment, i.e. over R = 300 when it never fails to converge. The shaded areas show
the interquartile range.
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Figure S3.3: Mean validation Brier score and quartiles varying n and ρ
The remaining parameters are fixed at b = 0 and k1 = k2 = 5. Each point represents the mean over all
successful runs of the experiment, i.e. over R = 300 when it never fails to converge. The shaded areas show
the interquartile range.
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Figure S3.4: Mean validation Brier score and quartiles varying n and b
The remaining parameters are fixed at ρ = 1 and k1 = k2 = 5. Each point represents the mean over all
successful runs of the experiment, i.e. over R = 300 when it never fails to converge. The shaded areas show
the interquartile range.
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Figure S3.5: Mean validation spherical score and quartiles varying n and k2
The remaining parameters are fixed at k1 = 1, ρ = 1 and b = 0. Each point represents the mean over all
successful runs of the experiment, i.e. over R = 300 when it never fails to converge. The shaded areas show
the interquartile range. The number below a point indicates how often the method failed to converge in
this particular setting.

47



SUPPLEMENTARY MATERIALS

k1 = 1 k1 = 5 k1 = 10

1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000

−0.384

−0.380

−0.376

−0.372

n

sp
he

ric
al

walsNB−dgp

walsNB−aux

ML−focus

ML−AC

ML−U

oracle

k2 = 1, ρ = 1, b = 0

Figure S3.6: Mean validation spherical score and quartiles varying n and k1
The remaining parameters are fixed at k2 = 1, ρ = 1 and b = 0. Each point represents the mean over all
successful runs of the experiment, i.e. over R = 300 when it never fails to converge. The shaded areas show
the interquartile range.
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Figure S3.7: Mean validation spherical score and quartiles varying n and ρ
The remaining parameters are fixed at b = 0 and k1 = k2 = 5. Each point represents the mean over all
successful runs of the experiment, i.e. over R = 300 when it never fails to converge. The shaded areas show
the interquartile range.
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the interquartile range.
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S4 Additional results for the empirical illustration

S4.1 Results for alternative scoring rules
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Figure S4.2: 10-fold CV spherical score varying tl, DoctorVisits
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