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Abstract

Tracking and identifying athletes on the pitch holds a
central role in collecting essential insights from the game,
such as estimating the total distance covered by players or
understanding team tactics. This tracking and identifica-
tion process is crucial for reconstructing the game state,
defined by the athletes’ positions and identities on a 2D
top-view of the pitch, (i.e. a minimap). However, recon-
structing the game state from videos captured by a single
camera is challenging. It requires understanding the posi-
tion of the athletes and the viewpoint of the camera to lo-
calize and identify players within the field. In this work,
we formalize the task of Game State Reconstruction and in-
troduce SoccerNet-GSR, a novel Game State Reconstruc-
tion dataset focusing on football videos. SoccerNet-GSR
is composed of 200 video sequences of 30 seconds, anno-
tated with 9.37 million line points for pitch localization and
camera calibration, as well as over 2.36 million athlete po-
sitions on the pitch with their respective role, team, and jer-
sey number. Furthermore, we introduce GS-HOTA, a novel
metric to evaluate game state reconstruction methods. Fi-
nally, we propose and release an end-to-end baseline for
game state reconstruction, bootstrapping the research on
this task. Our experiments show that GSR is a challenging
novel task, which opens the field for future research. Our
dataset and codebase are publicly available at https:
//github.com/SoccerNet/sn-gamestate.

1. Introduction
Recently, sports companies and teams have shown a grow-
ing interest in collecting athlete-centric data. One key fo-
cus area lies in tracking and identifying athletes on the
sports field throughout the entire game, using available
video footage. These analytics hold immense value for a

(*) Equal contributions. Data/code available at www.soccer-net.org.
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Figure 1. SoccerNet-GSR. We introduce a novel Game State Re-
construction task, dataset, evaluation metric and baseline. Our
SoccerNet-GSR dataset contains unique identifications for players
along with their localization on the pitch, for 200 video sequences.

broad spectrum of sports applications, ranging from (i) sup-
porting team coaching and athlete training, (ii) assisting
scouters in discovering new talents, (iii) offering valuable
insights for medical staff, and (iv) boosting fan engagement
through personalized content creation [12, 13, 28].

However, the manual generation of such data by human
annotators is time-consuming and costly. Sensor-based so-
lutions offer a time-efficient alternative, but require athletes
to wear special, sometimes expensive, equipment. Recently,
automatic solutions based on optical tracking systems have
gained prominence. These systems necessitate the instal-
lation of sophisticated, well-calibrated static multi-camera
setups in stadiums. Hence, they come with significant draw-
backs in terms of cost and scalability, which restricts their
use to elite competitions, exemplified by their deployment
at events like the 2022 Qatar World Cup.

Meanwhile, recent progress in computer vision opened
up a growing potential to automatically and reliably ex-
tract athlete localization and identification data solely from
broadcast camera feeds. In line with this objective, Multi-
Object Tracking (MOT) methods have long been popular
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for sports video analysis. However, they offer only a par-
tial solution to the aforementioned requirements. Indeed,
the bounding-box-based tracking data produced by MOT
(1) lacks critical identification information necessary to an-
alyze specific athletes and (2) lacks interpretability due to
the absence of grounding in a real-world coordinate system.
These significant limitations hinder the usability of such
tracking data for many downstream sports applications.

To address the above limitations, we introduce the con-
cept of Game State Reconstruction (GSR), a novel com-
puter vision task tailored for sports analytics. GSR aims
to recognize the state of a sports game by identifying and
tracking all athletes on the pitch based on input videos cap-
tured by a single camera. Moreover, game state data can be
visualized in a minimap of the game, as depicted in Fig. 1,
offering a concise representation of the ongoing gameplay
dynamics. To support research on this task, we publicly
release SoccerNet-GSR, the first dataset for Game State Re-
construction, consisting of 200 30-second fully annotated
clips. Our proposed GSR annotations include over 9.37
million line points for football pitch registration, and over
2.36 million athlete positions on the pitch with unique iden-
tification information, including their role, team, and jer-
sey number. Since existing metrics for Multi-Object Track-
ing [5, 57] are not suited for our proposed task, we introduce
the GS-HOTA, a new evaluation metric to benchmark GSR
methods. Finally, we propose GSR-Baseline, the first end-
to-end and open-source pipeline for game state reconstruc-
tion, built upon state-of-the-art tracking, re-identification,
team affiliation, jersey number recognition, pitch localiza-
tion, and camera calibration methods. Our analysis under-
scores the complexity of Game State Reconstruction and
highlights the importance of introducing this new bench-
mark. This initiative establishes an ideal platform for future
research in the field, aiming to democratize access to this
valuable game state data for all leagues.

Contributions. We summarize our contributions as fol-
lows. (i) We introduce and concretely define the concept
of Game State Reconstruction, a task aiming to track and
identify all athletes on a minimap of the pitch. (ii) We pub-
licly release SoccerNet-GSR, the first open-source sports
video dataset for Game State Reconstruction. (iii) We in-
troduce GS-HOTA, a new metric to evaluate game state re-
construction methods. (iv) We propose GSR-Baseline, the
first end-to-end GSR pipeline for football videos.

2. Related Work

Game State Reconstruction relates to the general topic of
sports video understanding and, more particularly, to track-
ing, identification, and sports field registration.

Sports Video Understanding. Sports video understand-
ing has emerged as a prominent research topic over the

past decade [37, 64, 66, 86]. Some works focused on low-
level semantics, aiming to build a bottom-up understand-
ing of the game [15], such as segmenting [16] or detect-
ing [69, 73, 77, 88] players and keypoints [31, 56]. Recent
advances in computer vision allowed for a higher seman-
tic understanding of the game, focusing for instance on the
action spotting task, aiming to spot a series of events dur-
ing the game [10, 17, 33, 35, 38, 51, 59, 80, 91, 100, 101].
Fortunately, these works can rely on the availability of
large-scale datasets [20, 21, 24, 36, 43, 63, 68, 76, 95]
and challenges [22, 34, 42, 47, 62, 87]. Our novel Game
State Reconstruction task stands in between low- and high-
level semantics, providing both local information about the
players but also global information about the whole state
of the game through time. This information can later be
used to better understand player actions [9, 19], enhance
the generation of engaging captions [11, 63], improve vi-
sualizations [8, 29, 74, 102], or derive high-level analyt-
ics [1, 3, 23, 50, 67, 70]. In this work, we complement
the literature in sports video understanding by proposing
a novel task of Game State Reconstruction that aggregates
several tasks ranging from field to player understanding.

Player Tracking and (Re-)Identification. Multiple Ob-
ject Tracking (MOT) has often been approached through the
tracking-by-detection paradigm [4, 6, 7, 83, 85, 90, 98, 99].
However, applying the tracking-by-detection paradigm to
sports introduces unique challenges compared to generic
scenarios. Previous works [18, 21, 39, 72, 79, 88, 93]
tackled the challenges of similar appearances and fast mo-
tion of people and object in sports. Furthermore, un-
like generic MOT scenarios, athletes come in and out
of the camera view, requiring long-term Re-Identification
(ReID) [32, 48, 61, 96, 97]. Finally, uniquely identifying
actors in a sports scene has been widely investigated in the
literature. Some approaches focused on athletes’ role (e.g.,
player, referee, coach, etc.) [20, 61, 88], their team [41, 61],
or jersey numbers [2, 30, 54, 55, 65, 89, 94]. Different
from previous works, our new game state reconstruction
task combines athlete tracking and identification, including
the role, team, and jersey number under a single task.

Sports Field Registration. Mapping the video tracking
data into a real-world coordinate system requires camera
calibration. Sports games come naturally with a coordi-
nate system based on the sports pitch. Hence, combining
the location of the field [75, 93] with video camera cali-
bration [27, 71, 78, 84], one can reconstruct a game state
as illustrated in Fig. 1. Unifying tracking and camera cal-
ibration as proposed in this paper has been investigated in
previous works.[19, 46, 76, 82] Scott et al. [76] collected
data from fish-eye camera, drone, and GNSS, while Karun-
garu et al. [46] focused on the mapping of players onto
the field in one video frame. Cioppa et al. [19] leveraged
tracking and camera calibration to reproject players’ posi-



tions on the pitch for the task of action spotting. Maglo et
al. [60] introduced a robust player tracking method, incor-
porating test-time fine-tuning and a novel football field reg-
istration technique, which were combined to explore player
localization on a minimap. However, due to the lack of an-
notations, they did not perform either player identification
or quantitative evaluations of their localization results. Fi-
nally, Theiner et al. [85] introduced a pipeline to localize
players on a pitch minimap from broadcast videos but omit-
ted player identification and tracking. Different from pre-
vious work, our proposed GSR benchmark addresses the
combined athlete pitch localization and identification task.

3. Game State Reconstruction Task

Game State Reconstruction (GSR) is a form of video com-
pression task aiming to extract high-level information about
the dynamics of a sports game from an input video. It in-
cludes (1) the 2D position of all athletes on the sports pitch,
(2) their roles in the game (e.g., “player”, “goalkeeper”,
or “referee”), and (3), for players, their jersey number and
team affiliation. This information can be visualized on a 2D
top-view of the pitch, or minimap, as illustrated in Fig. 1. In
the following, we refer to all individuals to be identified and
localized, irrespective of their specific roles, as “athletes”.
GSR is a multifaceted task that requires addressing vari-
ous intricate sub-tasks, including: (a) pitch localization and
camera calibration, (b) athlete detection, re-identification,
and tracking, and (c) role classification, team affiliation, and
jersey number recognition.

We formalize the Game State Reconstruction task as fol-
lows. Given a team sports video composed of T frames, the
objective is to predict a set of detections dti for each frame t,
where i indexes the detections within frame t. A detection
encapsulates each athlete’s location on the pitch (pitch x,
pitch y) in a real-world coordinate system, and their role,
team, and jersey number. A detection is therefore repre-
sented as follows:

dti = {pitch x, pitch y︸ ︷︷ ︸
localization

, role, team, jersey number︸ ︷︷ ︸
identification

}. (1)

While our main focus is football, the definition of the
GSR task can extend to other team sports.

4. SoccerNet-GSR Dataset

Our dataset expands upon SoccerNet-Tracking [21], which
consists of 200 30-second clips split into train, validation,
test, and a segregated challenge set. In the original dataset,
each frame includes bounding box annotations for the local-
ization of players, referees, and balls tracked over time with
extra role, team, and jersey number attributes. Despite the

comprehensive annotations, SoccerNet-Tracking lacks in-
formation like pitch localization, camera calibration1, and
athlete positions on the pitch, critical for the Game State
Reconstruction task. In subsequent sections, we detail how
we augmented the SoccerNet-Tracking annotations to cre-
ate our proposed SoccerNet-GSR dataset. The new annota-
tions now include over 9.37 million line points for pitch lo-
calization and camera calibration, as well as over 2.36 mil-
lion athlete positions on the pitch with their respective role,
team, and jersey number. Since the SoccerNet-GSR videos
are uncut broadcast sequences captured by a single moving
camera, only a portion of the football pitch is visible at any
given time. As a result, the GSR task is limited to players
within the camera’s field of view.

4.1. Athlete Localization on the Pitch

Expressing the 2D image location of athletes in the real-
world pitch coordinates requires pitch localization and cam-
era calibration. Together, these information enable precise
mapping of player positions from the image onto the pitch.
Our new annotations described in this section therefore in-
clude: (1) pitch 2D positions, (2) camera parameters, and
(3) positions on the pitch.
Pitch localization. Following the same procedure as
SoccerNet-v3 [20], we manually annotate every line on the
football pitch by placing a series of points along its length
to accurately define its shape, including curves such as the
circles or the ones due to camera distortions. We categorize
each line (e.g., side line left, side line top, etc.) and part of
the goals, (left and right posts and the crossbar), totaling 26
classes. Next, we continuously track all these annotations
over time using key frame annotations and interpolations in-
between when it is appropriate, mirroring the player track-
ing data as described in [21], resulting in a densely marked
pitch annotation throughout the entire video. This annota-
tion process is core for calibrating the camera through time.
Camera calibration. Camera calibration is the process of
determining the camera parameters for each frame, allow-
ing to link the image-plane to the 3D world. It is required to
compensate for the lack of a pre-calibrated camera. Usually,
this process requires correspondences between a known 3D
object and its image. In the context of football, the pitch
is a convenient object [40] to obtain correspondences from.
In this work, we assume that the pitch has a conventional
size of 105 by 68 meters. However, as the pitch is only
partially visible in the images, the calibration of broadcast
cameras is a challenging task. Hence, due to the lack of vis-
ible lines, some frames may not be calibrated correctly and
are discarded in the evaluation. For the frames presenting a
sufficient amount of pitch line annotations, the camera pa-

1A camera calibration and pitch localization dataset was already in-
troduced for the SoccerNet Camera Calibration challenge, but the corre-
sponding annotations were provided on a separate set of data.



rameters are obtained from the best of several open-source
techniques [14, 58] or an industrial tool [26]. The complete
process is described in the supplementary materials.

Position on the pitch. The point of calibrating the cam-
eras is to derive positions in the real-world. Our 3D world
reference axis system is centered on the pitch center mark,
the X-axis points to the right goal, the Y-axis follows the
middle line towards the camera and the Z-axis is perpen-
dicular to the XY – or the pitch – plane, pointing towards
earth’s center. Once the camera parameters are known, the
inverse of the camera projection function applied to a point
gives a 3D ray that can be intersected with the pitch plane
to derive the 3D position. We assume that the athlete’s feet,
and more specifically the center of the bottom part of their
detection bounding boxes lies on the pitch. Unfortunately,
this approximation limits the precision of the estimated lo-
cations in the case of jumps. Hence, we remove the ball as it
spends significant time in the air. A precise 3D localization
of all elements would require tracking hardware, which is
unavailable for open-science research at the moment.

4.2. Athlete Identification

To identify athletes during a game, we leverage three
distinct manual annotations provided in the SoccerNet-
tracking dataset that have been previously overlooked in
standard multi-object tracking: role, team, and jersey num-
ber. The following paragraphs detail each annotation and
the utilization of an additional track id for cases where tar-
gets cannot be uniquely identified by their attributes.

Role. In the SoccerNet-GSR dataset, athletes are catego-
rized into four distinct roles during the game: ’player’,
’goalkeeper’, ’referee’, or ’other’. The ’other’ role encom-
passes individuals entering the pitch, such as coaches, medi-
cal staff, and any additional person not falling into the previ-
ous three categories. For the first version of the SoccerNet-
GSR benchmark, both referee responsibilities (i.e. main,
bottom/top assistants) and ball detections are ignored.

Team. Detections with the ’player’ and ’goalkeeper’ roles
are annotated with a ’team’ attribute, which can be assigned
one of two values: ’left’ or ’right’. Since the dataset consists
of 30-second sequences captured from a single camera, we
determine the ’left’ and ’right’ teams based on their goal’s
position relative to the camera viewpoint.

Jersey Number. Players and goalkeepers in the SoccerNet-
GSR dataset are annotated with an additional ’jersey num-
ber’ attribute. However, unlike the role and team attributes,
which are always available, a jersey number may not be
visible at any point during the entire 30-second video se-
quence. In such cases, players with invisible shirt numbers
are assigned a ’null’ value for this attribute. If a player’s jer-
sey number is visible in at least one frame of the sequence,
then the entire tracklet is annotated with that jersey number.

Therefore, a jersey number assigned to a detection does not
necessarily mean that it is visible in that particular frame.
Track Id. We utilize the combination of role, team, and jer-
sey number attributes to identify each athlete during a game.
However, athletes cannot always be uniquely identified by
their attributes. This occurs, for example, when two play-
ers from the same team do not have visible jersey numbers
or when multiple individuals with the role of ’referee’ or
’other’ appear simultaneously. Although these cases repre-
sent a small proportion of all annotated athletes, they pre-
vent unique identification using attributes alone. To address
this, we also include the standard ’track id’ annotation from
standard MOT. This requires methods for the SoccerNet-
GSR task to output four values per detection: role, team,
jersey number, and track id. The impact of non-uniquely
identifiable targets is further discussed in Sec. 5.

5. GS-HOTA Evaluation Metric
Game State Reconstruction (GSR) is a novel com-
puter vision task closely related to multi-object tracking
(MOT). Yet, standard evaluation metrics for MOT, such as
MOTA [5] and HOTA [57], cannot be used to evaluate GSR
for two main reasons. First, these metrics do not account for
additional attributes predicted on the tracked targets, such
as team, role, and jersey numbers. Second, these metrics
rely on an IoU score to match predicted and ground truth
bounding boxes in the image space, while GSR operates on
2D points within the pitch coordinate system.

To address these issues, we introduce GS-HOTA, a novel
evaluation metric to measure the ability of a GSR method to
correctly track and identify all athletes on the sports pitch.
GS-HOTA is derived from the HOTA [57] metric, which is
formulated as follows:

HOTA =

∫
0<α≤1

√
DetAα · AssAα (2)

DetA/AssA are the detection/association accuracy re-
spectively, and α is a similarity threshold. To compute
these two underlying accuracy metrics, ground truth and
predicted detections must first be matched according to a
similarity score. Pairs with a similarity score below the α
threshold are not matched. For predictions (P) and ground
truth (G) represented as bounding boxes in the image space,
the Intersection-over-Union (IoU) is employed as the simi-
larity score for the HOTA metric. The key distinction set-
ting GS-HOTA apart from HOTA is the use of a new simi-
larity score, that accounts for the specificities of the GSR
task, i.e. the additional target attributes (jersey number,
role, team) and the detections provided as 2D points in-
stead of bounding boxes. This new similarity score, denoted
SimGS−HOTA(P,G), is formulated as follows:

SimGS-HOTA(P,G) = LocSim(P,G)× IdSim(P,G), (3)
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Figure 2. The localization similarity function for τ = 5 meters.

with LocSim(P,G) = eln(0.05)
∥P−G∥22

τ2 , (4)

and IdSim(P,G) =

{
1 if all attributes match,
0 otherwise.

(5)

SimGS-HOTA, is therefore a combination of two simi-
larity metrics. The first metric, the localization similarity
LocSim(P,G), computes the Euclidean distance ∥P −G∥2
between prediction P and ground truth G in the pitch co-
ordinate system. This distance is subsequently processed
using a Gaussian kernel with a special distance tolerance
parameter τ , resulting in a final score falling within the
[0, 1] range. The second metric, the identification similar-
ity IdSim(P,G), is set to one only if all attributes match,
i.e. role, team, and jersey numbers. Attributes not provided
in G are ignored, e.g. jersey numbers for referees2. Finally,
once P and G are matched, DetA and AssA are computed
and integrated into a final GS-HOTA score, following the
original formulation of the HOTA metric in Eq. (2).

5.1. GS-HOTA Distance Tolerance Parameter

Our GS-HOTA metric relies on a single τ parameter intro-
duced in Eq. (4). In practice, the continuous integral in
Eq. (1) is computed over a discrete interval α ∈ [0.05, 0.95]
with 0.05 steps. This means that (P, G) pairs with a simi-
larity below or equal to 0.05 are never matched. Hence, our
distance tolerance parameter τ defines the maximum dis-
tance in meters for a prediction P and a ground truth G to be
matched, as illustrated in Fig. 2. Furthermore, since all sim-
ilarity thresholds in the range [0.05, 0.95] are considered, a
distance smaller than τ meters between P and G still results
in a higher GS-HOTA. This way, methods are still incen-
tivized to produce athlete localization closer to the ground
truth. In this work, we define τ as 5 meters, considering
it a reasonable distance tolerance given the average dimen-
sions of a soccer pitch (68×105 meters) and the substantial
distance between the camera and the athletes.

2GSR methods must ignore the team and jersey number for non-player
roles, as well as the jersey number when it is not visible in the video.

5.2. Motivation and Discussion

As introduced in Sec. 4.2, we consider the combination of
attributes (role, team, jersey) as a way to identify athletes.
If each person was uniquely identifiable by the combination
of its attributes, association would become trivial, and as a
consequence, a simple average of the Detection Accuracy
across all identities would suffice as a robust performance
metric. However, as explained in Sec. 4.2, not all identi-
ties in our SoccerNet GSR dataset can be uniquely identi-
fied by their attributes. Therefore, the Association Accu-
racy must also be taken into account to account for identity
switches among athletes sharing the same attributes (e.g.
players from the same team with no visible jersey number).

Finally, a key difference that sets GSR apart from MOT
— and by extension, GS-HOTA from HOTA — is the ne-
cessity to identify athletes by their attributes. This require-
ment is specified by Eq. (5), according to which failing to
correctly predict at least one attribute turns the correspond-
ing detection into a False Positive. Requiring the correct
prediction of all attributes simultaneously is a strict con-
straint, which we justify based on the severe impact that
incorrectly assigning localization data to a nonexistent or
incorrect identity can have on downstream applications.

6. GSR Baseline

In this section, we introduce the GSR-Baseline, a pipeline
designed to reconstruct the game state of any broadcast
football video. Our baseline splits the Game State Recon-
struction task into several sub-tasks, selecting popular and
open-source state-of-the-art methods for each sub-task. To
facilitate the development of such a complex video pro-
cessing pipeline, we leverage TrackLab [45], a research-
oriented PyTorch-based framework for multi-object track-
ing. The overall architecture of the GSR-Baseline is de-
picted in Fig. 3, and a detailed description of each of the
pipeline modules is provided hereafter.

6.1. Athlete Detection and Tracking

We employ a pre-trained YOLOv8 [44] model as our
athlete detector, without fine-tuning it on the SoccerNet
dataset, since it already provides decent performance on
football videos. We filter the model’s output to retain only
the ”person” class detections. To leverage existing strong
multi-object trackers, our GSR-Baseline performs tracking
in the image space based on bounding boxes. As illus-
trated in Fig. 3, these bounding boxes are converted into 2D
pitch positions later within the pipeline. Next, we employ
StrongSORT [25] as our multi-object tracker, for its SOTA
performance and its ability to leverage both spatio-temporal
and appearance cues, the latter being provided by the re-
identification model PRTreID [61] described in Sec. 6.3.



PRTReID

ReID

MMOCR

Jersey 
Number 
Recogn.

TVCalib

Pitch 
Localization

YOLOv8

Detection

StrongSORT

Tracking

Clustering +
Left/Right

Team 
Affiliation

Majority Voting

Tracklet 
Consistency

PRTReID 
Classifier

Role Cls

TVCalib

Camera 
Calib

images

pitch lines

detections

detections
embeddings

camera parameters

tracklets

Majority Voting

Tracklet 
Consistency

detections jersey numbers
tracklets

jersey numbers

tracklets roles

tracklets teams

tracklets
2D positionsCamera 

Parameters

Image to 
pitch

detections
roles

GSR-Baseline
video

game state 

TODO better pitch

14

28

7

10

8

9

4

5

19

13
5

25
9

7
3

R

out-of-view out-of-view

Figure 3. Architecture overview of our proposed baseline. GSR-Baseline takes a video as input and outputs the complete game state.
Two modules are first applied on the input images: an object detector and a pitch localization model. Then, PRTreID [61] produces a
ReID embedding for each detection, that is identity, team, and role aware. These embeddings are then forwarded to subsequent modules to
perform role classification, team affiliation, and multi-object tracking. Finally, the pitch localization output is used for camera calibration,
which enables the tracked bounding boxes to be transformed into 2D positions on the pitch coordinate system.

6.2. Pitch Localization and Camera Calibration

Camera calibration is performed using TVCalib [84],
which is composed of two modules. The first module
performs pitch localization through semantic segmentation.
The second estimates the camera calibration parameters by
iteratively minimizing the pitch segments reprojection er-
rors. Once the camera has been calibrated, its correspond-
ing homography is used to transform image bounding boxes
into 2D positions on the pitch. For this purpose, we assume
that the bottom of the bounding box lies on the ground field.

6.3. Athlete Identification

Athlete identification is performed by two key models:
PRTreID [61] to produce team and role-aware ReID em-
beddings, and MMOCR for jersey number recognition.
The output of these two models is further processed for
tracklet consistency, team affiliation, and role classification,
to produce the final game state identification data.
Re-Identification. The sportsperson representation model
PRTreID [61] is designed to jointly solve person re-
identification, role classification, and team affiliation with
a single backbone. Therefore, it produces an embedding
that is team, role, and identity discriminative, thanks to
a multi-task learning setup with three learning objectives.
PRTreID builds upon the SOTA part-based ReID method
BPBreID [81]. During the PRTreID training procedure, re-
identification and team affiliation are formulated as deep
metric learning tasks, where persons with the same iden-
tity/team are pulled close to each other in the embedding
space with a triplet loss. Role prediction is framed as a
classification task with four target classes, employing a fo-

cal loss to address class imbalance. At inference in the
GSR-Baseline pipeline, PRTreID produces an embedding
for each input detection, that is forwarded to subsequent
modules to perform tracking, team clustering with left/right
labeling, and role classification.

Role Classification. The embeddings described above are
processed by the PRTreID classification layer to output the
target’s role: player, goalkeeper, referee, or other.

Jersey Number Recognition. Jersey numbers recognition
is performed in two separate steps with the open-source
optical character recognition library MMOCR [49]. First,
the YOLOv8 detections are fed to the DBNet [53] text de-
tection model. Subsequently, the detected texts are for-
warded to the SAR [52] text recognition model. Finally, the
highest-scored detected text containing a number is consid-
ered as the player’s jersey number.

Tracklet Consistency. As described, jersey numbers and
roles are predicted independently for each detection, poten-
tially leading to inconsistencies within tracklets. We adopt a
majority voting approach within each tracklet to select the
most common role and jersey number, ensuring uniformity.

Team Affiliation. Team affiliation is performed in three
steps for tracklets having the ”player” role assigned. First,
the PRTReID embeddings of all detections within each
tracklet are averaged to create a single tracklet-level rep-
resentation of the player. Next, these tracklet-level embed-
dings are separated by a K-means clustering algorithm into
two clusters representing two teams. Finally, the average
2D positions of each team on the pitch are compared to de-
termine which team is positioned more to the left or right.



7. Experiments
7.1. Implementation details

To provide a baseline that is generic, we employ mostly pre-
trained networks that were not finetuned on SoccerNet. The
only exceptions are PRTReid [61] and TVCalib [84]. We
use the standard weights provided by TVCalib’s authors
in our baseline. Finally, PRTReid [61] is trained on the
SoccerNet-GSR train set using parameters from the original
paper. For more implementation details, we invite readers
to visit our project’s GitHub repository and Tracklab3.

7.2. Evaluation

To evaluate the performance of our proposed method on the
Game State Reconstruction task, we employ the GS-HOTA
metric introduced in Sec. 5. In the supplementary materials,
we evaluate the performance of our GSR-Baseline in the
image plane on the standard Multi-Object Tracking (MOT)
task. Unless specified otherwise, all experiments are per-
formed on the SoccerNet-GSR test set.

7.3. Results and Analysis

Main Results and GS-HOTA Analysis. We report
the performances of our GSR-Baseline in Tab. 1, which
achieves 22.26% in GS-HOTA on the test set. All ex-
periments in this table correspond to slight variations of
the SimGS-HOTA(P,G) introduced in Eq. (3). First, when
“Pitch” is disabled, the LocSim function in Eq. (4) is re-
placed with the bounding boxes IoU in the image space:
pitch localization and camera calibration have therefore no
impact. Second, we ablate each attribute of the identifica-
tion component in Eq. (5) (IdSim is set to 1 when all at-
tributes are disabled). The first experiment in Tab. 1 falls
back to the standard HOTA, i.e. with the IOU in image space
as a similarity function. The remaining experiments illus-
trate how enabling attributes in Eq. (5) induces successive
drops in performance, since it introduces additional predic-
tions in the evaluation and therefore potential errors. Tab. 1
also highlights the key challenges of this task, showing
that our GSR-Baseline struggles mostly with jersey num-
ber recognition, followed by pitch localization, team affilia-
tion, and finally role classification. Finally, the influence of
the GS-HOTA distance tolerance parameter τ introduced in
Sec. 5 is illustrated in Fig. 4. According to this plot, pick-
ing τ = 5 meters is a reasonable choice since performance
quickly drops with a stricter tolerance.
Ablation Study of GSR-Baseline Modules. Table 2 il-
lustrates the impact of each module on the overall perfor-
mance. This study employs the ground truth as an oracle
for all modules except the module of interest and its down-
stream modules in the pipeline. For instance, when exam-

3https://github.com/TrackingLaboratory/tracklab

Table 1. Main Results and GS-HOTA Analysis. Attributes
(Role, Team, Jersey) are ignored in the GS-HOTA computation
when disabled. IoU in image space is used when Pitch is disabled.

Split GS-HOTA components GS-HOTA ↑
Pitch Role Team Jersey

Test

✗ ✗ ✗ ✗ 57.64
✓ ✗ ✗ ✗ 42.65
✓ ✓ ✗ ✗ 40.76
✓ ✗ ✓ ✗ 37.03
✓ ✗ ✗ ✓ 25.65
✗ ✓ ✓ ✓ 29.50
✓ ✓ ✓ ✓ 22.26

Valid ✓ ✓ ✓ ✓ 18.05

Challenge ✓ ✓ ✓ ✓ 23.36
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Figure 4. Distance Tolerance Parameter τ : its influence on the
GS-HOTA score. We pick τ=5, illustrated by the orange line.

ining the ReID module, the tracking, role classification, and
team clustering modules are also activated. Dependencies
between modules are depicted as a flowchart in Fig. 3. The
first experiment (Exp. 1) shows that the heuristic chosen for
team ’left’/’right’ affiliation is highly effective, especially
considering the significant impact that swapping two teams
can have on GS-HOTA. Similarly, Exp. 2 demonstrates the
solid performance of all modules depending on the ReID
embeddings (i.e. tracking, role cls, and team aff.). Further-
more, Exp. 3 and 4 show the severe performance impact of
enabling calibration and pitch localization, suggesting am-
ple opportunities for improvements with these two modules.
Similarly, Exp. 5 with the jersey number recognition mod-
ule exposes it as another key weakness of the pipeline. Fi-
nally, performance in Exp. 6 is close to the complete base-
line, since the object detector is the starting point for most
of the pipeline, and ground truth data is therefore employed
here only for pitch localization and camera calibration.

Our ablation study shows that while localization and
identification are challenging alone, their intricate combi-
nation in GSR proves even more challenging.
Inference Time. Since the GSR-Baseline is an offline
pipeline, each module processes its input in batches, where
a single batch can span multiple images. The batch size and
average frame rate of each module are reported in Tab. 2.

https://github.com/TrackingLaboratory/tracklab
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Figure 5. Qualitative results. Output predictions of two frames from videos with different GS-HOTA values. (Top) High GS-HOTA
(49.69%), with robust pitch localization and accurate athlete identification. (Bottom) Calibration failure (e.g. due to insufficient pitch
elements) leads to completely erroneous athlete localization and poor GS-HOTA (0.23%).

Table 2. GSR-Baseline Ablation Study. We report the GS-HOTA
for each GSR-Baseline module and its corresponding downstream
modules by replacing other modules by a ground truth oracle. We
also report their speed in FPS and their input batch sizes.

Module GS-HOTA ↑ Batch S. FPS

(1) Team Side 92.00 Video 1.5K
(2) ReID (PRTReID) 87.42 16 14.5
(3) Calibration (TVCalib) 51.39 512 7.6
(4) Pitch (TVCalib) 49.99 16 2.9
(5) Jersey N° (MMOCR) 56.75 32 3.8
(6) BBox Det. (YOLOv8) 35.28 32 16.5

Full Baseline 22.26 N/A 1.1

All inference speed tests are performed with an NVIDIA
A100 32GB GPU. As illustrated, pitch localization, cam-
era calibration, and jersey-number recognition emerge as
the most time-consuming modules. It takes on average 11
minutes to process one 30s sequence from our dataset.

Qualitative Results. Fig. 5 illustrates two game state min-
imaps predicted by our GSR-Baseline and their respective
ground truths. Our GSR-Baseline achieves a high GS-
HOTA score of 49.69% on the video illustrated in the first
row, accurately predicting most athletes’ pitch positions and
attributes. The bottom example, from a video with a GS-
HOTA of 0.23%, exemplifies common failure cases, where
even minor calibration inaccuracies can cause major pitch
registration errors. In this frame, poor calibration is caused
by the small number of visible salient points on the pitch.

8. Conclusion
Our work introduces the first Game State Reconstruction
(GSR) benchmark for athlete identification and tracking
on a minimap, comprising a new dataset, evaluation met-
ric, and open-source baseline. Unlike previous efforts in
sports video understanding that focused on specific sub-
tasks, our approach stands out by benchmarking a complete
pipeline, whose high-level game semantics outputs are di-
rectly relevant to a broad spectrum of downstream applica-
tions. Moreover, experiments with our proposed baseline
reveal the inherent complexity of the GSR task and the sig-
nificant interdependencies among its various subtasks. We
hope that our introduced benchmark will pave the way for
a new line of exciting research on specialized GSR meth-
ods. We anticipate future efforts to focus on (1) enhancing
specific modules to increase performance, (2) implement-
ing real-time pipelines, or even (3) developing end-to-end
differentiable methods for tackling the task in one step.
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Kupka, and Pål Halvorsen. MMSys’22 grand challenge on
AI-based video production for soccer. In ACM Multimedia
Systems Conference (MMSys), pages 1–6, Athlone, Ireland,
2022. 2

[63] Hassan Mkhallati, Anthony Cioppa, Silvio Giancola,
Bernard Ghanem, and Marc Van Droogenbroeck.
SoccerNet-caption: Dense video captioning for soc-
cer broadcasts commentaries. In IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. Work. (CVPRW), pages 5074–5085,
Vancouver, Can., 2023. Inst. Electr. Electron. Eng. (IEEE).
2

[64] Thomas B. Moeslund, Graham Thomas, and Adrian Hilton.
Computer vision in sports. Springer, 2014. 2

[65] Ahmed Nady and Elsayed Hemayed. Player identifica-
tion in different sports. In Comput. Vis. Imaging Com-
put. Graph. Theory Appl. (VISIGRAPP), pages 1–8, Vi-
enna, Austria, 2021. SCITEPRESS - Science and Technol-
ogy Publications. 2

[66] Banoth Thulasya Naik, Mohammad Farukh Hashmi,
Neeraj Dhanraj Bokde, and Zaher Mundher Yaseen. A
comprehensive review of computer vision in sports: Open
issues, future trends and research directions. Appl. Sci., 12
(9):1–49, 2022. 2

[67] Luca Pappalardo, Paolo Cintia, Paolo Ferragina, Emanuele
Massucco, Dino Pedreschi, and Fosca Giannotti. PlayeR-
ank: Data-driven performance evaluation and player rank-
ing in soccer via a machine learning approach. ACM Trans.
Intell. Syst. Technol., 10(5):1–27, 2019. 2

[68] Luca Pappalardo, Paolo Cintia, Alessio Rossi, Emanuele
Massucco, Paolo Ferragina, Dino Pedreschi, and Fosca Gi-
annotti. A public data set of spatio-temporal match events
in soccer competitions. Sci. Data, 6(1):1–15, 2019. 2

[69] Pascaline Parisot and Christophe De Vleeschouwer. Scene-
specific classifier for effective and efficient team sport play-
ers detection from a single calibrated camera. Comput. Vis.
Image Underst., 159:74–88, 2017. 2

[70] Charles Perin, Romain Vuillemot, and Jean-Daniel Fekete.
SoccerStories: A kick-off for visual soccer analysis. IEEE
Trans. Vis. Comput. Graph., 19(12):2506–2515, 2013. 2

[71] Reza Pourreza, Morteza Khademi, Hamidreza Pourreza,
and Habib Rajabi Mashhadi. Robust camera calibration of
soccer video using genetic algorithm. In IEEE Int. Conf.
Intell. Comput. Commun. Process. (ICCP), pages 123–127,
Cluj-Napoca, Romania, 2008. Inst. Electr. Electron. Eng.
(IEEE). 2

[72] S. Kanaga Suba Raja, K. Kausalya, B. Sandhiya, K. Ab-
dul Waseem Nihaal W., A. Abiya Feba Mary, and J. Afra
Thahseen. Tracking of multi athlete and action recognition
in soccer sports video using deep learning techniques. AIP
Conference Proceedings, 2802(1), 2024. 2

[73] Upendra M. Rao and Umesh C. Pati. A novel algorithm for
detection of soccer ball and player. In Int. Conf. Commun.
Signal Process. (ICCSP), pages 344–348, Melmaruvathur,
India, 2015. 2

[74] D. Sacha, F. Al-Masoudi, M. Stein, T. Schreck, D. A. Keim,
G. Andrienko, and H. Janetzko. Dynamic visual abstraction
of soccer movement. Computer Graphics Forum, 36(3):
305–315, 2017. 2

[75] Miguel Santos Marques, Ricardo Gomes Faria, and
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Supplementary Material

A. Camera calibration
The estimated camera parameters follow the pinhole camera
model augmented with one radial distortion coefficient that may
be needed in wide camera shots. The camera parameters are esti-
mated in four steps. First, as a global pre-processing step, the in-
tersections of the pitch markings are computed to obtain both line-
to-line and point-to-point correspondences between the image and
the soccer pitch model. Then, depending on the visible parts of the
soccer pitch in the image, different strategies are used to retrieve
camera parameters. When there is a sufficient amount of pitch
markings in an image, a homography mapping the image plane
to the soccer pitch plane is estimated, then converted into pinhole
camera parameters. Moreover, an optimization is conducted to de-
termine one radial distortion coefficient given the curvature of the
annotated polylines. For the frames that do not display enough
pitch markings, the knowledge that each sequence is shot by a sin-
gle camera is leveraged. As broadcast cameras are both zooming
and rotating, only the camera position can be considered fixed. It
is estimated as the median 3D position of the camera parameters
estimated in the previous step. A similar version of the Two-Point
PTZ algorithm is used to compute the focal length, pan and tilt
parameters. Finally, as there are still some frames that can not
be calibrated with sufficient accuracy, an industrial tool is used to
compute the camera parameters of the missing frames.

Some examples of the pitch annotations used for the camera
calibration can be found in Fig. S2.
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Figure S1. Distribution of the acc@5 metric for the different sets

B. GS-HOTA additional discussion
The HOTA authors introduced a “Classification-Aware HOTA”
that shares similarities with our proposed GS-HOTA. However,
the Classification-Aware HOTA is not suitable for evaluating game

Table S1. GSR-Baseline on SoccerNet Tracking [21]. FT Det
indicate an object detector fine-tuned on SoccerNet. GSR-B uses
an out-of-the-box YOLOv8, not fine-tuned on soccer data.

Algorithm FT Det HOTA DetA AssA MOTA

DeepSORT [92] 36.66 40.02 33.76 33.91
FairMOT [98] 43.91 46.32 41.78 50.70
ByteTrack [99] 47.23 44.49 50.26 31.74
GSR-B (ours) 57.64 67.42 49.42 80.79

FairMOT-ft [98] ✓ 57.88 66.56 50.49 83.56
SNT23-Winners [60] ✓ 73.29 73.26 73.42 87.74

state reconstruction for several reasons: first, it imposes a less rigid
constraint on class predictions than Eq. (5), second, it is tailored
for a single classification objective, and third, it necessitates to out-
put one classification score for each potential class, all summing
up to one, an unsuitable requirement for team affiliation and jersey
number recognition.

C. Comparison with Standard MOT Methods.
We present the performance of the ‘image tracking only’ compo-
nent of our baseline, which includes the detector, ReID, and track-
ing modules, to compare with existing SOTA Multi-Object Track-
ing (MOT) methods. To this end, we employ two well-established
metrics: MOTA [5] and HOTA [57]. Results in Tab. S1 reveal
our superior performance over methods using non-fine-tuned ob-
ject detectors. Finally, a specialized soccer tracking method such
as [60] highlights the potential for improvement in image-based
tracking. This method relies on a strong object player detector
fine-tuned on soccer data, and a heavy test-time fine-tuning of
a ReID model to associate short tracklets into long tracks and
achieve long-term tracking.

D. Annotation sample
An annotation sample in JSON format is illustrated in Fig. S3 for
a single video.



Figure S2. Pitch annotations. Examples of pitch annotations.



1 {
2 "info":{
3 "version":"1.1",
4 "game_id":"11",
5 "id":"200",
6 "num_tracklets":"20",
7 "action_position":"956196",
8 "action_class":"Shots on target",
9 "visibility":"visible",

10 "game_time_start":"2 - 15:41",
11 "game_time_stop":"2 - 16:11",
12 "clip_start":"941000",
13 "clip_stop":"971000",
14 "name":"SNGS-200",
15 "im_dir":"img1",
16 "frame_rate":25,
17 "seq_length":750,
18 "im_ext":".jpg"
19 },
20 "images": [
21 {
22 "is_labeled":true,
23 "image_id":"3200000001",
24 "file_name":"000001.jpg",
25 "height":1080,
26 "width":1920,
27 "has_labeled_person":true,
28 "has_labeled_pitch":true,
29 "has_labeled_camera":true,
30 "ignore_regions_y":[],
31 "ignore_regions_x":[]
32 },
33 // Additional images annotations...
34 ],
35 "annotations":[
36 {
37 "id":"3200000001",
38 "image_id":"3200000001",
39 "track_id":1,
40 "supercategory":"object",
41 "category_id":1,
42 "attributes":{
43 "role":"player",
44 "jersey":"14",
45 "team":"left"
46 },
47 "bbox_image":{
48 "x":1020,
49 "y":508,
50 "x_center":1043.0,
51 "y_center":557.5,
52 "w":46,
53 "h":99
54 },
55 "bbox_pitch":{
56 "x_bottom_left":-29.17307773076183,
57 "y_bottom_left":-13.960906317008366,
58 "x_bottom_right":-28.399824812615115,
59 "y_bottom_right":-14.278786952621587,
60 "x_bottom_middle":-28.786446826184775,
61 "y_bottom_middle":-14.119801608871501
62 }
63 },
64 // Additional athletes annotations...
65 ...



66 ...
67 {
68 "id":"3200000019",
69 "image_id":"3200000001",
70 "supercategory":"pitch",
71 "category_id":5,
72 "lines": {
73 "Side line top":[{"x":0.21, "y":0.34}, {"x":0.61, "y":0.39}, {"x":1.0, "y":0.43}],
74 "Side line left":[{"x":0.0, "y":0.45}, {"x":0.10, "y":0.39}, {"x":0.21, "y":0.34}],
75 "Small rect. left top":[{"x":0.07, "y":0.53}, {"x":0.01, "y":0.53}, {"x":0.01, "y":0.53}],
76 "Small rect. left main":[{"x":0.0, "y":0.54}, {"x":0.01, "y":0.54}, {"x":0.01, "y":0.53}],
77 "Big rect. left top":[{"x":0.04, "y":0.42}, {"x":0.23, "y":0.45}, {"x":0.41, "y":0.48}],
78 "Big rect. left main":[{"x":0.0, "y":0.81}, {"x":0.20, "y":0.65}, {"x":0.41, "y":0.48}],
79 "Circle left":[{"x":0.02, "y":0.79}, {"x":0.04, "y":0.79}, ...],
80 }
81 }
82 // Additional pitch annotations...
83 ]
84 }

Figure S3. Sample JSON annotation for one video of the SoccerNet-GSR dataset
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