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Higher-order networks are able to capture the many-body interactions present in complex systems
and to unveil new fundamental phenomena revealing the rich interplay between topology, geometry,
and dynamics. Simplicial complexes are higher-order networks that encode higher-order topology
and dynamics of complex systems. Specifically, simplicial complexes can sustain topological signals,
i.e., dynamical variables not only defined on nodes of the network but also on their edges, triangles,
and so on. Topological signals can undergo collective phenomena such as synchronization, however,
only some higher-order network topologies can sustain global synchronization of topological signals.
Here we consider global topological synchronization of topological signals on weighted simplicial
complexes. We demonstrate that topological signals can globally synchronize on weighted simpli-
cial complexes, even if they are odd-dimensional, e.g., edge signals, overcoming thus a limitation
of the unweighted case. These results thus demonstrate that weighted simplicial complexes are
more advantageous for observing these collective phenomena than their unweighted counterpart. In
particular, we present two weighted simplicial complexes the Weighted Triangulated Torus and the
Weighted Waffle. We completely characterize their higher-order spectral properties and we demon-
strate that, under suitable conditions on their weights, they can sustain global synchronization of
edge signals. Our results are interpreted geometrically by showing, among the other results, that in

some cases edge weights can be associated with the lengths of the sides of curved simplices.

I. INTRODUCTION

Higher-order networks [IH4] encode for the many-body
interactions of complex systems ranging from brain [5] [6]
to collaboration networks [7, [§] and are transforming
our understanding of the relation existing between net-
work topology, geometry, and dynamics [2, [OHI2]. Until
now, in the majority of the works available in the liter-
ature, the description of the dynamical state of a net-
work has been dominated by the node-centered point of
view in which dynamical variables are only associated
to the nodes of the network. This approach has also
provided relevant results in the context of higher-order
networks on papers involving epidemics and opinion dy-
namics [I3HI5], game theory [I6], random walks [I7],
pattern formation [18], percolation [I9H24], synchroniza-
tion [25H34]. While this approach is certainly relevant in
some contexts, for instance in epidemic spreading where
we consider the state of the nodes/individuals as sus-
ceptible, infected, and recovered, in general restricting
the focus only to nodes dynamical states is a limita-
tion. Recently great attention [9, B5H49] has been ad-
dressed to topological signals, i.e., dynamical variables
associated not only to nodes, but also to edges, triangles,
and higher-dimensional simplices of simplicial complexes.
Edge signals are ubiquitous, and include biological trans-
portation networks [50H52], synaptic signals, and edge
signals at the level of brain regions [53] [54]. Further ex-
amples of edge signals are currents in the ocean [39, [55]
and speed of wind which are vector fields that can be
projected onto edges of a tessellation of the surface of

the Earth. Examples of topological signals associated
to higher-dimensional simplices are for instance citations
gathered by a team of collaborators.

Topological signals can undergo collective phenom-
ena such as synchronization transitions captured by the
Topological Kuramoto model [35, B6] and its variations
on directed and weighted simplicial complexes [41], 56],
and also Dirac synchronization [40l 48] 57] by coupling
topological signals of different dimensions to each other.
These models reveal that topology shapes dynamics and
that the synchronized state is localized along the har-
monic eigenvectors of the simplicial complex, the latter
being localized around higher-dimensional holes of the
simplicial complex and thus, in general, are not uniform
on the simplices of the higher-order network.

Having established that higher-order topological sig-
nals can synchronize as described by the Topological Ku-
ramoto model, an important question is whether Global
Topological Synchronization (GTS) can be ever observed.
The latter referring to a state of higher-order topological
signals in which each simplex undergoes the same dy-
namics. For instance, the GTS of edge signal implies
that every edge of the simplicial complex exhibits the
same dynamics; similarly GTS of triangle signals implies
that the dynamical variable associated to every triangle
of the simplicial complex evolves in unison, and so on.

In Ref. [37] the conditions for observing Global Topo-
logical Synchronization of topological signals have been
derived for unweighted simplicial and cell complexes.
There it has been found that topological signals can un-
dergo GTS only for specific higher-order network topolo-
gies. This is in contrast to what happens in a con-



nected network where node signals always admit a global
synchronized state and the only remaining problem is
whether this state is dynamically stable, leading to the
famous Master Stability Function approach [58, [59].
Specific unweighted higher-order network topologies on
which topological signals can globally synchronize are
square and cubic lattices with periodic boundary con-
ditions forming respectively a 2-dimensional and a 3-
dimensional cell complex tessellating a 2-dimensional and
3-dimensional torus [37]. Other examples of topologies
in which Global Topological Synchronization of (d — 1)-
topological signals can always occur are d-dimensional
discrete manifolds. However, in Ref. [37] it has been also
found that, as long as the simplicial complexes are un-
weighted, odd topological signals can never synchronize.

In this work, we take one step further in the un-
derstanding of Global Topological Synchronization, by
investigating the conditions for the emergence of GTS
on weighted simplicial complexes. We found that un-
der suitable conditions on the simplices weights, odd-
dimensional signals can also synchronize on some sim-
plicial complexes. Specifically, we analyze in detail the
GTS of edge signals on weighted simplicial complexes,
being this a setting where GTS can never emerge in the
unweighted case. We provide two examples of weighted
simplicial complexes, the Weighted Triangulated Torus
(WTT), and the Weighted Waffle (WW), and by per-
forming a comprehensive study of their higher-order spec-
tral properties, we prove that they can sustain global
synchronization of edge signals when their edges weights
satisfy suitable conditions.

Our results demonstrate that varying edge weights of a
given simplicial complex can allow for a transition from a
state capable of sustaining Global Topological Synchro-
nization to a state in which the latter is forbidden. The
possibility of achieving or obstructing synchronization by
tuning the weights of the simplices is of potential inter-
est to the control community, where tools from network
science and complex systems are becoming increasingly
popular [60]. In fact, the control of synchronization is of
paramount importance in many natural and engineered
systems, such as the brain [61],[62] or power grids [63], rev-
elant results in this directions are already known for pair-
wise networks [64] [65] and this framework has recently
been extended to systems with higher-order interactions
[66]. Given the higher-order nature of interactions in the
brain [B [6], the possibility of using the weights of the
simplices as a control parameter can be particularly in-
teresting, for instance, in the design of efficient methods
to prevent the synchronization of certain brain regions
during seizures [67].

In this work, we also analyze the relation existing
among the conditions on the weights required to allow for
GTS and the underlying geometry of the simplicial com-
plexes. Specifically, we address the important theoretical
question of whether the conditions that guarantee Global
Topological Synchronization can admit a geometrical in-
terpretation. We found that the WT'T can admit a ge-

ometrical interpretation where all the edges capacitance
are the same and the simplices are curved. Furthermore,
we provide a comprehensive mathematical framework by
exploring more general geometrical interpretations of the
weights of the edges.

This paper is structured as follows. In Sec. [Tl we intro-
duce the basic notions about (weighted) simplicial com-
plexes needed to describe topological dynamical systems
in the following Sec. [[T]l The developed theory will be
presented by using two weighted simplicial complexes de-
fined and characterized in Sec.[[V] The dynamical behav-
iors resulting from the use of those higher-order struc-
tures will be discussed in Sec. [V] while their geometri-
cal properties will be analyzed in Sec. Eventually in
Sec. [VIIl we summarize our results.

II. FUNDAMENTAL PROPERTIES OF
WEIGHTED SIMPLICIAL COMPLEXES

A. Weighted simplicial complexes

A simplex of dimension n is a set of n + 1 nodes, thus
a O-simplex is a node, a 1-simplex is an edge, a 2-simplex
is a triangle, and so on. The faces of a n-dimensional
simplex « are the n/-dimensional simplices o (n’ < n)
formed by a proper subset of the nodes of .. A simplicial
complex K is a set of simplices closed under the inclusion
of the faces. The dimension d of a simplicial complex is
the largest dimension of its simplices.

We consider a generic weighted d-dimensional simpli-
cial complex formed by NV,, simplices of dimension n, i.e.,
Ny nodes, Ny edges, Ny triangles, and so on. The sim-
plices have an orientation induced by the node labels.
Each simplex « is assigned a weight w, > 0. We adopt
the following notation: if a n-dimensional simplex « is
oriented coherently with one of its (n — 1)-dimensional
face o’ we write a ~ a’. Conversely, if the simplex «a is
incoherently oriented with its face o/ we write « £ /.

B. Topological signals

The n-dimensional topological signal comprises the set
of dynamical variables associated to each n-dimensional
simplex of the simplicial complex. The n-dimensional
topological signal ¢ is mathematically defined as n-
cochain, i.e., ¢ € C™, can be represented as a N,, column
vector of elements ¢, associated to the n-dimensional
simplex « with the additional property that if &« — —a,
i.e., if the orientation of the simplex « is flipped, then
da — —¢o. In order to have an intuition of this prop-
erty, consider the current defined on the edge [¢,j] and
going from node ¢ to node j, this current will be consid-
ered to be positive if the edge is oriented from node 7 to
node j, while it will be negative if the opposite orienta-
tion is adopted.



The notion of topological signal allows us to describe
completely the dynamics of a simplicial complex going
beyond the node-centered approach that associates a dy-
namical state only to their nodes. Among topological sig-
nals, edge signals are particularly interesting and present
in a large variety of real systems. The latter can describe
fluxes and currents associated with biological transporta-
tion networks [50H52]. Additionally, edge signals can
be used to capture and process the speed of winds and
currents of the ocean in climate research [39] (47, [55].
Recently edge signals are raising increasing attention in
brain research [53,[54] as they do not only capture synap-
tic signals at the neuronal level but also edge signals at
the level of brain regions.

C. Weighted Hodge Laplacians

The topology of the simplicial complex is encoded by
the N, _1 X N, boundary matrices B[n} of elements

1 if
[B[n]]alya =< -1 if
0 otherwise.

a~a,

ot

The boundary matrix By, maps the N,, simplices of the
simplicial complex to the N,,_; simplices at its boundary.
The boundary matrices By, fully characterize the topol-
ogy of the simplicial complex and are pivotal to defin-
ing the weighted Hodge Laplacians that determine the
higher-order diffusion properties on the weighted simpli-
cial complex.

The weighted Hodge Laplacian will be defined in terms
of the weighted boundary matrices, which take into ac-
count the metric associated to the simplicial complex.
Specifically, on a weighted simplicial complex we define
the weighted boundary matrix By, given by

12 —-1/2
B = G, 2B Gy, (1)
expressed in terms of the V,, X N,, diagonal metric matri-
ces G, whose diagonal elements are given by the inverse
of the weights w,, i.e.,

1
Gp([o,a]) = —. 2
) (o 0]) = = (2)
The n-order symmetric weighted Hodge Laplacian Ly,
[68, [69] is a N,, X N,, matrix that describes the diffusion
from n-simplices to n-simplices either through (n —1) or
through (n + 1)-dimensional simplices. It is defined as

u down
Lin = Ly + L™, (3)

with
.
Loy = BBt
down T
L™ = By By, (4)

where B, is the weighted boundary matrix defined in
Eq.. From the definition of L[f] and Lﬁf]wn it is imme-
diate to check that the non-zero spectrum of Lﬁf]wn coin-
cides with the non-zero spectrum of Lupfl]. Additionally,

[n
we note that the symmetric Hodge Laplacian defined as
in Egs. (3) and obeys the Hodge decomposition. In
fact, we have
upy down __ downy up __

Ll =0, Li"Ly; =0. (5)
This implies that every signal defined on n-dimensional
simplices, (i.e., every n-cochain ¢ € C™) can be decom-
posed in a unique way as

¢ = ¢"" + Bl ot + Blol, (6)

where ¢l € C"*t! and ¢!~] € C"~1. Another important
consequence of Hodge decomposition is that any non-zero
eigenvalue A, of the n-th Hodge Laplacian Ly, is either

a non-zero eigenvalue of L?ﬁ]""n

of Ll[lf] )

or a non-zero eigenvalue

III. TOPOLOGICAL GLOBAL
SYNCHRONIZATION

Can topological signals globally synchronize? This im-
portant research question requires to consider the dy-
namics of identical topological oscillators. Given the n-
th order topological signal ¢ with elements ¢, € R™, the
Global Topological Synchronization obeys the dynamics

d¢a
dt

=F(¢a) =0 Y Lpll, o h(@a), (1)

a’'eqQy

where the functions F' and h are taken element-wise with
F(¢a) € R™ and h(¢a) € R™, Ly, indicates the Hodge
Laplacian, and o is the coupling constant. Here @, indi-
cates the set of all the n-dimensional simplices of the sim-
plicial complex K. In order to guarantee the equivariance
of this dynamical equation under changes of orientation
of the simplices, we need F' and h to be odd functions,
although these functions do not have other limitations.
If we consider exclusively node signals (n = 0), a
globally synchronized dynamical state of Eq. ex-
ists for any arbitrary connected network. A global syn-
chronized state refers to the state in which each oscil-
lator follows the same dynamics, i.e., ¢, = w(t) with
w = F(w). This implies that the topological signal is
given by ¢ = w(t) ® 1y,. Since on a connected net-
work the constant eigenvector 1y, is the unique harmonic
eigenvector of the graph Laplacian Ly, the global syn-
chronized state of node signal exists for any (connected)
network. The key question that needs to be answered is
thus whether this dynamical state is stable. The Master
Stability Function framework (MSF) [58] 59] is a powerful
framework to assess whether the global synchronization



state is stable. However, for higher-order topological sig-
nals with n > 0 the constant eigenvector 1y, is not guar-
anteed to be in the kernel of Ly, hence ¢ = w(t) ® 1y,
is not a solution of the GTS.

Note that an additional complexity of the problem
arises from the fact that for topological signals the syn-
chronized state is a cochain, i.e., it has a sign depending
on the orientation of the simplices. This implies that
strictly speaking a global synchronized state is propor-
tional to the eigenvector u with elements |u;| = 1.

It follows that only simplicial or cell complexes ad-
mitting u in the kernel of the Hodge Laplacian Ly, can
display global synchronization. Specifically, in order to
observe global synchronization we must impose

L[n}u = 0, (8)

which due to Hodge decomposition implies

Ldown

Lupu = 0, [n] u=_0. (9)

[n]
On topologies for which the global synchronized state ex-
ists, it is necessary to also check whether this dynamical
state is stable. This is achieved by extending the realm
of the MSF to topological signals [37]. In order to derive
the higher-order Master Stability Function we linearize
the dynamical equation @ by writing ¢ = w®1y, +d¢
and we project on the eigenbasis of the Hodge Laplacian
L,), by obtaining

dé
PA _ (Ip(w) - ATW(W)Og,  (10)
where A = Ay, is the generic eigenvalue of Ly, and

d¢p is the component of d¢ along the eigenvector cor-
responding to the eigenvalue A. This system of ODEs
parametrized by the eigenvalues A, constitutes the MSF
for topological signals and allows to infer the stability of
the synchronized solution by considering the spectrum of
the Hodge Laplacian Li,.

We observe that for higher-order topological signals
conditions @D necessary for observing GTS on un-
weighted simplicial complexes are very restrictive [37].
There authors proved that some unweighted topologies
allow global synchronization of their topological signals
regardless of their dimensions. These topological spaces
include the square lattices (2D torus) and the cubic
lattices (3D torus) with periodic boundary conditions.
Other notable examples of simplicial and cell complexes
admitting global synchronization of their n-order topo-
logical signals are arbitrary n-dimensional discrete man-
ifolds.

Moreover, in Ref. [37] it was also proved that odd-
dimensional topological signals can never synchronize on
unweighted simplicial complexes of dimension d > 1.

The aim of this work is to demonstrate that by con-
sidering weighted simplicial complexes one can overcome
this limitation and it is thus possible to observe GTS
also for odd-dimensional topological signals on simplicial

complexes as well. Specifically, we will provide evidence
that two weighted simplicial complexes, the Weighted
Triangulated Torus (WTT), and the Weighted Waffle
(WW) can sustain global synchronization of the edge sig-
nal given the appropriate choice of the edge weights.

AW,

FIG. 1. The Weighted Triangulated Torus (WTT) is a 2-
dimensional simplicial complex constructed from a square lat-
tice with periodic boundary conditions. In this lattice, each
periodic (square) unit is triangulated, thus the network skele-
ton of the simplicial complex is a regular lattice in which
each node has degree 6. In panel (a), we report the periodic
(square) unit indicating the edges weights and their orienta-
tion (arrow), together with the two triangles and their ori-
entations (circular arrows). Panel (b) shows a 3 dimensional
view of the WTT.

IV. THE WEIGHTED TRIANGULATED TORUS
AND THE WEIGHTED WAFFLE

The aim of this section is to discuss two examples of
weighted simplicial complexes that allow global topolog-
ical synchronization of the edge topological signals: the
Weighted Triangulated Torus and the Weighted Waffle.
The WTT is formed by a square lattice with periodic
boundary conditions where each square is triangulated
forming a regular lattice in which each node has degree
6, we are thus dealing with a triangulation of a 2D-torus.
In Fig. [[]we schematically show the WTT, the convention
used for the orientation of its edges and triangles, and the
notation adopted to indicate the different weights of the
three distinct types of edges of this simplicial complex.
According to the theory hereby presented, edge signal
admits a GTS on the WTT as long as the following con-
dition is satisfied:

L[n]u = 0, (11)
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FIG. 2. The spectra of the weighted Hodge Laplacians Lf‘ﬁ‘”“, L'[*l‘]’, coinciding with the spectra of Ly and Lfgiw“

are reported for WT'Ts. Note that L‘[iﬁ“’“

spectra determine the values of the eigenvalues A of the L
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with u vector of elements of constant absolute value. Be-
cause of the Hodge decomposition, the latter rewrites

Bpu=0, B ,u=0. (12)

We assume G = Iy, and Gpg] = Iy, , namely we do not
consider weights on nodes and on faces, and we study
the conditions on the edges weights w, determining a
non-trivial metric matrix Gyyj that guarantees GTS of
the edge signals, i.e., it satisfies condition Eq. for
n =1. On a WTT where each triangle is obtained from
an identical triangulation or a rectangular lattice, the
first of the conditions in Eq. can be easily satisfied as
long as each rectangle is the same. The second condition
in Eq. implies that the WTT only admits a global
synchronized state of the edge signal if

/1 /1 /1
= = —.
w1 W2 w3

We refer the interested reader to Appendix [A] for the
derivation of the latter condition.

This global synchronized state for the edges will be sta-
ble under appropriate dynamical conditions determined
by the Topological Master Stability Function. In Ap-
pendix we show the detailed derivation of the spec-
trum of the L), Lp;j and Ly Hodge Laplacians. We
note that the constant eigenvector u = 1y, is in the ker-
nel of L) and the constant eigenvector u = 1y, is in the

(13)

spectrum consists of one band, while the

(panels (a), (c))
function of the wave-number k = (kz, ky). Panels (a) and (b) correspond to the WT'T with edge weights w1 = 1, ws = 4, w3 =
panels (b) and (d) correspond to the WT'T with edge weights wi = 3, w2 =4, w3 =

respectively
Liﬁ spectrum consists of two bands. These

and of the LI'?

i) (panels (b), (d)) Laplacians as a
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kernel of Ljg;. While the constant eigenvector u = 1y,
is in the kernel of L{j; only provided Eq. are satis-
fied. The spectra of the n-Hodge Laplacian of the WTT
can significantly vary as a function of the chosen weights
wy and wsg, even if we consider exclusively choices of wg
satisfying Eq. (13). In order to demonstrate this phe-
nomenon, in Fig. 2| we show the spectrum of Ly (coin-
ciding with the non-zero spectrum of L?ﬁ“’“) and the two
Ldown
(2]
spectrum of L") for different values of the weights w;
and wsy. For the analytical derivation of these spectra we

refer to Appendix [B1]

We consider here a second example of weighted simpli-
cial complex, that under suitable condition can also sus-
tain GTS for edge signals: the Weighted Waffle (WW).
This is a 3-dimensional simplicial complex whose build-
ing blocks (unit cells) are tetrahedra glued together along
well-chosen edges. The edges joining different tetrahe-
dra form a 2-dimensional square lattice with periodic
boundary conditions. In other words, the WW is a 2-
dimensional square lattice with periodic boundary con-
ditions (Torus) where each square of the lattice is sub-
stituted by a tetrahedron. In Fig. [3| we schematically
show the WW together with the used convention for the
orientation of its edges, triangular faces and the nota-
tion adopted to indicate the different weights of the four

bands spectrum of (coinciding with the non-zero



distinct types of edges. Also, in this case, we assume
Gig = In, and Gpg) = Iy, and we study the conditions
on the edges weights, w,, determining a non-trivial met-
ric matrix Gy that guarantees GTS of the edge signals,
i.e., it satisfies condition Eq. for n = 1. For the case
of the WW, these conditions read:

/1 /1 1
R — — 4+ i
ws w1 w2
1 1 1
=== == (14)
wWa w1 w2

where w1, ws, w3 and wy are defined in Fig.

> >
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FIG. 3. The Weighted Waffle (WW) is a 3-dimensional sim-
plicial complex that can be constructed from a square lat-
tice with periodic boundary conditions by substituting each
square with a tetrahedron. In this lattice, each periodic unit
is a tetrahedron, sharing four edges with the neighbor tetra-
hedra. In panel (a), we report the periodic (square) unit
indicating the edge weights and their orientation (arrow), to-
gether with the two triangles and their orientations (circular
arrows). Panel (b) shows a 3 dimensional view of the WW.

We refer to Appendix [B] for detailed derivation of the
spectrum of the Lo}, L) and L) Hodge Laplacians. We
note that the constant eigenvector u = 1y, is in the ker-
nel of L) and the constant eigenvector u = 1y, is in the
kernel of L. While the constant eigenvector u = 1y, is
in the kernel of L) only provided the conditions are
satisfied. The spectra of the n-Hodge Laplacian of the
WWs can vary significantly as a function of the choice
adopted for the weights wy and ws, also if we consider
exclusively choices of w3 and wy satisfying Eq. . In

order to demonstrate this phenomena in Fig. [d] we plot
the spectrum of L (coinciding with the non-zero spec-

down

trum of L ) and the three non-trivial band spectrum

of L‘[lz‘iwn (coinciding with the non-zero spectrum of L)

for different values of the weights wq, and wy and values
of the weights w3 and w4 determined by Eq. .

V. GLOBAL TOPOLOGICAL
SYNCHRONIZATION OF EDGE SIGNALS

In this section, we provide evidence that weighted sim-
plicial complexes can sustain GTS of odd-dimensional
signals.  Specifically, we consider the Stuart-Landau
model for global synchronization of topological signals.
The Stuart-Landau (also known as Complex Ginzburg-
Landau equation) is a paradigmatic model for the study
of synchronization because it is the normal form of the su-
percritical Hopf-Andronov bifurcation [70]. This means
that every oscillatory system behaves like a Stuart-
Landau oscillator close to such bifurcation and, in fact,
can be reduced to a Stuart-Landau through the center-
manifold reduction [7I]. In this model the elements of
the n-cochain ¢, are complex valued, i.e., ¢, = w € C.
The functions F(w) and h(w) are taken to be F(w) =
Sw — plw|?w, h(w) = wlw|™~! where 6, u € C and m € N
are parameters of the model. Note that these functions
are odd, therefore this choice allows us to define an equiv-
ariant dynamical equation for global topological synchro-
nization. )

The uncoupled system ¢ = F(¢) leads to identical
equations involving each one a single simplex and reads
w = F(w). This equation admits a limit cycle solution
wrC(t) = \/ox/pune't, where the frequency of the oscil-
lation is given by w = dg — pgdn/pux; moreover the limit
cycle is stable provided dx > 0 and pgp > 0, conditions
that we hereby assume to hold true.

In panels (a) and (c) of Fig. [5| we report numerical
evidence for GTS of edge signals associated to SL defined
on the WTT whose weights satisfy Eq. ; panels (b)
and (d) of the same figure, refer to SL defined on the WW
whose weights satisfy Eq. . In both cases, we have
considered parameters d and p which ensure the existence
of a stable limit cycle according to the conditions given
by the Master Stability Function. The achievement of
the GTS state is revealed by the (generalized) Kuramoto
order parameter R given by

R= 5 3 pal)e. (15)

ac@Qq

where we have rewritten the complex edge signal in po-
lar coordinates, w, = paeiea with pa,0, € R. Let us
recall that )7 indicates the set of all the 1-dimensional
simplices of the simplicial complex under study.

The order parameter R displays a fast convergence to
one, indicating that po(t) — 1 and 0,(t) — 0 (t) — 0
for all a, o, testifying thus the emergence of GTS (see



FIG. 4. The spectra of the weighted Hodge Laplacians Lf’f]’wn, Lu
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, coinciding with the spectra of Ly and L " respectively are

reported for WWs. Note that L?ﬁwn spectrum consists of one band, while the L'} spectrum consists of three non-trivial bands.

These spectra determine the values of the eigenvalues A of the L

as a function of the wave-number k = (kz, ky).
4, w3 =

Fig. l(a ) for WTT and Fig. l(b ) for WW). Additional
evidence of GTS is shown in Fig. [f|c) and in Fig. [5d)
displaying temporal snapshots of the real part of the edge
topological signals after a transient interval of time, the
presence of vertical stripes is a signature of GTS, being
the values assumed by the variable identical across all the
link for any fixed time.

VI. GEOMETRICAL INTERPRETATION OF

THE WEIGHTS

A. Geometrical interpretation of the weights on
flat simplices

Considering theoretical frameworks [5I] based on the
Hagen—Poiseuille’s equation in fluid-dynamics, and gen-
eralizing them to higher-dimension, the weight w, asso-
ciated to simplex a can be expressed as

Ca

Wo = 7,

= (19)
where ¢, € RT is the capacitance associated to the sim-
plex a and £, is associated to the volume of the sim-
plex a. The volume of the simplex ¢, is given for 1-
dimensional simplices by the length of the edges and for
2-dimensional simplices by the area of the polygons, and
so on for higher-order simplices. Here we focus in par-
ticular on the edges of the simplicial complex and we

(1]

i7" (panels (a), (c)) and of the L} (panels (b), (d)) Laplacians

Panels (a) and (b) correspond to the WW Wlth edge welghts w; = 1, o =
3, w4 = 4; panels (b) and (d) correspond to the WW with edge weights w1 = 3, w2 = 4, ws =

(2f+3)27W4 = (2f 32

investigate under which conditions the assumption that
guarantees that a simplicial complex can sustain GTS,
admits a geometrical interpretation. When there are no
constraints on the capacitance associated to the edges
the question is trivial, as the capacitances can be always
tuned in such a way as to match the weights of the edges
for any arbitrary distribution of their lengths. Neverthe-
less, if we impose that the capacitances are all equal, i.e.,
if we set

1
ta=v (=) a7)
for some smooth function ¢, the problem becomes much
harder. We thus here investigate the geometrical condi-
tions under which conditions in Eq. are satisfied if
the weights are given by the inverse of the distance of the
edges (i.e., if all the capacitances are set to one, ¢, = 1).
For the sake of pedagogy, let us first assume ¢(x) = x,
hence Eq. rewrites

\/Zl + \/Zz = \/Zg. (18)

Assuming the metric to be Euclidean, for Pythagoras’s
theorem we have

Eg = f% + Z% - 2€1€2 COS Y12, (19)

where ;2 indicates the angle between the edge ¢; and

the edge /5. Eqs. and can be rewritten as
y1+y2 =1

Yl + s — 2yiys cos e = 1, (20)
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FIG. 5. Numerical evidence for GTS on the WTT (panels (a) and (c)) and on the WW (panels (b), (d)). Panels (a) and (b)
display the generalized order parameter R(t) during the transient evolution showing the fast convergence to 1. Panels (¢) and
(d) display the temporal evolution of the real part of the edge topological signal after a transient interval, namely once it has

reached its asymptotic state. The edge weights are w1 = 1, w2 = 4, ws = g for the WT'T, and w1 = 1, we = 4, ws =

4 —
5 wa=4

for the WW. For both simplicial complexes, the SL model parameters are given by: § =1+ 4.3i, p =1+ 1.1i, 0 = 1 — 0.5i,

m = 3.

where y1 = \/1/l3,y2 = \/l2/¢3. This system of equa-
tions leads to the only real solution given by the trivial
(unphysical ones) (y1,y2) = (1,0), (y1,y2) = (0,1). It
follows that if all the capacitances are equal, condition
Eq. is not compatible with a geometrical interpre-
tation of the edge weights, as long as the simplices are
flat Euclidean simplices.

B. Curved simplices

To tackle the above limitation, we investigate in this
section, whether curved simplices can allow us to gain a
geometrical interpretation of the edge weights. Specifi-
cally, we will consider the case of the constraint Eq.
that guarantees the existence of a GTS state for the edge
signal of the 2-dimensional WTT. We indicate with ¢,
and ¢y the lengths of the rectangular lattice tessellating
the torus and we assume that edges that have been in-
serted to triangulate the torus, i.e. those with weight ws

and form an arc of

in Fig. [I} are curved (see Fig. [f](a))
ellipses parametrized by the curve
1 2 .
x(t) = o5 cost, y(t)= 5 cost, z(t) = Asint,
with ¢ € [0,7]. The value of A indicating the maximum
height of the arc of the ellipse is determined by imposing
that the length of the arc is 3 = (V71 + v/02)2, i.c.

/ e [T B+
by = (Vb + Vi) = ———=gin“t + A2 cos? tdt
0
1 4A2 02 4 (2
_ 22 b5
2 €1+£2E( G+ €2>+AE<1 447 >
where E‘( ) indicates here the Elliptic integral, i.e.,

7r/2
V1 — msin® d6.
ThlS equatlon can be solved numerically; in Fig. |§|(b we
show the dependence of A on ¢; and /5.
Thus in the case of the 2-dimensional WTT, condition
Eq. can be geometrically interpreted by considering
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71
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FIG. 6. The geometrical realization of the WT'T with curved

simplices (panel (a). Relationships between the length A of
the curved edge of weight w3 as a function of the length ¢,
and ¢5 of the edges with weight wy and w2 (panel (b)) in the
geometrical realization of the WTT.

curved simplices. Note however that this construction is
not generalizable to the WW.

C. Beyond the case p(z) ==z

An interesting question is whether we can gain a geo-
metrical interpretation of the weights guaranteeing global
topological synchronization of the edge signal if we relax
the preliminary assumption ¢(z) = = and we assume a
more general functional dependence relating the length
of the edges ¢, with their weights w,. Let us observe
that, under the assumption of flat simplices, the func-
tion ¢ is constrained to satisfy the triangular inequality
(see Appendix [C]for details). In the case of the WT'T we
can prove that if ¢(x) is a sub-additive function, i.e., if

Pl +22) < (1) + (22) (21)

then the triangular inequality is satisfied and thus Eq.
is compatible with the triangular inequality (see

Theorem [1|in Appendix [C)).
Examples of functions in this class are, for instance,

p(x) =, (22)
with 26 < 1 and
pr)=1—e". (23)

In the case of the WW, the problem is more compli-
cated as we need to check whether both constraints in Eq.
are compatible with the triangular inequality once
we assume that the lengths are related to the weights
of the edges according to Eq. . As we show in Ap-
pendix this later problem has no solution. In other
words, there is no function ¢(x) that is compatible with
the triangular inequality and satisfies both Eq. .

VII. CONCLUSION

Weighted simplicial complexes can allow for the
synchronization of topological signals even when their
unweighted counterpart does not. Indeed weights can
be tuned in such a way to change the spectral prop-
erties of the simplicial complex and allow a constant
eigenvector (or an eigenvector with constant absolute
value of its elements) to lie in the kernel of the weighted
Hodge Laplacians. Specifically, despite odd-dimensional
topological signals can never globally synchronize on
unweighted simplicial complexes, we here provide two
examples of weighted simplicial complexes that can
sustain global synchronization of odd-dimensional topo-
logical signals (edge signal) provided suitable conditions
on their edge weights are met. We provide an insightful
description of these two weighted simplicial complexes:
the Weighted Triangulated Torus and the Weighted
Waffle fully characterizing their higher-order spectral
properties. We show that these two weighted simplicial
complexes can sustain global synchronization of edge sig-
nals in the framework of the higher-order Stuart-Landau
model. Moreover, we have investigated the possible
geometric interpretation of the constraints necessary to
observe global synchronization. Our findings reveal that
global synchronization of odd-dimensional signals can
be observed on simplicial complexes, provided suitable
constraints of their weights are met. However, in the
general scenario, these constraints on the weights do not
have a simple and direct geometrical interpretation.
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Appendix A: Derivation of necessary conditions to
have u € kerLy,

The aim of this section is to develop the computations
required to determine the conditions on the edges weights
in order to have u € kerL,), where u = (1,..., DT, in
the case of Weighted Triangulated Torus, i.e., Eq. ,
and the Weighted Waffle, i.e., Egs. .

Let us recall that in the case of unweighted simplicial
complexes the condition Bjjju = 0 amounts to require
that each node, i.e., entry in the vector Bjjju, has as
many incoming than outgoing edges by taking into ac-
count the orientation of the latter. Once weights are
taken into account, is the sum of incoming and outgo-
ing weights from any node, that should vanish, where we
associate signed weights by using the edge orientations.

The condition Bg]u = 0 is equivalent to require, in
the unweighted case, that for any triangle the sum of
the orientations of the edges forming the boundary of
the triangle, should vanish. One can easily realize that
this condition never meets; indeed any triangle contains 3
edges whose orientations can only be +1 or —1 and thus
their sum is an odd number. By introducing weights, is
the sum of the signed weights that should vanish, where
signs are again assigned according to the orientation of
the triangle and the edges. There are thus choices of
weights that satisfy this condition as we will show here-
after.

1. Weighted Triangulated Torus

Let us refer to Fig. [Th, one can realize the existence
of two different kinds of nodes: the ones with degree 6,
e.g., the one in the bottom left or top right position, and
those with degree 4, e.g., the one in the bottom right or
top left position. By direct inspection of the orientations
and edges weights we can conclude that for nodes of the

first kind, each row of the matrix B[l]G[_l]l/2 has only 6

non-zero entries given by +./wy, +/w2 and £,/w3. On
the other hand for nodes of the second kind, the matrix
will only have 4 non-zero entries with values £,/w; and
+,/w;. Hence B[l]G[;]l/2u =0.

Still referring to Fig. [Th, we can consider one ori-
ented triangle and its three boundary edges, also ori-
ented; then it is straightforward to realize that each row

of the matrix B[B]G;]/ ? has only three non-vanishing en-

tries given by 1/,/wy, 1/\/ws and —1/,/ws. Thus the
condition B[—;]G[Tl]ﬂu = 0 can be satisfied if and only if

1/\/W1 + 1//i2 = 1//W5, namely Eq. (T3),

2. Weighted Wafile

Let us now consider the Weighted Waffle and let us use
Fig. [3] to help the reader in the following analysis.

12

Each node of the WW has degree 8, hence each row of
the matrix B[l]G[_ul /2 has only 8 non-zero entries, those
are given by +,/wy, +/w; and +,/ws, in the case of
nodes of kind a or ¢, and £,/w;, £,/wy and £,/wy in
the case of nodes of kind b or d (see Fig. ) In any cases

it follows that ByG,|/*u = 0.

Let us now consider the triangular faces. By looking
at Fig. one can realize that there are essentially two
kinds of faces, A and B or C' and D. Hence, each row

of the matrix B[E]G[Tl]/ 2 corresponding to a face of kind
A and B has only three non vanishing entries given by

1/\/wi, 1/\/ws and —1/,/ws, while rows associated to

faces of kind C' and D have only three non vanishing
entries given by —1/,/wy, 1/\/ws and 1/,/ws. Thus the

condition BEE]G[TH/ u = 0 can be satisfied if and only
o1 1 1 1 1 1
lfm+m = \/w—sand o T Vws = Jwr namely

Eq. (T4).

Appendix B: Spectrum of the considered
2d-simplicial complexes

The aim of this section is to explicitly determine the
spectra of the simplicial complexes studied in the main
text, namely the WTT and the WW. Given the peri-
odic nature of these simplicial complexes, we will adopt
here an approach based on Bloch’s theorem. Note that
this approach cannot be adopted to study the spectra of
aperiodic simplicial complexes for which different meth-
ods, should be adopted (see for instance renormalization
methods used in [72]).

In the following, we will assume that the metric on the
nodes and on the triangle are trivial and the only non-
trivial metric matrix is the one associated to the edges. In
this case we recall that the elements of the L Laplacian
are given by

_{ Xreqwin Hi=
[L[U}Lj - { _w[ij](: if i # J,
(5-1)

where here we indicate with i, 7 € Qg the generic nodes

of the simplicial complex. Furthermore, the elements of
L?Q‘iw“ Laplacian are given by

1 1 1 e
W(rs] + W(rq] + Wisq) ifi = J = [TSQ]7
[L([i?(iwn] . wllrs] if i = [rsql,j = [rsq'],i~ j,
4 . ] ) ]
’ _w[:'lrs] ifi = [qu],] = [qu/], it g,

where here we indicate with i,j € (@2 the generic
triangles of the simplicial complex.



1. Spectrum of the Weighted Triangulated
2-dimensional Torus

We consider the Weighted Triangulated 2-dimensional
Torus (WTT), namely a 2-dimensional simplicial com-
plex formed by a triangulated 2d lattice with periodic
boundary conditions and linear size L (see for a schematic
representation Fig. [S-1)).

down

a.  Spectrum of Ly and Ly

Let us first calculate the spectrum of the 0-Hodge
Laplacian Ljo; which coincides with the spectrum of the
1-down Hodge Laplacian L‘[iﬁ‘”“. Due to the periodic-
ity of the lattice, the wave number k = (k;,k,) has

_ 2mng

elements that take only the discrete values k, 7

J

[L[O]u}j = (2’11)1 + 2ws + 2w3)€ik'rj

—ws [eik‘ (rj—ey) + eik- (r; +ey]

= ek {411)1 sin? (;) + 4w, sin? (?y) + 4ws sin? (;yﬂ .

Therefore, the eigenvalues A of the 0-Hodge Laplacian
Ly associated to the wave-number k, are given by

A = 4wy sin® (%) + 4wy sin? (%)

ky + k
+4ws sin® (%) (S-4)
We note that Ajg) = 0 is an eigenvalue consistent with

k = (0,0) and u = 1y,. Note that the non-zero eigenval-
ues Ajg) of the 0-Hodge Laplacian Lo coincide with the

non-zero eigenvalues A of the Hodge Laplacian Lffl’wn.

b. Spectrum of Lm and Liiéiwn

The spectrum of 2-Hodge Laplacian L‘[iﬁwn = B[—;]Bm
of the WTT coincides with the spectrum of the graph
Laplacian of its dual hexagonal lattice. As indicated in

Figure 7?7, we distinguish between two different types of
|

1 1
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and k, = 27%"9 with n, integer for p € {z,y} with

0<n, < L 0<ny, < L. We indicate the coordinates of
each node j as r; = (z;,y;) corresponding to the Carte-
sian coordinates of the point j of the 2-dimensional lat-
tice. We indicate with e, and with e, the unit vectors
along the x and the y axis respectively. Let us define
u € CMo as Fourier mode of the lattice, in other words,
we take the components of u given by [u]; = €% with
k-r; = kx; + kyy;. Suppose that u is the eigenvector
of the 0-Hodge Laplacian Lo, here we want to find its
corresponding eigenvalue Ay, i.e., we want to solve the
eigenvalue problem

Ligu= A[O]u with [u]j = ¢krs, (S-2)
The j-th entry of Lygu is
—un [eik(rj —ey) + eik~(rj+em)]
_ w3[eik~(rj—em—ey) + eik~(rj+em+ey)]
(S-3)

(

triangles (triangles of type A and of type B). The tri-
angulated torus can be seen as a periodic lattice of cells
(squares) j of coordinates rj = (z;,y;) indicating the co-
ordinate of their bottom-left node. Due to the periodic-
ity of the lattice, we can use Bloch’s theorem [73] [74] and
indicate the eigenvector u € C™2 of the 2-down Hodge

Laplacian L?ﬁwn as

ikr; (@A
€ J ap ’ (8_5)
where a4,ap € C indicate the component of the eigen-
vector on the triangle of type A and the triangle of type
B respectively. Due to the periodicity of the underlying
square lattice the wave numbers k = (k;, k) have com-

ponents that take only the discrete values k, = Q’Tﬁ”x,

u; =

and k, = 27}"-” with n, integer for u € {x,y} with
0<n; <L,0<n, <L.

Given the choice of the parametrization of the eigen-
vector u we have:

1 ; 1 1, 1,
[Ldownu]A_ _ + + aAelk.rj —ap e]k-(rj+ey)+ elk»(rj—em)_’_ KT ’
2] J "
1 w3

w1 Wao ws

Ldownu —_
[ [2] ]B;j w1 wy W3

Thus, the eigenvalues A of L?ﬁwn, form two bands, and

1 1 1 : 1 . 1
( 4+ — ) aBelk-rj —au |:elk-(r]-ey) 4=

w2

. 1 .
elk-(erreI) + 61k~rj] . (8—6)
w3

wq w2

(

for each choice of the wave-number k = (k, k) are given
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FIG. S-1. Schematic representation of the WTT of linear size L = 3 The unit cell of this simplicial complex is a square formed

by two triangles of different types: type A and type B.

by where
1 1
f) = e ke L (s
w1 w2 w3
1 1 1
Ap) = —+ —+ — +[f(k)| (S-7)  and thus
w1 w2 w3
J
|f(k) 1 + 1 + 1 + 2 [ cos(k: )+ cos(k )+ Cos(k +k )] (S 9)
- 2 T T e p— w w = . -
wi  wi o wi wiwaws - ? Y 3 v
[
We note that Ap) = 0 is an eigenvalue consistent with Waffle are given by the Fourier eigenmodes u € CVo of

k = (0,0) and ay = ap = 1 consistent with u = 1y,.
The non-zero spectrum of the L‘[jﬁwn given by non-zero
eigenvalues Ay coincides with the non-zero spectrum of

L'[Jf]) given by the eigenvalues Ap.

2. The spectrum of the Weighted Waffle

Here we determine the spectrum of the Weighted Waf-
fle (see Fig. by generalizing the approach used to
derive the spectrum of the WTT. The WW is a periodic
lattice of 3-dimensional cells (tetrahedra) glued to each
other along edges. Thus the edges incident to more than
one tetrahedron form a regular square lattice of linear
size L. For this 3-dimensional simplicial complex, we de-
rive here the spectrum of the 0-Hodge Laplacian and the
1-Hodge Laplacian.

a. Spectrum of Lo and Lff]“m

We would first find the spectrum graph Laplacian of
Weighted Waffle. Using a similar technique as the one
adopted for the WT'T (see Sec, we obtain that the
eigenvector of the 0-Hodge Laplacian of the Weighted

elements

fu] = et (5-10)

associated to the wave-numbers k = (k,, ky) with k; =
27an1 and k, = 2Ty where 0 < ny < L,0 < ny < L. The
eigenvalues A[O] associate to this generic eigenvectors are

. k. . k
A = 4wy sin? (5) + 4w, sin? (?y)

+4ws sin? (%) + 4wy sin? (L;ky> (S-11)

We note that Ajg) = 0 is an eigenvalue consistent with
k = (0,0) and u = 1y,. The non-zero spectrum of the
0-Hodge Laplacian Lo formed by the eigenvalues A[q) co-
incides with the non-zero spectrum of the 1-down Hodge

Laplacian Lfﬁ“’“ formed by the eigenvalues Af;.

b.  Spectrum of L} and L[iz‘j“m’

The faces on each tetrahedron of the WW can be clas-
sified in four types: type A,B,C,D (see Fig. [S-2)). By
using Bloch’s theorem [73} [74] the eigenvectors u € CN?
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B, B /B

A A A
o o 63

FIG. S-2. Notation adopted for the WW. In panel (a) a given
tetrahedron of the WW whose faces are indicated according
to their type (A,B,C,D) is visualized together with its four
incident tetrahedra. We indicate in black the faces pointing
outward and in blue the faces (on the back) pointing inward.
Panel (b) represents the same five tetrahedra distinguishing
between the faces pointing outward and the faces pointing
inward. The orientation of the faces is also indicated as this
is important to derive the spectrum of the Lfﬁwn Laplacian.

J

mb ) e b e [as + dhac - ghen
(ap + aD)} + eik'(rﬁey) [wl (ap — ac)}
eik (rjtes) [ (aa+ ac)} + eik(ri—ey) [w%(a,q - aD)} ;

_ ik-r; ikr; [ 1 1 1
- (wl +7+w4)acel T+ etr AiiaB+7QD
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of L?ﬁwn have elements that for each tetrahedron 7 of
coordinates R; on the 2d torus having elements

aa
ik-r; ap
ac
ap

) (8_12)

associated to the wave-numbers k = (kz, ky) with k; =
2”L””, and k, Qﬂ;y where 0 < n, < L,0 < ny < L.
Here a4,ap,ac,ap € C indicate the component relative
to each of the four triangles of the tetrahedron forming
each cell j. The Hodge Laplacian L?QC]’W“ couples each
triangle to the other seven triangles sharing an edge of
which three belong to the same tetrahedron, and the
other four belong to the two adjacent tetrahedra of the
triangular face (see Fig. . A direct calculation per-
formed for the triangular faces of type A, B,C and D
leads to:

| w2 w1

ek (rj—eq) [ (ClB +CLD)} + ek (rj—ey) [le(_aA +CED)} )

[LFQ?WHH]AJ‘ = (w
te ik-(r;—ez) |:
w2

down _
L], = (

down
[L[Q] ]c,j wa
L], = (w% ok k) apets 4 e [

ok (rJ+ez)|: (aAjLac)} + ik (rJ+ey)[ (— aBJrac)}

Thus the spectrum of the L‘[ig‘i‘”“ Hodge Laplacian com-
prised 4 bands having eigenvalues Apy satisfying the

1 1 1
w @A + w, 4B + EGC]

(S-13)
[
eigenvalue problem
aa aa
M B =80 | o2 (5-14)

ap ap



where for each choice of the wave-number k, the matrix

1oy 1 1 gy emihe
%1 U}gk w3 wi w2 w3
e My ez 1 1 1 1
M — wi . w2 + w3 w1 + w2 +A w3
C eTiky i 1 T 4 e—ika
w1 Lw wy w2
1 eka elku 1
w1 w2 w1 wo
We note that Ajg = 0 is an eigenvalue consistent with

k =(0,0) and ay = ap = ac = ap = 1 consistent with
u = 1py,. The non-zero spectrum of the L‘[i;]’wn given
by non-zero eigenvalues Ajg) coincides with the non-zero
spectrum of LFf]) given by the eigenvalues Apj. Addi-

tionally, we observe that although the spectrum of L?QC])WH
is given by four bands only three are non-trivial as the
eigenvalue corresponding to the fourth band is always

null.

Appendix C: Geometric interpretation of the
weights: further mathematical results

1. Weighted Triangulated Torus

The aim of this section is to provide a proof of the
claim that using a sub-additive function ¢ to relate edges
weights and their lengths allows to satisfy the triangular
inequality.

We can indeed state

Theorem 1 Let ¢ : Ry — Ry be a positive sub-additive
function vanishing only at zero. Then for any positive
weights, wy, wg and ws such that Eq. holds true,
the choice of lengths given by

4j90<\/%)7

satisfies the triangular inequality

Proof. By Eq. we have
1 n 1
A/ W3 4/ W1 v/ W2 ’

hence by using the edge between weights and lengths, we
get

(s-1)

o) ol ) o

By using the sub-additivity of ¢ we have

bee(o=)re(o=) -+ 69
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M is a 4 x 4 matrix given by:

elfy 1 1 etk
w1 E _ule w2
1 ez e My 1
w T s . T (S-15)
1 1 1 ethy | eTika 1
+L+L +L
w; ws wy w1 wa wy
ety ez 1 1 1 1
w1 w2 + w4 w1 + wo + wy
[
(Il

A necessary and sufficient condition to have a positive
smooth sub-additive function is given by the following
proposition

Proposition 2 Let ¢ : Ry — Ry be a differentiable,
positive function vanishing at zero such. Then ¢ is sub-
additive if and only if its first derivative is strictly mono-
tone decreasing, namely ¢ is strictly concave.

Proof. By using the smoothness of ¢, for any > 0 and
y > 0 we can write

T4y

oz +y) —ely) = /

Y

Jydt= [ pleryar,
0
and similarly, by recalling the ¢(0) = 0, we get

o) = [ par

Hence

Tty xT
@+ y) — o) — olz) = / (1) dt / (1) dt

/0 Wt +y) — (1) dt

/0 " /t T sy ds. (54)

Thus the conclusion follows by remarking that a smooth
strictly concave function satisfies ¢”(s) < 0 for all s. O

Example 3 The function ¢(t) = t* is sub-additive if
and only 0 < a < 1. Indeed ¢ is smooth, positive, and
vanishing at 0. Moreover ¢'(t) = at®*~ ' and ¢"(t) =
a(a — 1)t*=2, the latter is negative (for positive t) if and
only if 0 < a < 1. We can then apply the previous propo-
sition. This shows the necessity to have 8 < 1/2.

Example 4 By using Proposition |3 we can obtain other

interesting edges between weights and lengths, for in-
stance

szl—e_l/m,

does satisfy the triangular inequality.



Indeed the smooth function o(t) = 1—e™t, vanishes at
zero and it is positive for positive t. Moreover its deriva-
tive @' (t) = et is strictly monotone decreasing, hence
o(t) is sub-additive. In conclusion

s = 1— e YV | _ o~ (/Vin+1/yim)

< 1—e UVOI 41— e VUV®2 =y 44, (S-5)

2. 'Weighted Wafle

The starting point is the conditions given by Eqgs. ,
then assuming again the existence of a relation among
weights and lengths of the form ¢; = g(1/w;), the previ-
ous conditions imply that:

1. ;1 is the longest side of the triangle whose sides are
£y, o and 4, thus £1 > £o and £ > {4;

2. the previous point implies that ¢; must satisfies
b < by + 54;

3. {3 is the longest side of the triangle whose sides are
{1, €5 and /l3, thus 3 > ¢1 and {3 > ¢5. Hence by
the first point we have: f3 > {1 > /o;

4. the previous point implies that f3 must satisfies
23 < 51 + 62.

The aim of this section is to show that the previous
conditions are not sufficient to define a tetrahedron, in-
deed by assuming to fix ¢1, {5 and ¢4, such that points
and[2]are satisfied, then ¢3 should belong to a well-defined
interval, whose bounds depend on ¢1, ¢5 and ¢4 (and this
allows to automatically satisfy points (3| and .

To determine such bounds, let us consider Fig. In
panel i) we show one face of the tetrahedron, i.e., the
triangle with vertexes a, ¢ and d, and sides of length ¢
(green one), ¢o (blue one) and ¢4 (red one). We assume
this triangle to lie on the plane z,y and its vertexes to
have coordinates, a = (£4/2,0), ¢ = (—£4/2,0) and d(p, q)
where one easily can obtain that

€2_ 64 ? 2 d£2_ €4 2 2
1= 5+p +¢” and £5 = P—5 +4q°,

from which it follows

G- 03 s o ([t BB
p= 27, and ¢ —Kl—(Q—i— 5, ) . (S-6)

Let us now consider the full tetrahedron (see panel ii)
of Fig. obtained by gluing two triangles with sides
{1, {5 and {4 along the latter side, and two triangles with
sides f1, ¢ and /{3 again along the latter side. Let us
denote by ¢} the dihedral angle formed by the planes on
which the two triangles with sides /1, {5 and /4, lie.

The last side, /3, is a function of such an angle. There
are in particular two extremal cases corresponding to de-
generate tetrahedra, being the latter “flat”, i.e., with 0

17

volume. These two cases correspond to ¢ = 7 (see panel
iii)) in which case the tetrahedron is “completely open”
and flattened on a plane, and to ¥ = 0 (see panel iv))
in which case the tetrahedron is “completely folded” and
flattened on a plane.

In the former case ¥ = m we can compute the length
of the edge bd by considering (see again panel iii))

(2 =4p® +4¢% =2(02 + 3) — 12, (S-7)

where we used Eq. to relate p and ¢ in function of
4;. Let us observe that the right-hand side of the previous
equation is positive because 1 > #4.

The remaining case ©¥ = 0 we can be handled as well,
to compute the length of the edge bd we use the config-
uration shown in panel iv) and thus get

(3 - 6)°

03 =4p* = Ve
4

(5-8)
where we used again Eq. to relate p and ¢ in func-
tion of ¢;. Let us observe that the right-hand side is
trivially positive.

Let us now prove that 53 > {5. To achieve this goal
let us consider Fig. where we juxtaposed the two
extremal cases. Consider the triangle oT'd with a right
angle at T, then aO is its hypotenuse, and thus Od > db.
But fg = 20d and /3 = 2db, hence é3 > (5. Let us finally
observe that by construction

83<€1+€2.

We can summarize our findings as follows. Given four
sides of length, ¢;, i = 1,...,4, such that

b3 > 1 >€2,€1>€4,€1 <£2+€4, (8-9)

then those sides can be the edges of a tetrahedron if and
only if /3 satisfies

G- . A
1€ 2 — 3 <l3<l3</2(03+03)—03. (S-10)
4

Remark 5 Let us conclude by observing that the same
result can be obtained by using the Cayley—Menger deter-
minant formula allowing us to compute the volume of a
simplex given its sides. In the present case, the formula
returns

Lol (B-03)° 2 2 2 2
= 3!?64 05— T [2(61 +05)— 0 — 63] (S-11)
where the last equality has been found by using an alge-
braic manipulator.
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i) Y
d=(p,q)
5
lo
£y 7 :
0y 0y x ¢ 4 @ dihedral angle
c= (75,0> a= <E’O>
G-8 2o (o, B-8Y
T e T
iii) iv)

“Open flat tetrahedron”

c a

= “Folded flat tetrahedron” #=0

dihedral angle dihedral angle

FIG. S-3. Different views of the tetrahedron and its faces

FIG. S-4. Two flatten tetrahedra
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