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Coupled oscillators with time-delayed network interactions are critical to understand synchronization phenom-
ena in many physical systems. Phase reductions to finite-dimensional phase oscillator networks allow for their
explicit analysis. However, first-order phase reductions—where delays correspond to phase lags—fail to cap-
ture the delay-dependence of synchronization. We develop a systematic approach to derive phase reductions for
delay-coupled oscillators to arbitrary order. Already the second-order reduction can predict delay-dependent
(bi-)stability of synchronized states as demonstrated for Stuart–Landau oscillators.

Time delays in network interactions—induced by finite
transmission speed for instance—shape the synchronization
behavior of coupled oscillator networks [1]. It is crucial to
determine how time delay affects synchronization, not only to
understand complex physical systems, such as brain dynam-
ics and function [2, 3], but also to control them [4, 5]. Phase
reduction, i.e., deriving the dynamics of the phases ϕj ∈
T := R/2πZ of the oscillators, is a widely used dimension-
reduction technique to analyze synchronization behaviour of
coupled oscillator networks [6–8]. Since the seminal work by
Kuramoto and Sakaguchi [9, 10], the standard approach to ac-
count for time delays is to approximate them by phase lags: If
oscillator j evolves at frequency ωj in isolation, then its phase
at time time t−τ is approximated by ϕj(t−τ) ≈ ϕj(t)−ωjτ .
For coupling strength ε, this approximation is generally valid
only if ετ is small [11]. This, however, significantly limits the
applicability of the phase-lag approximation for many physi-
cally relevant systems: It fails to capture basic network syn-
chronization properties even for moderate coupling strength
and/or delays; cf. Fig. 1(a).

In this paper, we develop a systematic approach to phase
reduction for delay-coupled oscillators, thereby clarifying
how time delays affect the phase dynamics. Mathemati-
cal theory [12, 13] shows that n delay-coupled oscillators—
an infinite-dimensional system—generally give rise to finite-
dimensional phase dynamics on Tn (rather than phase equa-
tions with time delay [14]). Computing these phase dynam-
ics, however, has remained elusive. Our approach first re-
formulates the delay differential equation as an ordinary dif-
ferential equation coupled to a transport equation. Then, we
use a parametrization method [15] to compute the phase re-
duction order-by-order. This approach naturally recovers the
phase-lag approximation at first order: The first-order phase
dynamics is determined by the uncoupled zeroth-order evolu-
tion ϕj(t) = ϕj(0)+ωjt for which a time delay is a phase lag.
By contrast, the second-order approximation is determined by
the nontrivial solutions of the first-order dynamics. Hence,
the phase dynamics of order two and higher will depend non-
trivially on the delay, in a way that we can compute explicitly.

Our approach provides a new way to understand delay-

induced synchronization phenomena: Computing the second-
order phase reduction explicitly for two coupled Stuart–
Landau (SL) oscillators demonstrates the nontrivial depen-
dence of the synchronization dynamics on the time delay.
As shown in Fig. 1(b), already the second-order approxima-
tion of the two-dimensional phase dynamics correctly predicts
synchronization in the original infinite-dimensional delay-
coupled equations.

Methodology: Delay through transport.—We consider a gen-
eral model of n nonlinear oscillators coupled with transmis-
sion delay. In isolation, the state xj ∈ Rmj of oscillator j
evolves according to ẋj(t) = Fj(xj(t)) which admits a Tj-
periodic limit cycle x∗j (t) of frequency ωj = 2π

Tj
. In other

words, the (asymptotic) state of each oscillator is determined
by the phase ϕj ∈ T of the point x∗j (ϕj/ωj) on the jth limit
cycle. For coupling strength ε > 0, oscillator j ∈ {1, . . . , n}

FIG. 1. Time-delayed coupling influences the synchronization of two
coupled Stuart–Landau oscillators (9) with states zj = rje

ϕj for
parameters a = b = 1 and coupling strength ε = 0.1. The col-
oring shows the phase difference ψ = ϕ1 − ϕ2 after T = 1000
time units from an initial condition (z1(0), z2(0)) = (e0i, e0.01i)
close to in-phase synchrony {z1 = z2}: Blue indicates conver-
gence to in-phase synchrony and red convergence to anti-phase syn-
chrony {z1 = iz2}. The stability boundaries of in-phase synchrony
predicted by phase reduction are shown by blue curves: The first-
order approximation (12) gives the vertical lines in Panel (a) as time
delays correspond to phase lags. By contrast, the second-order ap-
proximation (13) captures the delay-dependence of synchronization
beyond small τ , as shown in Panel (b).
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evolves according to

ẋj(t) = Fj(xj(t)) + ε

n∑
k=1

Gj,k (xj(t), xk(t− τj,k)) , (1)

where the function Gj,k specifies the coupling from oscilla-
tor k to j and τj,k ≥ 0 the time delay. We seek to compute
the ordinary differential equations that determine the the evo-
lution of ϕ = (ϕ1, . . . , ϕn)

T ∈ Tn as an expansion in the
coupling strength ε ≥ 0:

ϕ̇ = f(ϕ, ε) = ω + εf (1)(ϕ) + ε2f (2)(ϕ) + · · · . (2)

Here ω = (ω1, . . . , ωn)
T determines the uncoupled (zeroth-

order) dynamics and f (ℓ) is its correction of order ℓ.
The first step in our approach is to replace Eq. (1) by an

ordinary differential equation coupled to a transport equation.
Specifically, we consider the co-evolution of oscillator histo-
ries Xj(s, t) and states xj(t) = Xj(0, t) given by

ẋj(t) = Fj(xj(t)) + ε
n∑

k=1

Gj,k (xj(t), Xk(−τj,k, t)) (3a)

∂tXj(s, t) = ∂sXj(s, t). (3b)

Note that problems (1) and (3) are equivalent: Solutions to the
transport equation (3b) with boundary condition Xj(0, t) =
xj(t) are given by Xj(s, t) = xj(t + s). In other words,
s 7→ Xj(s, t) is the history of xj up to time t, parametrized
by the history variable s ∈ (−∞, 0].

In the second step, we match the phase dynamics (2) to
be computed to the dynamics of the coupled system (3).
To this end, we seek functions e, E that relate solu-
tions ϕ(t) of the phase dynamics (2) to solutions X(s, t) =
(X1(s, t), . . . , Xn(s, t))

T, x(t) = (x1(t), . . . , xn(t))
T of (3)

through

x(t) = e(ϕ(t), ε), X(s, t) = E(s,ϕ(t), ε) (4)

with boundary condition e(ϕ, ε) = E(0,ϕ, ε). Substitution
of (2) and (4) into (3) gives

∂ϕej(ϕ, ε) · f(ϕ, ε) = Fj(ej(ϕ, ε))

+ ε
∑
k

Gj,k(ej(ϕ, ε), Ek(−τj,k,ϕ, ε)), (5a)

∂ϕEj(s,ϕ, ε) · f(ϕ, ε) = ∂sEj(s,ϕ, ε). (5b)

Fulfilling these conjugacy equations links e(ϕ), E(ϕ) and the
phase dynamics f(ϕ) to the dynamics of (3)—and thus (1).

The third step is to expand (5) in powers of ε to obtain iter-
ative equations to determine e(ϕ), E(ϕ), and f(ϕ). Write

e(ϕ(t), ε) = e(0)(ϕ(t)) + εe(1)(ϕ(t)) + · · ·
E(s,ϕ(t), ε) = E(0)(s,ϕ(t)) + εE(1)(s,ϕ(t)) + · · ·

and substitute this, together with (2), into (5). Collecting zero-
th-order (ε0) terms in (5) gives

∂ϕe
(0)
j (ϕ) · ω = Fj(e

(0)
j (ϕ)) (6a)

∂ϕE
(0)
j (s,ϕ) · ω = ∂sE

(0)
j (s,ϕ). (6b)

For ℓ ≥ 1, collecting ℓth-order (εℓ) terms in (5) yields

∂ϕe
(0)
j (ϕ) · f (ℓ)(ϕ) + ∂ϕe

(ℓ)
j (ϕ) · ω

−DFj(e
(0)
j (ϕ)) · ej(ℓ)(ϕ) = h

(ℓ)
j (ϕ) (7a)

∂ϕE
(ℓ)
j (s,ϕ) · ω − ∂sE

(ℓ)
j (s,ϕ) = H

(ℓ)
j (s,ϕ) (7b)

where DFj denotes the (mj × mj)-Jacobian matrix of Fj ,
while h(ℓ)j and H

(ℓ)
j are inhomogeneous terms that can be

computed explicitly from the lower-order expressions. For in-
stance, for ℓ = 1 these terms are given by

h
(1)
j (ϕ) =

∑
k

Gj,k

(
e
(0)
j (ϕ), E

(0)
k (−τj,k,ϕ)

)
,

H
(1)
j (s,ϕ) = −∂ϕE(0)

j (s,ϕ) · f (1)(ϕ).

Thus, (7) forms a system of inductive equations that determine
the phase dynamics to arbitrary order ℓ.

The fourth step is now to solve these equations order-by-
order. The zeroth-order equations (6) have solution e(0)j (ϕ) =

x∗j (ϕj/ωj), E
(0)
j (s,ϕ) = e

(0)
j (ϕ + ωs) = x∗j (ϕj/ωj + s),

i.e., the periodic orbits of the uncoupled system. At first-
order (ℓ = 1), equation (7a) is a system of inhomogeneous
linear equations for e(1) and f (1) that depend on e(0), E(0).
These equations can be solved in exactly the same way as
for problems without time delay, for example using Floquet
theory [15]. Because the inhomogeneous terms h(1)j (ϕ) de-

pend on E(0)
k (−τj,k,ϕ) = e

(0)
k (ϕ − ωτj,k), the delays τj,k

appear in e(1) and f (1) through phase lags of the unperturbed
periodic orbits, as expected. The first-order equation (7b) is
an inhomogeneous linear transport equation for E(1). It can
be solved using the method of characteristics, which—with
boundary condition E(1)(0,ϕ) = e(1)(ϕ)—gives

E
(1)
j (s,ϕ) = e

(1)
j (ϕ+ ωs)

−
∫ s

0

H
(1)
j

(
σ,ϕ+ ω(s− σ)

)
dσ.

(8)

Equations (7) for order ℓ > 1 have the same structure: They
consist of a system of inhomogeneous linear equations for e(ℓ)

and f (ℓ) that can be solved with Floquet theory, and a sys-
tem of inhomogeneous transport equations for E(ℓ) that can
be solved by the method of characteristics. Our method thus
allows to analytically compute phase reductions of (1) to ar-
bitrary order in the coupling strength ε.
Delay-coupled Stuart–Landau oscillators.—As a proof of
principle, we apply our method to compute second-order
phase equations for two identical delay-coupled Stuart–
Landau (SL) oscillators

ż1 = (a+ ib)z1 − |z1|2 z1 + εeiρ (z2(t− τ)− z1)

ż2 = (a+ ib)z2 − |z2|2 z2 + εeiρ (z1(t− τ)− z2)
(9)

with zj ∈ C and i :=
√
−1. We assume that a > 0 and

b ̸= 0, so that in the absence of coupling, the SL oscillators
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possess identical limit cycles z∗j (t) =
√
aeibt of frequency

ω := ωj = b. As a result we have e(0)j (ϕ) =
√
aeiϕj ,

E
(0)
j (s,ϕ) =

√
aei(ϕj+ωs) and ω = (ω, ω)T to order ε0.

The symmetry of the problem allows to avoid the use of
Floquet theory to solve the first-order equations and instead
make the phase-difference ansatz

e(1)(ϕ) = (eiϕ1A(ϕ2 − ϕ1), e
iϕ2A(ϕ1 − ϕ2))

T,

f (1)(ϕ) = (B(ϕ2 − ϕ1), B(ϕ1 − ϕ2))
T,

with real-valued functionsA,B on T. This transforms (7) into
the single complex equation

i
√
aB(θ) + 2aA(θ) =

√
aeiρ(ei(θ−ωτ) − 1). (10)

Equation (10) is readily solved for A(θ) and B(θ) by examin-
ing its real and imaginary parts separately, yielding

f (1)(ϕ) =

(
sin(ϕ2 − ϕ1 − ωτ + ρ)− sin(ρ)
sin(ϕ1 − ϕ2 − ωτ + ρ)− sin(ρ)

)
(11)

and

e(1)(ϕ) =
1

2
√
a

(
eiϕ1 [cos(ϕ2 − ϕ1 − ωτ + ρ)− cos(ρ)]
eiϕ2 [cos(ϕ1 − ϕ2 − ωτ + ρ)− cos(ρ)]

)
,

which describe the first-order phase dynamics. Note the phase
lag in (11). We calculate E(1) from (8) to obtain

E(1)(s,ϕ) = e(1)(ϕ1 + ωs, ϕ2 + ωs)

+ s

(
i
√
aei(ϕ1+ωs) [sin(ϕ2 − ϕ1 − ωτ + ρ)− sin(ρ)]

i
√
aei(ϕ2+ωs) [sin(ϕ1 − ϕ2 − ωτ + ρ)− sin(ρ)]

)
.

The second term in the formula shows the nontrivial depen-
dence on the history variable s.

For the second-order approximation, note that E(1)(−τ,ϕ)
enters into the inhomogeneity h(2) of the iterative equations
that determine f (2) and e(2). We can therefore expect f (2) to
depend on the time delay τ in a nontrivial fashion. Solving the
corresponding second-order equations as explained above—
details are given in [16]—we find

f (2)(ϕ) =

[
1

4a
− τ

2

]
sin(2ρ− 2ωτ)

(
1
1

)
+ τ sin(ρ)

(
cos(ϕ2 − ϕ1 − ωτ + ρ)
cos(ϕ1 − ϕ2 − ωτ + ρ)

)
+
τ

2
cos(2ρ− 2ωτ)

(
sin(2(ϕ2 − ϕ1 − ωτ + ρ))
sin(2(ϕ1 − ϕ2 − ωτ + ρ))

)
−
[
1

4a
+
τ

2

]
sin(2ρ− 2ωτ)

(
cos(2(ϕ2 − ϕ1 − ωτ + ρ))
cos(2(ϕ1 − ϕ2 − ωτ + ρ))

)
.

Together with (11), this specifies the phase dynamics (2) and
its dependence on the delay up to second order; we omit ex-
plicit expressions of e(2) and E(2) as they are not relevant for
the phase dynamics.
Phase reduction shows delay-dependent synchronization.—
The phase equations that we derived for (9) elucidate how the

synchronization of the network depends on the time delay τ .
Introducing the phase difference coordinate ψ := ϕ1 − ϕ2
yields effective one-dimensional dynamics. In-phase syn-
chrony corresponds to the equilibrium ψ = 0 and anti-phase
synchrony to the equilibrium ψ = π. Thus, the stability of
these equilibria is crucial to understand the synchronization
dynamics of the delay-coupled oscillator network.

To first order, the time delay enters as a phase lag. Specif-
ically, the phase equations (2) truncated at first order imply
that the phase difference ψ evolves according to

ψ̇ = −2ε cos(ρ− ωτ) sin(ψ). (12)

governed by a single harmonic. The first-order approxima-
tion thus predicts that the synchronization behavior is fully
determined by the effective phase lag α = ρ − ωτ : The
equilibrium ψ = 0 is linearly stable for α ∈ (−π

2 ,
π
2 ), the

equilibrium ψ = π is linearly stable for α ∈ (π2 ,
3π
2 ), and

there is an exchange of stability in a degenerate bifurcation
at α ∈ {π

2 ,
3π
2

(
≡ −π

2

)
}. These stability boundaries are de-

picted in Fig. 1(a) as vertical lines. At the same time, solving
the time-delayed differential equations (9) numerically shows
that for coupling strength ε = 0.1 the first-order approxima-
tion breaks down for time delays well below one period of the
uncoupled SL oscillators; cf. the shading in Fig. 1(a).

The second-order phase equations do capture the delay-
dependence of the synchronization. With α = ρ − ωτ as
above, the phase dynamics (2) truncated at second order eval-
uates to

ψ̇ = −2
(
ε cos(α)− ε2τ sin(ρ) sin(α)

)
sin(ψ)

− ε2
(
τ +

1

2a
sin2(2α)

)
sin(2ψ).

(13)

Note that the second-order terms introduce a second har-
monic, and make the Fourier coefficients depend explicitly on
the time delay τ . Linear stability of in-phase synchrony ψ = 0
is determined by the Lyapunov exponent

λ(0) = cos(α) + ε

(
τ +

1

2α
sin2(2α)− τ sin(ρ) sin(α)

)
.

The bifurcation curves λ(0) = 0 are colored blue in Fig. 1(b).
They not only provide a more accurate approximation of the
numerical simulations (coloring), but also qualitatively cap-
ture the delay-dependence of the synchronization transition.

The second-order phase equations also capture delay-
dependent multistability. Indeed, simulations of the delay-
coupled SL oscillators (9) with random initial conditions show
that there is a large (delay-dependent) range of parameters for
which the system exhibits bistability between in-phase and
anti-phase synchrony; this corresponds to the speckled area
in Fig. 2. Computing the Lyapunov exponent λ(π) of ψ = π
in addition to λ(0) yields approximate bounds for the domain
of bistability, for a coupling strength of ε = 0.1 and delays of
the order of one period of oscillation (blue/red lines in Fig. 2).
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FIG. 2. Random initial conditions show delay-dependent regions of
bistability between in-phase synchrony and anti-phase synchrony for
coupled SL oscillators (9); parameters and coloring are chosen as in
Fig. 1. The curves indicate the stability boundaries predicted by the
second-order phase reduction (13) for in-phase synchrony (dark blue,
as in Fig. 1) determined by λ(0) = 0, and anti-phase synchrony (dark
red) determined by λ(π) = 0.

Discussion.—Our approach explains why even simple oscilla-
tors can show complex delay-dependent synchronization be-
havior that is not captured by a phase-lag approximation. In
the example of coupled Stuart–Landau oscillators, the first-
order phase equation (12) is given by a single harmonic func-
tion. First-order phase reduction is thus of limited use in pre-
dicting phase synchronisation, as a single harmonic cannot
predict bistability of in-phase and anti-phase synchrony. For
more complicated oscillators—such as oscillations close to a
relaxation limit—one expects that already the first-order phase
dynamics displays multiple harmonics [17]. While this im-
plies that multistability can already be detected at first order,
the correct delay-dependence will generally only be apparent
to second order.

Applying our phase reduction method to larger networks is
straightforward and will shed light on how time delays affect
phase interactions to arbitrary order. Even if the coupling be-
tween nonlinear oscillators is additive—as in (1)—phase in-
teractions beyond first order will display nonpairwise terms
that describe indirect phase interactions [18]. Thus, phase re-
duction can link phase-lag parameters in higher-order interac-
tion networks [19, 20]—that have so far been chosen ad-hoc—
to physically meaningful quantities like time delays. We will
discuss this in more detail in future work.

We developed a systematic and general method to com-

pute the finite-dimensional phase dynamics of an infinite-
dimensional delay-coupled oscillator network up to arbitrary
order. Importantly, the approach provided here not only yields
the phase dynamics (2) to arbitrary order but also makes
explicit—through the functions e and E—how this dynam-
ics is embedded in the phase space of the full system. In other
words, it can explain observed amplitude variations [21]. As
with any phase reduction method, solving the iterative equa-
tions explicitly can become computationally complex. Hence,
it would be desirable to implement our method in a computer
to determine phase dynamics automatically to arbitrary order
in any oscillator model. It would also be interesting to adapt
the method presented here to coupled delay-induced oscilla-
tions; see also [22].
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