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Magnetically levitated superconductors in the Meissner state can be utilized as micro-mechanical
oscillators with large mass, high quality factors and long coherence times. In previous works analyt-
ical solutions for the magnetic field distribution around a superconducting sphere in a quadrupole
field have been found and used to derive the trap parameters, while non-spherical geometries have
only been investigated in a few idealized cases. However, superconductors of almost arbitrary shape
can be used as levitators in a magnetic trap and, as the trap’s properties depend strongly on the
superconductors shape, allow for a wider parameter regime to be accessed. Finite element models
are suitable to obtain the field distribution around arbitrarily shaped superconductors in arbitrary
fields, but have not yet been used widely in the context of levitated superconductors. Here we
present a simple numerical model for this purpose and use it to calculate the field distribution
around cylindrical superconductors in a quadrupole field and to evaluate the trap parameters. We
find that the cylindrical shape, compared to spherical levitators, allows for substantially higher trap
frequencies and coupling strengths. This in turn reduces the demands on vibration isolation and
significantly eases the requirements for feedback cooling to the ground state. The numerical model
is provided as supplemental material and can easily be adapted to various geometries and trap fields.

I. INTRODUCTION

Magnetically levitated superconductors are already
well established as accelerations sensors, most notably
in the superconducting gravimeter [1], which uses cen-
timeter sized hollow spheres coated with Niobium. More
recent proposals [2, 3] and experimental advances [4, 5]
have shown the potential of using much smaller mag-
netically levitated particles for approaching the quan-
tum regime with massive, micrometer-sized particles. We
believe that the most promising approach is the levita-
tion of a type-I superconductor in the field produced
by persistent currents, as this avoids non-fundamental
sources of dissipation and decoherence which are present
in other levitation schemes [5]. For spherical supercon-
ductors analytical solutions for the magnetic field distri-
bution, which allow the accurate prediction of the mag-
netic trap’s properties, exist [6] and are in good agree-
ment with experimental results [5]. For non-spherical
superconductors analytical solutions have been found for
a few idealized cases, in particular thin rings [7] and el-
lipsoids [8], and the results indicate that the trap param-
eters are strongly dependent on the shape of the super-
conductor and that non-spherical superconductors might
allow access to trap parameters that are not attainable
with spheres. Furthermore, non-spherical particles pos-
sess librational degrees of freedom, which exhibit prop-
erties that are not present for the center-of-mass motion
[9]. Here we present a numerical model for calculating the
field distribution and resulting trap properties for a cylin-
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drically shaped superconductor in a quadrupole field.
The simulations are written in matlab and use comsol
multiphysics for the numerical evaluation. The model
is resource friendly and can be run on a typical personal
computer. All files are provided as supplementary ma-
terial and can easily be modified to evaluate various su-
perconducting geometries (e.g. dumbbells, cuboids). We
test the numerical model by computing the field distri-
bution for a spherical superconductor and comparing it
to the analytical values, details on this are provided in
the appendix.

II. MODEL

We consider a quadrupole trap, such that the applied
field is of the form B0(x) = (bxx, byy, bzz) and, without
loss of generality, assume |bx| < |by| < |bz|. Since the bi
are related by bz = −(bx + by) (from ∇B0 = 0) we can
choose a parameter ǫ with 0 ≤ ǫ < 1 such that

B0(x) =
1

2
bz ((1− ǫ)x, (1 + ǫ)y,−2z) . (1)

We consider only the case where the cylinder’s radius
R and height H are both much larger than the super-
conducting penetration depth λ, s.t. λ → 0 is a good
approximation and the magnetic field vanishes inside the
cylinder [6]. Outside of the cylinder we can introduce a
scalar potential Φ such that

B = B0 −∇Φ and ∆Φ = 0. (2)
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The magnetic field distribution B around the cylinder is
determined by

B
|x|→∞
−−−−→ B0 (3)

and the boundary condition

n ·B = 0 (4)

on the cylinder’s surface, where n is the surface normal
vector. The position and orientation of the cylinder rela-
tive to the field are described by Euler angles in the ZYX
convention (the capital letters denote the intrinsic axes,
co-rotating with the cylinder) and a displacement vector.
Starting from a position where the cylinder’s c.o.m. is co-
incident with the origin of the coordinate system and the
cylinder is coaxial w.r.t. the z-axis, we first rotate the
cylinder by an angle α around the Z-axis (which initially
coincides with the z-axis) and then by an angle β around
the Y -axis. Finally we displace the cylinder’s c.o.m. by
x0 (cf. Fig. 1a). The third angle, γ, which corresponds
to a rotation around the X-axis, is not needed to de-
scribe the position, but will be used further below in the
context of the librational modes. The setup of the com-

sol simulations is shown in Fig. 1b. For the simulations
we use the intrinsic coordinate system aligned with the
cylinder, such that

B0 → R−1

Y (β)R−1

Z (α)B0 (RZ(α)RY (β)(x + x0))

with

RY (β) =





cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)





and

RZ(α) =





cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1



 .

The cylinder is thus always at the center of the spheri-
cal simulation domain and constitutes its inner bound-
ary. This setup allows us to reuse the same mesh for all
simulations with the same radius and height, reducing
meshing times. In the outermost shell of the simulation
domain, the distance between mesh elements is scaled
such that the boundary condition is set at a distance
much larger than any characteristic scale of the super-
conductor (effectively at infinity). We then use comsol

to numerically solve Eq. 2 for the scalar potential in the
simulation domain with the boundary conditions (3, 4)
on the inner and outer boundary, respectively.
Since the set of equations (1 - 4) is scale invariant both

w.r.t. length and the magnetic gradient bz, it follows that
the solution is (up to rescaling) independent of bz and
depends only on the ratio H

R
, i.e.

B (bz, R,H,x0,x) = bzRB

(

1, 1,
H

R
,
x0

R
,
x

R

)

. (5)

FIG. 1. (a)Sketch of the system. The quadrupole field is
depicted by its field lines in the xz-plane. (b)Geometrical
setup of the COMSOL simulation. In the spherical simula-
tion domain (grey) the equation ∆Φ = 0 is solved numer-
ically, with the boundary conditions being set on the inner
and outer boundaries of the domain. In the outer shell of the
simulation domain (striped pattern) distances between mesh
elements are scaled.

It is thus sufficient to solve for a fixed value of bz and
e.g. R, we subsequently use bz = 1T/m and R = 1m.
This corresponds to measuring length in units of R and
magnetic field strength in units of bzR.

Having obtained the field distribution, we can calculate
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the force and torque acting on the cylinder as

F =
1

µ0

‹

dS

[

(nB)B−
1

2
nB

2

]

and

T =
1

µ0

‹

dS

[

x×

(

(nB)B−
1

2
nB

2

)]

,

where the integration runs over the surface of the cylinder
and n denotes the surface normal vector.
Note that sharp edges as used in this simulation are,

in principle, unphysical, as in reality the field can al-
ways penetrate any physical superconductor to a length
on the order of the penetration depth. Indeed, the max-
imum surface field on the superconductor diverges when
a sharp edge is used (analogous to how the magnetic
field strength on the surface of a thin wire tends to in-
finity when the wire size is decreased). We compare the
results to a simulation using rounded edges with a fi-
nite radius Redge as well as to a simulation of the full
Maxwell-London equations taking into account the pen-
etration depth λ of the superconductor and show that the
results for these cases converge to the results obtained us-
ing sharp edges for Redge → 0 respectively λ → 0 (more
details are provided in the appendix). The model with
sharp edges is thus suitable to investigate the general
behavior, in practice we recommend using an edge ra-
dius corresponding to experimental parameters. Note
that the simulations of the full Maxwell-London equa-
tions are computationally much more expensive and im-
practical to run on a typical personal computer, which is
why we chose the approach using the scalar potential for
the majority of the simulations.

III. EQUILIBRIUM POSITIONS

We show an overview of the stable equilibrium posi-
tions in Fig. 2. The c.o.m. position is always x0 = 0,
so the equilibrium positions differ only in α and β. For
simplicity we have chosen not to include the gravitational
force into the analysis, which would result in a shift of the
rest position along the axis of gravity. Due to the mir-
ror symmetry of the applied field (w.r.t. the xy, xz and
yz planes) the mirrored configurations also correspond to
stable equilibria. Note that for ǫ = 0 the cylinder is not
constrained at all w.r.t. rotations around the z-axis (as
the field is radially symmetric), i.e. in that case α can
take any value and the equilibria are determined only by
the value of β.
For small H

R
a stable orientation is given by β = 0,

while for large H
R

the stable orientation is α = 0, β =
π
2
. In between the orientation changes continuously (cf.

Fig. 3b) from α = π
2
, β = 0 to α = 0, β = π

2
. The ex-

act ratio, at which the transition between the different
equilibrium positions occurs, depends on ǫ (Fig. 3a), the
values stated on the right-hand-side of Fig. 2 are approxi-
mate for ǫ = 0. Note that for H

R
/ 1

2
a second equilibrium

FIG. 2. Schematic overview of the different stable trap po-
sitions for a superconducting cylinder in a quadrupole trap.
For ǫ = 0 the cylinder is free to rotate around the z-axis and
the equilibrium positions is determined solely by β. Note that
the orientation α = 0, β = π

2
also results in a stable equilib-

rium for very small H

R
(approximately H

R
< 1

3
ǫ), this is not

explicitly shown in the figure. The values for the transition
between the different stable orientations shown on the right-
hand-side are approximate for ǫ = 0.

position exists for α = π
2
, β = π

2
and for H

R
/ 1

3
ǫ there

is a third equilibrium at α = 0, β = π
2
. This might seem

counter-intuitive, since the field gradient is steepest along
the z-axis. However, some intuition can be gained from
thinking about the way the original field is disturbed by
the presence of the superconductor. When the cylinder’s
flat edges are parallel to the xz or yz-plane, the field dis-
turbance is comparatively small (cf. Fig. 4a). However,
if the cylinder is tilted slightly, the disturbance is much
larger (cf. Fig. 4b). It thus makes sense that these ori-
entations result in local energy minima (cf. Fig. 4c), as
the energy is proportional to the volume integral over the
squared magnetic field norm.

In Fig. 5 we plot the torque on the cylinder as a
function of the angle β for various aspect ratios and
α = π

2
, ǫ = 0. The linear component of the torque around
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1
/2

2
/3 4

FIG. 3. (a)ǫ-dependence of the transition points between the
stable equilibria, as described in the text. (b)For ǫ = 0 the
equilibrium position of the cylinder is determined solely by β.
The transition points are marked by the vertical lines. For
small H

R
two stable equilibria exist.

the rest positions vanishes at the transition points (e.g.
H
R

= 2

3
), so in this case there is no harmonic trapping

potential. In the subsequent sections we will focus on
the case H

R
/ 2

3
, β = 0, as this position results in the

highest trapping frequency for the center-of-mass motion
along the z-axis as well as the highest ratio of coupling
strength to mass, which is relevant for feedback cooling.

IV. TRAP FREQUENCIES

For small displacements around the equilibrium posi-
tion β = 0 the motion of the cylinder can be character-
ized by five normal modes, three for the center of mass
motion and two librational modes corresponding to rota-
tions around the axes x and y. For simplicity we restrict
ourselves to the case where the cylinder does not rotate
around its symmetry axis (α̇ = 0) and, without loss of
generality, set α = 0 (i.e. β and γ characterize the libra-
tional modes).

FIG. 4. (a,b)Comparison between a cylinder with H/R = 0.1
in (a) the equilibrium position α = π

2
, β = π

2
and (b) slightly

tilted away from the equilibrium position. The field lines of B
in the yz-plane as well as the field norm of the induced field
B − B0 are displayed, brighter colors correspond to higher
fields. (c)Magnetic energy w.r.t. α, β for a cylinder with
H/R = 0.1 and ǫ = 0.75. The stable equilibria correspond to
the local minima of the energy.

In Fig. 6a we plot the frequencies fx, fz, fα for ǫ = 0,
in which case the x- and y-mode as well as the β- and
γ-mode are degenerate. The inset shows the dependence
of these modes on epsilon for H

R
= 0.2. To plot relatable

numbers we have assumed a density of 8570kg/m3 (corre-
sponding to the density of Niobium) and a field gradient
bz = 500T/m. For comparison, the dashed line displays
the frequencies fx,S, fz,S for a superconducting sphere [6]
using the same parameters. Note that the center-of-mass
frequency for the z-mode is higher than the correspond-
ing frequency for a sphere for all aspect ratios, and can
be substantially higher for small aspect ratios. It ap-
pears that fz could in principle be made arbitrarily high
for small aspect ratios, so in practice the limit will likely
be the rigidity of the material (or, alternatively, when H
approaches the London penetration depth).

Note that the lateral frequency fx decreases slowly
with decreasing H

R
. This was contrary to our initial ex-

pectations, as we assumed the behavior would be similar
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FIG. 5. Torque on the cylinder for various aspect ratios and
α = π

2
, ǫ = 0. For H

R
= 2

3
the harmonic potential vanishes.

Each curve was scaled for visibility.

FIG. 6. Frequencies for a superconducting niobium cylinder
in a quadrupole field with ǫ = 0 and bz = 500T/m, the
dashed and dotted lines show the corresponding values for a
superconducting sphere. The inset shows the dependence of
the frequencies on ǫ, using H

R
= 2.

to a sphere - a linear dependence of the spring constant
on H and thus fx independent of the aspect ratio. We do
not have an intuitive explanation for this result, but we
double-checked that it is not an artifact of the numerical
approach (in particular we ascertained that the values
of fx converge with increasing mesh resolution and that
the values are independent of the settings of the iterative
solver).

V. FLUX AND COUPLING

Since the local magnetic field distribution depends
on the position and orientation of the superconductor,
changes in orientation and position of the levitated cylin-
der can be read-out by a measuring the change in mag-
netic flux φ through a suitable area (”pickup loop”) close
to the levitation point. For simplicity, we restrict our-
selves to evaluating the flux through a planar circular
pickup loop coaxial with the z-axis. The flux and cou-
pling then depend on only two parameters, the radius
of the pickup loop RP and the height above the trap
center ZP (cf. Fig. 7a). For small oscillations around

(a)

(b)

FIG. 7. (a)Schematic of the trapped cylinder with a coaxial
pickup loop. (b)Flux in a pickup loop with ZP = H

2
as a

function of particle displacement z0. Both curves have been
offset s.t. the flux for z0 = 0 is zero. When the pickup loop
is further away from the edge of the cylinder (dashed line),
the dependence of the flux on the displacement is linear to
a good approximation. When RP is close to R the coupling
(corresponding to the slope of the dash-dotted line) increases,
but becomes increasingly non-linear.

the equilibrium position and a suitable position of the
pickup loop the flux depends linearly on the cylinder’s
position and can be characterized by a coupling strength
ηz = ∂zφ(x0). For the numerical evaluation of the cou-
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pling we use a displacement of 2.5× 10−6R, i.e.

ηz =
φ(z0 = 2.5× 10−6m)− φ(z0 = −2.5× 10−6m)

5× 10−6m
.

Note that, for the same reasons discussed further above
in the context of the maximum surface field, the cou-
pling diverges when the pickup loop approaches the edges
of the cylinder and becomes increasingly non-linear (cf.
Fig. 7b). We have thus excluded a small area around
RP = R,ZP = 1

2
H from the evaluation, such that the

minimal distance between the edge and the pickup loop
is approximately 1× 10−3R.
For each ZP there is a unique pickup loop radius

RP,opt(ZP ) that results in a maximum coupling strength
ηopt(ZP ), both of which are plotted in Fig. 8. Overall, as
mentioned above, the coupling is highest when the pickup
loop is close to the upper (or lower) edge of the cylinder.
We can now compare ηopt for the cylindrical supercon-
ductor to the optimized coupling ηopt,S for a spherical
superconductor [5], where we choose the radius of the
sphere such that it has the same volume as the cylinder

(because the ratio
η2

z

m
, where m is the mass of the levi-

tated object, determines the thermal occupation of the
z-mode under optimal feedback [5] and is thus a rele-
vant quantity when comparing different geometries). We
find that the optimal coupling is significantly higher for
the cylindrical superconductor (cf. Fig. 8b) for all pickup
loop positions. Experimentally the coupling strength can
be further increased by using a multi-turn pickup loop
and matching the inductance of the pickup loop to that
of the sensor [5].

VI. MAXIMUM FIELD

The maximum field on the surface of the cylinder is
an important parameter to consider, as it has to stay
below the (lower) critical field of the superconducting
material - otherwise the superconductor would enter ei-
ther the intermediate state (for type-I superconductors)
or the mixed state (for type-II superconductors), which
can cause damping of the superconductor’s motion due
to induced eddy currents or hysteresis. We use the nota-
tion Bmax = max(|B|), where the maximum is evaluated
on the cylinder’s surface when it sits at the trap center.
As we’ve mentioned in the introduction, when the cylin-
der is modeled with sharp edges, Bmax diverges (i.e. the
numerically evaluated maximum surface field keeps in-
creasing when the resolution of the mesh at the edge is
increased). In order to determine Bmax it is therefore
necessary to introduce a rounded edge with a finite edge
radius Redge (cf. Fig. 9). In Fig. 10a we plot Bmax as

a function of Redge for H
R

= 0.1 and ǫ = 0, whereas in
Fig. 10b we show the dependence of Bmax on the aspect
ratio. For comparison we also performed a simulation of
the full Maxwell-London equations, where the supercon-
ductor has a finite penetration depth λ, and find that

FIG. 8. The optimal pickup loop radius (a) and the corre-
sponding coupling (b) as a function of pickup loop position,
for H

R
= 0.1. The vertical dashed line denotes ZP = 0.05,

corresponding to the upper edge of the cylinder. The dash-
dotted line in (b) shows the optimal coupling to a sphere of
the same volume for comparison.

the rounded edge approach overestimates the maximum
surface field by a factor of approximately 1.6 when using
Redge = λ (cf. Fig. 10), likely because the penetration
depth does not correspond to a hard boundary and the
field can penetrate deeper into the material. The maxi-
mum surface field is typically on the order of bzR, so for
superconductors on the micrometer scale it is well below
typical critical fields (e.g. 80mT for lead or 140mT for
the lower critical field of niobium) even for large gradi-
ents.

VII. SUMMARY AND DISCUSSION

We have built a numerical model in comsol mul-

tiphysics to calculate the magnetic field distribution
around a superconductor inside a magnetic field. Due to
choosing an approach based on the scalar potential (re-
ducing the number of differential equations that need to



7

FIG. 9. Field norm in the xz-plane around at the edge of a
cylindrical superconductor with H

R
= 0.1 in the β = 0 equi-

librium position for a (a)sharp edge, (b)rounded edge and
(c)sharp edge with finite penetration depth. The units on the
colorbars are bzR.

FIG. 10. (a)The dependence of the maximum surface field on
the edge radius resp. the penetration depth follows a power

law with Bmax ∝ R
−

1

3

edge resp. Bmax ∝ λ−
1

3 , where the pro-

portionality coefficient is a function of H

R
, as plotted in (b).

be solved) the numerical model is not resource-intensive
and can be solved on a typical personal computer. The
trade-off is that it only applies to geometries large com-
pared to the London penetration depth λ (typically on
the order of tens of nanometers for type-I superconduc-
tors) and that it does not account for flux conservation
if the superconductor contains any holes (e.g. in a ring).
We note that there is no added difficulty in numerically
solving the full Maxwell-London equations for the vector
potential apart from being computationally expensive.

We then applied our model to the special case of a
superconducting cylinder in a quadrupole field. The re-
sults show that, using a cylinder, it is possible to reach
higher trap frequencies and coupling strengths compared
to a sphere. Currently, thermal noise and vibrational
noise at the trapping frequency are both major obstacles
on the path towards ground state cooling a magnetically
levitated micrometer-sized superconductor [5]. As vibra-
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tions decrease with increasing frequency and the thermal
occupation of a feedback cooled harmonic oscillator is
proportional to m

η2 [5], using a cylindrical superconduc-

tor could significantly relax the requirements for ground
state cooling. More generally, these results highlight the
importance of the superconductor’s geometry in deter-
mining the trap parameters and that non-trivial geome-
tries should be investigated, even if an analytical solution
is not available.

Going forward, we plan to introduce non-spherical su-
perconductors in our experiments (cf. [5]) to take advan-
tage of these findings. Also, having found that the shape
of the superconductor plays a major role in determining
the properties of the trap, we will study more complex
geometries to identify the geometry that best suits our
application.

The numerical model is available at the Zenodo repos-
itory [10]. As it can be easily adapted to different super-
conducting geometries and trapping fields, we hope that

it can serve as a useful tool for other researchers as well to
find the optimal experimental arrangement for their pur-
pose without having to rely exclusively on analytically
solved models.
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Appendix A: Convergence and comparison to the

analytical solution

The accuracy of the numerical solution typically de-
pends on various parameters, sources of errors include a
geometrical error due to discretizing the geometry and
an algebraic error depending on the termination crite-
ria for the iterative solver. Ideally these errors can be
made arbitrarily small by choosing a sufficiently well re-
solved mesh as well and a suitable termination criteria
for the solver. Testing these errors is usually done by

changing the parameters (such as mesh size and distri-
bution, size of the simulation domain and relative size
of the infinite element domain, solver tolerance and pre-
cision) and observing how the solution changes. If the
numerical solution is already close to the actual solution,
further refinements in these parameters should not result
in large changes in the solution, i.e. the solution should
converge to a fixed value w.r.t. these parameters.

FIG. 11. Convergence of |Fx| for a spherical superconductor
with increasing mesh resolution. The dash-dotted line corre-
sponds to the analytical solution.
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In our case, we can additionally choose a geometry
were the analytical solution is known (spherical supercon-
ductors), to verify that the numerical solution converges
to the analytical solution for suitable mesh and solver
settings. In Fig. 11 we show an example of a convergence
plot w.r.t. |Fx| (for a sphere radius RS = 1 bz = 1T/m,
ǫ = 0 and x0 = (1, 0, 0)) and the comparison to the
analytical solution of 1.25 × 106N [6]. The numerical
solution converges to the analytical solution with a rela-
tive error of less than 0.01%. The same behavior applies
to all other evaluated quantities (force components and
quantities derived thereof, field distribution, maximum
surface field) and all show excellent agreement with the
analytical values.

Appendix B: Dependence of the solutions on the

edge radius or penetration depth

As mentioned in the main text, sharp edges on the
cylinder lead to the divergence of the surface field at
the edge (and, as a direct consequence, for the coupling
strength to a pickup loop aligned with the edge). It is im-
portant to check that the results presented above, most
of which are derived from the force and torque (and thus
from surface integrals involving the magnetic field) are
well-behaved. As described in the last section, we first
check that the results for force and torque don’t depend
on the resolution of the mesh for a sufficiently fine res-
olution, i.e. that the numerical results converges with
increasing mesh resolution. We then performed simula-

FIG. 12. The results of simulations with rounded edges or
finite penetration depths converge for Redge → 0 resp. λ → 0.
The dash-dotted line corresponds to the result obtained when
using Redge = 0 and λ = 0.

tions with a finite edge radius Redge and checked that the
results converge for Redge → 0. Finally we did the same
test using a model of the full Maxwell-London equations
and a finite penetration depth λ. This test was only per-
formed for some results, as solving this model on a per-
sonal computer with the required accuracy takes a long
time. An example is shown in Fig. 12. For the maximum
surface field we have already verified that it diverges for
Redge → 0 and λ → 0, this is described in the main text.


