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Collections of bistable elements called hysterons provide a powerful model to capture the se-
quential response and memory effects of frustrated, multistable media in the athermal, quasistatic
limit. While a century of work has elucidated, in great detail, the properties of ensembles of
non-interacting hysterons - the so-called Preisach model - comparatively little is known about the
behavior and properties of interacting hysterons. Here we discuss a general framework for interact-
ing hysterons, focussing on the relation between the design parameters that specify the hysterons
and their interactions, and the resulting transition graphs (t-graphs), which are labeled directed
(multi)graphs that encode the response of a collection of hysterons to any driving protocol. We
show how the structure of such t-graphs can be thought of as being composed of a scaffold that
is dressed by (avalanche) transitions selected from finite binary trees. This perspective not only
provides insight into the structure of individual t-graphs, but also facilitates the understanding of
the space of all t-graphs, including their statistical properties. Moreover, we provide a systematic
framework to straightforwardly determine the design inequalities for a given t-graph, and discuss an
effective method to determine if a certain t-graph topology is realizable by a set of interacting hys-
terons. Altogether, our work builds on the Preisach model by generalizing the hysteron-dependent
switching fields to the state-dependent switching fields. As a result, while in the Preisach model,
the main loop identifies the critical hysterons that trigger a transition, in the case of interacting
hysterons, the scaffold contains this critical information and assumes a central role in determining
permissible transitions. In addition, our work suggests strategies to deal with the combinatorial
explosion of the number and variety of t-graphs for interacting hysterons. This approach paves
the way for a deeper theoretical understanding of the properties and statistics of t-graphs, and
opens a route to materializing complex pathways, memory effects and embodied computations in
(meta)materials based on interacting hysterons.

In frustrated media, rugged energy landscapes lead to
intermittent response and multistability, so that a sys-
tem’s configuration is not only a function of the current
driving but also of the driving history [1]. For athermal
systems that are driven quasistatically, both the multi-
stability and intermittent response can be encoded in a
transition graph (t-graph) [2–4]. The nodes in a t-graph
correspond to the metastable states, and the transitions
between these states are encoded in the directed edges
that connect nodes in the graph. To connect these tran-
sitions to the response, each edge is labeled by whether
this transition was initiated by an increase (’up’) or de-
crease (’down’) of the driving U , and the value of U - the
switching field - where the transition is triggered [2, 4, 5].
The beauty of these t-graphs is that they encode the re-
sponse to any driving protocol, and thus provide insight
into the properties and memory effects of frustrated me-
dia [3, 6, 7], sequential biological evolution [8], crumpled
thin sheets [9], corrugated sheets [10] and metamaterials
[11–16].

T-graphs can be obtained by experiments or by ex-
tensive simulations of microscopic models that specify
an energy landscape and a dynamical rule [3, 17, 18].
However, a simpler and computationally more effective
approach is based on collections of hysteretic two-state
elements, called hysterons [4–11, 13, 17, 19–22]. Phys-
ically, the multitude of collective states of spatially ex-

tended frustrated systems can often be seen as the ‘direct
product’ of localized two state elements - spins, local rear-
rangements, local folds, slender elements. Indeed, recent
experiments have evidenced the physical reality of such
hysterons in disordered media [9, 10, 16, 23, 24].

The link between hysteron models, memory effects and
physical reality is well established for collections of in-
dependent hysterons, as introduced by Ferenc Preisach
[19]. In the Preisach model, the state of each hysteron i
is characterized by its binary phase si, and its evolution
is given by the hysteron-dependent switching fields u±i :
si→1 when the global driving field U exceeds u+i , si→0
when U falls below u−i . When taking u+i > u−i , each hys-
teron has a bistable, history dependent regime. Collec-
tions of independent hysterons are fully specified by the
joint distribution of the switching fields, and capture Re-
turn Point Memory (RPM) and the associated ’hysteresis
loop within hysteresis loop’ nature of the response of a
vast range of materials, ranging from disordered magnets
to crumpled sheets [9, 25]. More recently, the structure
and multiplicity of t-graphs of the Preisach model have
been studied in detail [4, 20].

However, interactions between hysterons are emerg-
ing as a crucial ingredient to understand the response of
many frustrated physical systems [3, 5–7, 9, 10, 13, 22].
Physically, local bistable elements can be expected to
have interactions that are mediated through the bulk
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of the material, and hysteron interactions have been di-
rectly observed in experiments on macroscopic frustrated
materials [9, 10] and metamaterials [12–16, 24]. Such
interactions can be captured via a dependence of the
switching fields of each hysteron on the phase of the other
hysterons. Denoting the collective state S ∶= {s1, s2, . . .},
interactions thus lead to a large set of state dependent
switching fields U±i (S).

Numerical explorations of such models have shown
that even weak interactions lead to a dramatic increase
in the number and complexity of the t-graphs [5–7]. For
example, while the space of t-graphs for two interacting
hysterons can be sampled numerically yielding eleven dis-
tinct t-graphs, similar explorations show that the num-
ber of t-graphs for three interacting hysterons already
exceeds 1.5×104. By contrast, the number of Preisach t-
graphs grows with the number of hysterons n as n! [5, 20].
Another striking feature indicated by numerical sampling
is that the statistical weight of different t-graphs can
vary over many orders of magnitude [5, 21]. Finally,
t-graphs for interacting hysterons exhibit several proper-
ties not seen in the Preisach model. Most notable of these
are scrambling and avalanches, which lead to an enor-
mous variety of remarkable phenomena such as broken
RPM, transient memories and multiperiodic responses,
and even computational capabilities [2, 5, 6, 9, 10, 13].

Many open questions remain: We do not understand
why the number of t-graphs grows so fast with n, and
have no systematic way to generate all these t-graphs;
we have no effective tools to check whether specific ar-
tificially designed t-graphs can be realized by sets of in-
teracting hysterons, and if so, what the corresponding
switching fields are; and we have little idea what governs
their statistics.

Here we present a systematic framework for the t-
graphs and design problem for the most general model
of interacting hysterons, where we take the state de-
pendent switching fields U±i (S) as independent design
variables; this model encompasses recently studied cases
with specific parameterizations of the switching fields
[6, 7, 13, 17]. We will assume that the sequence of in-
termediate states in avalanches is fully known - again,
this naturally encompasses experimental or numerical
systems for which only the starting and ending state of
an avalanches are specified. We start by considering the
forward problem of how a given set of switching fields pro-
duces a t-graph. We introduce the concept of the scaffold
which allows to precisely define scrambling and the sys-
tematic construction of transitions and avalanches. We
further clarify how certain choices of switching fields can
produce ill-defined t-graphs (section. I).

We then consider the inverse problem: given a (part
of a) t-graph, what are the corresponding necessary and
sufficient conditions on the switching fields? We present
a systematic method for obtaining the set of design in-
equalities, and discuss how these correspond to a par-
tial order on the switching fields. This partial order
straightforwardly allows to determine if a given target

t-graph topology can be realized in the interacting hys-
teron model, and provides the underlying structure of the
design space (section. II).
We subsequently consider the construction and orga-

nization of all t-graphs for a given number of hysterons
n. We discuss how all scaffolds can be generated, and
derive a simple expression for their number. We further
show that all possible transitions for a given scaffold can
be organized in finite binary trees, one for each state and
initial direction (up or down). Combining scaffolds and
trees, we obtain all candidate graphs, that need to be
checked for realizability using their design inequalities.
This method allows to systematically label all candidate
t-graphs - the complexity lies in checking their realiz-
ability. As specific examples, we count and construct
all possible t-graphs for n = 2, all scaffolds for n = 3
and all t-graphs for n = 3 that contain one or two short
avalanche(s) (section. III).
We finally discuss the statistical weight of t-graphs

in design space. In particular, the number of total or-
ders consistent with a given partial order is a proxy for
the volume in design space, thus giving insight in the
widely varying statistical weight of distinct t-graphs, as
well as the percentage of ill-defined t-graphs [5, 6, 22]
(section. IV).
Our approach illustrates how generalization of the or-

dering of the hysteron dependent switching fields of the
Preisach model to the vastly more numerous orderings of
the state-dependent switching fields leads to a rich struc-
ture of t-graphs and design space. Overall, our approach
paves the way for a deeper theoretical understanding of
the properties and statistics of t-graphs. In particular,
our work suggests strategies to deal with the combina-
torial explosion of the number and variety of t-graphs of
the interacting hysteron model, with the scaffold facil-
itating strategies to gradually approach the complexity
of the t-graphs. Moreover, our work provides a start-
ing point for understanding the statistics of the inter-
acting hysteron model. Finally, the combination of the
systematic construction of design inequalities and the fo-
cus on the scaffold may facilitate the practical design of
(meta)materials that realize targeted pathways, memory
effects and embodied computations.

I. MODEL, TRANSITIONS AND T-GRAPHS

In this section we present the precise formulation for a
general model for interacting hysterons, discuss in detail
how this model predicts the response of interacting hys-
terons to changes of the global driving parameter U , and
discuss the transition graphs that the model produces.
Recent years have seen the advent of numerous works
that consider systems of (interacting) hysterons [5–7].
All abstract hysteron models describe interactions via
a state dependence of the switching fields, but several
different choices can be made for the functional form of
this state dependence: interactions can be assumed to
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be reciprocal (so that the effect of the state of hysteron
i on the switching fields of hysteron j equals the effect
of hysteron j on the switching fields of hysteron i) [7];
interactions can be assumed to be pairwise [5, 7, 22]; a
final assumption is that the effect of hysteron j on the up
and down switching fields of hysteron i is equal, such that
the hysteron span is invariant. However, experimentally
reciprocity and span invariance are often not respected
[7, 10, 13], and we have evidence that multi-hysteron in-
teractions generically occur in networks of geometrically
coupled hysterons [26]. Here we focus on the most gen-
eral formulation of the state dependency which naturally
encompasses models with restricted forms of interactions
(section IA).

Once the interactions are specified, we can consider
transitions between states where one or more hysterons
change state in response to changes in the driving param-
eter U (section IB). We first discuss the critical hysterons
that initiate such transitions, and use these to define the
concept of a scaffold, which underpins the structure of all
transitions and which allows a precise definition of the
important property of scrambling [5, 10] (section IB 1).
We then discuss transitions and in particular avalanches
and their relation to the scaffold (section IB 2). Finally,
not all choices of interaction parameters lead to collec-
tions of well-defined transitions (section IB 3). First, the
scenario where multiple hysterons become unstable dur-
ing an avalanche leads to race conditions that cannot
be resolved in the model; second, situations where the
model predicts an endless cycle of state transitions can
occur [5, 6, 22]. Both problems stem from the hysteron
model being a coarse grained model that lacks an under-
lying energy landscape and dynamical rule. While the
first situation can be resolved via the introduction of an
additional rule - for example, by always flipping the hys-
teron that is furthest from stability[6, 7] - in this paper
we consider both situations as ill-defined(section IB 3).

We finally discuss the structure of well-defined tran-
sition graphs, in particular stressing that we consider
the intermediate states of an avalanche transition to be
fully specified (section IC). Altogether, our framework
presents an unambiguous mapping from a general set of
state-dependent switching fields to a t-graph, thus pro-
viding a solid base for theoretical and numerical explo-
rations of t-graphs as well as questions of design.

A. General Model for Interacting Hysterons

Here we detail a general model for a system of n inter-
acting hysterons. First, let us recall the definition of a
hysteron. Each hysteron i is a bistable element charac-
terized by its binary phase si and two switching fields u±i
(u+i > u−i ) that determine its hysteretic response under
driving with an external field U . A hysteron in phase
si = 0 is stable when U < u+i , but when U > u+i it is
unstable and switches from 0 to 1 — the hysteron ’flips
up’. Similarly, a hysteron in phase si = 1 is stable when

U > u−i , but when U < u−i it is unstable and switches from
1 to 0 — the hysteron ’flips down’. This response forms
an elementary hysteresis loop.

For a collection of n hysterons, we define the collective
state S as

S = {s1, s2, . . . , sn} (1)

We define the magnetization m ∶= Σisi, and denote the
saturated states where all hysterons are either 0 or 1 as
{00 . . .} and {11 . . .}. The set of hysteron indices for
which si = 0 (si = 1) is referred to as I0(S) (I1(S)) [8].
Interactions between hysterons can be modeled as

state-dependent hysteron switching fields U±i (S):

U±i (S) = u±i +∆±i (S) , (2)

where ∆i captures the dependence of the switching fields
of hysteron i on the collective state S.

We will assume that the hysteron switching fields
U±i (S) are non-degenerate and finite — this implies that
the saturated states are always reached when U → −∞
and U →∞. We stress that the interaction term ∆±i (S)
can encode any specific model for hysteron interactions.
This includes models that assume no interactions (the
Preisach model where ∆±i (S) = 0 [19]), pairwise inter-
actions (∆±i = −Σjc

±

ijsj , reciprocal interactions (the in-
fluence of hysteron i on U±j is equal to the influence of
hysteron j on U±i [7]), or an equal shift of upper and
lower switching fields (∆+i (S) =∆−i (S).
We finally note that switching fields U+i (S) (U−i (S))

are only relevant when the corresponding hysteron i is
in phase 0 (1). For example, for the state {001}, the
only meaningful switching fields are U+1 (001), U+2 (001)
and U−3 (001) — in general there are n switching fields
per state. Hence, while Eq. (2) defines 2n ⋅ 2n switching
fields, only half of these are relevant. A system of n
interacting hysterons is thus defined by precisely n ⋅ 2n
switching fields U±i (S).

B. Response to Driving

We now consider how a collection of n interacting hys-
terons responds to driving, i.e., changes in U (Fig. 1a).
While the state dependent switching fields U±i (S) define
for each state and value of U whether its hysterons are
stable, they do not specify what happens when a hys-
teron becomes unstable. Here we first consider the sta-
bility range of states S and identify the critical hysterons
that lose stability when S becomes unstable (sec. I B 1).
We then discuss the ensuing state transitions, which can
take on the form of multi-step avalanches (sec. I B 2), and
finally discuss the possibility that such transitions are ill-
defined (sec. I B 3).
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FIG. 1. Scaffolds and switching fields. (a) Graphical representation of the set of n = 2 switching fields: hysterons in state si = 0
(si = 1) have an up (down) switching field indicated by purple (gold) arrows. (b) Example of a given set of switching fields
(boxes; number indicates hysteron index) and corresponding stability ranges (black lines) — in the dashed regions, the state
is unstable. (c) Corresponding scaffold, with the 2n+1 − 2 critical hysterons k±(S) indicated. (d) Alternative yet equivalent

graphical representation of the scaffold showing ’passages’, i.e., tentative transitions to a landing state S(1) that would occur
upon flipping each critical hysterons k±(S) (see text). (e) Example of a subset of n = 3 switching fields for the Preisach model
where ∆±i (S) = 0. Since U+2 (000) = U+2 (001) = u+2 , and U+3 (000) = U+3 (001) = u+3 , hysterons 2 and 3 flip in the same order for
both states, and since k+(000) = 3, k+(100) = 3. (f) Graphical representation of the corresponding scaffold. (g) Example of a
subset of n = 3 switching fields, for the states {000} and {100}, for the general model where ∆±i (S) ≠ 0. Since the switching
fields {U±i (S)} are independent, the order in which hysterons 2 and 3 flip may be different (’scrambled’) between states {000}
and {100}. (h) Graphical representation of the corresponding scrambled scaffold.

1. Stability, Scaffold and Scrambling

As a first step in defining the response of a collection of
hysterons to variations of the global driving field U , we
define here the stability range of a state and its critical
hysterons. We then introduce the concept of the scaffold,
and use it to precisely define the concept of scrambling
[5, 10, 22].

State S is stable if U is smaller than all its up switching

fields U+i (S) and larger than all its down switching fields
U−i (S). Hence, the stability range of S is given by the
state switching fields [U−(S), U+(S)] defined as (Fig. 1b)
[4]:

U+(S) =minU+i (S) ,
U−(S) =maxU−i (S) .

(3)

When S is initially stable and U is swept up (down) to
U+(S) (U−(S)), S loses stability through the instabil-
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ity of a single hysteron. We define these as the critical
hysterons k±(S):

k+(S) = argminU+i (S) ,
k−(S) = argmaxU−i (S) .

(4)

We note here that the saturated states have only one
critical hysteron, and we define U−(00 . . . ) = −∞,
U+(11 . . . ) = ∞. All other states have two critical hys-
terons and finite switching fields. We finally note that
persistently unstable states may arise when U+(S) <
U−(S). Even though such states are never stable, they
still can play a role as intermediate states in avalanches
as we discuss in section IB 2.

The definitions Eq. (3-4) map the n ⋅ 2n hysteron
switching fields {U±i (S)} to 2n − 2 critical hysterons
{k±(S)}, and corresponding state switching fields
{U±(S)}. We call the collection of states, critical
hysterons and switching fields the scaffold, as it provides
the underlying structure on which state transitions will
be defined (Fig. 1c). In fact, the key role which the
scaffold plays in informing the actual transitions between
states motivates an alternative yet equivalent graphical
representation of the scaffold: in this representation we
show tentative transitions to the states that would be
reached upon flipping the critical hysterons in each state.
We term these tentative transitions passages. (Fig. 1d).
We stress here that passages are not necessarily equal to
state transitions, and we discuss the relation between
scaffold and transitions in detail in section IB 2.

The scaffold highlights that each state has at most one
relevant up and down transition, and focusses on the 2n−
2 state switching fields rather than the n ⋅ 2n hysteron
switching fields (compare Figs. 1a and 1c).

We now employ the scaffold to clarify the recently in-
troduced scrambling property [5, 10, 22]. Loosely speak-
ing, scrambling was introduced for pairs of transitions
that evidence hysteron interactions [5]. However, this
definition becomes complex when avalanches are present.
As we show below, the scaffold allows a precise definition
that does not suffer from such subtleties.

In the Preisach model, the critical hysterons for differ-
ent states are tightly connected via the order of the bare
hysteron switching fields u±i . For example, if k+(000) = 2,
this implies that u+2 < u+3 , and therefore imposes that
k+(100) = 2 (Fig. 1e-f). More precisely, consider two
states SA and SB in the Preisach model. If the up
switching hysteron in SA has phase 0 in SB , and the
up switching hysteron in SB has phase 0 in SA, these up
switching hysterons have to be equal (and similar for the
down switching hysterons). Formally, if k+(SA) ∈ I0(SB)
and k+(SB) ∈ I0(SA) then k+(SA) = k+(SB); simi-
larly, if k−(SA) ∈ I1(SB) and k−(SB) ∈ I1(SA) then
k−(SA) = k−(SB).

In contrast, for interacting hysterons the ordering
of the hysteron switching fields U±i (S) may be state-
dependent: as an example, consider the case when
k+(000) = 2 but k+(100) = 3 (Fig. 1g-h). Interactions

thus lead to pairs of states with critical hysterons that
cannot occur in the Preisach model: we define such pairs
of states as scrambled. Formally, the critical up hysterons
of a pair of states SA, SB are scrambled when k+(SA) ∈
I0(SB), k+(SB) ∈ I0(SA) and k+(SA) ≠ k+(SB); sim-
ilarly, the critical down hysterons of SA and SB are
scrambled when k−(SA) ∈ I1(SB), k−(SB) ∈ I1(SA) and
k−(SA) ≠ k−(SB). We note that scrambling can only oc-
cur for n ≥ 3, and define a scaffold as scrambled when it
contains at least one pair of scrambled states.

2. Transitions and Avalanches

When state S becomes unstable, this triggers a transi-
tion to a new stable state S′, which we denote as S → S′.
Such a transition can be triggered by either an up sweep
or down sweep of U , and we denote the corresponding
up and down transitions as S ↑ S′ and S ↓ S′. Here we
discuss in detail how the system evolves from S to S′,
how S′ is determined, and under which conditions the
transition and S′ are well-defined.
Each transition is initiated by the flipping of one of

the critical hysterons k±(S), leading to a new ’landing’

state S(1). In the Preisach model, the landing state is
always stable at U±k (S) [4, 20, 27], so that S′ = S(1). This
produces the transition S → S(l) which trivially follows
from the passages in the scaffold - in fact, for the Preisach
model, transitions are equal to passages, and the scaffold
captures all transitions.

In the presence of hysteron interactions, the stability
of the landing state S(1) is no longer guaranteed, and
this may lead to multi-step avalanches, which proceed
via a sequence of intermediate states. We denote such
transitions as S(0) ⇢ S(1) ⇢ ⋅ ⋅ ⋅ ⇢ S(l), where S(0) is the
initial state, S(1) is the landing state, S(1) − S(l−1) are
intermediate states and S(l) is the final state, and define
the transition length as l.
We now show how a single transition is constructed,

given the set of switching fields. A transition is initi-
ated when k flips at U = U±k (S), yielding the first step

S(0) ⇢ S(1). There are three possible scenarios (Fig. 2a)

depending on the stability of the landing state S(1):

(i) S(1) is stable at U±k (S);

(ii) A single hysteron in state S(1) is unstable at U±k (S);

(iii) Multiple hysterons in state S(1) are unstable at
U±k (S).

When the landing state S(1) is stable (case (i)), we obtain

the l = 1 transition S(0) → S(1). For example, the switch-
ing fields shown in Fig. 2b produce the l = 1 transition
{10} ↓ {00} (Fig.2b-c).

We now turn to case (ii), where a single hysteron κ in

state S(1) is unstable at U = U±k (S). This provokes the

next step S(1) ⇢ S(2) - please note that this scenario
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FIG. 2. Construction of transitions and full transition graph from the set of switching fields. (a) Schematic of the three

scenarios for the landing state S(1) at driving field U±(S(0)): (i) S(1) is stable; (ii) a single hysteron in state S(1) is unstable;

(iii) S(1) multiple hysterons in S(1) are unstable (see text). (b) Two transitions (l = 1 transition {10} ⇠{00} and l = 2 transition
{00} ⇢{01} ⇢{11}) for the set of switching fields shown in Fig. 2b. (c) The l = 1 transition {10} ⇠{00} follows the scaffold (faded)
(d) The avalanche transition {00} ⇢{01} ⇢{11} follows the scaffold. (e) The tentative transition {01} ⇠{00} ⇢{10} is incompatible
with the scaffold, as the transition requires that k+(00) = 1, while the scaffold specifies that k+(00) = 2. (f) Full t-graph for the
set of switching fields shown in panel b. (g) Set of switching fields that leads to a self-loop {00} ⇢{01} ⇢{11} ⇠{10} ⇠{00} ⇢ . . . . (h)
Graphical representation for this self-loop. (i) Example of a (subset of) switching fields that leads to a race condition, due to
the instability of multiple hysterons in state {111} at U+(011). (j) Graphical representation for this race condition: we cannot
draw a tentative down transition because the order in which hysterons 2 and 3 flip is not well defined.
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can occur even for a persistently unstable state (Sec-

tion IA). For the state S(2), the same three scenarios

can occur as for S(1): if S(2) is stable (case (i)), the
transition terminates. This produces the l = 2 avalanche
S(0) → S(2), which proceeds as S(0) ⇢ S(1) ⇢ S(2). We il-
lustrate an example of an l = 2 avalanche {00} ⇢{01} ⇢{11}
in Fig. (2b,d). If one of the hysterons in S(2) is unstable

(case (ii)), the transition proceeds to the next state S(3).
Assuming that case (iii) does not occur and that states
are not revisited - as discussed below, both scenarios lead
to ill-defined transitions[5] - we see that avalanches are
constructed iteratively.

It is worth noting that all transitions must follow the
passages of the scaffold. We already saw that l = 1 tran-
sitions follow the passages, and now note that if a single
hysteron κ is unstable in the intermediate state S(λ),
it must be one of the critical hysterons k±(Sλ). Thus,
avalanches must also follow the scaffold. Hence, once
the scaffold is constructed from the switching fields, it
immediately restricts the transitions that can occur; for
example, for the scaffold shown in Fig. 2e, the transition
{01} ⇠{00} ⇢{10} is forbidden.

The relation between scaffold and avalanches can be
explored to label an avalanche solely by its starting state
and its sequence of up/down flips, letting the scaffold
dictate the full transition path. For example, the transi-
tion path {00} ⇢{01} ⇢{11} shown in Fig. 2d is labeled as
00uu. Consequently, all possible (avalanche) transitions
can simply be collected in a set of binary trees; we fur-
ther elaborate on and make use of this scaffold/avalanche
relation in sec. III.

3. Ill-defined transitions

So far, we have discussed how a given set of switch-
ing fields produces transitions. However, there are two
mechanisms by which a set of switching fields produce
transitions that are ill-defined.

First, certain choices of switching fields produce self-
loops, where after a number of steps, an avalanche re-
visits an earlier state. The simplest case is that where
the switching hysteron is unstable in its landing state:
for example, if after the partial transition {00} ⇢{01}
hysteron 2 is unstable in {01}, this sets up a loop
{00} ⇢{01} ⇠{00} ⇢{01} ⇠ . . . . More generally, self-loops can
arise from any cyclical path within the scaffold - for an
example of a longer loop, see Fig. 2g-h. Such an orbit can
never reach a stable state, and as hysteron systems are
dissipative, such loops cannot occur in physical systems.
We consider the hysteron model ill-defined for switching
fields that produce such self-loops[5].

Second, when a transition reaches an intermediate
state S(λ) where more than one hysteron is unstable at
the critical field U±(S(0)), we consider the transition ill-
defined - for an example of such case (iii) scenario, see
Fig. 2i-j. The problem is that when multiple hysterons
are unstable, the sequence of hysteron flips is ill-defined

thus setting up a race condition [28]. As the hysterons
are interacting, flipping operations do not commute: for
example, when the hysterons κ1 and κ2 are unstable,
and hysteron κ1 flips first, this may make hysteron κ2

stable again, whereas when hysteron κ2 flips first, hys-
teron k1 may remain unstable. Hence, different choices
for the sequence of hysteron flips may then lead to dif-
ferent transition paths, a situation known as a critical
race condition [28]. Such transition paths may break
away from the scaffold, resulting in graphs that would
not otherwise be possible. We note that some authors
resolve race conditions by simply demanding that each
intermediate step in a transition only flips one hysteron,
and picking the most unstable hysteron if there is more
than one; for such a model, the scaffold/avalanche rela-
tion is maintained [6, 7].
Both self-loops and race conditions arise because mod-

els for interacting hysterons have a very simple update
rule. More physically complete models, based on an en-
ergy landscape and a dynamical rule, would not feature
race conditions or loops — transitions would be well de-
fined and loops would be avoided due to dissipation. All
in all, hysteron models are perhaps the alpha, but not
the omega of studies of the sequential response of com-
plex media. Nevertheless, studies of more complex mod-
els come at a significant computational expense, and de-
spite their (over)simplicity, hysteron models have proven
valuable in capturing experimental and numerical data,
as well as giving insight in memory effects.

C. Transition Graphs

All ingredients are now in place to construct the tran-
sition graph (t-graph) which encodes the full driving
response for a set of hysteron switching fields U±i (S).
To do so, we first construct the scaffold (Section IB 1),
and then iteratively construct the full transition path
S(0) ⇢ S(1) ⇢ ⋅ ⋅ ⋅⇢ S(l) for each up and down transition.
We collect these transitions in a directed graph, where
the states form the nodes, and the transitions S(0) →
S(l) form the edges. Each edge has further attributes:
the value of the critical switching field, the direction
(up/down), and the intermediate states S(1), . . . , S(l−1).
For example, the set of switching fields {U±i (S)} shown
in Fig. 2b produces a well-defined t-graph (Fig. 2f). In
summary, the driving response of a collection of n hys-
terons, characterized by a set of switching fields {U±i }, is
captured by a directed t-graph.
We note that our t-graphs contain more information

than what is usually considered. First, for a given set
of switching fields the intermediate states are fully speci-
fied, whereas in, e.g., experimental contexts intermediate
states in an avalanche can typically not be observed [10].
Second, our t-graphs may contain so-called Garden-of-
Eden (GoE) states that are not reachable from the satu-
rated states (for an example see state {01} in Fig. 2f)
[5, 11]. Unless otherwise specified, we will deal with
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t-graphs where GoE states and intermediate states are
both included. In our visualization of t-graphs, we thus
not only indicate a transition’s direction (up/down) and
length l[5] but also explicitly indicate the intermediate
states.

II. GRAPH DESIGN

In this section we consider the design question, also re-
ferred to as the inverse problem: given a transition graph,
or part of a transition graph, what are the necessary and
sufficient conditions on the switching fields so that they
lead to this (sub)graph? Consistent with earlier work on
this inverse problem [5, 7], we find that the design condi-
tions take the form of sets of inequalities of the switching
fields. Here, we establish a systematic approach for con-
structing and utilizing these design inequalities. We first
present their systematic derivation (section IIA), then
discuss how the design inequalities specify a partial or-
der on the switching fields (section II B). In particular,
we utilize the inequalities to determine if a given t-graph
topology is realizable (section II B 2), and finally discuss
how to construct explicit sets of switching fields that re-
alize specific (sub)-graphs (section II B 3).

A. Design Inequalities

We define the design inequalities as the necessary and
sufficient conditions on the switching fields {U±i (S)} that
produce a specific (sub)graph. We will frequently illus-
trate our approach with specific examples, such as the
t-graph and its scaffold shown in Fig. 3a. As we show,
each transition in a t-graph corresponds to a set of de-
sign inequalities that result from (i) conditions on the
initial state (its stability and critical hysterons) (ii) the
stability of the final state, and, if the transition is an
avalanche, (iii) the (in)stabilities and critical hysterons
of the intermediate states (section IIA 1 a). Combining
the individual design inequalities for multiple transitions,
taking potential redundancies into account, produces the
set of inequalities for a specific t-graph or part thereof.

1. Conditions for Single Transitions

We now derive the design inequalities for a single tran-
sition. As avalanches for which only the initial state
S(0) and final state S(l)) are specified may proceed along
various paths of intermediate states, each producing a
different set of design inequalities, we assume that the
full transition path S(0) ⇢ S(1) ⇢ ⋅ ⋅ ⋅ ⇢ S(l)) is known
(Fig. 3b).

a. Initial inequalities. The first set of design in-
equalities follows from the required stability of state S(0)

for some range of U , and from the critical hysteron k that
flips when the driving U is increased or decreased.

The first step in the transition S(0) ⇢ S(1) specifies
that hysteron k in state S(0) becomes unstable when
U is increased (decreased). This requirement leads to a
set of inequalities which specifies that the corresponding
up (down) switching field U±k (S(0)) must be the lowest
(highest) of all up (down) switching fields at this state:

up: U+k (S(0)) < U+i (S(0)) ∀i ∈ I0(S(0))/{k} , (5)
down: U−k (S(0)) > U−i (S(0)) ∀i ∈ I1(S(0))/{k} . (6)

Here I0/1(S(0))/{k} is the collection of hysterons in phase

0 (1), unequal to k in state S(0).

Moreover, state S(0) must be initially stable, and for an
up (down) transition, this requires all down (up) switch-
ing fields to be below (above) the critical switching field

U±k (S(0)):

up: U+k (S(0)) > U−i (S(0)) ∀i ∈ I1(S(0)) , (7)

down: U−k (S(0)) < U+i (S(0)) ∀i ∈ I0(S(0)) , (8)

We illustrate the initial state inequalities using the ex-
ample t-graph shown in Fig. 3a. The condition for the
up transition from state {00} to be initiated by critical
hysteron k+(00) = 2 is U+2 (00) < U+1 (00), and the sta-
bility condition is trivially satisfied. Similarly, the down
transition from state {11} produces one critical hysteron
condition and no stability conditions. In contrast, the
up and down transitions from the states {01} and {10}
specify one stability condition and no conditions for the
critical hysterons. In general, there are n− 1 initial state
inequalities, which arise from the comparison of the crit-
ical hysteron k against every other hysteron.

b. Final Inequalities. For each transition, the final
state S(l) needs to be stable at the critical driving U±k (S)
where the transition is initiated. This requirement pro-
duces inequalities of the form:

U±k (S) < U+i (S(l)) ∀i ∈ I0(S(l)) , (9)

U±k (S) > U−i (S(l)) ∀i ∈ I1(S(l)) , (10)

For example, for the transition {10} ↓ {00} (Fig. 3c), the
stability of the final state {00} at U−1 (10) yields:

U−1 (10) < U+1 (00) , (11)

U−1 (10) < U+2 (00) . (12)

In general, as each hysteron in state S(l) needs to be
stable under the critical field U±k (S), each transition pro-
duces n final state inequalities.
c. Intermediate Inequalities. While l = 1 transitions,

like {10} ⇠{00} in the example of Fig. 3, only produce
initial state and final state inequalities, each intermediate
step in an avalanche of length l > 1 produces additional
conditions to ensure that each intermediate step is well-
defined and proceeds as described.
As an example, consider an avalanche initiated at U =

U±k (S) and an intermediate state S(λ) where hysteron
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FIG. 3. Design inequalities. (a) Example of an n = 2 target t-graph. (b) The design inequalities are organized in three

groups pertaining to the initial state S(0), intermediate states S(1), . . . , S(l−1), and final state S(l). (c) Length-1 transition
{10} ⇠{00}. (d) Length-2 transition {00} ⇢{01} ⇢{11}. (e) The design inequalities for the target graph shown in panel (a). We

label transitions by their starting state S(0) and their up or down direction: for example, the up transition starting from state
{00} is labeled 00U, and the down transition starting from state {10} is denoted 10D (see also panels (c) and (d)). Note that all
inequalities are organized by transition, and can be further separated by whether they are given by the initial state (scaffold),
intermediate state (if present), or final state inequalities.

κ switches up, so κ = k+(S(λ)). The requirement that
hysteron κ is unstable at U±k (S), while all other hysterons
are stable, leads to the intermediate state inequalities:

U±k (S) < U+i (S(λ)) ∀i ∈ I0(S(λ))/{κ} , (13)

U±k (S) > U−i (S(λ)) ∀i ∈ I1(S(λ)) , (14)

U±k (S) > U+κ (S(λ)) . (15)

Similarly, when hysteron κ switches down, the first two
equations remain the same, but the last one changes to
U±k (S) < U−κ (S(λ)).

As an example, consider the l = 2 avalanche
{00} ⇢{01} ⇢{11}(Fig. 3d). The instability of hysteron 1
at the intermediate state {01} gives rise to the equations:

U+2 (00) > U+1 (01) , (16)

U+2 (00) > U−2 (01) . (17)

We note that, like for the final inequalities, there
are n intermediate inequalities for each of the states
S(1), . . . , S(l−1), which specify the stability of each hys-
teron in S(λ) under U±k (S).
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2. Full Graph

Combining the initial, intermediate and final inequali-
ties, one obtains a set of inequalities that the switching
fields must obey so that a given transition is realized.
We see that, for example, the transition {00} ⇢{01} ⇢{11}
requires five inequalities: one initial inequality, two in-
termediate inequalities, and two final inequalities. In
general, the number of inequalities per transition is
(l + 1)n − 1.

This approach constructs conditions on the level of
individual transitions, and is therefore modular. To
construct design inequalities for t-graphs or subgraphs
thereof, we simply combine the conditions of their re-
spective transitions. We note that there are often re-
dundancies between these inequalities: for example, in
Figure 3f, the inequality U+1 (00) > U−2 (10) appears twice.

B. Partial order and matrix representation

The design inequalities specify a partial order on the
switching fields U±i (Sj). To see this, note that the de-
sign inequalities are a collection of pairwise inequalities
of the form U±i (SA) > U±j (SB). Crucially, whereas any
ordering of the switching fields maps to a single t-graph
topology, the converse is not true: a given topology may
be consistent with multiple orderings. As we will see,
there are also ’forbidden’ t-graph topologies for which no
consistent order can be constructed.

We note that this situation, where the mapping from
ordering to t-graph is injective but not invertible, gen-
eralizes the situation in the Preisach model. There the
graphs are uniquely determined by the orderings of the
up switching fields and those of the down switching fields;
the order of pairs of one up and one down switching
field does not play a role, except for the constraint that
u+i > u−i [20, 27]. Hence, in the Preisach model, the or-
dering of the state-independent switching fields u±i also
uniquely determines the t-graph topology but not vice
versa.

In this section, we consider the fundamental role of the
ordering of the switching fields. We first present a graph-
ical representation and method to construct the partial
order (section II B 1). Second, while any target t-graph
can be mapped to a set of design inequalities, the con-
verse is not true: some target t-graph topologies are sim-
ply not consistent with any set of switching fields. For
such a case, the corresponding design inequalities show
up as violations of asymmetry — i.e., x > y and x < y
— and this allows to systematically and quickly check
if a given t-graph topology is realizable (section II B 2).
Finally, if the design inequalities are solvable, we discuss
how one can compute specific examples of switching fields
consistent for a given t-graph (section II B 3).

1. Constructing a partial order

We represent the partial order of the switching fields
via an adjacency matrix P , where a 1 at position (x, y)
indicates the presence of a design inequality x > y, and a
0 indicates no relation (Fig. 4a-(i)). It is useful at this
point to recall the general properties of partial orders —
irreflexivity, asymmetry, and transitivity — and trans-
late these properties to the adjacency matrix P . First,
irreflexivity entails that x ≯ x, so that all diagonal el-
ements of P are zero (Fig. 4a-(ii)). Second, a partial
order relation is asymmetric, such that if x > y, then
y ≯ x. In the matrix representation, this means a 1 at
position (x, y) rules out a 1 at position (y, x) and vice
versa (Fig. 4a-(iii)). Hence, as we discuss below, if the
design inequalities would specify such a pair, they do not
have a solution. Finally, a partial order has transitivity,
meaning that if x > y and y > z, then x > z (Fig. 4a-
(iv)). Including all such induced inequalities yields the
transitive closure [29], and we define the corresponding
transitive closure matrix P ∗. Note that, while different
matrices P may imply the same partial order relation,
the transitive closure for a given partial order is unique
[29]. Therefore, it is the transitive closure matrix P ∗ that
corresponds one-on-one to a t-graph.
We now illustrate the construction of P and P ∗ for

the design inequalities tabulated in Fig. 3f. The rows
and columns of the partial order matrix P correspond
to the n ⋅ 2n switching fields U±i (S). We index the en-
try of the matrix corresponding to a pair of switching
fields U±i (SA), U±j (SB) as (SA, i;SB , j). By placing a 1

at any positions (SA, i;SB , j) where one has a relation
U±i (SA) > U±j (SB), and a 0 elsewhere, one obtains the
adjacency matrix representation P of the design inequal-
ities (Fig. 4b). We note that, whereas there are 19 design
inequalities, P only features 17 entries ’1’, because two
inequalities appear twice (see Fig. 3). Based on P , we
use a transitive closure algorithm such as Warshall’s al-
gorithm [30] to uniquely construct the matrix P ∗ (Fig.
4c). Hence, given any t-graph, the construction of the
partial order P ∗ is straightforward.

2. Realizability of t-graphs

While any target t-graph can be mapped to a set of
design inequalities, design inequalities may at times con-
tradict each other, such that they are not consistent with
any set of switching fields. Hence, the question of exis-
tence of a set of switching fields that realize a target t-
graph is tantamount to checking the satisfiability of the
set of design inequalities. To solve the general problem
of checking whether a set of inequalities is consistent, one
can use the classical method of Fourier-Motzkin elimina-
tion [31], or alternatively, more refined linear program-
ming methods such as the simplex algorithm [32].
For our sets of pairwise inequalities, checking solvabil-

ity is more straightforward than in the general case: in-
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x > y x ≯ x x > y ⇒ y ≯ x
x > y

y > z

}
x > z

FIG. 4. Partial order represented by adjacency matrices. (a) Representation of a partial order as an adjacency matrix (i) and
three properties of a partial order: (ii) irreflexivity, shown by the diagonal highlighted in white-on-black; (iii) asymmetry, shown
by a pair of entries highlighted in red, where x > y rules out that y > x; and (iv) transitivity, where the induced inequality x > z
is highlighted in gray. (b) Example of the list of design inequalities shown in Fig. 3e as the adjacency matrix P . The matrix
contains n×n blocks of inequalities that concern the same states SA, SB , as shown by thicker lines. Notably, the block diagonal
consists of the initial inequalities, as they concern comparisons between switching fields at the same state. (c) Transitive closure
P ∗ of the adjacency matrix P shown in (b); note the addition of induced inequalities, highlighted in gray.

consistencies show up as violations of asymmetry, i.e.,
pairs of inconsistent inequalities of the form x > y and
x < y occurring simultaneously. These pairs are easily
detected using the matrices P and P ∗ introduced above.
We illustrate our approach by discussing two examples
of non-realizable t-graphs.

First we consider a target t-graph that contains a sub-
graph consisting of the l = 1 up transition {00} ⇢{01}, and
the l = 3 up transition {01} ⇢{11} ⇠{10} ⇠{00} (Fig. 5a).
For this example a contradiction in the design inequal-
ities is immediately visible from the partial order ma-
trix P : the stability of the final state {01} of the
transition {00} ⇢{01} requires U+2 (00) < U+1 (01), while
the stability of the final state 00 of the transition
{01} ⇢{11} ⇠{10} ⇠{00} requires U+2 (00) > U+1 (01). This
contradiction is directly visible in P , as the symmetry

related entries (00,2; 01,1) and (01,1; 00,2) both are 1,
which is forbidden (Fig. 5b). Hence, the stability condi-
tions directly produce a pair of inconsistent inequalities,
and the target graph can not be realized within a model
of interacting hysterons.

Second, we consider Fig. 5c. For this example the
contradiction in the design inequalities is not directly
visible in P , and requires the construction of P ∗. To
see this, note that the up transition {00} ⇢{01} ⇢{11} re-
quires that U+2 (00) > U+1 (01), while the down transition
{01} ⇠{00} ⇢{10} requires U+1 (01) > U−2 (10) and U−1 (10) >
U+2 (00). Together, this leads to the inconsistent chain of
inequalities U+2 (00) > U+1 (01) > U−2 (10) > U+2 (00) which
cannot be identified immediately from P , but when we
construct the transitive closure P ∗, such contradictions
become manifest (Fig. 5d). Hence, this target graph can
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FIG. 5. Illustration of impossible subgraphs and corresponding design inequalities. (a) Tentative combination of transitions
00 ⇢01 and 01 ⇢11 ⇠10 ⇠00. (b) Corresponding design inequalities P ∗, with entries induced via transitivity highlighted in gray. The
entries (00, 2; 01, 1) and (01, 1; 00, 2) show that asymmetry is broken (highlighted in red); note that the contradictory pair of
inequalities already appears in the original set of inequalities P (white blocks). (c) Tentative subgraph containing transitions
00 ⇢01 ⇢11 and 10 ⇠00 ⇢01. (d) Corresponding design inequalities P ∗. The three pairs of entries highlighted in red show that the
asymmetry condition is broken; note that this breaking of asymmetry is only visible in the transitive closure P ∗, and not in
the original matrix P .

not be realized.

3. Solving the design inequalities

To conclude, we discuss how explicit solutions for the
switching fields {U±i (S)} can be constructed for a given
set of (consistent) design inequalities. For our sets of
pairwise inequalities, an explicit solution can be con-
structed by finding a total order (or ’linear extension’

[22]) that satisfies the partial order specified by the de-
sign inequalities. We use a topological sorting algorithm
such as Kahn’s algorithm[33, 34] to produce a random
linear extension, without regard for the range and distri-
butions of gaps between switching fields.

To convert such a random linear extension to an ex-
plicit solution, we set the switching fields to be equidis-

tant with a spacing of ϵ = (n ⋅ 2n)−1, and set the lowest
switching field to ϵ/2. This is a convenient choice because
it guarantees that the switching fields lie within the range
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[0,1], and the system is in the saturated states {00...},
{11...} at driving values of 0 and 1 respectively.

Although we have emphasized that the design inequal-
ities for a given t-graph topology only impose a partial
order relation, additional constraints - for example, those
imposed by the use of a specific model for ∆±i (S) - can
lead to more complex sets of inequalities. In these cases,
one can fall back on general linear programming meth-
ods such as the simplex algorithm [32] to solve the full
set of inequalities. We note that, to make use of linear
programming, one must first transform the set of strict
design inequalities to a set of non-strict design inequali-
ties U±i (SA)−U±j (SB) ≥ b, with b a small positive number.
Like ϵ in the method described above, b here sets an ex-
plicit spacing between switching fields, which is necessary
because the problem is scale-invariant otherwise.

Altogether we have shown how for any t-graph or sub-
graph, we can construct corresponding design inequal-
ities. These design inequalities allow us to check if a
t-graph is realizable and, if so, to generate a random set
of switching fields that realizes the graph. We make use
of this in section III to generate all valid t-graphs for
n = 2. Moreover, the process of checking solvability and
finding a solution is facilitated by the observation that
the design inequalities only specify a partial order on the
switching fields (section II B). This observation has fur-
ther implications for the statistical weight of t-graphs, as
we will discuss in section IV.

III. CONSTRUCTING AND ORGANIZING ALL
GRAPHS

In this section we consider the space of all t-graphs.
While the profusion of t-graphs with n ≥ 3 makes brute
force explorations unfeasible [5], we build here on the ob-
servation that any t-graph is created by combining tran-
sitions which proceed on a scaffold (sections I B 1, I C).
Thus, to systematically explore the space of all t-graphs,
we proceed in three steps. First, for given n, we create
and count all scaffolds (section IIIA). Second, for any
state in a scaffold, all possible (avalanche) transitions can
be organized by finite binary trees (section III B). Third,
by combining scaffolds and selecting transitions from the
binary trees, all candidate t-graphs can be systematically
generated. Only a fraction of these are consistent with
the corresponding design inequalities, and these are the
sought-after valid t-graphs. We use this approach to de-
termine all valid t-graphs for n = 2, all scaffolds (and
all avalanche-free t-graphs) for n = 3, and a loose upper
bound on the number of t-graphs for n = 3 (section III C).
Our approach uncovers the root cause of the multiplicity
and complexity of the space of all t-graphs: as each state
allows a number of potential transitions, the multiplica-
tion of these numbers very quickly leads to astronomi-
cal numbers, while at the same time, the combination of
longer and longer avalanches eventually leads to many t-
graphs of which the design inequalities are inconsistent.

Thus, while the number of valid t-graphs for general n is
presumably much smaller than the number of candidate
graphs, the complexity of the underlying design inequal-
ities makes it challenging to systematically construct - or
even enumerate - these graphs.

A. Scaffolds

We now consider the multiplicity and organization of
the scaffolds. We first define the up (down) boundary of
a scaffold as the sequences of up (down) passages that
connect the saturated states {00 . . .} and {11 . . .}; to-
gether these form the main loop [20, 27]. We break the
relabeling symmetry of the hysterons by requiring that
the sequence of passages that connects the up bound-
ary of the main loop is fixed, so that the hysterons flip
in the order n,n − 1, . . . ,1 [20]. With this convention,
there are n! possible down boundaries and hence n! main
loops, which can be labeled by the sequence of down tran-
sitions. For example, the main loop of the scaffold in
Fig. 6a, {00} ⇢{01} ⇢{11} ⇠{01} ⇠{00}, can be denoted as
(1,2) [20, 27].
The number Ns(n) of scaffolds for n hysterons can

be obtained from a simple combinatorial argument. For
each up (down) transition, the number of possible critical
hysterons n±(S) equals the number of hysterons in phase
0 (1), so that n+(S) = n −m and n−(S) = m, where m
denotes the magnetisation which follows from S straight-
forwardly. As the number of states with magnetisation
m equals (n

m
), we immediately find that

NS =
∏S(n+(S) n−(S))

n!
=
(∏n

m=1m
(
n
m
))

2

n!
, (18)

where the division by n! takes care of the relabeling sym-
metry.
The scaffolds can simply be labeled by the values of

the critical hysterons, and can be organized by main loop
and by the minimal number of scrambled passages. First,
each main loop allows for the same number of scaffolds
(NS/n!) — to see this, note that, irrespective of the main
loop, the same amount of choices of up and down transi-
tions at each value of m are available. Second, for each
main loop we can define one unscrambled or Preisach
scaffold, where all critical transitions follow the order of
the up and down transitions along the main loop; all
other scaffolds are obtained by scrambling, i.e. chang-
ing one or more critical hysterons. This suggests that
we can characterize the complexity of the scaffold by the
minimal number of such changes.
The scaffolds are far less numerous than t-graphs. For

example, for n = 3, there are only 96 scaffolds in total,
and sixteen scaffolds per main loop. For n = 2 we see that
NS = 2, and so there is only a single scaffold per main
loop; this reaffirms that scrambling can only occur for
n > 2. Because they are less numerous, scaffolds facilitate
exploration of t-graphs.
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FIG. 6. Binary trees of possible avalanches for n = 2. a) First of two possible scaffolds for n = 2, and associated binary trees of

avalanches per transition. We label transitions by their starting state S(0) and their up or down direction marked respectively
as U or D (see also Fig.3). Each tree node represents a transition S(0) → ⋅ ⋅ ⋅ → S(l), characterized by a starting state and
up/down sequence - please note the difference between uppercase and lowercase labels, as U and D signify the initial direction
of a transition, whereas u and d signify intermediate steps. A length-l transition can be extended to a transition of length l+ 1
by an up flip if S(l) = {00...}, by a down flip if S(l) = {11...}, and by either an up or down flip otherwise. Branches of the tree
terminate where there is a self-loop, indicated in red. The number of avalanches in each tree is indicated below each transition;
the product of these counts gives the number of avalanches for the given scaffold. b) Second of two possible scaffolds for n = 2,
and associated binary trees of avalanches per transition. Note that the structure of each tree is as in (a), but the nodes at
which self-loops are encountered are different.

B. Binary trees of transitions

We now discuss how, for a given scaffold, all
(avalanche) transitions starting at a given state S and
initial direction can be organized in a finite binary tree
(Fig. 6). To construct this tree, we start from a state
and initial direction, and then iteratively construct all
sequences of up and down steps in the scaffold (recall
that only one hysteron can flip phase at each step in an
avalanche). Since the number of hysterons is finite, the
magnetization spans a finite range, so we terminate all
branches that attempt an up (down) step from the satu-

rated state {11 . . .} ({00 . . .}). Furthermore, since each
avalanche may visit states only once due to the ’no-loop’
condition, we also terminate branches that revisit a state.
Hence, all branches in this tree terminate after a finite
number of steps.

As an example, we consider the n = 2 scaffold with
down boundary (1, 2), and focus on the up transitions
starting from {00} (Fig. 6a). First, we construct the
l = 1 transition 00u - note the scaffold stipulates that
k+(S) = 2, so that 00u corresponds to the transition
{00} ⇢{01}. We now check if the l = 2 extensions of this
transition, 00uu and 00ud, are allowed. Using the scaf-
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fold, we find that 00uu corresponds to the valid transition
{00} ⇢{01} ⇢{11}, whereas 00ud leads to a self-loop and is
forbidden; we terminate this branch (Fig. 6a). Extending
00uu, we find that 00uuu (not drawn) does not exist as
there are no hysterons to flip up, and 00uud leads to a
self-loop. All branches have now terminated, so we find
that the only valid up sequences for transition 00U are
00u and 00uu. Repeating this procedure for all states
and initial directions, we can construct six binary trees
for this example scaffold containing twelve potential tran-
sitions in total(Fig. 6a). For n = 2 there are only two
scaffolds, and for the second scaffold we can construct
fourteen potential transitions (Fig. 6b).

C. Constructing all t-graphs

By combining scaffolds and selecting (avalanche) tran-
sitions from the corresponding binary trees, we can sys-
tematically generate all so-called candidate t-graphs; if
the corresponding design inequalities are consistent, such
candidate graphs are valid t-graphs (section II B 2).

For the n = 2 case, by multiplying the sizes of all binary
trees of transitions, we find that the first scaffold yields
2× 1× 3× 1× 3× 2 = 36 candidate graphs (Fig. 6a), while
the second scaffold yields 81 candidate graphs (Fig. 6b),
yielding a total of 117 n = 2 candidate graphs. We ob-
serve that the list of candidate graphs is often dominated
by a single or small set of scaffold(s), due to the combi-
natorial explosion associated with large trees.

To determine all valid t-graphs, we simply check
for each candidate graph whether it is realizable (sec-
tion II B 2). For n = 2, we find that 35 of the 117 can-
didate graphs are realizable. When we exclude Garden-
of-Eden states from the graph topology (section IC) this
number reduces to only thirteen. When we ignore the in-
termediate states of the avalanches, the number reduces
further to eleven. All of these graphs were found previ-
ously using sampling [5]; we can now state conclusively
that these are the only possible graphs for n = 2 interact-
ing hysterons.

The number of candidate graphs to be checked in-
creases very rapidly with the number of hysterons. For
just n = 3 hysterons, we can systematically construct all
trees for each of the 96 possible scaffolds, obtain all can-
didate graphs by multiplying the sizes of these trees for
each scaffold, and then sum over the scaffolds; doing so,
we obtain 4725217377852 candidate graphs. All of these
candidate graphs need to be individually checked for re-
alizability; thus, it is not feasible to use this method to
find all realizable t-graphs for more than two interacting
hysterons.

However, the enumeration of scaffolds and trees allows
to gain insight into the space of possible t-graphs. For
example, the 96 scaffolds for n = 3 produce exactly 96
avalanche-free t-graphs When GoE states are excluded,
this number even reduces further to 35. We note in pass-
ing that a total order of the state switching fields can

easily be constructed such that an avalanche-free t-graph
is obtained, for any choice of the scaffold. For example,
one can use a ’staircase’ construction, where one first
orders the state switching fields according to magnetiza-
tion as U−(m = 1) < U+(m = 0) < U−(m = 2) < U+(m =
1) < U−(m = 3) . . . , and then arbitrarily choose an or-
der of the state switching fields at each magnetization
to obtain a well defined total order. By substituting
these state switching fields U±(S) for the appropriate
hysteron switching fields U±i (S), one can obtain a to-
tal order that produces an avalanche-free t-graph for any
scaffold. Thus, all 96 avalanche-free candidate graphs
for n = 3 (or 35 when excluding GoE states) are valid
t-graphs.

We now illustrate how one can use the binary tree
structure to include avalanches step by step. Considering
again the n = 2 transitions in Fig. 6, we first focus on
only the l = 2 avalanches. We see that there are four of
these l = 2 avalanches per scaffold. For the scaffold with
main loop (1, 2), the corresponding sequences are 00uu,
10ud, 10du and 11dd - the sequences 00ud, 01du are for-
bidden because of self-loops. Similarly, the scaffold with
main loop (2, 1) allows for four l = 2 transitions 00uu,
01ud, 10du and 11dd. Thus, in total, we can construct
eight candidate graphs with only a single l = 2 avalanche.
We find that all these candidate graphs are realizable.

We can apply the same approach for n = 3. Considering
the binary trees of transitions for each of the 96 scaffolds,
we find that each of the scaffolds allows for either four-
teen, sixteen or eighteen possible l = 2 transitions - as
we saw for n = 2, this number depends on the number of
l = 2 transitions that lead to self-loops, and because these
transitions must come in pairs, the total number of l = 2
transitions is even. Summing over all scaffolds, we find
that there are 1440 candidate graphs with a single l = 2
transition. Again checking for each of these candidate
graphs whether the design inequalities are consistent, we
find that all these graphs are realizable. We believe that
this phenomenon - where all candidate graphs with a sin-
gle l = 2 avalanche are realizable - extends to general n.
To see that all such graphs are realizable, we need to
construct a consistent order for the switching fields. To
do so, one starts from a ’staircase’ construction to cre-
ate a total order for the t-graph without avalanches, and
then only modifies the switching fields responsible for the
avalanche, leading to a minor change in the ordering.

For the next step in complexity, we have two op-
tions: we can either consider t-graphs with a single l = 3
avalanche, or t-graphs which have two l = 2 avalanches.
We note that whereas candidate graphs with a single l = 2
avalanche appear to always be realizable, neither candi-
date graphs with a single l = 3 avalanche nor those with
two l = 2 avalanches are necessarily realizable, as can be
seen from the example subgraphs in Figure 5.

We first consider the case of a single l = 3 avalanche,
once again starting with the simple n = 2 case shown in
Fig. 6. Like in the l = 2 case, we can simply count the
number of l = 3 transitions in Fig. 6 to find that the
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scaffold with main loop (1, 2) has two possible l = 3 tran-
sitions (10udd and 10duu) and the scaffold with main
loop (2, 1) has four (00uud, 01udd, 10duu and 11ddu).
Thus, one can construct six candidate graphs with a sin-
gle l = 3 avalanche. Checking the design inequalities, we
find that two of these are realizable. Similarly, for n = 3
there are 1488 possible l = 3 avalanches and thus 1488
candidate graphs with a single l = 3 avalanche. We find
that 672 of these candidate graphs are realizable.

Constructing and counting all graphs with two l = 2
avalanches is slightly more demanding: in Fig. 6, we
must now find all possible pairs of l = 2 transitions. Let
us first consider the scaffold with main loop (1, 2). We
note that there are four combinations of state and initial
direction that allow for a l = 2 transition (00U, 10U, 01D
and 11D), out of which we must choose two: the number

of ways in which this can be done is (4
2
) = 6. Further-

more, each of the initial states and directions 00U, 10U,
01D and 11D has only a single possible l = 2 avalanche,
namely 00uu, 10ud, 01du and 11dd respectively. Thus,
for the n = 2 scaffold with main loop (1, 2), there are
six possible pairs of l = 2 avalanches. The scaffold with
main loop (2, 1) gives another six pairs, so that there are
a total of twelve candidate graphs that have two l = 2
avalanches. Once again checking whether the design in-
equalities are consistent, we find that eight of these are
realizable. For n = 3, using the same methodology, we
find 9864 candidate graphs with two l = 2 avalanches,
and checking whether the design inequalities are consis-
tent, we find that 9000 of these are realizable.

Generally speaking we see that, when even a few
avalanches are included, the number of realizable t-
graphs mushrooms, eventually becoming intractable.
However, as each step of an avalanche includes additional
design inequalities, we expect that more avalanche steps
lead to less total orders consistent with the design in-
equalities, and hence a smaller volume in design space
(see section IV) — such t-graphs, though numerous, are
thus statistically rare [5]. Moreover, many of the interest-
ing features of t-graphs rely on scrambling and the scaf-
fold structure, rather than avalanches, and our method
of separating these thus gives practical tools to explore
the space of t-graphs.

IV. STATISTICAL WEIGHT OF T-GRAPHS

In this section, we apply our framework to gain insight
into the t-graph probabilities that were found using sam-
pling [5]. We first use the design inequalities to quantify
the statistical weight of a single t-graph (section IVA).
We then apply this method to all n = 2 t-graphs found
in section III, to find the percentage of graphs that is
ill-defined (section IVB).

A. Domain in parameter space and counting total
orders

Previously, the parameter space of switching fields has
been explored through random sampling [5]. We now
show how the statistical weight of a target t-graph can be
quantified via the design inequalities, and corresponding
partial order P ∗.
To start with, for each partial order P ∗ there are one

or more total orders which satisfy that partial order (or
’linear extensions’, see section II B 3) [35, 36]. The prob-
lem of generating all linear extensions for a given partial
order is conceptually similar to that of generating a ran-
dom linear extension, and several algorithms have been
proposed based on topological sorting[37–39]. Yet, the
computational time required blows up rapidly for more
complex partial orders, and the general problem of gen-
erating all linear extensions - or even counting these - is
in fact known to be #P-complete [36, 40]. For n = 2,
however, the number of inequalities is small, and so the
problem of finding all linear extensions is manageable.
The approach we used to generate all linear extensions

for n = 2 is a breadth-first search algorithm: we add
inequalities to P ∗ one at a time, applying the transi-
tive closure at each step, and let the number of added
inequalities function as the algorithmic depth. The al-
gorithm terminates when every element of the matrix is
comparable (i.e., either x > y or x < y for all x ≠ y), so
that a total order is obtained. We find that, for exam-
ple, the graph in Fig. 3a is associated with eighteen total
orders of the switching fields.
As observed by Brightwell and Winkler [40], the prob-

lem of counting the number of linear extensions is closely
related to that of computing the volume of a polyhedron.
Namely, since there are (n ⋅2n)! possible permutations of
the switching field order, and by symmetry each total
order takes up the same volume in parameter space, the
fractional volume of a t-graph is obtained by dividing its
corresponding number of total orders by (n ⋅2n)!. Apply-
ing this to the example t-graph in Fig. 3a, one obtains a
fractional volume of 18/8! ≈ 4.5 × 10−4.
We check this result by directly computing the vol-

ume bounded by the design inequalities. As each design
inequality forms a codimension-1 hyperplane in the de-
sign space, each t-graph corresponds to an intersection of
half-spaces, which is a convex polyhedron [41, 42]. This
polyhedron is unbounded: we can arbitrarily increase the
switching fields for a given graph as long as their order
remains the same. Following the example of Keim and
Paulsen [7], we generate the vertices of this polyhedron
to generate a convex hull, and compute its volume using
appropriate Python packages. To ensure the volume is
finite, we set U±i (S) ∈ [0,1] for all switching fields: under
this convention the total volume of design space is 1, and
the volume of the polyhedron corresponds directly to the
probability of a t-graph under random sampling. Using
this approach, we indeed find a volume of 4.5 × 10−4 for
our example t-graph, in agreement with our exact result.
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FIG. 7. The thirteen n = 2 t-graphs found by systematically constructing the candidate graphs, then checking via the design
inequalities whether these are realizable; here we do not consider the GoE states. Note that, when intermediate states are
ignored, graphs (a)-(ii) and (b)-(ii), and graphs (a)-(iv) and (b)-(ix) are equal, leading to the same eleven t-graphs as found
previously via numerical sampling [5]. The corresponding number of total orders and associated percentages of parameter
space, when eliminating simple self-loops, are shown below each graph. Note that the the sum of total order counts (1224) is
higher than that obtained when GoE states are included (850). This is because transitions associated with GoE states are now
allowed to be ill-defined: this includes both race conditions and self-loops occuring in a transition initiated from a GoE state
(see I B 3), as well as cases where the GoE state is persistently unstable (see section IB). (a) T-graphs, total order counts and
percentages for the n = 2 scaffold with main loop (1, 2) (see also Fig. 6). (b) T-graphs, total order counts and percentages for
the n = 2 scaffold with main loop (2, 1). In panels (vii) and (viii), thicker arrows indicate l = 3 avalanches; the full transition
paths, not indicated in the figure, are {11} ⇠{10} ⇠{00} ⇢{01} and {00} ⇢{01} ⇢{11} ⇠{10} respectively.

B. The space of n = 2-graphs

Our method for generating candidate graphs via scaf-
folds and trees (section III) allows to gain insight in the

(relative) volume in design space occupied by different
t-graphs. Here we focus in particular on the fraction of
design space that leads to ill-defined t-graphs. To do so,
we construct the design inequalities, the partial order P ∗,
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and all corresponding total orders for a set of well-defined
t-graphs (see sections II B and IVA).

First off, since we are dealing with eight switching
fields, the number of possible total orders equals 8!/2! =
20160, where we divide by 2! to take care of the relabel-
ing symmetry. Each scaffold takes up an equal partition
in this parameter space, as can be seen from a symmetry
argument: for given state S, no hysteron is more likely
than another to be critical. Thus, for n = 2 each scaffold
corresponds to 50 percent of parameter space, or 10080
total orders, where we note that these total orders con-
tain both well-defined and ill-defined graphs.

If we include GoE states, the 35 well-defined t-graphs
for n = 2 interacting hysterons correspond to 850 total
orders of the switching fields. Similarly, excluding GoE
states, the 13 well-defined n = 2 t-graphs correspond to
1977 total orders. This suggests that only a small part
of parameter space yields well-defined t-graphs.

We have found that the vast majority of ill-defined
graphs can be attributed to simple self-loops of length
two — as discussed in section IB 3, in such a case
a hysteron becomes unstable in both phases as in
{00} ⇢{01} ⇠{00} ⇢{01} ⇠ . . . . We note in passing that this
situation cannot occur in the additive pairwise model,
but can easily occur when all switching fields are chosen
independently.
We can straightforwardly prohibit such simple self-loops
by enforcing additional pairwise inequalities: there are
four of such inequalities for n = 2, namely U+1 (00) >
U−1 (10), U+2 (00) > U−2 (01), U+1 (01) > U−1 (11) and
U+2 (10) > U−2 (11). We note that these inequalities are
independent of each other and of the symmetry require-
ment U+1 (00) > U+2 (00), and therefore, enforcing these
inequalities reduces the number of possible total orders
simply to 20160/24 = 1260. Accordingly, the number of
total orders per scaffold reduces to 630.

In the case where we include GoE states, the well-
defined graphs still correspond to 850 total orders, as the
mentioned four inequalities already emerge from each t-
graph’s design inequalities. Thus, by elimination of the
trivial self-loops from the set of total orders, the frac-
tion of parameter space taken up by well-defined n = 2
t-graphs becomes 850/1260 = 67.4%. When we exclude
the GoE states, prohibiting simple self-loops via the same
four inequalities yields 1224 total orders. We show the
individual total order counts for each of the thirteen
graphs, as well as the corresponding percentages of pa-
rameter space, in Fig. 7. The fraction of parameter
space taken up by these well-defined n = 2 t-graphs be-
comes 1224/1260 = 97.1%, which is qualitatively consis-
tent with earlier estimates, although those concerned a
specific parametrization of the switching fields [5].

V. CONCLUSION, DISCUSSION AND
OUTLOOK

We discussed the relation between design parameters
and t-graphs for the most general model for interact-
ing hysterons. We introduced scaffolds which allow to
precisely define scrambling and facilitate the systematic
construction of transitions including avalanches. We pre-
sented a systematic method for obtaining the set of de-
sign inequalities for a given t-graph (or subgraph), dis-
cussed the corresponding partial order of the switching
fields, and used the partial order to straightforwardly de-
termine the realizability of t-graphs. We showed that
the construction and organization of t-graphs can be seen
as a three-step process: first, all scaffolds can easily be
counted and generated; second, each transition in a scaf-
fold can be selected from easily constructible finite binary
trees that encode avalanches; third, the realizability of
candidate graphs formed by combining scaffolds and trees
can be checked using their design inequalities. As specific
examples, we count all possible t-graphs for n = 2, and
when we exclude Garden-of-Eden states, we find thirteen
distinct t-graphs; when we furthermore ignore differences
between intermediate states, we find eleven t-graphs, con-
sistent with an earlier estimate based on sampling the
design space [5]. For n = 3, the number of scaffolds is 96,
producing exactly 96 avalanche-free t-graphs, and when
GoE states are excluded, there are 35 n = 3 t-graphs with-
out avalanches; including avalanches, we find more than
4.5 × 1012 candidate t-graphs, of which around 1.5 × 104
have been found as actual t-graphs by random sampling
[5]. To enter the complex design space, we show how we
can count and determine the candidate graphs and real-
izable t-graphs for n = 2 and n = 3 that contain one or
two l = 2 avalanches, or one l = 3 avalanche. We finally
discuss the statistical weight of t-graphs in design space
by relating it to the number of total orders consistent
with a given partial order.

We stress that the rich structure of the t-graphs and de-
sign space can be seen as generalizing that of the Preisach
model of non-interacting hysterons [4, 19, 20]. First, the
2n hysteron-dependent switching fields of the Preisach
model are generalized to n ⋅2n state-dependent switching
fields. Second, while in the Preisach model the main loop
determines all other transitions, here the scaffold can be
seen as the generalization of the main loop. Third, while
the ordering of the hysteron dependent switching field de-
termines the different Preisach t-graph topologies, here
we need to consider the orderings of the more numer-
ous state-dependent switching fields. However, the oc-
currence of avalanches and ill-defined transitions has no
obvious pendant in the Preisach model, and it is these
that drive the combinatorial explosion and complexity of
design space.

In closing, we list a number of important issues for
future studies.

a. Importance of avalanches.— Avalanches play a
mixed role. On the one hand, avalanches are not re-
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quired for a variety of interesting phenomena, or even can
obscure their essence: scrambling, transients and multi-
periodic responses under cyclic driving do not require
avalanches to occur [7, 10, 13, 22, 43, 44]. Moreover,
a scaffold-centered approach can simplify the design of
experimental systems that exhibit transients [10, 13] or
subharmonic loops [44]. On the other hand, avalanches
can have a significant effect, for example allowing for
transients and breaking of loop-RPM on scaffolds that
are consistent with the Preisach model [13]. This sug-
gests that an approach that focusses on the much smaller
number of scaffolds, gradually adding a few avalanches of
short length, may give already a good starting point to
understand the statistics and typical response of systems
of interacting hysterons: while adding many avalanches
of longer lengths leads to a combinatorial explosion, and
an even more severe growth of the corresponding num-
ber of total orders of the switching fields (these grow as
(n ⋅ 2n)!/n! which already exceeds 3 × 1023 for n = 3),
the corresponding growth of the number of design in-
equalities suggest that such avalanche-heavy t-graphs,
may only cover a small part of design space or even are
not realizable. Whether such an approach truly captures
the broad variety and statistics of transition graphs and
memory effects remains an open question.

b. Specific parametrizations.— While in this paper
we consider all the switching fields to be completely inde-
pendent, different parametrizations of U±i (S) have been
used and may be relevant in experiments [10, 26]. Most
prominent are several variations of pairwise additive in-
teractions of the form U±i (S) = u±i −Σjc

±

ijsj , where u
±

i are
the bare switching fields, and the matrices c±ij capture
the interactions — for c±ij ≡ 0, we recover the Preisach
model. Several further simplifications have been made:
for example, one can assume that c+ij = c−ij ; in addition
one may assume reciprocity (cij = cji). However, both
non-reciprocity and c+ij ≠ c−ij can be observed in exper-
iments [10, 26, 44]. Conversely, specific experimental
settings may require even more restricted interactions,
such as cij = −dj , where dj are positive, for serially cou-
pled mechanical hysterons [13]. Such explicit parame-
terizations do not affect the structure of scaffolds, trees
and candidate graphs, but significantly impact the de-
sign inequalities, either by augmentation of the design
inequalities with additional constraints, or by explicit
conversion of the design inequalities to the specific de-
sign parameters (such as u±i and c±ij). Hence, specific
parametrizations lead to stricter realizability conditions
and a smaller group of realizable t-graphs. In some
cases, specific parametrizations may even lead to qual-
itative restrictions on the realizable t-graphs: for exam-
ple, ferromagnetic interactions (c±ij > 0) do not allow to
break (loop)-RPM, and thus cannot produce transients
or subharmonic orbits [45, 46]; serial coupling (cij = −dj)
cannot produce scrambling, but can lead to breaking of
(loop)-RPM via the formation of avalanches [13]. Gain-
ing better insight on the relation between specific classes
of interactions and t-graph topologies is an important

topic for further study.

In the additive pairwise coupling model and its vari-
ants, requirements on the hysteron switching fields can
be formulated in terms of coupling c±ij between hysterons,
and of the ’span’ of a single hysteron, σi = u+i − u−i . The
hysteron span and coupling are identifiable in the design
inequalities, even in the general model. For example,
reconsidering the design inequalities in Fig. 3e, the in-
equality U+1 (00) > U+1 (01) can be interpreted as a ferro-
magnetic coupling (positive cij), where hysteron 2 causes
a downward (upward) shift in the up switching field of
hysteron 1 upon flipping up (down). Similarly, the in-
equality U+1 (00) > U−1 (10) is associated with hysteron 1
having a positive span. In fact, the conditions that we
impose to prevent trivial self-loops (Section IVB) essen-
tially enforce that each hysteron span is always positive.
Span and coupling strength may allow for a classification
of different hysteron systems. First, the ratio between
the coupling coefficients cij and the span σi quantifies
the scale-invariant coupling strength, where the limit of
zero coupling strength corresponds to the Preisach model
[5, 7], and the limit of zero span corresponds to a spin
model [7]; the presence of certain t-graphs and classes of
t-graphs shows powerlaw scaling with coupling strength
[5, 18]. A second relevant quantity is the dispersity in
hysteron spans, as evidenced by the fact that even for
the Preisach model, some t-graphs require hysterons to
have differing spans while others do not [4, 20, 44]. An
approach where the design inequalities (section IIA) and
the associated partial order (section II B) are formulated
in terms of the hysteron span and coupling may provide
additional insights [47].

c. Extended models.— This work focussed on ab-
stract hysterons with phenomenologically introduced in-
teractions. More realistic models can give insight into the
physical reality of hysterons, as well as the shortcomings
of hysteron models, may help to establish a physical pic-
ture for their interactions, and may allow to access ad-
ditional physical effects. First, for hysterons where each
phase is associated with a different relation between two
conjugated variables - such as force and deformation - one
can explicitly work out the interactions that are mediated
in networks of such hysterons [9, 13, 26]. Such enhanced
models are one step in a hierarchy of increasingly realistic
models, that may give insight into the mechanisms that
govern hysteron interactions, as well as providing design
strategies to realize metamaterials that leverage such in-
teractions. An interesting question is if we can define en-
hanced hysteron models that avoid race conditions and
infinite loops; conversely, it is unclear under which condi-
tions complex energy landscapes can still be meaningfully
described by interacting hysterons. Second, while (ther-
mal) noise may lead to enhanced or suppressed memories
[48], its role for interacting hysteron models is an impor-
tant topic for future study. Third, many complex sys-
tems exhibit slow relaxations - determining which aspects
stem from the complex transients exhibited by interact-
ing hysterons, and which are due to slow relaxations of
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non-hysteron degrees of freedom remains an open ques-
tion. Finally, this work, while general, focussed on the
case of a few hysterons. While the continuum limit of
the Preisach model has been studied in detail [49, 50],
we have no continuum model for describing the statistics
of large numbers of interacting hysterons.

d. Total order and finite state machines.— The
same t-graph topology can correspond to many total or-
ders of the switching fields (Section IVA). However, these
total orders can lead to different responses when the sys-
tem is subjected to specific driving protocols, as can
be seen by considering subharmonic loops under cycli-
cal driving [5, 7, 44], and breaking of return point mem-
ory under asymmetric driving [21]. In other words, while
t-graphs describe the response to arbitrary driving, ex-
tracting qualitative information, such as whether there is
a cyclical driving protocol that produces a subharmonic
orbit is not easy [13]. One strategy to effectively describe
the response of systems characterized by t-graphs to spe-
cific driving inputs, such as cyclic driving or sequences
of driving pulses, is to use finite state machines (FSMs)
[13]. In brief, the idea is that any finite t-graph has only
a finite number of relevant switching fields, such that the
number of, e.g., pulses in U that result in a different re-
sponse is also finite. Defining a finite set of symbols {ai}
then allows to determine a transition table S′ = ai(Sj)

that maps an initial state Sj and driving ai to a final
state S′, and therefore defines a FSM. This framework is
effective in identifying specific types of responses, such as
transients, for arbitrary t-graphs [13]. Moreover, this ap-
proach facilitates engineering applications, such as count-
ing [51] and smart actuation for soft robots under a single
input[13, 16, 52, 53].
The FSM framework is deeply linked with the total or-

der of the state switching fields, with preliminary explo-
rations indicating that any permutation in the switching
fields produces a different transition table, and hence a
different FSM. Hence, in addition to the design inequal-
ities required for the t-graph topology, a more restricted
partial order is required to ensure that the driving pro-
tocol leads the specific desired behavior, or to a specific
FSM. Open questions for the future include how specific
classes of hysteron interactions lead to, or limit, the as-
sociated FSMs and their computational power, and how
to effectively design a (minimal) set of hysterons (and
signals) that realize a target FSM [13, 54].
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