
ar
X

iv
:2

40
4.

11
35

9v
1 

 [
nu

cl
-t

h]
  1

7 
A

pr
 2

02
4

Momentum dependent nucleon-nucleon contact

interactions and their effect on p− d scattering

observables

E. Filandri1,2*, L. Girlanda3,4, A. Kievsky1,2, L.E. Marcucci1,2,

M. Viviani1,2

1*Department of Physics, University of Pisa, Largo Bruno Pontecorvo,
Pisa, 56127, Italy.

2 INFN Sezione Pisa, Largo Bruno Pontecorvo, 3/Edificio C, Pisa,
56127, Italy.

3Department of Mathematics and Physics, University of Salento, Via
per Arnesano, Lecce, I-73100, Italy.

2INFN, Sez. di Lecce, Lecce,I-73100, Italy.

*Corresponding author(s). E-mail(s): elena.filandri@df.unipi.it;

Abstract

Starting from a complete set of relativistic nucleon-nucleon contact operators up
to order O(p4) of the expansion in the soft (relative or nucleon) momentum p,
we show that non-relativistic expansions of relativistic operators involve twenty-
six independent combinations, two starting at O(p0), seven at order O(p2) and
seventeen at order O(p4). This demonstrates the existence of two low-energy free
constants that parameterize interactions dependent on the total momentum of
the pair of nucleons P . The latter, through the use of a unitary transformation,
can be removed in the two-nucleon fourth-order contact interaction of the Chiral
Effective Field Theory, generating a three-nucleon interaction at the same order.
Within a hybrid approach in which this interaction is considered together with
the phenomenological potential AV18, we show that the LECs involved can be
used to fit very accurate data on the polarization observables of the low-energy
p − d scattering, in particular the Ay asymmetry.

Keywords: Unitarity Transformation, Effective field theory, Three-body contact
interactions
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1 Introduction

Effective Field Theories (EFTs)[1–7] have established themselves as the preferred
systematic approach for tackling the complex problem of nuclear interactions. This
approach rests on several fundamental principles. It starts with the identification of
the most general effective Lagrangian, respecting all pertinent symmetries, including
the approximate chiral symmetry of Quantum Chromodynamics (QCD). The order-
ing of interactions is accomplished through a power-counting scheme. Consequently,
this framework yields a predictive context in which physical observables, at each stage
of the low-energy expansion, are expressed in terms of a finite set of low-energy con-
stants (LECs). These LECs serve as fitting parameters and are determined through
experimental data.

One essential task is the precise determination of the required number of param-
eters, both necessary and sufficient, at each stage of the expansion. This task not
only rigorously scrutinizes the theory but also aids in estimating the theoretical
uncertainty arising from unaccounted higher-order interactions [8–11]. In the realm
of nuclear forces, these fitting parameters pertain to LECs associated with contact
interactions between nucleons, which are not constrained by chiral symmetry. How-
ever, they are subject to constraints imposed by Poincaré symmetry [12, 13]. Despite
the common non-relativistic quantum-mechanical framework used in nuclear physics,
Poincaré symmetry must ultimately be respected. This requires the reconciliation of
various relativistic effects arising from different sources, such as recoil corrections in
energy denominators and vertex corrections from the heavy baryon expansion. Given
that relativistic effects scale with the soft nucleon momenta, they can be systemati-
cally examined in the low-energy expansion, and the constraints on interactions can
be imposed algebraically.

In the present work, starting from a manifestly Lorentz-invariant two-nucleon (2N)
contact Lagrangian density and performing non-relativistic reductions up to the order
1/m4, where m represents the mass of the nucleon we retrace the results already
obtained in Refs. [14, 15].

Furthermore, we underline the importance of two additional 2N contact LECs
at N3LO, which characterize momentum-dependent interactions allowed by Poincaré
symmetry. These LECs can be transformed into a three-nucleon (3N) interaction
through a unitary transformation. This finding may explain the challenges faced
when attempting to enhance accuracy in 3N systems, particularly in the context of
scattering observables, during the transition from N2LO to N3LO [16].

The inclusion of the N4LO 3N contact interaction has proven to be of signifi-
cant importance in reducing existing discrepancies between theoretical predictions and
experimental data [17].

This paper offers quantitative evidence that the additional two LECs D16 and D17

at N3LO introduce the necessary flexibility to substantially enhance the description of
low-energy p−d scattering polarization observables, with a particular focus on the Ay

asymmetry. This aspect has long posed challenges for most nuclear interaction models.
Our approach is hybrid in nature, involving the consideration of the 3N force

induced by D16 and D17 potential terms in conjunction with the phenomenological
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Table 1 Transformation proprieties of the different
elements of the Clifford algebra, metric tensor, Levi-
Civita tensor and derivative operators under parity (P),
charge conjugation (C) and Hermitian conjugation (h.c.)

1 γ5 γµ γµγ5 σµν gµν ǫµνρσ
←→
∂ µ ∂µ τa

P + − + − + + − + + +
C + + − + − + + − + (−1)a+1

h.c. + − + + + + + − + +

AV18 2N potential. A more comprehensive calculation in Chiral Effective Field Theory
(ChEFT) is deferred to future research.

The structure of the paper is as follows. In Sec. 2 we show the basic steps of
non-relativistic reduction to order p4 of a covariant 2N Lagrangian, emphasizing the
existence of two interactions dependent by the total momentum P accompanied by
two free LECs D16 and D17. In Sec. 3 we explain how these two off-shell interactions
are related by unitary transformation to a three-body force and how they can be used
for a fit of p− d polarization observables. In Sec. 4 we show the fit results and in Sec.
5 final conclusions are drawn.

2 Two extra interactions from the non relativistic
reduction of 2N Contact Lagrangian up to N3LO

The general expression of the relativistic 2N contact Lagrangian is derived following
the approach of Ref. [14, 15, 18, 19]. It consists of products of fermion bilinears, such
as

(ψ̄
←→
∂ µ1
· · ·
←→
∂ µi

ΓAψ)∂λ1
· · · ∂λk

(ψ̄
←→
∂ ν1 · · ·

←→
∂ νjΓBψ), (1)

where ψ indicates the relativistic nucleon field, a doublet in isospin space, and ΓA,B

are generic elements of the Clifford algebra.
To construct the covariant Lagrangian, various symmetries must be satisfied,

including Lorentz invariance, isospin, parity, charge conjugation, and time reversal
symmetry. According to the CPT theorem, time reversal symmetry is automatically
satisfied if charge conjugation and parity symmetries are fulfilled.

Table 2 lists the transformation properties of different elements of the Clifford
algebra, metric tensor, Levi-Civita tensor, and derivative operators under parity (P),
charge conjugation (C), and Hermitian conjugation (h.c.). These properties play a
crucial role in the construction of the Lagrangian.

Regarding the isospin degrees of freedom, both flavor structures 1⊗ 1 and τa⊗ τa

are allowed, but the latter can be disregarded thanks to Fierz identities. To specify
the chiral order of each building block, it is necessary to identify the powers of the
soft relative momentum p. The derivatives ∂ acting on the entire bilinear are of order

p, while the derivative
←→
∂ acting inside a bilinear is of order p0 due to the presence

of the heavy fermion mass scale. The fields equations of motion can be used to reduce
the number of cosidered terms. Further criteria in specifying the power counting of
the operators regard the Dirac matrix γ5, which can be thought of as O(p) since it
mixes the large and small components of the Dirac spinor, and the Levi-Civita tensor
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ǫµνρσ , which raises the chiral order by n−1, when contracted with n derivatives acting
inside a bilinear.

These guidelines lead to the complete set of relativistic contact operators displayed
in Table 2 of Ref.[15]. The last column contains, for each one of the Dirac structures,
the additional combination of four-gradients arising up to O(p4). This construction
differs from the one conducted in Ref. [14], due to a different choice of operators
reduced by the equations of motion.

The next step is the non-relativistic reduction of these operators in terms of a
minimal basis of non-relativistic 2N contact operators, involving up to 4 powers of
three-gradients in terms of non-relativistic nucleon fields. It is important to note that
the 2N contact Hamiltonian density takes the form of H2N = H(0)+H(2)+H(4), with
H(0), H(2), and H(4) defined with the corresponding LECs.

Table 3 of Ref.[15] provides a complete basis of non-relativistic operators com-
puted between states of two nucleons with initial and final momenta. It includes both
LECs and operators for O(p4). Notably, this basis accounts for the general reference
frame, and indeed some of the operators are P -dependent, where P denotes the overall
momentum of the nucleon pairs.

The operators related to the constants D16 and D17 are introduced in this basis,
representing new LECs that parametrize the P -dependent 2N interaction in the
general reference frame. These LECs do not contribute in the center-of-mass frame.

3 Influence of two-body off-shell forces on the Ay

puzzle

The N3LO 2N contact potential was originally considered in Refs. [20, 21] as consisting
of 15 LECs. After careful scrutiny of the constraints imposed by relativity, two further
LECs emerge, leading to the following expression in the general reference frame,

V
(4)
2N =D1k

4 +D2Q
4 +D3k

2Q2 +D4(k ×Q)2 +
[

D5k
4

+D6Q
4 +D7k

2Q2 +D8(k ×Q)2
]

(σ1 · σ2)

+
i

2

(

D9k
2 +D10Q

2
)

(σ1 + σ2) · (Q× k)

+
(

D11k
2 +D12Q

2
)

(σ1 · k) (σ2 · k)

+
(

D13k
2 +D14Q

2
)

(σ1 ·Q) (σ2 ·Q)

+D15σ1 · (k ×Q)σ2 · (k ×Q)

+ iD16 k ·QQ× P · (σ1 − σ2)

+D17 k ·Q (k × P ) · (σ1 × σ2) (2)

with k = p′− p and Q = p
′+p

2 , p and p′ being the initial and final relative momenta,
and P = p1+p2 the total pair momentum. However, as it was pointed out in Ref. [22],
only 12 independent LECs survive on shell and can thus be determined from 2N
scattering data. This redundancy amounts to a unitary ambiguity, i.e. to the possibility
of generating shifts of the LECs by unitary transforming the one-body kinetic energy
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operator H0 as

H0 → U †H0U. (3)

Here U is the most general unitary 2-body contact transformation depending on 5
arbitrary parameters αi,

U = exp

[

5
∑

i=1

αiTi

]

, (4)

and the independent generators Ti, which are given explicitly in Ref. [17, 23], induce
a shift in the N3LO contact LECs, Di → Di + δDi. Specifically, the induced shifts for
D16 and D17 are given by:

δD16 = −
2

m
α4, (5)

δD17 = −
4

m
α3 −

2

m
α5. (6)

At the same time, the unitary transformation, when applied to the LO 2N contact
Hamiltonian, induces a shift of the LECs parametrizing the subleading three-body
interaction Ei, as

V
(2)
3N,Λ =

∑

ijk

[E1 + E2τi · τj + (E3 + E4τi · τj)σi · σj ]

×

[

Z ′′
Λ(rij) + 2

Z ′
Λ(rij)

rij

]

ZΛ(rik)

+(E5 + E6τi · τj)Sij

[

Z ′′
Λ(rij)−

Z ′
Λ(rij)

rij

]

ZΛ(rik)

+(E7 + E8τi · τk)

{

(L · S)ij ,
Z ′
Λ(rij)

rij
ZΛ(rik)

}

+ [(E9 + E10τj · τk)σj · r̂ijσk · r̂ik

+ (E11 + E12τj · τk + E13τi · τj)σk · r̂ijσj · r̂ik]

×Z ′
Λ(rij)Z

′
Λ(rik), (7)

where Sij and (L·S)ij are respectively the tensor and spin-orbit operators for particles
i and j, and the profile functions

ZΛ(r) =

∫

dp

(2π)3
eip·rF (p2; Λ), (8)

representing the cutoff in coordinate space, chosen as

F (p2,Λ) = exp

[

−

(

p2

Λ2

)2
]

. (9)
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In the following the value Λ = 500MeV will be used. The explicit expression for the
N4LO LECs shift δEi of the three-body force can be found in Ref. [17] (see Eqs. (39)-
(51)). The induced contributions δEi are enhanced as compared to the genuine ones
Ei, due to the presence of the nucleon mass factor, scaling as m ∼ O(Λ2

χ/p) (being Λχ

hard or breakdown scale of the theory) in the Weinberg counting [2], which effectively
promotes them to N3LO. In this work, the LECs Ei will be thought of as constituted
only of the induced contributions of the P -dependent D16 and D17. Thus, at N3LO the
3N contact interaction depends on two combinations of the 2N LECs Di, appearing
in Eqs. (5)-(6), which cannot be determined from 2N scattering data, but have to be
fitted to experimental observables in A > 2 systems.

We investigate the sensitivity of polarization observables in low-energy N − d
scattering to the two P -dependent N3LO LECs. The AV18 potential is used as a rep-
resentative 2N interaction, and the meaning of the LECs CS and CT in this framework
is found treating the LO contact pionless potential as a very low-energy representa-
tion of the AV18 potential, with a local cutoff introduced. The values of CS and CT

are thus taken from a fit of the LO 2N contact interaction

V
(0)
2N,Λ = [CS + CTσ1 · σ2]ZΛ(r) (10)

to the singlet and triplet n− p scattering lengths as predicted by the AV18 potential.
In the above expression a local cutoff has been introduced as in Eq. (8). From this
procedure we get

CS = −66.53 GeV−2, CT = −3.47 GeV−2. (11)

The 3-body Schrödinger equation is solved as in Ref.[17] employing the Hyper-
spherical Harmonic (HH) method. Below the deuteron breakup threshold, the N − d
scattering wave function is expressed as the sum of an internal ΨC and an asymptotic
part ΨA

ΨLSJJz
= ΨC +ΨA , (12)

where the internal part ΨC is expanded on the HH basis as

ΨC =
∑

µ

cµΦµ. (13)

Here µ denotes all the quantum numbers required to define the basis element.
The asymptotic part describes the relative motion between the nucleon and the

deuteron at large distances, involving regular (R) and irregular (I) solutions.
Denoting these solution Ωλ

LSJJz, with λ = R, I respectively, and defining

Ω±
LSJJz

= iΩR
LSJJz

± ΩI
LSJJz

, (14)

we have

ΨA = Ω−
LSJJz

+
∑

L′S′

S
J
LS,L′S′(q)Ω+

L′S′JJJz
. (15)
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Here SJLS,L′S′ are the S-matrix elements and q is defined as the modulus of the N − d
relative momentum. From the S-matrix it is possible to compute phase shifts and
mixing angles, from which the scattering observables are calculated. The S-matrix in
Eq. (15) and the coefficients cµ in Eq. (13) are determined by the complex formulation
of the Kohn variational principle [24]. This principle demands that a certain functional
be stationary under variations of trial parameters, leading to a linear system whose
solution provides the weights and coefficients.

The Hamiltonian is decomposed intoH2N (kinetic energy plus AV18 2N interaction

with Coulomb potential) and V
(2)
3N,Λ (containing 3N interaction induced by D16 and

D17 terms). The linear system for coefficients involves the computation of matrix
elements between HH basis elements and asymptotic functions.

A specific set of LECs allows the computation of the associated S-matrix for each
Jπ state using the Kohn variational principle, providing observables at a specific
energy.

4 Fit results

The observables used in the fitting procedure include the p−d differential cross section,
the two vector analyzing powers Ay and iT11, the three tensor analyzing powers
T20, T21, T22 and the doublet and quartet n − d scattering lengths, with the exper-
imental values 2and = (0.645 ± 0.003 ± 0.007) fm [25] and 4and = (6.35 ± 0.02) fm
[26]. In particular we fit the experimental doublet and quartet n−d scattering lengths
and the six p − d scattering observables at center-of-mass energy Ecm = 2MeV [27],
amounting to 282 experimental data. In addition we also fix the 3H binding energy
to 8.469 MeV. This value takes into account the contribution of the neutron-proton
mass difference, which is not described in the HH method, amounting to ∼ 7 keV, and
additional amount of ∼ 6 keV from the truncation of the HH expansion.

In the case of the differential cross section, we introduce an overall normalization
factor Z in the definition of χ2. Specifically,

χ2 =
∑

i

(

dexpi /Z − dthi
)2

(σexp
i /Z)

2 , (16)

where Z is determined from the minimization condition:

Z =

∑

i d
exp
i dthi / (σ

exp
i )

2

∑

i

(

dthi
)2
/ (σexp

i )
2
. (17)

Here, d
exp /th
i represents the experimental data points and their theoretical predictions,

respectively, while σexp
i is the experimental error. For other observables, we treat the

normalization Z = 1.00 ± 0.01 as an additional experimental datum, considering the
systematic uncertainty estimated as 1% according to Ref. [27].

The fitting procedure involves a global 2-parameter fit including only the P -
dependent 2N interaction. We also perform 3-parameter fits including the LO 3N
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Fitting procedure 2-param. 3-param.
χ2/d.o.f. 2.1 1.9

e0 - 0.459
α̃4CS 1.751 1.894
α̃5CS -0.495 -1.175

2and (fm) 0.573 0.599

Table 2 Results of the 2-parameters and
3-parameters fits, the latter one obtained
including the leading order 3N contact
interaction. Here the fitted parameters αi

and the corresponding values of the LO 3N
contact LEC E0 are dimensionless, i.e.
e0 = E0F

4
πΛ, α̃i = αiF

4
πΛ

3 with Fπ = 92.4
MeV. In the last row we report the value
obtained for the n− d doublet scattering
length 2and, which should be compared with
the experimental value
2and = (0.645 ± 0.003± 0.007) fm [25].

contact interaction,

V
(0)
3N,Λ = E0

∑

ijk

ZΛ(rij)ZΛ(rik), (18)

where the LEC E0 introduces further flexibility to the fit and it is mainly determined
by the 3H binding energy.

We start the iterative minimization procedure by solving the scattering problem for
an initial random set of α4 and α5 parameters, calculating the corresponding observ-
ables. Employing the POUNDerS algorithm [28], we repeat the process with different
initial random αi values, aiming to converge to the deepest minimum. The resulting
χ2/d.o.f. is ∼ 2.1(1.9) for the two(three)-parameter fits. The fitted parameters E0, α4

and α5 can be read from the first column of Table 2.
Figure 1 shows the best fit curves for various analyzing powers and observables,

compared to predictions from the 2N AV18 potential and the addition of the 3N
Urbana IX interaction. The effective N3LO 3N contact interaction induced by the
D16 and D17 terms successfully addresses the Ay problem, and the description of the
vector analyzing power iT11 is significantly improved. We also conclude by saying that
the introduction into the fit of the LEC E0 corresponding to the three-body contact
force at leading order does not substantially change the description of the experimental
data, except for the observable Ay , as can be seen in Figure 1.

5 Conclusions

In this analysis, we have explored the relativistic constraints on the O(p4) 2N contact
Lagrangian bringing out two P -dependent terms in the potential accompanied by two
unconstrained LECs D16 and D17. It should be emphasized that the above terms are
not to be understood as relativistic corrections but for all intents are within the N3LO
2N contact potential. These LECs, whose effect vanishes in the 2N center-of-mass
frame, can play a crucial role in larger nuclear systems. The unitary equivalence to
3N contact operators implies a connection between these LECs and off-shell effects.
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Fig. 1 Proton and deuteron analyzing power and differential cross-section at Ecm = 2 MeV. The
red lines result from a global 2-parameter fit, the black lines represent the 3-parameters fit including
the E0 term, the blue lines are the predictions from the 2N AV18 potential, while the green lines are
the predictions including also the 3N Urbana IX interaction. Experimental data are from Ref. [27].

Using an hybrid approach where the three-nucleon interaction, parametrized by D16

and D17 LECs, is considered alongside the phenomenological AV18 2N potential,
we fit experimental data on polarization observables in low-energy p − d scattering,
specifically focusing on the Ay asymmetry. The results indicate that the inclusion
of terms represented by D16 and D17 in the three-nucleon interaction is crucial for
accurately reproducing experimental data, in low-energy proton-deuteron scattering.
This implies that these LECs can be resolutive for the long-standing Ay puzzle. The
D16 and D17 LECs on systems with A > 2 should be further quantified in future
investigations. Of course it will be undoubtedly intriguing to conduct a thorough
reexamination of the aforementioned analysis within a fully consistent framework of
ChEFT.
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