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We study thermalization in isolated quantum systems from an open quantum systems perspec-
tive. We argue that for a small system connected to a macroscopic bath, the system observables
are thermal if the combined system-bath configuration is in an eigenstate of its Hamiltonian, even
for fully integrable models (unless thermalization is suppressed by localization due to strong cou-
pling). We illustrate our claim for a single fermionic level coupled to a noninteracting fermionic
bath. We further show that upon quenching the system Hamiltonian, the system occupancy relaxes
to the thermal value corresponding to the new Hamiltonian. Finally, we demonstrate that system
thermalization also arises for a system coupled to a bath initialized in a typical eigenstate of its
Hamiltonian. Our findings show that chaos and nonintegrability are not the sole drivers of thermal-
ization and complementary approaches are needed to offer a more comprehensive understanding of
how statistical mechanics emerges.

I. INTRODUCTION

Many states of matter occurring in nature can be char-
acterized as thermal equilibrium states, i.e., the expected
values of their observables can be characterized using a
single or a few intensive thermodynamic parameters (e.g.,
temperature or chemical potentials of particles). The
emergence of thermal behavior has been explained using
the concept of statistical ensemble (e.g., microcanonical,
canonical, or grand canonical). For example, within the
microcanonical picture, the thermal state is described as
a statistical mixture of equally probable microstates that
have the same energy.

Since the time of Boltzmann, the justification of the
statistical assumption that a system’s microstates are
equally probable, based on the principles of classical or
quantum mechanics, has been a subject of intense de-
bate. A proposed bridge between mechanics and statis-
tical behavior is the ergodic hypothesis [1] which states
that long-time averages of observables for a dynamical
system correspond to microcanonical ensemble averages.
This property has been proven for a few model mechan-
ical systems [2–5]. One approach to the origin of er-
godicity and thermalization, associated with the Brussels
school, is based on the assumption that the dynamics of
the microscopic system is chaotic [6, 7]. Chaotic behavior
is associated with nonintegrability of the system dynam-
ics, i.e., a situation in which the number of conserved
quantities is smaller than the number of degrees of free-
dom. However, as shown by the Kolmogorov–Arnold–
Moser theorem [8–10], even nonintegrable systems are
not necessarily ergodic. This is illustrated, e.g., by the
famous Fermi–Pasta–Ulam–Tsingou problem [11, 12].
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In the quantum context, investigations of the origin
of statistical mechanics gave rise to the field of pure-
state statistical mechanics, which postulates and justi-
fies the thermal behavior of individual quantum pure
states [13]. One of the most successful approaches in
this area is based on the eigenstate thermalization hy-
pothesis (ETH) [14–17], which is similar to the classical
postulate of chaoticity of the microscopic dynamics. A
strong version of this hypothesis states that observables
take thermal values for every eigenstate of the Hamilto-
nian. ETH has been numerically verified for a wide range
of quantum systems far from integrability (for references,
see Ref. [16]), while it is violated for integrable systems,
whose observables are rather described by the so-called
generalized Gibbs ensembles [18–20]. Furthermore, ETH
can be used not only to explain the thermal behavior of
static observables but also certain aspects of nonequilib-
rium dynamics. For example, it justifies thermalization
after quench, that is, a situation in which, after changing
the Hamiltonian at some moment, the observables relax
over time to thermal values for the new Hamiltonian [21].
Furthermore, it can also be used to establish the micro-
scopic origin of the second law of thermodynamics and
fluctuation theorems [22] or the emergence of nonequilib-
rium steady states [23, 24].

ETH has been shown to be necessary to explain certain
aspects of thermalization, such as equilibration with ther-
mal baths [25] or universality of dynamics after Hamilto-
nian quench [26]. However, many features of thermal be-
havior can also be observed for systems that do not obey
ETH, including integrable systems. Approaches to ex-
plain the origin of thermalization without invoking non-
integrability are mostly akin to the arguments of Boltz-
mann, who rationalized thermal behavior by postulating
the typicality of initial conditions for a system consisting
of many degrees of freedom [27]. Following this direction,
Chakraborti et al. [28] observed the thermal behavior of
a gas of noninteracting classical particles for typical indi-
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vidual microstates randomly sampled from the canonical
ensemble. The other approach postulates the typicality
of measured observables rather than initial conditions.
In this spirit, Khinchin [29] has shown that functions
expressed as sums of many independent degrees of free-
dom (e.g., coordinates of noninteracting particles) tend
to thermalize due to the law of large numbers, without
any assumption about the ergodicity of the microscopic
dynamics. Mazur and van der Linden [30] later general-
ized this result to short-range interacting particles. Mo-
tivated by this, Baldovin et al. [31] demonstrated ther-
malization of collective observables in an anharmonic but
integrable Toda chain even for very untypical initial con-
ditions. Later studies [32, 33] have even demonstrated
the thermalization of certain observables in a fully har-
monic oscillator chain.

In the quantum context, typicality arguments have
been employed in von Neumann’s ergodic theorem [34,
35]. It states that for typical observables, for every pure
state with a narrow energy distribution (i.e., a superpo-
sition of energy eigenstates from a microcanonical shell),
the time average of the observable corresponds to its mi-
crocanonical average. This theorem was later general-
ized by Reimann [36], who relaxed some of its original
assumptions. However, it has been shown that von Neu-
mann’s proof involves an assumption which is essentially
equivalent to ETH [37]. The other concept is canonical
typicality [38–41], which states that typical pure states
with a narrow energy distribution predict the same re-
duced states of small subsystems as the microcanoni-
cal ensemble. A related but different concept is weak
ETH, which postulates that subsystem thermalization
is also observed for typical (though not all) individual
energy eigenstates. It has been proven for translation-
ally invariant short-range interacting spin systems, in-
cluding integrable ones [22, 42]. We note that the ap-
plicability of these concepts is often limited compared to
“strong” ETH. For example, integrable systems obeying
weak ETH do not exhibit thermalization after Hamilto-
nian quench [42, 43]. Still, Refs. [44, 45] observed ther-
malization after quench in certain nonintegrable systems
that violate ETH.

Furthermore, certain features of thermalization
have been observed even for noninteracting systems.
Magán [46] observed thermalization of local observables
for typical many-body eigenstates of random noninteract-
ing fermionic Hamiltonians. Refs. [43, 47, 48] observed
subsystem thermalization for translationally invariant
systems of noninteracting fermions. This thermaliza-
tion is suppressed by the presence of a disorder that
breaks the translational invariance [48]. Refs. [49, 50]
demonstrated thermalization of one- and few-body ob-
servables in chaotic quadratic Hamiltonians. Finally, in
the nonequilibrium context, it was shown that in trans-
lationally invariant fermionic chains the charge distribu-
tion tends to thermalize at the coarse-grained (macro-
scopic) level even for very untypical initial conditions,
even though the fine-grained (microscopic) observables

do not thermalize [51, 52].
However, the problem of pure-state thermalization in

integrable and noninteracting models has hardly been an-
alyzed from the open quantum system perspective, where
the splitting of the total system into a small system and
a macroscopic bath specifies the choice of the considered
observables. As an exception, Usui et al. [53] recently
demonstrated the emergence of nonequilibrium steady
states and long-time thermalization of macroscopic bath
observables for a fermionic impurity coupled to noninter-
acting baths initialized in the pure states randomly sam-
pled from the grand canonical ensemble. Here we address
another aspect of that problem by analyzing whether the
microscopic system observables are thermalized by indi-
vidual eigenstates of the total system-bath Hamiltonian.
We show that such a thermalization can be observed even
in fully integrable noninteracting resonant level model
consisting of a single fermionic level coupled to a bath
of fermionic levels via a bilinear tunneling Hamiltonian.
It is shown that typical many-particle eigenstates of the
total Hamiltonian thermalize the system occupancy, i.e.,
it tends to have the same value as for the thermal state
with the same energy and particle number. Specifically,
this occurs when the single-particle state corresponding
to the occupied state of the system is strongly delocalized
over many single-particle eigenstates of the Hamiltonian.
Consequently, thermalization may be suppressed by lo-
calization induced by formation of the bound states for a
strong system-bath coupling. At the same time, no ther-
malization is observed for occupancies of the bath levels.
We further demonstrate that after the quench of the sys-
tem energy, the system occupancy relaxes to the thermal
value for the new Hamiltonian. Finally, we show that
thermalization of the system can be induced by the bath
initialized in typical eigenstates of its Hamiltonian.

The paper is organized as follows. In Sec. II we present
details of the considered model and methods used to de-
scribe it. In Sec. III we define several concepts and quan-
tities used throughout the paper. In Secs. IV and V we
explore the thermalization of static observables and the
thermalization after quench, respectively. In Sec. VI we
investigate the system thermalization induced by typi-
cal bath eigenstates. Finally, Sec. VII brings conclusions
that follow from our results.

II. MODEL AND METHODS

We consider a paradigmatic example of an integrable
open quantum system, namely, the noninteracting reso-
nant level described by the Hamiltonian

Ĥ = ϵ0c
†
0c0 +

K−1
∑
k=1

ϵkc
†
kck +

K−1
∑
k=1
(tkc

†
0ck + h.c.) , (1)

where the index k = 0 corresponds to the system, while
k ∈ {1, . . . ,K − 1} to the energy levels in the bath. Here
ϵk is the level energy, c†k and ck are the creation and
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annihilation operators, tk is the tunnel coupling between
the levels 0 and k, and K − 1 is the number of energy
levels in the reservoir. We further focus on a flat-band
model with the bath levels parameterized as ϵk = −W /2+
∆ϵ(k−1), where ∆ϵ =W /(K−2) is the interlevel spacing
in the bath, and W is the bath bandwidth. The tunnel
couplings are parameterized as tk =

√
Γ/(2π∆ϵ), where

Γ is the coupling strength to the bath.
This Hamiltonian can be rewritten in the form

Ĥ =∑
kl

Hklc
†
kcl, (2)

where H is the matrix representing the single-particle
sector of the Hamiltonian. It is defined as

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Hkk = ϵk for k = 0, . . . ,K − 1,

H0k =Hk0 = tk for k = 1, . . . ,K − 1,

Hkl = 0 otherwise.
(3)

Hamiltonian (1) can be diagonalized to a form

Ĥ =
K−1
∑
k=0

ωkd
†
kdk, (4)

where the new fermionic operators dk are superpositions
of the original operators:

dk =
K−1
∑
l=0

alkcl. (5)

In practice, ωk is kth eigenvalue of the matrix H, and
a∗lk is the lth elements of its kth normalized eigenvector.
Conversely, original operators can be expressed in terms
of the new ones as

ck =
K−1
∑
l=0

a∗kldl. (6)

The many-particle eigenstates of the Hamiltonian (1) can
be expressed as

∣Ei,Ni⟩ = (d
†
K−1)

ni,K−1 . . . (d†
0)

ni,0 ∣∅⟩, (7)

where ∣∅⟩ is the vacuum state. Each eigenstate is as-
sociated with a unique combination of level occupancies
ni,k ∈ {0,1}. Ei = ∑

K−1
k=0 ni,kωk denotes the eigenstate

energy, and Ni = ∑
K−1
k=0 ni,k is the particle number. We

note that for typical many-particle eigenstates, the occu-
pancies of single-particle eigenstates d†

k ∣∅⟩ are far from
being thermal: they can take only values 0 or 1, while
thermal occupancies may lie within the range [0,1].

We also consider the case where, at some moment, the
Hamiltonian is quenched from the initial form Ĥ to the
final form Ĥ ′. The new Hamiltonian can be analogously
diagonalized as

Ĥ ′ =
K−1
∑
k=0

νkf
†
k , (8)

with

fk =
K−1
∑
l=0

blkcl, ck =
K−1
∑
l=0

b∗klfl. (9)

To describe the dynamics of the system under the
Hamiltonian Ĥ ′, we use the evolution of operators in the
Heisenberg picture. Using the expression above, the op-
erators ck(t) evolve as

ck(t) =∑
m

b∗kmfme−iνm = ∑
m,n

bnmb∗kme−iνmcn. (10)

It is also be useful to re-express this formula in terms of
operators dk. Using Eq. (6) one obtains

ck(t) =∑
l

a∗kl(t)dl, (11)

where

akl(t) = ∑
n,m

anlbkmb∗nmeiνm . (12)

Finally, let us understand the amplitudes akl and
akl(t) as elements of the matrices a and a(t), respec-
tively. Then, using spectral decomposition of the matrix
exponent, the equation above can be rewritten in a con-
cise form

a(t) = eiH
′ta, (13)

which is very convenient for numerical implementation.

III. DEFINITIONS

Let us now define certain concepts and quantities used
throughout the paper. First, the microcanonical set W
is defined as a set of energy eigenstates ∣Ei,Ni⟩ with
Ei ∈ [E,E +∆E] and Ni ∈ [N,N +∆N], where ∆E and
∆N are small widths of the microcanonical shell. The
microcanonical state is defined as an equally weighted
mixture of states belonging to the microcanonical set:

ρmc ≡
1

∣W ∣
∑
i∈W
∣Ei,Ni⟩⟨Ei,Ni∣, (14)

where ∣W ∣ is the cardinality of the microcanonical set,
i.e., the number of its elements. We further define the
grand canonical state equivalent to the microcanonical
state as

ρgc ≡ Z
−1e−β(Ĥ−µN̂), (15)

where N̂ = ∑
K−1
K=0 c

†
kck is the total particle number op-

erator and Z is the normalization constant providing
Tr(ρgc) = 1. To provide equivalence with the microcanon-
ical state, the inverse temperature β and the chemical
potential µ are chosen such that

Tr(ρgcĤ) = E and Tr(ρgcN̂) = N. (16)
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Following Ref. [54], let us now define the indicator of
eigenstate thermalization for the observable Â,

Imc(Â) ≡

¿
Á
ÁÀ

1

∣W ∣
∑
i∈W
(⟨Â⟩i − ⟨Â⟩mc)2, (17)

where ⟨Â⟩i = ⟨Ei,Ni∣Â∣Ei,Ni⟩ is the expected value of
the observable Â for an individual eigenstate ∣Ei,Ni⟩,
and ⟨Â⟩mc = Tr(ρmcÂ) is the microcanonical average of
this observable. This quantity measures how, typically,
the expected value of the observable Â evaluated for an
individual eigenstate differs from its thermal value. In
other words, it evaluates how well typical eigenstates be-
longing to the microcanonical set thermalize the observ-
able Â. Thermalization is indicated by the vanishing of
Imc(Â) in the thermodynamic limit [54].

Let us further define two auxiliary quantities:

C(Â, B̂) ≡
1

∣W ∣
∑
i∈W
(⟨Â⟩i − ⟨Â⟩mc)(⟨B̂⟩i − ⟨B̂⟩mc), (18)

Covmc(Â, B̂) ≡
1

2
Tr(ρmc{Â − ⟨Â⟩, B̂ − ⟨B̂⟩}). (19)

The latter quantity is the covariance of observables in
the microcanonical state; in particular, Covmc(Â, Â) =

Varmc(Â) is the variance of the observable Â. We now
make an observation that will later appear to be very
useful: when the observables Â and B̂ commute with the
Hamiltonian Ĥ, then

C(Â, B̂) = Covmc(Â, B̂). (20)

This can be easily proven by inserting the definition of
the microcanonical state to Eq. (19), and later using
the fact that, due to commutation of Â and B̂ with the
Hamiltonian, the energy eigenstates ∣Ei,Ni⟩ are also the
eigenstates of Â and B̂, i.e., Â∣Ei,Ni⟩ = ⟨Â⟩i∣Ei,Ni⟩ and
B̂∣Ei,Ni⟩ = ⟨B̂⟩i∣Ei,Ni⟩.

IV. THERMALIZATION OF STATIC
OBSERVABLES

A. Theoretical arguments

We now analyze whether and which observables of the
considered system are thermalized by single eigenstates
∣Ei,Ni⟩. In particular, we focus on the local occupancies
of levels k in the original basis. They are denoted as ⟨p̂k⟩,
where p̂k = c†kck. We use the fact that, for both single
eigenstates and for the microcanonical or grand canoni-
cal states, the density matrix of the system is diagonal
in the basis diagonalizing the Hamiltonian Ĥ. As a con-
sequence, occupancies ⟨p̂k⟩ can be expressed in terms of
occupancies of single-particle eigenstates:

⟨p̂k⟩ =
K−1
∑
l=0
∣akl∣

2
⟨n̂l⟩, (21)

where n̂k = d
†
kdk. Using Eq. (17), the indicator of ther-

malization of the observable p̂k can be calculated as

Imc(p̂k) =
√

∑
lm

∣akl∣2∣akm∣2C(n̂l, n̂m), (22)

where C(n̂l, n̂m) is defined via Eq. (18). We now use the
fact that the observables n̂l commute with the Hamilto-
nian Ĥ. As a consequence, using Eq. (20), the equation
above can be rewritten as

Imc(p̂k) =
√

∑
lm

∣akl∣2∣akm∣2Covmc(n̂l, n̂m). (23)

We now assume that the amplitudes ∣akl∣ are nonneg-
ligible only for a set of levels l whose energies ϵl are
close to ϵk (i.e., the levels resonantly coupled with the
level k). We further assume that this set is small com-
pared to the set of all levels. Then we make use of the
principle of ensemble equivalence which states that the
state of a small subsystem of a large system is the same
for the microcanonical state and the equivalent grand
canonical state. Therefore, we may approximate the in-
dicator Imc(p̂k) by replacing the microcanonical covari-
ances Covmc(n̂l, n̂m) in Eq. (23) with the grand canon-
ical covariances Covgc(n̂l, n̂m); they are defined as in
Eq. (19), but with ρmc replaced by ρgc. We further note
that in the grand canonical state the covariances of oc-
cupancies of different single-particle eigenstates vanish:
Covgc(n̂l, n̂m) = 0 for l ≠ m. Therefore, the indicator
Imc(p̂k) can be approximated as

Imc(p̂k) ≈
√

∑
l

∣akl∣4Vargc(n̂l), (24)

where Vargc(n̂l) is the grand canonical variance of the
operator n̂l. Finally, using the inequality Vargc(n̂l) ≤ 1/4
(which results from the fact that level occupancy is a bi-
nary variable), we can approximately bound the indicator
Imc(p̂k) as

Imc(p̂k) ⪅
1

2

√
IPRk, (25)

where IPRk is the inverse participation ratio for level k:

IPRk ≡
K−1
∑
l=0
∣akl∣

4. (26)

This quantity is a standard measure of the delocalization
of single-particle states c†k ∣∅⟩ over single-particle eigen-
states d†

l ∣∅⟩ [55]. When IPRk is close to 1, the state
c†k ∣∅⟩ is strongly localized in a single eigenstate d†

l ∣∅⟩;
conversely, when IPRk scales as 1/K (and thus goes to 0
in the thermodynamic limit), the state c†k ∣∅⟩ is delocal-
ized over many single-particle eigenstates. Consequently,
Eq. (25) implies that occupancies ⟨p̂k⟩ are thermalized by
typical eigenstates of the system-bath Hamiltonian when
states c†k ∣∅⟩ are strongly delocalized. This reminds us of
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FIG. 1. The absolute squares of the amplitudes akl as a func-
tion of the single-particle eigenstate energy ωl for the system
level k = 0 (a) and the bath level k = 70 (b). Parameters:
K = 100, ϵ0 = 0.2W , Γ = 0.2W .

the result of Khinchin, obtained in the context of clas-
sical statistical mechanics: Observables, which can be
expressed as a sum of many independent degrees of free-
dom, tend to thermalize due to the law of large numbers,
independent of the details of microscopic dynamics [29].
We also note that the connection between thermalization
or equilibration and the inverse participation ratio (or its
inverse, known as the effective dimension) has already
been recognized in the literature [13, 56–58].

B. Localization

Let us now analyze the localization properties of single-
particle states c†k ∣∅⟩ for the considered model. First,
we analyze the distribution of the absolute squares of
the amplitudes a0k, which quantify the overlaps of states
c†0∣∅⟩ and d†

l ∣∅⟩. This is plotted in Fig. 1 (a) for K = 100.
One may observe that the state c†0∣∅⟩ is delocalized over
many eigenstates d†

l ∣∅⟩ with energy close to ϵ0.This is be-
cause the system is strongly affected by interaction with
many bath levels (providing that the coupling strength Γ
is neither to weak nor too strong; see a discussion below).
According to our theoretical reasoning, this implies ther-
malization of the system occupancy ⟨p̂0⟩; we will demon-
strate this numerically in the next subsection.

For comparison, let us now consider the localization
properties of the single-particle states c†k ∣∅⟩ for the bath
levels (with k > 0). Specifically, in Fig. 1 (b) we present

FIG. 2. The inverse participation ratio IPR0 as a function
of the coupling strength Γ for different number of levels K.
Parameters: ϵ0 = 0.2W .

the state overlaps for the level k = 70, that is, the bath
level with the energy ϵk closest to ϵ0. As can be seen,
the state c†70∣∅⟩ is strongly localized in just a pair of
eigenstates d†

l ∣∅⟩ with the energy closest to ϵ70. This
is reasonable, since the bath is only weakly perturbed by
a coupling to a small system. As will be shown later,
this results in the lack of thermalization of the bath level
occupancies.

We now focus on the localization properties of the
single-particle states of the system c†0∣∅⟩, by analyzing
the inverse participation ratio IPR0. In Fig. 2 we plot
this quantity (in the log-linear scale) as a function of the
coupling strength Γ for different numbers of levels K. In-
terestingly, it exhibits a qualitatively different behavior
for Γ below and above the localization threshold Γth. The
numerical results suggest that this threshold corresponds
to the distance of the system energy from the band edge:
Γth ≈ W /2 − ∣ϵ0∣. Below the threshold, the inverse par-
ticipation ratio decreases with increasing Γ or K. This
may be explained as follows: The amplitudes a0l are large
only for those levels l, whose energies are resonant with
the system, that is, for which the difference ∣ωl − ϵ0∣ is
of the order of the coupling strength Γ (which corre-
sponds to the level broadening due to the system-bath
coupling). The number of those levels is proportional to
Γ/∆ϵ ∝ ΓK, where, to recall, ∆ϵ =W /(K − 2) is the in-
terlevel spacing in the bath. At the same time, the state
overlaps are normalized as ∑K−1

l=0 ∣akl∣
2 = 1. Thus, indi-

vidual overlaps ∣a0l∣2 scale proportionally to 1/(ΓK), and
their squares ∣a0l∣4 scale as 1/(ΓK)2. Consequently, the
inverse participation ratio IPR0 = ∑

K−1
l=0 ∣a0l∣

4 scales as
(ΓK)/(ΓK)2 = 1/(ΓK) (proportionally to the number of
significant elements ∣a0l∣4 and inversely proportionally to
their values). Thus, the inverse participation ratio tends
to vanish in the thermodynamic limit K →∞, regardless
of the coupling strength Γ. However, for a finite system
size, the coupling Γ must be sufficiently strong to observe
delocalization and thus thermalization; a similar obser-
vation was made previously for open systems described
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by random matrix Hamiltonians [59].
In contrast, above Γth the inverse participation ratio

becomes size-independent and grows with Γ (i.e., the
state c†0∣∅⟩ becomes increasingly localized). This is a re-
sult of the formation of bound states, i.e., single-particle
eigenstates d†

l ∣∅⟩ strongly localized in the system [60–63].
Therefore, it may be inferred that in the thermodynamic
limit K → ∞ the system exhibits a localization phase
transition, with a delocalized phase (IPR0 = 0) for Γ < Γth
and a localized phase (IPR0 > 0) for Γ > Γth. Conse-
quently, the system occupancy ⟨p̂0⟩ should thermalize in
the thermodynamic limit, provided that the Hamiltonian
parameters correspond to the delocalized phase.

C. Thermalization: numerical results

Let us now confirm the validity of our reasoning with
numerical simulations. The most natural way to do that
would be to evaluate the indicator of eigenstate thermal-
ization defined in Eq. (17). The thermalization would
then be witnessed by a monotonic decrease of the in-
dicator with increasing number of levels K. However,
for large K this approach becomes unfeasible. This is
because the number of eigenstates of the Hamiltonian
grows exponentially as 2K . It is thus very difficult to
find all eigenstates belonging to the narrow energy win-
dow (corresponding to the microcanonical shell), or even
to randomly sample such eigenstates. Therefore, we use
another approach. First, we randomly generate eigen-
states ∣Ei,Ni⟩ with a specified particle number Ni = N .
Then, for each eigenstate we determine the reference
grand canonical state ρgc,i = Z

−1 exp[−βi(Ĥ−µiN̂)] hav-
ing the same energy Ei and the particle number N . The
inverse temperature and chemical potential of the refer-
ence state are determined by solving the equations

Ei =
K−1
∑
k=0

ωkf[βi(ωk − µi)], (27)

N =
K−1
∑
k=0

f[βi(ωk − µi)], (28)

where f(x) = 1/[1 + exp(x)] is the Fermi-Dirac distribu-
tion. We then focus on the half-filled case with N =K/2.
To make the considered eigenstates relatively compara-
ble to each other, we also select only those eigenstates
whose reference temperatures Ti = 1/βi belong to the in-
terval [0.4W,0.5W ] (we take kB = 1). In particular, this
excludes very numerous eigenstates with a high reference
temperature, for which the system occupancy ⟨p̂0⟩ tends
to be trivially equal to N/K = 1/2, independent of the
system energy ϵ0. We note that this method still re-
quires relatively large computational resources, as only
a small fraction of randomly sampled eigenstates corre-
sponds to the considered temperature window; for exam-
ple, for K = 300, this fraction is of the order 10−6.

In Fig. 3 we present the system population ⟨p̂0⟩i cal-
culated for 100 randomly generated eigenstates ∣Ei,Ni⟩

FIG. 3. The system occupancies ⟨p̂0⟩i for M = 100 individual
random eigenstates ∣Ei,Ni⟩ for ϵ0 = 0.2W (blue dots) and
ϵ0 = −0.2W (red squares). The blue- and red-shaded regions
denote the range of allowed equilibrium occupancies for ϵ0 =
0.2W and ϵ0 = −0.2W , respectively. Parameters: Γ = 0.2W ,
K = 300.

FIG. 4. The occupancies of the bath level k = 210 for M =
100 individual random eigenstates ∣Ei,Ni⟩ (blue dots). The
blue-shaded region denotes the range of allowed equilibrium
occupancies. Parameters: ϵ0 = 0.2W , Γ = 0.2W , K = 300.

for K = 300, Γ = 0.2W corresponding to the delocalized
phase, and two different system level energies: ϵ0 = 0.2W
(blue dots) and the ϵ0 = −0.2W (red squares). Cor-
respondingly, the shaded regions denote the range of
allowed equilibrium occupancies of the system for the
considered temperature window T ∈ [0.4W,0.5W ] and
the system energy ϵ0 = 0.2W (blue-shaded region) or
ϵ0 = −0.2W (red-shaded region). As one can observe, the
system occupancies for individual eigenstates tend to be
distributed in or near the corresponding shaded regions.
Thus, the system occupancy tends to thermalize.

As already suggested by the results on localization
properties, a very different behavior is observed for oc-
cupancies of the bath levels. This is illustrated in Fig. 4
for ϵ0 = 0.2W and the level k = 210, whose energy ϵk
is closest to ϵ0. As shown, now the level occupancies
tend to be distributed around four different bands rather
than around the blue-shaded region corresponding to the
range of allowed equilibrium occupancies. This implies
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FIG. 5. Scaling of the indicator of eigenstate thermalization
Iref(p̂0) with the number of levels K for different values of
the coupling strength Γ, evaluated for M = 100 randomly
generated eigenstates. The results are represented by dots,
and lines are added for eye guidance. Parameters: ϵ0 = 0.2W .

that, in contrast to the system, the local observables of
the bath do not thermalize.

To illustrate the system thermalization further, we cal-
culate a modified indicator of eigenstate thermalization
defined as

Iref(p̂0) ≡

¿
Á
ÁÀ 1

M

M

∑
i=1
(⟨p̂0⟩i − ⟨p̂0⟩gc,i)2, (29)

where M is the number of considered eigenstates, and
⟨p̂0⟩gc,i = Tr(ρgc,ip̂0). It measures the deviation of the
system occupancy evaluated for individual eigenstates
and reference grand canonical states. In Fig. 5 we present
the scaling of this quantity with K (in the log-log scale)
for different values of the coupling strength Γ. For
Γ = 0.1W and Γ = 0.2W , corresponding to the delocalized
phase, the indicator decreases with K approximately as
1/
√
K. Some deviations from this behavior are related to

the finite size of the sample M = 100. This implies that
the system occupancy tends to thermalize in the ther-
modynamic limit K →∞. We note that the polynomial
decrease of the indicator of eigenstate thermalization is
characteristic for weak ETH, whereas for strong ETH it
is rather exponential [42, 49, 50, 54].

In contrast, for Γ = 0.5W , corresponding to the lo-
calized phase, the indicator tends to saturate at a con-
stant value independent of K, implying the absence of
thermalization. We note that a similar suppression of
thermalization by localization was previously observed
for noninteracting fermionic lattice models [48], as well
as interacting nonintegrable systems, where it is referred
to as the many-body localization [64–66]. This confirms
our previous theoretical reasoning based on the analysis
of the inverse participation ratio IPR0.

FIG. 6. The time-dependent inverse participation ratio
IPR0(t) as a function of the coupling strength Γ for a fixed
time t = 10Γ−1 and different number of levels K. Parameters:
ϵ0 = 0.2W , ϵ′0 = −0.2W .

V. THERMALIZATION AFTER QUENCH

Let us now consider a dynamical scenario in which the
system-bath setup is initialized in the eigenstate of the
Hamiltonian Ĥ, and then the Hamiltonian is quenched
in the moment t = 0 to a new form Ĥ ′. Specifically, we
consider a quench of the system energy level from ϵ0 to
ϵ′0, leaving the other parameters unchanged. Following
Sec. II, we work within the Heisenberg picture, consider-
ing the evolution of the time-dependent observable p̂k(t).
Using Eq. (11), the evolution of the occupancy of level k
can be expressed as

⟨p̂k(t)⟩ =
K−1
∑
l=0
∣akl(t)∣

2
⟨n̂l⟩. (30)

The equation is analogous to Eq. (21) used in the time-
independent case. Therefore, we may use the same argu-
ments as in Sec. IV A to obtain the bound for the indi-
cator of the eigenstate thermalization:

Imc[p̂k(t)] ⪅
1

2

√
IPRk(t), (31)

where

IPRk(t) ≡
K−1
∑
l=0
∣akl(t)∣

4 (32)

is the time-dependent inverse participation ratio.
We now consider the case when the system energy is

quenched from ϵ0 = 0.2W to ϵ′0 = −0.2W at time t =
0. In Fig. 6 we present the inverse participation ratio
IPR0(t) as a function of Γ for a fixed time t = 10Γ−1.
It exhibits a qualitatively similar behavior to the time-
independent inverse participation ratio (corresponding to
t = 0) presented in Fig. 2. A notable difference is that
the localization threshold Γth is now shifted to a larger
value of about W /2.

In Fig. 7 we present the scaling of the modified indi-
cator of eigenstate thermalization Iref[p̂0(t)] defined in
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FIG. 7. Scaling of the indicator of eigenstate thermalization
Iref[p̂0(t)] with the number of level K for different values of
the coupling strength Γ, evaluated for M = 100 randomly
generated eigenstates and a fixed time t = 10Γ−1. The results
are represented by dots, and lines are added for eye guidance.
Parameters: ϵ0 = 0.2W , ϵ′0 = −0.2W .

Eq. (29) for a fixed time t = 10Γ−1. As previously, we
consider only those eigenstates, whose reference temper-
atures belong to the interval [0.4W,0.5W ]. We can ob-
serve a decrease of the analyzed quantity with increasing
K for Γ = 0.1W and Γ = 0.2W belonging to the delocal-
ized regime. However, a decrease is now also observed
for Γ = 0.5W . This is because, as shown in Fig. 6, this
coupling value now corresponds to the border of the de-
localized and localized phase, rather than being located
within the localized phase. However, the effect of local-
ization is clearly visible for an even larger Γ = 0.8W .

Thus far, we have shown that (in the delocalized regime
and for large bath sizes) the evolution of the system tends
to be the same for the system-bath setup initialized in
typical eigenstates of its initial Hamiltonian and in the
corresponding thermal states. Now, we go a step further
by noting a well-established observation of open quantum
system theory [67–73]: When the system-bath setup is
initialized in the thermal state of the initial Hamiltonian
Ĥ, and then the Hamiltonian is weakly quenched, the
reduced state of the system tends to relax to the equi-
librium state for the new Hamiltonian. The justification
for this occurrence and its conditions are thoroughly dis-
cussed in Ref. [73]. In particular, the perturbation has to
be sufficiently weak, e.g., affect only the system Hamilto-
nian, without changing the bath Hamiltonian (which is
a scenario considered here). Thus, one may expect that
the same relaxation to the equilibrium value for the new
Hamiltonian would also be observed when the system-
bath setup is initialized in a typical eigenstate of its ini-
tial Hamiltonian Ĥ.

To demonstrate that, in Fig. 8 we show the dynamics
of the system occupancy ⟨p̂0(t)⟩i for a system-bath setup
initialized in six different randomly generated eigenstates
of the initial Hamiltonian. We choose Γ = 0.2W cor-
responding to the delocalized regime. It can be seen
that initially the populations are distributed near the

FIG. 8. The evolution of the system occupancies ⟨p̂0(t)⟩i for
six individual random eigenstates ∣Ei,Ni⟩ (gray solid lines).
Blue- and red-shaded regions denote the range of allowed
equilibrium occupancies of the system for the initial and
the final Hamiltonian, respectively. Parameters: ϵ0 = 0.2W ,
ϵ′0 = −0.2W , Γ = 0.2W , K = 300.

blue-shaded region, which corresponds to the range of
allowed equilibrium occupancies of the system for the ini-
tial Hamiltonian Ĥ. Then, the populations evolve so that
after a certain time of the order of Γ−1 the populations
focus around the red-shaded region, which corresponds
to the range of allowed equilibrium occupancies for the
final Hamiltonian Ĥ ′. Thus, the Hamiltonian quench in-
deed drives the system to thermalize with respect to the
final Hamiltonian.

The occurrence of thermalization in the considered sce-
nario is quite remarkable, as integrable models usually
do not thermalize after quench, even when they exhibit
thermalization of static observables [42, 43]. As already
mentioned, the presence of thermalization in our case
is related to the fact that we quench only the system
Hamiltonian, leaving the bath Hamiltonian unchanged.
Thus, the considered quench is only a small perturbation
to the total system-bath Hamiltonian. Thermalization
would not be observed for stronger perturbations, involv-
ing also the bath Hamiltonian. This does not invalidate
the significance of our result, as quenches affecting only
the system Hamiltonian are very relevant from the exper-
imental point of view. For example, they correspond to
typical experiments in the field of nanothermodynamics,
performed on quantum dots or single-electron transistors
attached to electrodes [74–77].

VI. THERMALIZATION INDUCED BY BATH
EIGENSTATES

So far we have focused on the case where the system-
bath setup was initialized in the eigenstate of the total
Hamiltonian Ĥ. Let us now consider another case, where
the initial state of the system is arbitrary, while the bath
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FIG. 9. The localization coefficient D(t) as a function of the
coupling strength Γ for a fixed time t = 10Γ−1 and different
number of levels K. Parameters: ϵ0 = −0.2W .

is initialized in the eigenstate of its Hamiltonian

ĤB =
K−1
∑
k=1

ϵkc
†
kck. (33)

Such eigenstates are then denoted as ∣EB
i ,NB

i ⟩. The ini-
tial state of the system-bath setup reads then

ρi(0) = ρS(0)⊗ ∣E
B
i ,NB

i ⟩⟨E
B
i ,NB

i ∣, (34)

where ρS(0) is the initial state of the system. A similar
scenario, in which the baths were initialized in pure states
sampled from the grand canonical ensemble, was recently
investigated in Ref. [53].

Let us also define the initial state

ρmc(0) ≡ ρS(0)⊗ ρBmc, (35)

which corresponds to the initial microcanonical state of
the bath. Here ρBmc is defined via the right-hand-side
of Eq. (14) with ∣Ei,Ni⟩ replaced by ∣EB

i ,NB
i ⟩. We

now compare the dynamics of the system occupancy
generated by single eigenstates and the microcanonical
state. As previously, we work in the Heisenberg picture.
The dynamics of the system occupancy is described via
Eq. (30). The quench of the Hamiltonian now corre-
sponds to the switching-on of the tunnel coupling Γ at
the time t = 0. Since the system and the bath are initially
uncoupled, we have ck = dk, p̂k = n̂k and akl = δkl.

Let us now consider the indicator of eigenstate ther-
malization defined in Eq. (17), where we now take ⟨Â⟩i =
Tr[ρi(0)Â] and ⟨Â⟩mc = Tr[ρmc(0)Â]. Using the same
arguments as before, it can be bounded as

Imc[p̂0(t)] ⪅
1

2

√
D(t), (36)

where

D(t) ≡ IPR0(t) − ∣a00(t)∣
4
=

K−1
∑
l=1
∣a0l(t)∣

4 (37)

FIG. 10. Scaling of the indicator of eigenstate thermalization
Iref[p̂0(t)] with the number of level K for different values of
the coupling strength Γ, evaluated for M = 100 randomly
generated bath eigenstates and a fixed time t = 10Γ−1. The
results are represented by dots, and lines are added for eye
guidance. Parameters: ⟨p̂(0)⟩ = 0, ϵ0 = −0.2W .

is the localization coefficient. It corresponds to the previ-
ously defined time-dependent inverse participation ratio
IPR0(t) with an excluded element ∣a00(t)∣4; this is be-
cause the initial system occupancy is now the same for
the states ρi(0) and ρmc(0). In Fig. 9 we plot this quan-
tity as a function of Γ for a fixed time t = 10Γ−1. One
may observe that, in contrast to the inverse participation
ratio, the localization coefficient does not imply localiza-
tion for a large Γ. Therefore, the thermal behavior of the
system occupancy can be expected regardless of coupling
strength Γ. We note that the formation of bound states
for large Γ still manifests itself in the nonvanishing long-
time value of the element ∣a00(t)∣4, which corresponds
to the long-time memory of the system about its initial
state. However, this element does not contribute to D(t).

Let us now analyze the modified indicator of eigen-
state thermalization defined via Eq. (29). The system
occupancy for the reference thermal state is now de-
fined as ⟨p̂0(t)⟩gc,i ≡ Tr[ρgc,i(0)p̂0(t)], where ρgc,i(0) ≡
ρS(0) ⊗ ρBgc,i and ρBgc,i is the reference grand canonical
state of the bath with the same energy and particle num-
ber as the considered eigenstate. We further focus on
the case where the system is initially empty (⟨p̂(0)⟩ = 0)
and the bath is initially half-filled [NB

i = (K − 1)/2]. As
before, we consider only those eigenstates of the bath,
whose reference temperatures Ti belong to the inter-
val [0.4W,0.5W ]. The scaling of the analyzed quantity
with K for different coupling strengths Γ is presented in
Fig. 10; here we use the same random eigenstates for all
values of Γ. As in the cases considered above, it decreases
with the system size (with certain statistical errors due
to the finite sample size), implying thermalization in the
thermodynamic limit K → ∞. As suggested by Fig. 9,
this is also observed for large values of Γ, since the local-
ization now does not suppress the thermalization.

Finally, as in the previous section, we analyze the evo-
lution of the system occupancy to establish whether it re-
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FIG. 11. The evolution of the system occupancies ⟨p̂0(t)⟩i
for six individual initial random bath eigenstates ∣EB

i ,NB
i ⟩

(gray solid lines) for an intermediate system-bath coupling
Γ = 0.2W . The red-shaded region denotes the range of allowed
equilibrium occupancies. Parameters: ⟨p̂(0)⟩ = 0, ϵ0 = −0.2W ,
K = 301.

FIG. 12. The evolution of the system occupancies for an
initial bath eigenstate ∣EB

1 ,NB
1 ⟩ (black solid line) and the

reference grand canonical state (red solid line) for a strong
system-bath coupling Γ = 0.8W . The blue dotted line de-
notes the equilibrium occupancy evaluated for the reference
temperature T1 and the chemical potential µ1. Other param-
eters as in Fig. 11.

laxes to the equilibrium state for the total Hamiltonian.
In Fig. 11 we show dynamics of the system occupancy for
the bath initialized in six different random eigenstates for
an intermediate system-bath coupling Γ = 0.2W . As be-
fore, the red-shaded region denotes the range of allowed
equilibrium system occupancies of the system for cho-
sen Hamiltonian parameters and temperatures belonging
to the considered window. Analogously to the case of
Hamiltonian quench, after a certain relaxation time, the
system occupancies focus around the red-shaded region,
which witnesses the system relaxation to equilibrium.

To account for the effect of localization in the consid-
ered scenario, in Fig. 12 we present the evolution of the
system occupancy for a large coupling strength Γ = 0.8W .
We focus on the evolution for a single initial state ρ1(0)

(black solid line). It is compared with the results for a
reference grand canonical state (red dashed line). The
blue dotted line denotes the equilibrium occupancy cal-
culated for the temperature T1 and the chemical potential
µ1 = 0 of the reference grand canonical state. We can see
that now the system occupancy does not converge to its
equilibrium value. This is characteristic for systems with
bound states due to the long-time memory of the system
about its initial state, which is encoded in the amplitude
∣a00(t)∣

2 [60–63]. However, the system behavior is still
thermal in the sense that the evolution of the system oc-
cupancy induced by the initial eigenstate of the bath and
the reference thermal state is approximately the same.

VII. CONCLUSIONS

We investigated the behavior of observables for individ-
ual eigenstates of a fully integrable noninteracting reso-
nant level model. We have shown that typical eigenstates
exhibit thermalization of the system occupancy, that is,
the occupancy tends to have the same value as for the
thermal state with the same energy and particle number
as the considered eigenstate. Thermalization is related to
delocalization of the single-particle state, corresponding
to the occupied state of the system, over many single-
particle eigenstates of the system-bath Hamiltonian. As
a consequence, the system occupancy can be expressed as
a weighted average of occupancies of the single-particle
eigenstates. As shown by Khinchin in the context of clas-
sical systems [29], such averages of many independent
degrees of freedom tend to thermalize in the thermody-
namic limit due to the law of large numbers, independent
of details of the system dynamics. We further show that
the system thermalization becomes suppressed when the
occupied state of the system becomes strongly localized
in a few single-particle eigenstates due to formation of the
bound states for a strong system-bath coupling. Further-
more, thermalization is not observed for the occupancies
of the bath levels, which are always strongly localized.

We further went beyond the static scenario to consider
the case where the system Hamiltonian is quenched at
some moment of time. We have shown that after such a
quench, the system occupancy tends to relax to the ther-
mal value corresponding to a new Hamiltonian. This is
remarkable, as integrable systems generally do not ther-
malize after quench, even when they exhibit thermal-
ization of static observables [42, 43]. The presence of
thermalization in our case is related to the fact that the
quench involves only parameters of the system and not
of the bath. Therefore, it only weakly perturbs the to-
tal system-bath Hamiltonian. Such quenches that involve
only the system Hamiltonian are common in experiments
on open quantum systems [74–77].

Finally, we considered the case where the initial state
of the system is arbitrary, while the bath is initialized in
an eigenstate of its Hamiltonian. Then, for typical eigen-
states, we observed the same thermalization behavior of
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the system as for baths initialized in thermal states with
the same energy and particle number. While we focused
on a system coupled to a single bath, this approach can
easily be generalized to a multiple-bath scenario. In such
a case, we may expect the emergence of nonequilibrium
steady states, as previously observed for baths obeying
ETH [23, 24] or initialized in pure states sampled from
the grand canonical ensemble [53].

The paper contributes to the ongoing debate on
whether nonintegrability should be regarded as a re-
quirement for thermalization [25, 26, 28, 31–33, 37]. It
is known that integrable systems do not exhibit ther-
malization of all observables in all physical scenar-
ios [18, 19, 42, 43, 48]. In the considered system, this

is illustrated by the lack of thermalization of bath level
occupancies, or suppression of the system thermalization
in the localized regime. The system will also not thermal-
ize after the quench of the bath Hamiltonian. Neverthe-
less, the paper supports the conclusion of Refs. [28, 31–
33, 53] that integrable systems can still exhibit a genuine
thermal behavior of physically meaningful quantities in
many physically relevant scenarios. Therefore, noninte-
grability, chaos, and ETH should not be regarded (as
sometimes done [16, 25]) as the sole mechanism to ex-
plain the origin of thermalization. Rather, there is value
in using different complementary approaches (including
arguments based on the typicality of states and observ-
ables) to get a complete picture of the emergence of ther-
modynamic behavior.
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