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We propose a theoretical approach to estimate the permeability coefficient of substrates (permeants) for
crossing membranes from donor (D) phase to acceptor (A) phase by means of molecular dynamics (MD) sim-
ulation. A fundamental aspect of our approach involves reformulating the returning probability (RP) theory,
a rigorous bimolecular reaction theory, to describe permeation phenomena. This reformulation relies on the
parallelism between permeation and bimolecular reaction processes. In the present method, the permeability
coefficient is represented in terms of the thermodynamic and kinetic quantities for the reactive (R) phase
that exists within the inner region of membranes. One can evaluate these quantities using multiple MD
trajectories starting from phase R. We apply the RP theory to the permeation of ethanol and methylamine
at different concentrations (infinitely dilute and 1 mol% conditions of permeants). Under the 1 mol% con-
dition, the present method yields a larger permeability coefficient for ethanol (0.12 ± 0.01 cm s−1) than for
methylamine (0.069±0.006 cm s−1), while the values of the permeability coefficient are satisfactorily close to
those obtained from the brute-force MD simulations [0.18± 0.03 cm s−1 and 0.052± 0.005 cm s−1 for ethanol
and methylamine, respectively]. Moreover, upon analyzing the thermodynamic and kinetic contributions to
the permeability, we clarify that a higher concentration dependency of permeability for ethanol, as compared
to methylamine, arises from the sensitive nature of ethanol’s free-energy barrier within the inner region of
the membrane against ethanol concentration.

I. INTRODUCTION

Permeation of substrates (permeants) through cell
membranes is a fundamental process for biological sys-
tems. Most permeants, including drug molecules, enter
a cell with passive permeation driven by the concentra-
tion gradient of permeants between the donor and ac-
ceptor phases. Hence, the permeability coefficient that
characterizes the efficiency of passive permeation is a
valuable indicator for drug delivery. The permeability
coefficient is experimentally measured through different
assays, such as the parallel artificial membrane perme-
ability assay (PAMPA)1–3 and the carcinoma colorec-
tal cell-based (CaCo-2) assay.4,5 The sophisticated spec-
troscopy techniques are also useful for quantitative and
real-time analysis of membrane permeation.6 Since the
permeation process is governed by such factors as the
solubility and mobility of permeants in a membrane, the
theoretical and computational approaches in the atom-
istic detail have been recognized as promising for realiz-
ing systematic analysis.7–10

Molecular dynamics (MD) simulation is the most
popular method to elucidate the detailed mechanisms
of the permeation process from a theoretical point of
view. The inhomogeneous solubility-diffusion (ISD)
model11,12 incorporating MD simulations has played a
central role in analyzing the permeation processes.8,13

In this model, the permeability coefficient is expressed

a)Author to whom correspondence should be addressed:
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using the free energy profile and position-dependent dif-
fusion coefficient14,15 along the reaction coordinate for
the permeation process. The ISD model has prompted
researchers to develop methodologies for efficiently com-
puting the position-dependent diffusion coefficient from
MD simulations.16–19 This model is based on the Smolu-
chowski equation, realizing the simple treatment of per-
meation processes. However, the difficulty arises when
the permeant shows the subdiffusive motion inside the
membrane in the long-time limit.20,21 In such a case,
employing the Smoluchowski equation is inappropriate.
Recently, alternative MD-based approaches have been
developed. Thanks to the recent advances in comput-
ers, the methodologies based on the direct observation
of the permeation events are available for the perme-
ants exhibiting the fast permeation kinetics.8,22–24 The
flux-based counting (FBC) and transition-based count-
ing (TBC) methods enable us to estimate the perme-
ability coefficient reliably without resorting to any the-
oretical models. Furthermore, the kinetic models such
as the Markov state model (MSM) for permeation con-
structed with the enhanced sampling methods yielded
the permeability coefficients qualitatively correlated with
the experimental measurements.25–29 A methodology to
calculate the permeability coefficients without assuming
the Markovianity of the permeation dynamics was also
developed using the equilibrium path ensemble.30

The theoretical framework for molecular binding kinet-
ics such as protein-ligand binding could be useful for elu-
cidating the permeation processes. Votapka and Amaro
derived the theoretical relationship between the perme-
ability coefficient and mean first passage time (MFPT),
that was related to the rate constant in the protein-
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ligand binding31,32 and was defined in the context of
permeation as the average time for the permeant to ar-
rive at the acceptor phase from the donor phase for the
first time.33 Since many kinetic theories have been devel-
oped to compute the MFPT, the relationship between the
MFPT and permeability coefficient is useful to develop
new methodologies for elucidating the permeation pro-
cesses based on these theories. They also derived the the-
oretical expression of the permeability coefficient using
crossing probability that is suitable for the milestoning-
based method.34,35

Recently, we developed an MD-based methodology for
elucidating molecular binding kinetics36,37 using the re-
turning probability (RP) theory,38 a rigorous diffusion-
influenced reaction (DIR) theory. The RP theory is
based on the Liouville equation of the phase space den-
sities with the reaction sink term that describes the re-
action (binding) probability on the reactive state exist-
ing in a binding process between the dissociated and
bound states. The perturbative expansion of the reac-
tant distribution yields the theoretical expression of the
binding rate constants suitable for MD simulations. It
has been demonstrated that the RP theory gives the
binding rate constants for the inclusion36 and protein-
ligand binding37 systems consistent with those evaluated
through the long-time MD simulations. Thanks to the
analytical nature of the RP theory, furthermore, the
binding kinetics is characterized in terms of the ther-
modynamic and kinetic properties of the reactive state.
Hence, applying this theory gives the physicochemical
insights into the binding kinetics in addition to the bind-
ing rate constants. Accordingly, establishing the frame-
work for analyzing the permeation processes with the RP
theory could be useful to unveil the detailed permeation
mechanism.

In the present study, we develop an MD-based method-
ology for quantifying the permeability coefficient for
membrane systems. We first derive the exact relationship
between the permeability coefficient and the permeant
distribution function at unsteady state which is similar
to that between the binding rate constant and reactant
distribution function for the binding systems. Then, by
employing the perturbative expansion technique utilized
in the RP theory, the tractable expression of the per-
meability coefficient at steady state is derived. In this
expression, the coefficient is represented in terms of the
thermodynamic and kinetic properties of the permeants
inside the membrane. Thus, by computing these proper-
ties with MD simulations, the estimation of the perme-
ability coefficients is realized.

We apply the present method to the permeation pro-
cesses of ethanol and methylamine through the lipid
bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholin (POPC). Recently, Ghorbani et al. in-
vestigated ethanol permeation at different concentrations
using the ISD model and counting-based methods such
as FBC and TBC methods.39 We also employ the TBC
method for both ethanol and methylamine under the 1

FIG. 1. Membrane permeation system. z-direction is normal
to the membrane surface and z = 0 coincides with the center
of mass (CoM) for the membrane.

mol% condition to test the validity of the present method.

II. THEORY

A. Permeability coefficient

We briefly introduce the definition of the permeation
coefficient. Let us consider a planar membrane system in
which the donor (D) and acceptor (A) solution phases for
permeants are separated by a lipid membrane (Fig. 1).
The concentrations of the permeants for phases D and
A are defined as cD and 0, respectively. According to
the Fick’s law, the flux across a membrane at the steady
state, Jss, is proportional to the concentration gradient
of the permeants, ∆c = cD, as follows:

Jss = cDPss. (1)

Here, Pss is the permeability coefficient and the subscript
ss means steady state. The generalization of Eq. (1) to
the unsteady state is possible by considering the time-
dependent flux and permeability coefficient as

J (t) = cDP (t) . (2)

J (t) is defined as the number of the permeants moving
to phase A per unit area and time. Thus, J (t) can be
described by

J (t) = − 1

σ

d

dt
N (t) , (3)

where N (t) is the number of the permeants that are
present in a membrane or in phase D at time t, and σ is
the cross-sectional area of a membrane. Note that J (t)
and P (t) at t → ∞ coincide with Jss and Pss, respec-
tively.
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B. Returning probability (RP) theory for membrane
permeation

The returning probability (RP) theory provides a the-
oretical fundament to elucidate host-guest binding phe-
nomena such as protein-ligand binding based on the Li-
ouville equation of the phase space density with the re-
action sink term that describes the insertion of the guest
to a binding site of the host. The theoretical expression
of the binding rate constant derived by the RP theory is
applicable to the various types of binding processes.36,37

In this subsection, we show that the RP theory for mem-
brane permeation can be constructed in a similar way
as for host-guest binding. In the RP treatment of host-
guest systems, the binding proceeds from the dissociated
(initial) state through the reactive (intermediate) state
to the bound (final) state. For the membrane perme-
ation, the D and A phases are the initial and final states,
respectively, and a “reactive phase” is introduced as the
intermediate configurations within the membrane which
the permeant is to pass through.

We consider a membrane system that contains N0 per-
meant molecules and is in equilibrium at time t ≤ 0. The
center of mass (CoM) for the ith permeant molecule at
time t is defined as ri = (xi (t) , yi (t) , zi (t)), where z-
direction is normal to the membrane surface and z = 0
coincides with the CoM for the membrane. Then, we
assume that the permeation process of the ith perme-
ant molecule can be described using the reaction coordi-
nates composed of zi (t) and residual part, Λi (t). Λi (t)
represents the orientation and intramolecular degrees of
freedom for the ith permeant molecule. Let us define
the phase space density, Ψi (Γ, t), that the ith permeant
molecule does not experience the transition to phase A
and the phase space coordinate of the system is Γ at time
t. We also define the reactive (R) phase located around
the free energy barrier in the membrane, Υ. The phase
R is called so in analogy with the reactive state in the
host-guest binding process.37 We further assume that the
permeants in Υ move to phase A at a certain frequency
represented by the first-order rate constant, kR→A.

By introducing the following reaction sink function

S (zi (t) ,Λi (t)) =

{
kR→A, (zi (t) ,Λi (t)) ∈ Υ,

0, (zi (t) ,Λi (t)) /∈ Υ,
(4)

the differential equation for Ψi (Γ, t) can be expressed as

∂

∂t
Ψi (Γ, t) = −LΨi (Γ, t)− S (zi (t) ,Λi (t))Ψi (Γ, t) .

(5)

Here, L is the Liouville operator of the system, and the
second term of the right-hand side of Eq. (5) represents
the decrease of the probability densities due to the tran-
sition of the ith permeant molecule to phase A. Ψi (Γ, t)

is normalized as

N0∑
i=1

∫
dΓΨi (Γ, t) = N (t) . (6)

Thus, performing the integration of Eq. (5) over Γ and
summation against the permeant molecules leads to

d

dt
N (t) =

(
d

dt
N (t)

)
NR

−
N0∑
i=1

∫
dΓS (zi (t) ,Λi (t))Ψi (Γ, t) , (7)

where (dN (t) /dt)NR is the time derivative of N (t) for
the hypothetical non-permeable system, in which the
transition events of the permeants to phase A are ab-
sent, defined as(

d

dt
N (t)

)
NR

= −
N0∑
i=1

∫
dΓLΨi (Γ, t) , (8)

and this term vanishes due to the conservation of the
number of molecules. We introduce the nonequilibrium
distribution function

g (r,Λ, t) =
1

cD

N0∑
i=1

∫
dΓ δ (r− ri (t))

× δ (Λ−Λi (t))Ψi (Γ, t) . (9)

From Eqs. (7) and (9), the following equation is obtained.

d

dt
N (t) = −cD

∫
dr

∫
dΛS (z,Λ) g (r,Λ, t) . (10)

Substitution of Eqs. (3) and (10) into Eq. (2) gives the
theoretical expression of P (t) as

P (t) =
1

σ

∫
dr

∫
dΛS (z,Λ) g (r,Λ, t) . (11)

The above expression of P (t) is parallel to that of the
rate coefficient of molecular binding based on the RP
theory.36,38 In the RP theory for molecular binding, the
rate coefficient of binding is exactly expressed as the in-
tegration of the nonequilibrium distribution function of
guest molecules multiplied by the reaction sink function
over the reaction coordinate. The time dependence of
the nonequilibrium distribution is governed by the Liou-
ville equation with the reaction term leading to the time
evolution of g (r,Λ, t) (Eq. (9)). Thus, the perturbative-
expansion technique employed in the RP theory can be
adopted to derive a tractable expression of P (t) as the

Laplace transform (t → s), P̂ (s), from Eq. (11). The
derivation is found in Appendix A.
The resultant expression of P̂ (s) is given by

sP̂ (s) =
1

σ

∫
dr

∫
dΛS (z,Λ) geq (r,Λ)

×
(
1 + kR→AP̂RET (s)

)−1

. (12)
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Here, geq (r,Λ) is the equilibrium part of g (r,Λ, t), de-
fined as

geq (r,Λ) =
1

cD

N0∑
i=1

∫
dΓ δ (r− ri) δ (Λ−Λi)Ψeq (Γ) ,

(13)

where Ψeq (Γ) is the phase space density at the equi-

librium state. P̂RET (s) is the Laplace transform of the
returning probability, PRET (t), defined as

PRET (t) =

N0∑
i=1

⟨Θ(zi (t) ,Λi (t))Θ (zi (0) ,Λi (0))⟩

N0∑
i=1

⟨Θ(zi (0) ,Λi (0))⟩

,

(14)

where Θ (zi (t) ,Λi(t)) is the characteristic function for
phase R given by

Θ (zi (t) ,Λi (t)) =

{
1, (zi (t) ,Λi (t)) ∈ Υ,

0, (zi (t) ,Λi (t)) /∈ Υ.
(15)

PRET (t) is the conditional probability of finding a perme-
ant in Υ at t = t when that molecule was in Υ at t = 0.
Owing to the final value theorem of Laplace transform,

sP̂ (s)
s→0−−−→ Pss, one can obtain the following expression

of Pss from Eq. (12).

Pss =
kR→A

σ

∫
Υ

drK (r)

(
1 + kR→A

∫ ∞

0

dt PRET (t)

)−1

,

(16)

since S (z,Λ) = kR→AΘ(z,Λ). Here, K (r) is defined as

K (r) =

∫
dΛΘ(z,Λ) geq (r,Λ) . (17)

By defining the concentration of the permeants in phase
R at r as

cR (r) =

N0∑
i=1

∫
dΛΘ(z,Λ)

∫
dΓ

× δ (r− ri) δ (Λ−Λi)Ψeq (Γ) , (18)

K (r) is expressed using Eqs. (13), (17), and (18) as

K (r) =
cR (r)

cD
. (19)

Eq. (19) indicates that K (r) is the equilibrium constant
between the position r in phase R and phase D (donor
solution phase). Since the planar membrane is uniform
along with x- and y-directions, the concentration of the
permeants only depends on z, i.e., cR (r) = cR (z) and
K (r) = K (z). Hence, Eq. (16) can be rewritten by

performing the integration along the x- and y- directions
as

Pss = kR→AK
∗
(
1 + kR→A

∫ ∞

0

dt PRET (t)

)−1

, (20)

where

K∗ =

∫
Υ

dz K (z) . (21)

C. Theoretical expression of K (z) using solvation free
energies

In this subsection, we describe an efficient scheme of
calculating K (z) based on the solvation free energies of
the permeant molecule (solute). The solvation free ener-
gies associated with the solvation process of the solute in
phase D and with the solvation process at position z in
phase R are denoted as ∆µD and ∆µR (z), respectively.
According to the equilibrium condition between the two
different phases, K (z) can be expressed as

K (z) = e−β∆G(z), (22)

where β is the inverse temperature and ∆G (z) is the free
energy profile along the z-direction defined as

∆G (z) = ∆µR (z)−∆µD. (23)

Note that ∆G (z) is equivalent to the potential of mean
force (PMF) given by

∆GPMF (z) = − 1

β
log

cR (z)

cD
. (24)

Both ∆µD and ∆µR (z) can be represented in terms
of the configurational integrals. In the case of phase D,
the solute is surrounded by only the solvent molecules
(water). Let us define the full coordinates of the solute
and the set of full coordinates of the water molecules
as xU and XV, respectively. We also express the in-
tramolecular energy of the solute, the total potential of
the solvents, and the interaction between the solute and
solvents as UU (xU), UV (XV), and UUV (xU,XV), respec-
tively. Then, ∆µD is given by

∆µD = − 1

β
log

∫
dxU

∫
dXV e−βVsol

D (xU,XV)∫
dxU

∫
dXV e−βVref

D (xU,XV)
, (25)

where Vref
D (xU,XV) and Vsol

D (xU,XV) are respectively
the total potentials of the reference solvent and solution
systems defined as

Vref
D (xU,XV) = UU (xU) + UV (XV) , (26)

Vsol
D (xU,XV) = UU (xU) + UUV (xU,XV) + UV (XV) .

(27)
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In the reference solvent, the interaction between the so-
lute and solvent molecules is absent. As for phase R,
both the solvent molecules (water) and membrane are
relevant with the solvation thermodynamics of the so-
lute. Even in the presence of the membrane, ∆µR (z)
can be expressed in a similar way by regarding the mem-
brane as part of the solvent mixture and considering the
conditional ensemble average using z and Λ. We denote
the solvent mixture as V′, and the set of full coordinates
of the solvent molecules, total potential of the solvents,
and the interaction of the solute with the solvents as
XV′ , UV′ (XV′), and UUV (xU,XV′), respectively. The
total potentials of the reference solvent and solution sys-
tems for phase R, Vref′

R (xU,XV′) and Vsol′

R (xU,XV′) are
respectively defined as the right hand sides of Eqs. (26)
and (27) in which V involved in the subscripts is replaced
with V′. The theoretical expression of ∆µR (z) is given
by

∆µR (z)

= − 1

β
log

∫
dxU

∫
dXV′ Φz (zU,ΛU) e

−βVsol′
R (xU,XV′ )∫

dxU

∫
dXV′ Φz (zU,ΛU) e

−βVref′
R (xU,XV′ )

,

(28)

where zU and ΛU are the z-coordinate of the center of
mass (CoM) for the solute and residual part of the reac-
tion coordinate, respectively, and Φz (zU) is the charac-
teristic function for region between z and z+∆z in phase
R. At this point, the width along z is set to be finite (but
small) to formulate equations that are used in numerical
calculations in practice. By introducing

θz (zU) =

{
1, z ≤ zU < z +∆z,

0, otherwise,
(29)

Φz (zU,ΛU) can be expressed as

Φz (zU,ΛU) = Θ (zU,ΛU) θz (zU) . (30)

The methodologies of computing the free energy such
as the free energy perturbation (FEP)40, thermodynamic
integral (TI)41, and Bennett acceptance ratio (BAR)1

can be used to obtain ∆µD and ∆µR (z). In the case of
∆µR (z), the free energy calculation is required for each
region defined with z. To avoid the repeated free energy
calculations, we adopt the scheme of calculating the pro-
file of ∆µR (z) using the local distribution of the solute
and solvation free energy for an arbitrarily defined state
S, ∆µS .

37 To simplify the notation, we introduce the
ensemble averages in the reference solvent and solution
systems for phase R, respectively, as

⟨· · ·⟩ref′ =
1

Zref′

∫
dxU

∫
dXV′ (· · · ) e−βVref′

R (xU,XV′ ),

(31)

⟨· · ·⟩sol′ =
1

Zsol′

∫
dxU

∫
dXV′ (· · · ) e−βVsol′

R (xU,XV′ ),

(32)

where Zref′ and Zsol′ are the configurational integrals for
the reference solvent and solution systems, respectively,
defined as

Zref′ =

∫
dxU

∫
dXV′ e−βVref′

R (xU,XV′ ), (33)

Zsol′ =

∫
dxU

∫
dXV′ e−βVsol′

R (xU,XV′ ). (34)

Then, Eq. (28) is rewritten as

∆µR (z) = − 1

β
log

⟨Φz (zU,ΛU)⟩sol′
⟨Φz (zU,ΛU)⟩ref′

Zsol′

Zref′
. (35)

If we define the characteristic function corresponding to
state S as θS (z,Λ), ∆µS is also expressed as

∆µS = − 1

β
log

⟨θS (zU,ΛU)⟩sol′
⟨θS (zU,ΛU)⟩ref′

Zsol′

Zref′
, (36)

By subtracting ∆µS from ∆µR (z), the following equa-
tion is obtained.

∆µR (z) = ∆µS − 1

β
log

⟨Φz (zU,ΛU)⟩sol′
⟨θS (zU,ΛU)⟩sol′

+
1

β
log

⟨Φz (zU,ΛU)⟩ref′
⟨θS (zU,ΛU)⟩ref′

. (37)

The arguments of the logarithm for the second and third
terms respectively stand for the population ratios be-
tween region of z to z + ∆z in phase R and state S for
the solution system and for the reference solvent system.
Furthermore, if we describe the permeation process using
only z and drop the Λ-dependence in the above equation,
one can obtain

∆µR (z) = ∆µS +∆GS→z (z) +
1

β
log

∆z

lS
, (38)

where

∆GS→z (z) = − 1

β
log

⟨θz (zU)⟩sol′
⟨θS (zU)⟩sol′

, (39)

and lS is the width of state S along the z-direction. Thus,
once we calculate ∆µS , the profile of ∆µR (z) can be
evaluated without the additional free energy calculations.
From Eqs. (23) and (38), ∆G (z) can be expressed as

∆G (z) = ∆∆µ+∆GS→z (z) +
1

β
log

∆z

lS
, (40)

where

∆∆µ = ∆µS −∆µD. (41)

III. COMPUTATIONAL METHODS

A. System setups

We investigated two different membrane permeation
systems composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholin (POPC) lipid bilayer and small permeant
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species, ethanol and methylamine. Both the infinitely di-
lute and finite (1 mol%) concentrations of the permeants
were examined. The solvent was water and the system
temperature was 298.15 K. The force fields for POPC,
permeants, and water were CHARMM36,43 CHARMM
generalized force field (CGenFF),44 and CHARMM-
compatible TIP3P model,45 respectively. The initial
configurations of the membrane were prepared with
CHARMM-GUI server.46–48 For all the systems involving
the bilayer described below, the numbers of POPC and
water were 100 per leaflet and 18000, respectively. The
number of the permeants was unity for the dilute systems
and 182 for the 1 mol% concentration systems, respec-
tively. The initial configurations for water and permeants
were prepared with Packmol.49

To compute the quantities required for the RP theory,
we performed the MD simulations of the membrane sys-
tems in which one of the permeant molecules was initially
located at the center of the membrane. This permeant
molecule was referred to as the tagged permeant. As for
the computation of ∆G (z) (Eq. (23)), the BAR method
was employed. In the case of the 1 mol% concentration
systems, we also performed the MD simulations of the
membrane systems in which all the permeants were ran-
domly placed in the solution phase for computing the
permeability coefficient by means of the transition-based
counting (TBC) method.8,22,24 The equilibration scheme
for the systems involving the membrane was described in
Sec. III B.

All the MD simulations were performed using GENE-
SIS 2.0.4–6 We employed Bussi thermostat for the tem-
perature control in NVT/NPT ensembles and Bussi baro-
stat for the pressure control in NPT ensemble.53 We em-
ployed the NVT ensemble only for the early stages of
the equilibration (Table S1 of the supplementary material
and Sec. IIID). The velocity Verlet integrator (VVER)54

and reversible reference system propagator algorithm (r-
RESPA)55 were utilized. In the case of VVER integrator,
the time interval was 2 fs except for the early stages of
the equilibration for the membrane systems (Table S1 of
the supplementary material). The time interval was 2.5
fs for r-RESPA integrator. The Lennard-Jones (LJ) in-
teraction was truncated by applying the switching func-
tion, with the switching range of 10–12 Å. We employed
the smooth particle mesh Ewald (SPME) method for
computing the electrostatic interactions.9,56 The num-
ber of grids for the SPME method was automatically
determined in GENESIS so that the grid spacing was
shorter than 1.2 Å. All bonds involving hydrogen atoms
were constrained by means of the SHAKE/RATTLE
algorithms,58,59 and water molecules were kept rigid us-
ing SETTLE algorithm.60

B. Equilibration of membrane systems

The scheme of equilibration for the membrane systems
is described in this subsection. We equilibrated the sys-

tems with the NVT/NPT MD simulations (1.875 ns in
total) with VVER integrator according to the GENE-
SIS input files created in CHARMM-GUI server. In this
scheme, the z-coordinates of all the phosphorus atoms in
the membrane were restrained using the harmonic poten-
tial with respect to their initial positions. The harmonic
potentials for the inversion angle of the glycerol group
and the dihedral angle involving a double bond in acyl
chains (Sec. S1 and Fig. S1 of the supplementary ma-
terial) were imposed to keep the stereoisomeric structure
and cis form, respectively. The force constants of these
potentials were gradually decreased during the equilibra-
tion. The detail of the equilibration is found in Table
S1 of the supplementary material. As for the simulations
used for computing PRET (t) and kR→A, the harmonic po-
tential was imposed on the z-component of the CoM for
the tagged permeant to locate it around the membrane
center (z = 0). Only the heavy atoms were considered
in the calculation of the CoM, and the force constant for
the harmonic potential was set to 1 kcal mol−1 Å−2.

C. MD simulations for computing PRET (t) and kR→A

We conducted the MD simulations with r-RESPA inte-
grator for the membrane systems with the tagged perme-
ant to compute PRET (t) and kR→A. See Sec. III F for the
schemes to determine PRET (t) and kR→A. From the final
snapshots obtained from the equilibration (Sec. III B),
350 ns MD (r-RESPA) simulation was performed, while
imposing the following flat-bottom (FB) potential on the
z-component of the CoM for the tagged permeant (zU).

UFB(zU) =


k(zU − z1)

2, zU ≤ z1,

0, z1 < zU ≤ z2,

k(zU − z2)
2, z2 < zU.

(42)

Here, k, z1, z2 were set to 10 kcal mol−1 Å−2, 0 Å, and 7
Å, respectively. Then, we computed 300 different MD (50
ns) simulations with the FB potential (Eq. (42)), where
the random seeds for the thermostat and barostat were
different among the different runs. The final snapshots
were used for the simulations to compute PRET (t) and
kR→A described below.

For the calculation of PRET (t), we conducted 15 ns MD
simulations with the half flat-bottom (HFB) potential
defined as

URET
HFB (zU) =

{
k (zU − z1)

2
, zU ≤ z1,

0, z1 < zU,
(43)

where k and z1 were set to 10 kcal mol−1 Å−2 and 0 Å,
respectively. In the case of kR→A, 50 and 30 ns MD
simulations were performed for the ethanol and methy-
lamine systems, respectively, in the presence of the fol-
lowing HFB potential.

UR→A
HFB (zU) =

{
0, zU ≤ z2,

k (zU − z2)
2
, z2 < zU.

(44)
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Here, k and z2 were 10 kcal mol−1 Å−2 and 7 Å, respec-
tively.

D. MD simulations for computing ∆G (z)

We performed the BAR method with Hamiltonian
replica-exchange MD (BAR/H-REMD) simulations10

implemented in GENESIS2 to compute ∆∆µ = ∆µS −
∆µD (Eq. (S1)). The integrator for the BAR/H-REMD
simulations was r-RESPA. Five configurations were ran-
domly sampled from 300 configurations prepared for the
MD simulations for PRET (t) and kR→A described in
Sec. III C. As well as in Sec. III C, one permeant molecule
located near the membrane center was treated as the
tagged permeant. The definition of state S was set to
0 ≤ zU/Å < 3. After 5 ns MD (r-RESPA) simulation
for each run while imposing the FB potential (Eq. (42))
with k = 10 kcal mol−1, z1 = 0 Å, and z2 = 3 Å, we con-
ducted the 5 ns BAR/H-REMD simulation with 24 repli-
cas. During the BAR/H-REMD simulation, the same FB
potential was also imposed on the tagged permeant for
all the replicas. The potential energy function used in
the BAR/H-REMD simulations and the scheme of com-
puting ∆∆µ were described in Sec. S2 and Fig. S2 of the
supplementary material. As for state D, we adopted the
different schemes for the dilute and 1 mol% concentration
systems. In the case of the dilute systems, the aqueous
solutions containing a permeant molecule were prepared.
The number of water molecules was set to 5000. We
performed the 1 ns MD (VVER, NPT) simulation for
equilibration, followed by the 5 ns BAR/H-REMD simu-
lation. Regarding the 1 mol% concentration systems, we
used the five initial configurations that were the same as
those used for state S, and one of the permeants existing
at 45 ≤ z/Å < 55 was treated as the tagged permeant
for each initial configuration. Then, we performed the
5 ns BAR/H-REMD simulation while imposing the FB
potential (Eq. (42)) with k = 10 kcal mol−1, z1 = 45 Å,
and z2 = 55 Å.

In order to calculate ∆GS→z (z) (Eq. (39)), 25 and 50
ns MD (r-RESPA) simulations were conducted for the
ethanol and methylamine systems while imposing the FB
potential with k = 10 kcal mol−1, z1 = 0 Å, and z2 =
7 Å. The number of runs was 5 for both the systems and
the initial configurations were the same as those used in
the BAR/H-REMD simulations.

E. MD simulations for transition-based counting (TBC)

After the equilibration of the membrane systems that
contain 1 mol% permeants (Sec. III B), we performed the
350 ns MD simulations without any restraints. From the
final snapshot, we conducted 10 MD (50 ns for each)
simulations for further equilibration. These runs were
made distinct by assigning the different random seeds for
the thermostat and barostat. Then, we performed 200

ns MD simulation for each run as production. r-RESPA
integrator was used for the simulations described in this
subsection.

F. Computation of thermodynamic and kinetic quantities
for RP theory

In the present study, we assumed that the permeation
process could be described only using zU without intro-
ducing other degrees of freedom Λ. Then, the range of zU
for state S was set to 0 ≤ zU/Å ≤ 3. From the BAR/H-
REMD simulations for state S and phase D, we com-
puted the difference of the solvation free energy, ∆∆µ
(Eq. (S1)). The configurations in the BAR/H-REMD
simulations for state S that satisfy 0 ≤ zU/Å < 3 were
used for computing ∆∆µ.
To calculate the profile of ∆G (z) from Eq. (40), we

computed ∆GS→z (z) (Eq. (39)) from the trajectories of
the solution system composed of the membrane, one per-
meant molecule, and water molecules with 181 permeant
molecules for the 1 mol% systems. The standard error of
∆GS→z (z) was estimated using the Monte-Carlo (MC)
bootstrap method.63 The number of bootstrap samples
generated by selecting the trajectories was 1000.

By using the trajectories of the MD simulations with
URET
HFB (zU) and with UR→A

HFB (zU) described in Sec. III C,
we computed PRET (t) and kR→A, respectively. Let us
define the time series of the characteristic function for
phase R for the αth trajectory as Θ(α) (t). Then, we
discretize time t as tk = k∆t (k = 0, 1, · · · , Nstep − 1),
where ∆t is the time interval. In the present study, ∆t
was set to 5 fs. Nstep is the number of time steps in a
trajectory. PRET (tk) was computed with the following
equation.

PRET (tk)

=
Nstep

Nstep − k

Ntraj∑
α=1

Nstep−k−1∑
l=0

Θ(α) (tk + tl)Θ
(α) (tl)

Ntraj∑
α=1

Nstep−1∑
l=0

Θ(α) (tl)

. (45)

We computed kR→A based on the frequency of the tran-
sition from R to A as

kR→A =

Ntraj∑
α=1

δ
(α)
R→A

Ntraj∑
α=1

N
(α)
step−1∑
l=0

Θ(α) (tl)∆t

, (46)

where δ
(α)
R→A is a characteristic function for transition,

which is unity when the transition event is observed in

the αth trajectory and vanishes otherwise. N
(α)
step is the

number of time steps until the transition event is ob-
served for the first time in the αth trajectory. The entry
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FIG. 2. Free energy profile along z-direction, ∆G (z), near
the membrane center (z = 0) for (a) ethanol and (b) methy-
lamine. The colored regions indicate the statistical uncer-
tainty (standard error).

of the permeant into region z ≤ −25 Å was regarded as
the transition. We employed the MC bootstrap method
for the error estimations of PRET (t) and kR→A. The
number of the bootstrap samples generated by selecting
the trajectories was 1000.

G. Transition-based counting (TBC) method

According to the transition-based counting (TBC)
method,8,22 the permeability coefficient is given by

PTBC
ss =

r

2cw
, (47)

where r is the rate of the permeants for passing through
the membrane per unit area and time, and cw is the av-
erage concentration of the permeants outside the mem-
brane, and the superscript TBC signifies transition-based
counting. For the computation of r and cw, the mem-
brane region was defined as |z| < 20 Å. The definition of
the membrane region was same as that used in the previ-
ous study.39 We performed the error analysis of PTB

ss by
means of the MC bootstrap method. The number of the
bootstrap samples generated by selecting the trajectories
was 1000.

IV. RESULTS AND DISCUSSION

A. Free energy profiles

We first examine the free energy profile inside the
membrane along the z-direction, ∆G (z), using Eq. (40)
(Fig. 2). In the case of the dilute ethanol system
(Fig. 2(a)), the free energy barrier with respect to phase
D (corresponding to z = ∞) is located at the membrane

FIG. 3. Profiles of ∆G (z) and its decomposition into
the interaction energy part (∆ ⟨U (z)⟩) and residual part
(∆Gres (z)) based on Eq. (50) for (a) ethanol (dilute), (b)
ethanol (1 mol%), (c) methylamine (dilute), and (d) methy-
lamine (1 mol%). The colored regions indicate the statistical
uncertainty (standard error).

center (z = 0). The observed location of the barrier is
typical for the hydrophilic permeants, because the in-
ner region (|z| ≤ 10 Å) composed of the hydrophobic
acyl chains of POPC is energetically unfavorable for such
a permeant.8,64 The barrier height is ∼3.1 kcal mol−1.
In the presence of 1 mol% ethanol, it is found that
the height is slightly lowered to ∼3.0 kcal mol−1. The
PMF, ∆GPMF (z), obtained using the MD simulations
for transition-based counting (Sec. III E) gives a simi-
lar height for the 1 mol% ethanol system (Fig. S3(a)
of the supplementary material). A previous MD study
also reported a decrease in the height with increasing
ethanol concentration in the concentration range from 1
mol% to 18 mol%.39 Regarding the dilute methylamine
system (Fig. 2(b)), ∆G (z) exhibits a shallow minimum
around z = 0 with the height of ∼3.3 kcal mol−1 and the
barrier located at z ∼4.5 Å. The similar behavior was
also reported by Bemporad et al.64 The barrier height is
found to be hardly changed even for the 1 mol% methy-
lamine system. As well as in the case of the 1 mol%
ethanol system, ∆G (z) is almost the same as that from
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∆GPMF (z) within the range of 0 ≤ z/Å ≤ 7 (Fig. S3(b)
of the supplementary material), indicating the validity of
the scheme of computing the free energy profile through
Eq. (40).

For further analysis, we decompose ∆G (z). According
to the classical density functional theory,65 the solvation
free energies can be exactly decomposed as follows.

∆µD = ⟨UD⟩+∆µD,res, (48)

∆µR (z) = ⟨UR (z)⟩+∆µR,res (z) . (49)

Here, Ui and ∆µi,res (i = D or R) are respectively the
interaction energy of a permeant with the surrounding
environment and the residual part of ∆µi which is com-
posed of the pair entropy and many-body terms. ∆µi,res

corresponds to the free energy penalty due to the struc-
tural changes of the surrounding environment upon sol-
vation. ∆G (z) can be decomposed into the contributions
from the interaction energy and residual part as

∆G (z) = ∆ ⟨U (z)⟩+∆Gres (z) , (50)

where ∆ ⟨U (z)⟩ = ⟨UR (z)⟩ − ⟨UD⟩ and ∆Gres (z) =
∆µR,res (z)−∆µD,res. The profiles of ∆G (z), ∆ ⟨U (z)⟩,
and ∆Gres (z) are shown in Fig. 3. For both the ethanol
and methylamine systems, ∆ ⟨U (z)⟩ and ∆Gres (z) re-
spectively demonstrate positive and negative contribu-
tions to ∆G (z) within the inner region, regardless of the
permeant concentration. Given the hydrophilic nature of
these permeants, the positive value of ∆ ⟨U (z)⟩ evidently
arises from the dehydration penalty. The negative value
of ∆Gres (z) inside the membrane indicates that the free-
energy penalty brought by the structural change of the
membrane is smaller than that of the solvent water at
phase D. As shown by Cardenas and Elber26 as well as
by Chipot and Comer21 through the MD simulations, the
voids in the inner region are highly populated compared
with the bulk solvent. The presence of voids in the in-
ner region could mitigate the structural change of the
membrane upon solvation of the permeant, leading to a
decrease in ∆Gres (z). For both the concentrations, the
value of ∆ ⟨U (z)⟩ at z = 0 for ethanol is larger than
for methylamine, reflecting the higher hydrophilicity of
ethanol. The smaller value of ∆Gres (z) at z = 0 for
ethanol compared to methylamine may be attributed to
ethanol’s larger molecular size. As the permeant concen-
tration increases, ∆ ⟨U (z)⟩ and ∆Gres (z) at z = 0 re-
spectively decrease and increase for ethanol, while there
is little change in these quantities for methylamine.

B. Kinetics of returning and crossing processes

In this subsection, we discuss the kinetic property of
the permeants at phase R. We define the z-range of phase
R (Υ) as

Υ =
{
z | 0 ≤ z/Å ≤ 3

}
, (51)

FIG. 4. Returning probability PRET(t), and its running inte-
gral τr(t) for (a) ethanol and (b) methylamine systems. The
z-range of phase R is set to 3 Å.

FIG. 5. Time constant of the dissociation, τr, and that of the
transition from phase R to A (crossing), τR→A. τr is defined
as τr = τr (∞). The error bars are provided at the standard
error.

for both the ethanol and methylamine systems. The
lower bound is fixed to z = 0, corresponding to the mem-
brane center, and upper bound is decided so that the per-
meability coefficients are hardly changed by the variation
in the upper bound, as will be discussed in Sec. IVC.

The returning probability PRET(t) and its running in-
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tegral defined as

τr (t) =

∫ t

0

dsPRET (s) , (52)

are plotted in Fig. 4. Note that τr (∞) is the dissociation
time constant from phase R.36 For the dilute ethanol sys-
tem, PRET (t) is observed to converge to zero at ∼5 ns,
followed by a subsequent redistribution occurring at ∼11
ns. τr (t) is converged after ∼15 ns. The first decay of
PRET (t) becomes faster for the 1 mol% ethanol system.
In addition, the redistributive behavior observed for the
dilute system is weakened, resulting in the faster conver-
gence of τr (t). It is well-known that a stable state for
ethanol exists between the membrane center and phase
D,66 and the stability of this state is suppressed with
increasing ethanol concentration.39 Thus, the return of
ethanol to phase R could be facilitated by the trap of
ethanol at the stable state within the membrane, empha-
sized under conditions where the stability of this state
is high. In the cases of the dilute and 1 mol% methy-
lamine systems, it is seen that PRET (t) converges to zero
at ∼7 ns. Unlike ethanol, methylamine does not show
the redistributive behavior. As shown in the profile of
∆GPMF (z) for the 1 mol% system (Fig. S3(b) of the
supplementary material), the stable state is present in-
side the membrane, but the stability is lower than that
for the ethanol. This can be reason why the redistributive
behavior is not observed for the methylamine systems.

The time constant of the dissociation, τr, and that
of the transition from phase R to A (crossing), τR→A,
are shown in Fig. 5. Here, we define τr and τR→A as
τr = τr (∞) and τR→A = 1/kR→A, respectively. For the
dilute ethanol system, τr is smaller than τR→A, indicat-
ing that dissociation from phase R preferentially occurs
over crossing. This trend reflects the downhill profile of
∆G (z) around z = 0 (Fig. 2 (a)). In the presence of
1 mol% ethanol, a reduction in τr is discernible as also
shown in Fig. 4, while τR→A remains largely unchanged
from that in the dilute system. As for the methylamine
systems, the difference between τr and τR→A is negligibly
small under the dilute condition. Furthermore, both τr
and τR→A hardly change with increasing concentration,
consistent with the fact that the profile of ∆G (z) is not
dependent on the concentration (Fig. 2(b)).

C. Permeability coefficient

In order to calculate the permeability coefficients at
steady state, Pss, through the RP theory (Eq. (20)), the
definition of phase R (Υ) is required. Then, we investi-
gate the dependency of Pss on the choice of the z-range
of Υ. Let us express Υ as follows.

Υ = {z | 0 ≤ z ≤ zR} . (53)

Fig. 6 plots Pss as a function of zR. In the case of the
ethanol systems, it is observed that Pss exhibits a slight

FIG. 6. Dependency of the permeability coefficients (Pss) ob-
tained from the RP theory (Eq. (20)) on the choice of state R
(Υ = {z | 0 ≤ z ≤ zR}) for (a) ethanol and (b) methylamine.
The colored regions indicate the statistical uncertainty (stan-
dard error).

dependency on zR when zR < 1.5 Å and zR > 3.5 Å
both under the dilute and 1 mol% conditions. Pss for the
methylamine systems remains constant at zR > 1.5 Å
irrespective of the concentration. In a previous study on
protein-ligand binding with the RP theory,37 the appro-
priate Υ was determined so that the binding rate con-
stants are hardly affected by the variation in Υ. Simi-
larly, we set zR to 3 Å, at which the profiles of Pss along
zR are almost flat for both the ethanol and methylamine
systems.
The values of Pss using the aforementioned defini-

tion of Υ are summarized in Table I, together with
those obtained from the transition-based counting (TBC)
method for the 1 mol% systems. For the 1 mol% sys-
tems, the RP theory predicts a larger Pss for ethanol
(0.12 ± 0.01 cm s−1) than for methylamine (0.069 ±
0.006 cm s−1), consistent with the TBC method. Fur-
thermore, the values fo Pss are satisfactorily close to
those obtained from the TBC method [0.18±0.03 cm s−1

and 0.052 ± 0.005 cm s−1 for ethanol and methylamine,
respectively], revealing the validity of the RP theory.

We examine the concentration dependence of Pss. An
increase in Pss is observed for the ethanol systems as
ethanol concentration increases, while such a change is
hardly discernible for the methylamine systems. This
trend is consistent with the experimental observation
that ethanol enhances the membrane permeability of
drug compounds.67 It is well known that ethanol strongly
affects the properties of lipid membranes. For instance,
an increase in ethanol concentration leads to the expan-
sion of the area per lipid (APL) and the reduction of the
lipid ordering,68–70 bringing to the enhanced membrane
permeability. We confirm that the APL becomes larger
as increasing ethanol concentration, while the effect of
the 1 mol% methylamine on the APL is hardly observed
(Fig. S4 of the supplementary material). To further an-
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TABLE I. Permeability coefficients (Pss) computed from the RP theory and from the transition-based counting (TBC) method.
The thermodynamic (K∗) and kinetic (χ) contributions are also shown. The errors are provided at the standard error, and the
errors for K∗ are not shown since they are smaller than 0.001 Å.

Pss

(
cm s−1

)
RP TBC K∗ (

Å
)

χ
(
ns−1

)
Ethanol Dilute 0.079± 0.009 · · · 0.016 0.50± 0.05

1 mol% 0.12± 0.01 0.18± 0.03 0.021 0.56± 0.04

Methylamine Dilute 0.063± 0.005 · · · 0.011 0.58± 0.05

1 mol% 0.069± 0.006 0.052± 0.005 0.011 0.64± 0.05

alyze the dependence of the permeability on the perme-
ant concentration, we conduct a systematic examination
based on the theoretical expression of Pss provided by
the RP theory (Eq. (20)). By defining

χ = (τR→A + τr)
−1

, (54)

Eq. (20) can be rewritten as

Pss = χK∗. (55)

The above expression indicates that K∗ and χ represent
the thermodynamic and kinetic contributions to Pss, re-
spectively. The computed values for these quantities are
listed in Table I. In the case of the ethanol systems,
it is found that the increase in K∗ predominantly con-
tributes to enhancing ethanol permeability with increas-
ing ethanol concentration. Regarding the methylamine
systems, on the other hand, the dependence of both K∗

and χ on methylamine concentration is negligibly small,
resulting in the insensitivity of Pss to changes in concen-
tration.

V. CONCLUSION

In this study, we proposed an MD-based methodology
to compute the permeability coefficients at steady state,
Pss, using the returning probability (RP) theory. The
permeability coefficients represent the efficiency of the
permeation processes from the donor (D) phase to ac-
ceptor (A) phase. Starting from the Liouville equation
with the reaction sink term describing the local motion
toward phase A in the reactive (R) phase located inside
the membrane, we derived a formally exact expression of
the permeability coefficient at unsteady state, which is
mathematically parallel to that of the unsteady rate coef-
ficient for molecular binding in the RP theory. This par-
allelism enabled us to employ the perturbative-expansion
technique in the RP theory to yield the tractable expres-
sion of the permeability coefficient at steady state. The
resultant expression is composed of the thermodynamic
and kinetic properties of phase R that can be evaluated
through the MD simulations.

The present method was applied to the permeation of
ethanol and methylamine through the lipid bilayer com-
posed of POPC. The dilute and 1 mol% permeant sys-
tems were examined. The thermodynamic stability anal-
ysis showed that both ethanol and methylamine were
destabilized around phase R (membrane center) com-
pared with phase D (solution phase), reflecting the hy-
drophilic nature of these permeants. The free energy
barrier was observed to decrease with increasing ethanol
concentration for ethanol, while this effect was barely dis-
cernible for methylamine. Regarding the kinetic proper-
ties, the dissociation of ethanol from phase R was pro-
moted in the presence of 1 mol% ethanol. In contrast,
the kinetics of methylamine around phase R remained
unchanged due to the change in methylamine concentra-
tion. The present method yielded a larger value of Pss for
ethanol than for methylamine under the 1 mol% condi-
tion, consistent with the prediction from the transition-
based counting (TBC) method. Furthermore, by decom-
posing Pss into the thermodynamic and kinetic contri-
butions, we clarified that a concentration dependency of
Pss observed for the ethanol systems was attributed to
the sensitivity of the free energy barrier against the con-
centration within the inner region of the membrane.

Since no assumption was imposed on the condition
of the solution (donor and acceptor) phases in the
present method, the inhomogeneous donor and accep-
tor phases such as crowded solutions71 can be treated by
means of the present method. The unstirred water layer
(UWL), which is an inhomogeneous region proximal to
biomembranes in gastrointestinal environments and ex-
erts a significant influence on the permeation of small
molecules, can be another target of investigation of the
RP method.72–74

To extend the applicability of the present method
to long-timescale permeation phenomena, refining the
method is essential. In the present study, the computa-
tion of the returning probability (PRET (t)) and the rate
constant for the transition from phase R to A (kR→A)
was performed using a number of short MD trajecto-
ries starting from phase R. When the kinetics around
phase R is slow, the required length of time for each tra-
jectory becomes longer, leading to an increase in com-
putational costs. Recently, the methodologies of effi-
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ciently computing the time correlation functions for the
state-to-state transitions from short MD trajectories have
been proposed based on the generalized Langevin equa-
tion (GLE).75–77 Incorporating such methodologies could
overcome the challenge in the present method. We be-
lieve that the present method and its extension would of-
fer a promising route to unveil the detailed mechanisms
of permeation phenomena in complex biological systems,
such as cellular and intestinal membranes.
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Appendix A: Derivation of theoretical expression of Pss

In this appendix, we derive a theoretical expression of
the permeability coefficient, Pss, by utilizing the mathe-
matical techniques employed in the RP theory.36,38

Since the system is in equilibrium at t = 0, Ψi (Γ, 0)
is equivalent to the equilibrium phase space density,
Ψeq (Γ). Thus, the formal solution of Eq. (5) is given
by

Ψi (Γ, t) = e−(L+S)tΨeq (Γ) , (A1)

Using the operator identity

e−(L+S)t = e−Lt −
∫ t

0

dτ e−(L+S)τSe−L(t−τ), (A2)

Eq. (A1) is rewritten as

Ψi (Γ, t) = Ψeq (Γ)−
∫ t

0

dτ e−(L+S)τSΨeq (Γ) , (A3)

where we have used the relationship given by LΨeq (Γ) =
0. The above equation enables us to decompose the
nonequilibrium distribution function of the permeants,
g (r,Λ, t) (Eq. (9)), into the equilibrium (geq (r,Λ)) and
nonequilibrium (∆g (r,Λ, t)) parts as

g (r,Λ, t) = geq (r,Λ) + ∆g (r,Λ, t) , (A4)

geq (r,Λ) = ⟨⟨δ (r− ri) δ (Λ−Λi)⟩⟩ , (A5)

∆g (r,Λ, t)

= −
∫ t

0

dτ ⟨⟨δ (r− ri) δ (Λ−Λi) e
−(L+S)τS⟩⟩ . (A6)

Here, we have introduced the following notation.

⟨⟨· · ·⟩⟩ = 1

cD

N0∑
i=1

∫
dΓ (· · · )Ψeq (Γ) . (A7)

Substitution of Eqs. (A4)–(A6) into Eq. (11) leads to

P (t) = Peq

(
1−

∫ t

0

dτ h (τ)

)
, (A8)

where Peq is the equilibrium permeability coefficient de-
fined as

Peq =
1

σ

∫
dr

∫
dΛS (z,Λ) geq (r,Λ)

=
1

σ
⟨⟨S⟩⟩ , (A9)

and h (t) is defined as

h (t) =
⟨⟨Se−(L+S)tS⟩⟩

⟨⟨S⟩⟩
. (A10)

The Laplace transform (t → s) of P (t), P̂ (s), is repre-
sented as

sP̂ (s) = Peq

(
1− ĥ (s)

)
, (A11)

where ĥ (s) is the Laplace transform of h (t) given as

ĥ (s) =
⟨⟨S (s+ L+ S)

−1
S⟩⟩

⟨⟨S⟩⟩
, (A12)

The mathematical form of Eq. (A11) is parallel to that
of the Noyes expression for the rate coefficient of bimolec-
ular reactions.78 It is known that the Noyes expression
for bimolecular reactions can be expressed as a series ex-
pansion using the operator algebraic method.36,38 As well
as in the case of bimolecular reactions, a series expansion
for P̂ (s) (Eq. (A12)) can be derived as described below.
The Laplace transform of Eq. (A2) is

(s+ L+ S)
−1

= (s+ L)−1 − (s+ L+ S)
−1

S (s+ L)−1
.

(A13)
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The following identity is obtained by iteratively utilizing
Eq. (A13).

(s+ L+ S)
−1

S = −
∞∑

n=1

(−1)
n
[
(s+ L)−1

S
]n

. (A14)

By substituting Eq. (A14) into Eq. (A12), one can obtain

ĥ (s) = −
∞∑

n=1

(−1)
n
N̂n (s) , (A15)

where N̂n (s) is a multiple sink correlation function de-
fined as

N̂n (s) =
⟨⟨S

[
(s+ L)−1

S
]n

⟩⟩

⟨⟨S⟩⟩
, (A16)

As described in Refs. 36 and 38, the inverse Laplace
transform of N̂n (s), Nn (t), represents the contribution
of the permeants repeatedly visiting phase R (Υ) to the
permeability coefficient.

Introducing an approximation to N̂n (s) gives the

tractable expression of P̂ (s) from Eq. (A11). For no-
tational simplicity, we let ζi be (zi,Λi). Then, N1 (t) is
expressed as

N1 (t) =
⟨⟨Se−LtS⟩⟩

⟨⟨S⟩⟩

=

∫
dζ1

∫
dζ0 S (ζ1)S (ζ0) ⟨⟨δ (ζ1 − ζi (t)) δ (ζ0 − ζi)⟩⟩∫

dζ0 S (ζ0) ⟨⟨δ (ζ0 − ζi)⟩⟩
,

(A17)

where we have used the relationship given by
S (ζi) e

−Lt = S (ζi (t)). Substituting Eq. (4) into
Eq. (A17) yields

N1 (t) = kR→APRET (t) . (A18)

Here, PRET (t) is the returning probability defined as

PRET (t) =

∫
Υ

dζ1

∫
Υ

dζ0 ⟨⟨δ (ζ1 − ζi (t)) δ (ζ0 − ζi)⟩⟩∫
Υ

dζ0 ⟨⟨δ (ζ0 − ζi)⟩⟩
.

(A19)

PRET (t) is the conditional probability of finding a perme-
ant in Υ at t = t when that molecule was in Υ at t = 0.
Note that Eq. (A19) is equivalent to Eq. (14). As for
n ≥ 2, we utilize the Wilemski-Fixman approximation79

described as

N̂n (s) ≈
(
N̂1 (s)

)n
. (A20)

This approximation is derived by assuming the Marko-
vianity that a visiting event to Υ is independent of the

previous events. By employing the Maclaurin series of
(1 + x)

−1

1

1 + x
=

∞∑
n=0

(−1)
n
xn, (A21)

one can obtain the tractable expression of P̂ (s) from Eqs.
(A11), (A15), (A20), and (A18) as

sP̂ (s) = Peq

(
1 + kR→AP̂RET (s)

)−1

, (A22)

where P̂RET (s) is the Laplace transform of PRET (t). The

final value theorem of the Laplace transform, sP̂ (s)
s→0−−−→

Pss, gives

Pss = Peq

(
1 + kR→A

∫ ∞

0

dt PRET (t)

)−1

. (A23)
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39M. Ghorbani, E. Wang, A. Krämer, and J. B. Klauda, J. Chem.
Phys. 153, 125101 (2020).

40R. W. Zwanzig, J. Chem. Phys. 22, 1420 (1954).
41J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
1C. H. Bennett, J. Comput. Phys. 22, 245 (1976).

43J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O’Connor, D. J.
Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell Jr,
and R. W. Pastor, The journal of physical chemistry B 114, 7830
(2010).

44K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu,
S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov,
et al., J. Comput. Chem. 31, 671 (2010).

45W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey,
and M. L. Klein, The Journal of chemical physics 79, 926 (1983).

46J. Lee, D. S. Patel, J. St̊ahle, S.-J. Park, N. R. Kern, S. Kim,
J. Lee, X. Cheng, M. A. Valvano, O. Holst, et al., Journal of
chemical theory and computation 15, 775 (2018).

47S. Jo, T. Kim, V. G. Iyer, and W. Im, Journal of computational
chemistry 29, 1859 (2008).

48E. L. Wu, X. Cheng, S. Jo, H. Rui, K. C. Song, E. M. Dávila-
Contreras, Y. Qi, J. Lee, V. Monje-Galvan, R. M. Venable, et al.,
J. Comput. Chem. 35, 1997 (2014).

49L. Mart́ınez, R. Andrade, E. G. Birgin, and J. M. Mart́ınez, J.
Comput. Chem. 30, 2157 (2009).

4J. Jung, T. Mori, C. Kobayashi, Y. Matsunaga, T. Yoda, M. Feig,
and Y. Sugita, Wiley Interdiscip. Rev. Comput. Mol. Sci. 5, 310
(2015).

5C. Kobayashi, J. Jung, Y. Matsunaga, T. Mori, T. Ando,
K. Tamura, M. Kamiya, and Y. Sugita, J. Comput. Chem. 38,
2193 (2017).

6J. Jung, C. Kobayashi, K. Kasahara, C. Tan, A. Kuroda, K. Mi-
nami, S. Ishiduki, T. Nishiki, H. Inoue, Y. Ishikawa, et al., J.
Comput. Chem. 42, 231 (2021).

53G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126,
014101 (2007).

54W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson,
J. Chem. Phys. 76, 637 (1982).

55M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys.
97, 1990 (1992).

56T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089
(1993).

9U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and
L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).

58J.-P. Ryckaert, G. Ciccotti, and H. J. Berendsen, J. Comput.
Phys. 23, 327 (1977).

59H. C. Andersen, J. Comput. Phys. 52, 24 (1983).

60S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952
(1992).

10W. Jiang and B. Roux, J. Chem. Theory Comput. 6, 2559 (2010).
2H. Oshima and Y. Sugita, J. Chem. Inf. Model. 62, 2846 (2022).

63B. Efron, Bootstrap methods: another look at the jackknife
(Springer, 1992).

64D. Bemporad, J. W. Essex, and C. Luttmann, J. Phys. Chem.
B 108, 4875 (2004).

65N. Matubayasi, Bull. Chem. Soc. Jpn. 92, 1910 (2019).
66J. Comer, K. Schulten, and C. Chipot, J. Chem. Theory Comput.
13, 2523 (2017).

67L. K. Pershing, L. D. Lambert, and K. Knutson, Pharm. Res.
7, 170 (1990).

68M. Patra, E. Salonen, E. Terama, I. Vattulainen, R. Faller, B. W.
Lee, J. Holopainen, and M. Karttunen, Biophys. J. 90, 1121
(2006).

69A. A. Gurtovenko and J. Anwar, J. Phys. Chem. B 113, 1983
(2009).

70R. M. Konas, J. L. Daristotle, N. B. Harbor, and J. B. Klauda,
J. Phys. Chem. B 119, 13134 (2015).

71G. Nawrocki, W. Im, Y. Sugita, and M. Feig, Proc. Natl. Acad.
Sci. 116, 24562 (2019).

72F. A. Wilson, V. L. Sallee, and J. M. Dietschy, Science 174,
1031 (1971).

73T. Korjamo, A. T. Heikkinen, and J. Mönkkönen, J. Pharm. Sci.
98, 4469 (2009).

74C. Kang, A. Shoji, C. Chipot, and R. Sun, Journal of Chemical
Information and Modeling (2024).

75S. Cao, A. Montoya-Castillo, W. Wang, T. E. Markland, and
X. Huang, J. Chem. Phys. 153, 014105 (2020).

76A. J. Dominic III, S. Cao, A. Montoya-Castillo, and X. Huang,
J. Am. Chem. Soc. 145, 9916 (2023).

77K. Kasahara, R. Masayama, Y. Matsubara, and N. Matubayasi,
Chem. Lett. 51, 823 (2022).

78R. M. Noyes, J. Chem. Phys. 22, 1349 (1954).
79G. Wilemski and M. Fixman, J. Chem. Phys. 58, 4009 (1973).
3Y. Matsunaga, M. Kamiya, H. Oshima, J. Jung, S. Ito, and
Y. Sugita, Biophys. Rev. 14, 1503 (2022).

7M. Zacharias, T. Straatsma, and J. McCammon, J. Chem. Phys.
100, 9025 (1994).

8T. Steinbrecher, I. Joung, and D. A. Case, J. Comput. Chem.
32, 3253 (2011).

https://doi.org/10.1021/acs.jpcb.6b02814
https://doi.org/10.1021/acs.jpcb.6b02814
https://doi.org/10.1371/journal.pcbi.1004381
https://doi.org/10.1371/journal.pcbi.1004381
https://doi.org/10.1021/acs.jpcb.6b09388
https://doi.org/ 10.1063/5.0070308
https://doi.org/ 10.1063/5.0070308
https://doi.org/ 10.1063/5.0165692
https://doi.org/ 10.1063/5.0165692
https://doi.org/10.1063/5.0013430
https://doi.org/10.1063/5.0013430
https://doi.org/10.1246/bcsj.20190246
https://doi.org/10.1063/5.0010787


S0

Supplement for “A methodology of quantifying membrane permeability
based on returning probability theory and molecular dynamics

simulation”

S1. SIMULATION PROTOCOLS FOR EQUILIBRATING MEMBRANE SYSTEMS

In Table S1, POSI, FB, and TORS denote the positional harmonic restraints, flat-bottom, and torsion harmonic
restrains, respectively. POSI is defined as

POSI(M, k) =
∑
i∈M

k (zi − zi,0)
2
, (S1)

POSI(U, k) = k (zU − zU,0)
2
. (S2)

The arguments M and U in POSI respectively mean that the positional restraints are imposed on the z-coordinate
of the phosphorus atoms in the membrane and on the z-component of the center of mass (CoM) for the permeant
solute molecule. The CoM is calculated from the heavy atoms in the permeant, and zi is the z-coordinate of the ith
phosphorus atom in the membrane with its reference position zi,0. zU is the z-coordinate of CoM for a permeant
molecule with its initial position zU,0. POSI (U, k) is imposed only for the membrane systems containing one permeant

molecule, and zU,0 is set to 0. The unit of k is kcal mol−1 Å−2. The definition of FB is

FB(z1, z2, k) =


k(zU − z1)

2, zU ≤ z1,

0, z1 < zU ≤ z2,

k(zU − z2)
2, z2 ≤ zU,

(S3)

where the units of z1, z2 and k are Å, Å, and kcal mol−1 Å
−2

, respectively. TORS is defined as

TORS(X, k) = k(ϕ− ϕ0)
2, (S4)

where ϕ is the proper torsion angle for the double bond with cis-form in the acyl chain (X = A) and the improper
torsion (inversion) angle for the glycerol group (X = G). The atoms used for defining the torsion angles are labeled
in Fig. S1. The torsion angles are composed of atoms (1, 2, 3, 4) for X = A and of (1′, 2′, 3′, 4′) for X = G. The values
of ϕ0 are 0 and 120 degrees for X = A and G, respectively. The unit of k is kcal mol−1 degree−2.
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TABLE S1. Simulation protocols for equilibrating membrane systems. The velocity Verlet (VVER) integrator is used at all
the steps, and ∆t means the time interval used in VVER integrator. As for the systems containing one permeant molecule,
POSI (U, k = 1.0)) is imposed at all the steps.

Step Simul. length ∆t Ensemble Restraints

1 0.125 ns 1 fs NVT POSI (M, k = 2.5), TORS (A, k = 250), TORS (G, k = 250)

2 0.125 ns 1 fs NVT POSI (M, k = 2.5), TORS (A, k = 100), TORS (G, k = 250)

3 0.125 ns 1 fs NPT POSI (M, k = 1), TORS (A, k = 50), TORS (G, k = 50)

4 0.5 ns 2 fs NPT POSI (M, k = 0.5), TORS (A, k = 50), TORS (G, k = 50)

5 0.5 ns 2 fs NPT POSI (M, k = 0.1), TORS (A, k = 25), TORS (G, k = 25)

6 0.5 ns 2 fs NPT
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S2. SCHEME OF COMPUTING ∆∆µ

In this section, we describe the scheme of computing

∆∆µ = ∆µS −∆µD, (S1)

using the Bennett acceptance ratio (BAR) method1 implemented in GENESIS.2–6 Here, ∆µS and ∆µD are the
solvation free energies associated with the solvation processes of the solute in state S and phase D, respectively. The
free energy perturbation (FEP) method enables us to compute the free energy difference between two different states
of interest by introducing the set of replicas connecting the two states of interest. Let us define the potential function
for the kth replica (k = 1, · · · , Nrep) as

V (λk) = λLJ
k

[
ULJ
U

(
λLJ
k

)
+ ULJ

UV

(
λLJ
k

)]
+ λelec

k

[
U elec
U

(
λelec
k

)
+ U elec

UV

(
λelec
k

)]
+ Ubonded

U + UV, (S2)

where λLJ
k and λelec

k are the coupling parameters for the Lennard-Jones interaction and electrostatic interaction,
respectively, and λk is defined as λk =

(
λLJ
k , λelec

k

)
. Ubonded

U is the bonded part of the intramolecular potential for
the solute composed of the bond-stretch, bending, and torsion potentials. UV is the total potential of the solvents.
ULJ
U

(
λLJ
k

)
and U elec

U

(
λelec
k

)
are the soft-core LJ and soft-core electrostatic potentials for the solute, respectively, and

ULJ
UV

(
λLJ
k

)
and U elec

UV

(
λelec
k

)
respectively mean the soft-core LJ and soft-core electrostatic potentials between the solute

and solvents. ULJ
X

(
λLJ
k

)
and U elec

X

(
λelec
k

)
(X = U or UV) are respectively defined as7,8

ULJ
X

(
λLJ
k

)
=

∑
(i,j)∈NX

4εij

( σ2
ij

r2ij + αsc

(
1− λLJ

k

))6

−

(
σ2
ij

r2ij + αsc

(
1− λLJ

k

))3
 , (S3)

U elec
X

(
λelec
k

)
=

∑
(i,j)∈NX

qiqjerfc
(
κ−1

√
r2ij + βsc

(
1− λelec

k

))√
r2ij + βsc

(
1− λelec

k

)
+ (SPME reciprocal and self terms) . (S4)

Here, NX is the set of pairs of atoms involved in X, and rij and (σij , εij) are the interatomic distance and Lennard-
Jones parameter between the ith and jth atoms, respectively, and qi is the point charge on the ith atom. κ is the
screening parameter for the smooth particle-mesh Ewald (SPME) method.9 αsc and βsc are the soft-core parameters
for the LJ and electrostatic interactions, respectively. In the present study, the values of αsc and βsc were set to

5 Å
2
and 0.5 Å

2
, respectively. The number of replicas, Nrep, was 24, and we set λ0 and λNrep to (0, 0) and (1, 1),

respectively. The values of λk are plotted against the replica ID in Fig. S2. Note that λ0 and λ1 respectively
correspond to λLJULJ

X

(
λLJ
) λLJ→0−−−−→ 0,

λelecU elec
X

(
λelec

) λelec→0−−−−−→ 0,
(S5)

and λLJULJ
X

(
λLJ
) λLJ→1−−−−→ (original LJ potential) ,

λelecU elec
X

(
λelec

) λelec→1−−−−−→ (original SPME electrostatic potential) .
(S6)

Thus, the free energy change defined as

∆G1,A = − 1

β
log ⟨exp

[
−β
(
V(λNrep)− V(λ0)

)]
⟩
λ0,A

(S7)

is associated with the appearance of the nonbonded interaction within the solute and that between the solute and
solvents at state A. Here, ⟨· · ·⟩λ0,A

denotes the ensemble average of the system governed by V (λ0) at state A. By
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introducing the free energy change associated with the appearance of the nonbonded interaction within the solute in
the gas phase as

∆G2 = − 1

β
log

∫
dxU e−βUU∫

dxU e−βUbonded
U

, (S8)

the solvation free energy for state A can be expressed as

∆µA = ∆G1,A −∆G2. (S9)

Here, UU is the intramolecular potential of the solute defined as UU = ULJ
U (1) + U elec

U (1) + Ubonded
U . From the above

expression, Eq. (S1) can be rewritten as

∆∆µ = ∆G1,S −∆G1,D. (S10)

We computed ∆G1,S and ∆G1,D by performing the BAR method with the Hamiltonian replica exchange MD (BAR/H-
REMD) simulations.10
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S3. SUPPLEMENTARY FIGURES

FIG. S1. Chemical structure of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC). The atoms related with the torsion
harmonic potentials imposed during the equilibration are labeled.
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FIG. S2. Coupling parameters for the BAR/H-REMD simulations, λLJ
k and λelec

k , along replica ID, k.
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FIG. S3. Potentials of mean force (PMF), ∆GPMF (z), obtained from the simulations at the permeant concentrations of 1 mol%
for the transition-based counting (TBC) method. (a) 1 mol% ethanol, and (b) 1 mol% methylamine.
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FIG. S4. Probability densities of area per lipid (APL) for the dilute ethanol, 1 mol% ethanol, and 1 mol% methylamine systems.
The MD trajectories prepared for determining kR→A (Sec. IIIC) are used to compute the probability densities.
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