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Abstract 
Functionally graded materials (FGMs) represent a promising class of advanced materials designed 
with tailored microstructures to achieve optimized mechanical, thermal, and functional properties 
across varying gradients. The strategic integration of distinct materials within functionally graded 
materials offers engineers unprecedented control over properties such as strength, thermal 
conductivity, and corrosion resistance, enabling innovative solutions for demanding applications 
in aerospace, automotive, and biomedical industries. This study investigates a rotating annular thin 
disk with variable thickness composed of incompressible hyperelastic material, made up of 
functionally graded properties under large deformations. To elucidate these phenomena, a power 
relation is employed to delineate the changes in cross-sectional geometry m, the material property 
n, and the angular velocity  of hyperelastic material. Constants used for hyperelastic material 
are obtained from the experimental data. Equations are solved semi-analytically for different 
values of m, n, and , and the values of radial stresses, tangential stresses, and elongation are 
calculated and compared for different conditions. Results show that thickness and FG properties 
have a significant impact on the behavior of disk, so that the expected behavior of the disk can be 
obtained by an optimal selection of the disk’s geometry and material properties. By selecting the 
optimum values for these variables, the location of maximum stress can be controlled in large 
deformations, thereby furnishing significance advantages in structural design and material 
selection. 

Keywords: Functionally graded materials, hyperelastic behavior, disc with variable thickness, 
rotary disk analysis, analytical solution. 
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1. Introduction 

Hyperelastic materials can endure high values of strain and, in fact, can be exposed to large 
deformations and remain fully elastic without losing their main properties. In general, the behavior 
of hyperelastic materials changes nonlinearly and their structures are based on hyperelastic models 
[1]. Different classes of materials such as elastomers, polymers, and foams have the potential of 
large hyperelastic deformations. Rubbers are widely used as vibration isolator, energy-saving parts 
in the automotive industry and shield and buffer in the parts exposed to impact loads [2]. In 
hyperlastic materials, the ratio of the secondary length to the primary length is usually between 5 
to 10 and the stress-strain curve is nonlinear, so the material does not follow Hooke's law [3]. For 
small tensions, one can define the slope of the curve as the modulus of elasticity, which is about 1 
MPa. High extensibility and low modulus of elasticity of rubbers, compared to solids, such as 
metals, which have the high value of modulus of elasticity (about 200 GPa) and a low extensibility 
(1.01), makes a remarkable difference between rubbers and solids like metals. 

To study the structural equations of the rubbers, two types of phenomenological viewpoints 
are used; a viewpoint based on the continuum mechanics, and a viewpoint of the statistical and 
kinetics methods. So far, many structural equations have been derived for the modeling of the 
hyperelastic behavior of rubber materials based on the continuum mechanics. For this purpose, 
Ogden [4] presented an energy function based on the strain energy density functions for nonlinear 
behavior of rubber materials with large deformations, in which there was a series of coefficients 
and constants that the specific state relations of this model, such as Mooney-Rivlin, Neo-Hookean, 
and Varga models were introduced. Mooney [5] proposed the large deformations theory, and 
Rivlin [6] developed this theory for rubbers. Yeoh [7] introduced an energy function to describe 
the behavior of volcanized carbon-black-filled rubbers. Arruda and Boyce [8] presented a 
statistical model whose parameters were physically related to the chain orientation, including the 
deformation of the structure of the three-dimensional rubbers grid. Blatz and Ko [9] presented a 
strain energy function for compressive foamed-elastomers, which was a combination of theoretical 
argumentations and laboratory data. Beatty [10], Horgan and Polignone [11], and Attard [12] have 
also introduced new structural models for rubbers. 

Material design in one of the state-of-the-art topics since it helps making various types of 
materials and structures for different applications. In this case, smart materials and structures are 
one of the most novel topics in the literature of materials science [13]. Several researches have 
been done on shape-memory materials [14, 15] and smart composites [16]. Most materials existed 
in nature are not homogeneous and are considered homogeneous only for simplification. 
Heterogeneous materials have different types. The use of FGMs is one of the practical hypotheses 
to consider the effect of heterogeneity [17]. FGMs exhibit different properties in different regions 
due to the gradual change of chemical composition, distribution and orientation or the size of the 
reinforcing phase in one or more dimensions [18]. FGMs have been used in many fields such as 
aerospace [19], energy [20], biology [21], electro-magnetism [22], controllers [23], network [24, 
25], vehicles [26, 27], and other fields [28, 29] through the ingenious combination of inorganic 



and organic materials such as metals, ceramics, and plastics. This gradual change in structure and 
properties has led to the expansion of the application of these materials, especially in cases 
requiring different properties in different regions. FGMs were initially introduced in 1984 by a 
group of scientists at the University of Sendai, Japan [30], since then extensive researches were 
carried out on these materials. Due to the continuity of their mechanical, thermal, and magnetic 
properties in FGMs, stresses and gradients are continuous, increasing their strength. These gradual 
changes in properties of the structure of FGMs cause the consistent strength between different 
layers of them. However, in laminated composite materials, the interference between fiber 
structures causes inconsistency in mechanical properties. In the realm of materials science, stress 
analysis has been conducted on different materials to investigate their fracture properties in 
nanoscale [31] or failure response in macroscale [32]. Determining material parameters to describe 
mechanical behavior stands as another outcome of stress analysis [33]. Moreover, the effect of 
geometric parameters on the structural properties which governs the mechanical behavior of a 
system is investigated using stress analysis [34]. 

Two worldwide Symposium on heterogeneous FGMs was held in Sendai in 1990 and in 
San Francisco in 1992, leading to extensive research in this field [35]. The studies of structures 
made from heterogeneous FGMs over the past decade have been of interest to many researchers. 
For example, Sankar [36] provided the elasticity solution for an Euler-Bernoulli beam under static 
transverse loadings. In another study, Benatta [37] presented an analytical solution for 
heterogeneous FGM beams under a bending loading. To understand and predict the nonlinear 
behavior of natural and artificial materials, such as rubbers, foams, and tissues of living organisms 
with nonlinear elastic behavior and some degrees of heterogeneity, it is necessary to analyze their 
structural equations to be utilized in simulation. Heterogeneous hyperelastic FGMs have 
hyperelastic behavior, and their mechanical properties change continuously from one point to 
another in the specified direction. In other words, these materials gradually transform from one to 
another material. First, FGM rubbers were manufactured by Ikeda [38] in the laboratory. Bilgili et 
al. [39] investigated the heterogeneity effects on rubber parts under tensile and shear loadings. In 
another study, Bilgili et al. [40] investigated the effects of thermal loading on heterogeneous rubber 
parts. Batra [41] also has investigated the behavior of nonlinear heterogeneous thick-walled 
cylinders with large deformations using numerical methods. Reddy [42] made an analysis of elastic 
shells. Shells are the main structural elements in many engineering applications, including pressure 
vessels, submarines, ships, aircraft wings and bodies, car tire tubes, rockets, concrete roofs, 
chimneys, cooling towers, and liquid storage tanks. In addition, they can be found in nature in the 
form of leaves, eggs, inner ears, bladders, blood vessels, skulls, and geological structures. 

FGM rubber tubes in the form of a finite thermoelastic model with a molecular pattern, 
was investigated by Bilgili [43]. The heterogeneity role in the deformation of elastic bodies was 
investigated by Saravanan and Rajagopal [44]. In another study, a comparison between the 
response of heterogeneous isotropic spherical and cylindrical shells and their homogeneous 
counterparts was performed by Saravanan and Rajagopal [45]. One year later, the same authors 



analyzed the expansion and torsion of a heterogeneous incompressible elastic circular cylinder 
[46]. Iaccarino and Batra analyzed the expansion and radial contraction of a hollow sphere made 
of second-order heterogeneous compressible isotropic elastic materials with two material 
parameters [47]. Batra analyzed the torsion of a cylinder made of incompressible Hookean 
materials with a variable shear modulus along the axial direction and calculated the axial variations 
of shear modulus for controlling the torsion angle of cross section [48]. Batra and Bahrami 
investigated a pressure vessel made of FGM rubber, such as pressurized materials [49]. In order to 
find the stress components of the pressure vessel, they assumed an axially symmetrical radial 
deformation of a circular cylinder, which was composed of FGM Mooney-Rivlin materials with 
the parameters changing continuously and radially by power law or relativity. They found that in 
order to make the power law component equal to 1, tangential stress for the cylinder under the 
internal pressure should be uniform in the whole cylinder. In another study, Batra presented 
general relations for axial symmetric deformations in FGM cylinders and rubber spheres [50]. It 
is worth mentioning that several analysis based on machine learning techniques [51, 52], 
reinforcement learning strategy [53, 54] and dynamic programing methods [55, 56] can be 
performed to predict the fatigue life of FGM specimen [57], find static structural reliability of 
FGM frames [58], calculate cutting forces in milling processes of FGM [59], and so many other 
applications. 

By reviewing the related works, it was found that no research has been performed in the 
field of analysis of hyperelastic FGM rotary disk with variable cross section. Therefore, in this 
paper, we analyze a rotary disk consisting of FGM materials with variable cross section and also 
hyperelastic behavior. The energy function used in this paper is the Neo-Hookean function. The 
cross section of disk changes based on power law with the disk radius. The results in this paper 
are presented for different values of FGM material component, cross-section component, and 
angular velocity of the disk. The outline of this paper is as follows: The first section introduced 
the related context of FGM and reviewed the literature. Section 2 presents the analytical solutions, 
and section 3 investigates the results and discussion. The effects of material properties, cross-
sectional area, and angular velocity are discussed in this part. Finally, important remarks and 
conclusions are mentioned in section 4 of this article. 

 

2. Formulation 

Figure 1 shows an FGM hyperelastic annulus disk with variable thickness. The inner radius 
and outer radius of the disk are shown as A and B, respectively. The hyperelastic material is 
considered to be fully incompressible. The non-deformed and deformed shapes of the disc are 
shown in the reference coordinate system  and current coordinate system , 
respectively. The length of the hypotenuse is r, and θ is the measure of the angle formed by the 
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positive x-axis and the hypotenuse. The z-coordinate describes the location of the point above or 
below the xy-plane. 

 

Figure 1. Cross section of a disk with variable thickness. 

Because of symmetry, the deformation function of the rotating disk can be expressed as, 

 (1) 

Therefore, the deformation gradient tensor can be expressed as follows. 

 (2) 

For an incompressible hyperelastic material, Cauchy's stress can be shown as [60] 

 (3) 
So that in the above equation, p is the constraint pressure existed on the problem and indicates the 
incompressibility of material and is obtained from the boundary conditions of the problem. Also, 
B is the left Cauchy-Green tensor shown as follows. 
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I1, I2, and I3 are the first, second, and third invariants of the left Cauchy-Green tensor, respectively.  

 (5) 

 (6) 

 (7) 
Also, W1 and W2 represent the energy derivatives relative to the first invariant (I1) and the second 
invariant (I2), respectively. 

 (8) 

 (9) 

Now, with the expansion of the Cauchy’s stress relation of equation (3) and by abandoning 
the shear stress, following relation is obtained: 

 (10) 

 (11) 

Therefore, the deformation gradient tensor can be written as follows: 

 (12) 

Given the assumption of the incompressibility of material, the following relation can be written: 

 (12) 
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Considering the internal radius of the disk (A) and the external radius of the disk (B), their 
deformed shapes can be written as follows: 

 (13) 

Therefore, considering the boundary conditions above, equation (12) is solved as follows: 

 (14) 

By defining  as the elongation of the outer radius and , the elongation at any point 

can be expressed as follows: 

 (15) 

The Cauchy’s stress relation can be written as follows: 

  

 (16) 

The energy function considered in this paper is Neo-Hookean. Since the Neo-Hookean 
constant coefficient is equal to the shear modulus, it can be considered as FGM with considering 
this coefficient to be variable relative to the initial radius of the object. 

 (17) 

Also, FGM changes has been considered as follows and the changes of the FGM properties relative 
to the function power has been plotted in the figure 2. 
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Therefore, changes of the shear modulus relative to the radius has been expressed as follows: 

 (19) 

in which R represents the initial radius of the disk, A is equal to the radius of the disk, and n 
represents the changes in module of the disk. By merging the equations (14) and (13), stresses are 
obtained as follows: 

 (20) 

 (21) 

 

 
Figure 2. Changes in FGM properties for different values of material property n. 

The governing equilibrium equation of the disk with variable thickness is as follows, in which z 
indicates the function of the thickness variation. 

 (22) 

Thickness variations are shown as the function below, and figure 3 represents the thickness 
variations relative to different values of the power component of the function. 

0 ( )
nR

A
f f=

0 ( )nR
A

µ µ=

2
1

0 1( ) ( 3)n
r

R drp I
A R

as aµ - æ ö= - + - ç ÷¶è ø
2

1
0 1( ) ( 3)nR rp I
A R

a
qs aµ - æ ö= - + - ç ÷

è ø

21 rr
r

d dz r
dr z dr r

qs ss s r w-
+ + = -



 (23) 

Now, considering the function of thickness variations and density variations, equation (22) is 
rewritten as follows: 

 (24) 

Inserting equations (20-21) into equation (24), it can be rewritten as: 

 (25) 

By inserting the equation (14) into the Equation (25) we have: 

  

 (26) 

 

 
Figure 3. Thickness variations of the disk for different values of geometry m. 

To solve the above differential equation numerically, the fourth order Runge-Kutta method and 
the following two boundary conditions - which represent the values of stresses in the inner and 
outer radius of the disk after deformation - have been used. 
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3. Results and discussion 

Constant values of , ,  have been obtained using experiments performed by 

Batra. So that the values are ,  and  [61]. In order to 
solve the above equations, a disk with the inner radius of A=1 and the outer radius of B=2 has 
been exposed to the rotation with angular velocities of , , and  rad/s. The 
considered FGM parameters and geometries are in the forms of  and 

, respectively. 

Since the neo-Hookean energy function possesses linear behavior in small deformations, 
the results of present study were compared with the results of a linear elastic disk with a variable 
cross section, provided by Timoshenko and Goodier, in low rotational speeds [62]. The results 
show a very good agreement between the results of present study and Timoshenko’s results.  

 
Figure 4. Comparison of radial stress distribution of neo-Hookean and Timoshenko models for angular 

velocity w = 1.5 rad/s. 

3.1. Effects of material properties 

In order to solve the above equations, a disk with the inner radius of A=1 and the outer 
radius of B=2 has been exposed to a rotation with angular velocities of , , and 
rad/s. As mentioned, the considered FGM parameters and geometries are in the forms of 
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 and , respectively. Results are provided for . Figure 5a 
shows the radial stress distribution for angular velocity of  rad/s and in a constant cross 
section for different values of n. The radial stress of the disk has been increased by increasing the 
value of n. At a constant cross section, with increasing n, the maximum radial stress developed in 
the disk moves toward the outer radius, which can be considered from the viewpoint of design. 
Figure 5b shows the tangential stress distribution on the disk. Values of tangential stress in the 
inner radius of the disk is the maximum value of the disk, so that as we approach the outer radius, 
the tangential stress reduces, so that in the outer radius of the disk for n = -2.1, the value of 
tangential stress approaches to zero. The reduction of tangential stress in the disk is such that with 
increasing n, the reduction trend is linear, but the reduction trend is nonlinear for negative values 
of n. 

Figure 5c indicates the amount of elongation along the disk. As approaching the end of the 
disc, the elongation has been reduced so that the maximum elongation has been occurred in the 
inner radius. As the value of n increases, the elongation in the disk has been increased. This 
difference is such that, when approaching the end of the disk, differences in elongations in different 
values of n are less relative to each other, but differences in the values of n cause more differences 
of elongations in the inner radius. 
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(c) 

Figure 5. Results for w = 3 rad/s and m = 0 and different values of n, (a) radial stress distribution, (b) 
tangential stress distribution, (c) elongation. 

 

Figure 6a indicates the radial stress distribution for m = -3. The values of the obtained 
stresses are less than their values in m = 0 state, that can be due to the reduction of rotating material. 
The maximum radial stress towards more to the end of the disk than the previous state, so that at 

n = 2, the maximum value has been occurred in , while in the m = 0 state, the maximum 

value has been occurred in . Figure 6b shows the tangential stress of the disk, which has 

less values than its values in m = 0 state. Figure 6c indicates the value of elongation along the disk, 
which is less than its values in m = 0 state, and as in the previous state, the elongation of the disk 
has been reduced by approaching to the end of the disk so that the highest value of elongation has 
been occurred in the inner radius. 
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(a) (b) 

 
(c) 

Figure 6. Results for w = 3 rad/s and m = -3 and different values of n, (a) radial stress distribution, (b) 
tangential stress distribution, (c) elongation. 

 

Figure 7a shows the radial stress for m = 3 and different values of n. Such as the previous 
figures, the stress is increased with increasing n, which can be due to the increasing trend of 
thickness of the disk. In this figure, the maximum radial stress towards more to the inner radius 
relative to the two previous states. Figure 7b shows the radial stress of the disc. The value of radial 
stress on the disk in this case is higher than the previous two states. Figure 7c indicates the 
elongation, which in this case is higher than the previous two states, and such as the two previous 
states, by approaching to the end of disk, elongations become more converged. 



  
(a) (b) 

 
(c) 

Figure 7. Results for w = 3 rad/s and m = 3 and different values of n, (a) radial stress distribution, (b) 
tangential stress distribution, (c) elongation. 

3.2. Effects of cross-sectional area 

Figure 8a shows the radial stress distribution for angular velocities of rad/s and n 
= 0 for different values of m. As m increases, the maximum stresses on the disk increase and move 
toward the inner radius. However, this increase in m does not mean more stresses in the entire 
radius of disk, so that, by approaching to the end of the disk, stresses are in decreasing trend by 
increasing m. In figure 8b, it has been shown that the tangential stress increases by increasing the 
values of m and decreases by approaching to end of the disk. Figure 8c represents the elongation 
along the disk, which increases with increasing the values of m. 
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(a) (b) 

 
(c) 

Figure 8. Results for w = 4.5 rad/s and n = 0 and different values of m, (a) radial stress distribution, (b) 
tangential stress distribution, (c) elongation. 

 
Figure 9a shows the radial stress distribution for n = -2 in different cross sections, in which 

the values of stress have been decreased relative to the previous state. By increasing the value of 
m, the maximum stress increases and moves towards the inner radius. Such as the n = 0 state, this 
increase is not always true along the entire radius of disk, so that, by approaching to the end of the 

disk and in , this trend changes and the values of stress decrease by increasing m. Figure 

9b shows the tangential stress in this case, which has lower values relative to the previous state. In 
this case, in contrast to the n = 0 state, the tangential stresses have been converged to zero for all 
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values of m, by approaching to end of the disc. Figure 9c represents the elongation along the disk, 
which increases with increasing m. 

  
(a) (b) 

 
(c) 

Figure 9. Results for w = 4.5 rad/s and n = -2 and different values of m, (a) radial stress distribution, 
(b) tangential stress distribution, (c) elongation. 

In figure 10a, which indicates the distribution of radial stress, stress values are higher than 
the previous states. In this case as in the previous states, with increasing m, the maximum stress 
moves toward to the inner radius. But, compared to the previous state that the values of stresses 

had been decreasing with increasing m and in  until the end of disk, in this case, it would 1.8R
A
=



be obtained in . Figure 10b shows the value of tangential stress that has increased 

compared to the previous state, and its value at the end of disk is non-zero and has almost a linear 
trend along the disk. Figure 10c represents the elongation along the disk, which increases with 
increasing m. 

  
(a) (b) 

 
(c) 

Figure 10. Results for w = 4.5 rad/s and n = 2 and different values of m, (a) radial stress distribution, 
(b) tangential stress distribution, (c) elongation. 

3.3. Effects of angular velocity 

Figure 11a shows the radial stress in m = 3 and n = -2. The radial stress increases with 
increasing the rotational speed, but this increase does not affect the location of maximum radial 
stress. Figure 11b indicates the tangential stress distribution. As it is shown on this figure, the 
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change in rotational speed has a high effect on the tangential stress. Figure 11c shows the 
elongation relative to the angular velocity, indicating an increase in elongation. 

  
(a) (b) 

 
(c) 

Figure 11. Results for m = 3 and n = -2 and different values of w (rad/s), (a) radial stress distribution, 
(b) tangential stress distribution, (c) elongation. 

4. Conclusion 

This research investigated the stress analysis of functionally graded hyperelastic variable 
thickness rotating annular thin disk. The thin disk in this study was made with variable properties 
in the radial direction. The variations of thickness and heterogeneity in disk were considered as a 
power relation with positive and negative coefficients. The performed analyzes have been 
considered for three different rotational speeds; and then the radial stress distribution, tangential 
stress distribution, and elongation were extracted. Results showed that increasing the angular 



velocity of the disk w leads to higher levels of radial stress, tangential stress, and elongation, with 
tangential stress experiencing a more significant rise. Moreover, in a constant cross section m, by 
increasing the value of heterogeneity coefficient n, the radial stresses increase and the maximum 
stress moves toward the outer radius. In this case, tangential stress increases with increasing n, and 
the distribution of tangential stress is such that it converges to small quantities for negative values 
of material properties. Additionally, the elongation increases with increasing n. For different 
values of n, there is a greater difference between the elongations in the inner radius of the disc 
relative to the outer radius. Another outcome showed by this work is that in a fixed heterogeneity 
n, by increasing the value of m, radial stress increases until a certain point, and then the radial 
stress decreases. Furthermore, by increasing the value of m, the maximum radial stress moves 
toward the inner radius. Increasing m also raises the tangential stress, but the trend of this increase 
can vary with respect to the value of n. 

In this study, it has been shown that by using the variable cross section and heterogeneity 
of a hyperelastic material, different behaviors were observed in large deformations. Therefore, 
these FG materials can be employed in a wide range of applications. For instance, by selecting 
optimal values for different values of n and m, the location of maximum radial stress can be 
controlled in large deformations, which can be valuable in terms of structure design and 
engineering. 
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