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A broad class of systems, including ecological, epidemiological, and sociological ones, are char-
acterized by populations of individuals assigned to specific categories, e.g., a chemical species, an
opinion or an epidemic state, that are modeled as compartments. Due to interactions and intrin-
sic dynamics, individuals are allowed to change category, leading to concentrations varying over
time with complex behavior, typical of reaction-diffusion systems. While compartmental modeling
provides a powerful framework for studying the dynamics of such populations and describe the
spatiotemporal evolution of a system, it mostly relies on deterministic mean-field descriptions to
deal with systems with many degrees of freedom. Here, we propose a method to alleviate some of
the limitations of compartmental models by capitalizing on tools originating from quantum physics
to systematically reduce multi-dimensional systems to an effective one-dimensional representation.
Using this reduced system, we are able to not only investigate the mean-field dynamics and their
critical behavior, but we can additionally study stochastic representations that capture fundamen-
tal features of the system. We demonstrate the validity of our formalism by studying the critical
behavior of models widely adopted to study epidemic, ecological and economic systems.

I. INTRODUCTION

Complex systems consist of a multitude of intercon-
nected and interacting entities that form extensive net-
works, with typical examples ranging from chemical to
ecological and social ones [1–9]. To analyze their com-
plex behavior, often characterized by collective dynamics,
phase transitions and other emergent phenomena, com-
partmental modeling is usually adopted. In this frame-
work, units of the system are categorized or stratified into
distinct species, states or categories, referred to as com-
partments, and the concentration of units in each com-
partment is studied over time while taking into account
the change of species due to either unit-unit interactions
or spontaneous transitions into other compartments.

Compartmentalization facilitates the study of dynamic
behaviors and phase transitions in some order parameters
as a function of control parameters that directly depend
on modeling assumptions and observables. For instance,
in the case of an epidemic outbreak it is possible to study
how the steady-state density of infected individuals de-
pends on the transmission rate of a pathogen by means
of social contacts and the recovery rate from the cor-
responding disease [10–12] (see [13] for an extensive re-
view). One of the most successful frameworks to study
the behavior of such epidemic systems, as well as of the
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ones consisting of multiple interconnected compartments,
is based on the study of the next-generation matrix, an
indispensable tool for analyzing the conditions required
to favor the emergence of active states where epidemics
dynamics is sustained and infection has the potential to
scale at system level [14, 15].
Despite its successes, compartmental modeling comes

with some limitations. For instance, the aforementioned
next-generation matrix formalism, while robust, offers a
limited scope in addressing the multitude of degrees of
freedom present in large-scale interconnected systems. In
fact, the presence of this constraint requires the introduc-
tion of simplifying assumptions and approximations, of-
ten in the form of deterministic mean-field equations, to
deal with the complexity inherent in these systems. Nev-
ertheless, these approximations can be still very powerful:
for example, in the case of complex networks with an het-
erogeneous degree distribution it is possible to consider
classes of a specific degree and then study the dynamics
of the overall system by means of the dynamics of such
classes. This approach leads to heterogeneous mean-field
equations that allows one to model the collective behav-
ior of a system more accurately than simple homogeneous
mean-field equations [16–18].
In fact, this approach shares commonalities with the

study of the broad class of reaction-diffusion processes
to describe chemical reaction networks [19], where units
are chemical species undergoing transitions because of
chemical reactions or spontaneous transformations. This
parallel is striking and it is therefore natural to wonder
if, and under which conditions, it is possible to analyze
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population dynamics of a variety of complex systems by
means of a formalism that overcomes the inherent limi-
tations of the current ones.

Chemical reaction networks (broadly speaking) have
been extensively studied by means of the Doi-Peliti for-
malism [20, 21], offering a rich methodology for analyzing
both stochastic and deterministic dynamics beyond pure
mean-field approaches. However, while chemical reac-
tion networks are subject to strict constraints, such as
the mass balance of chemical elements [22, 23], this is
not always the case for the general systems we are inter-
ested into in this work, where compartments can also be
of heterogeneous nature. Therefore, we anticipate that
it will be necessary to adapt the Doi-Peliti formalism to
deal with the variety of cases of interest for network and
complexity science. Accordingly, in the following, we will
refer in general to chemical reaction networks (CRNs) to
indicate such a broad spectrum of systems, from chemical
to ecological and social ones.

The dynamics of a CRN can be completely described
by a master equation and the Doi-Peliti formalism re-
calls the second quantization used in quantum field the-
ory to apply the methods for studying quantum systems
for the analysis of stochastic classical systems. One of
these methods is the path integral representation [24],
that is particularly useful to go beyond the determinis-
tic mean-field limit of a model, providing insights on its
stochastic behavior. In the last years, attempts to extend
this formalism to systems with many degrees of freedom
have been proposed [24–27], although providing general
results is still a challenging endeavour.

Building upon these works, we develop a framework
that describes multi-compartment systems by reducing
them to a one-dimensional effective model, showing how
to map a CRN to a Hamiltonian problem. This map-
ping allows us to characterize the critical behavior, if
any, of the CRN through an elegant geometrical inter-
pretation. Furthermore, irrespectively of the presence,
or lack thereof, of phase transitions in the stochastic pro-
cess of interest, our formalism provides a way to approx-
imate its steady-state with high accuracy even for sys-
tems where existing approaches cannot be readily used.
The idea of building on methods originating from quan-
tum physics to study complex networks, or viceversa, has
proven successful to stretch the boundaries of statistical
physics [28–36]. Similarly, we foresee broad applications
of our dimensionality reduction approach to study the
critical behaviour and the population dynamics of multi-
compartment processes.

The article is organized as follows. We first provide
the theoretical basis of our work in Sec. II, where we
introduce the terminology, discuss the Doi-Peliti’s path
integral formalism for the study of CRNs, and lay out the
mapping from CRNs to Hamiltonian systems. In Sec. III,
we present the geometrical interpretation of phase tran-
sitions by means of the analysis of phase portraits, and
detail how to classify them. In Sec. IV, we present the
method for dimensionality reduction to an effective one-

dimensional model for the dynamics. Throughout the
article, we accompany the theoretical results with appli-
cations to stochastic models of different nature and in-
creasing complexity, thus validating our framework and
discussing its limitations. We close the article with our
conclusions in Sec. V.

II. THEORETICAL BACKGROUND

A. Stochastic compartmental models

Many natural, biological and socio-technical phenom-
ena can be modelled by means of stochastic processes.
Through a probabilistic representation, one focuses on
a macroscopic quantity n whose dynamics is probabilis-
tically described by a distribution p(n, t) that depends
on the features of the system. Some examples include
the disease spreading, where n represents the number
of infected individuals, or ecological systems where this
variable describes species abundance. From a mathemat-
ical point of view, n is the output of a discrete random
variable, whereas p(n, t) is the probability of finding that
random variable with value n at time t. Generally, we can
take n as a discrete quantity. We will focus on homoge-
neous Markovian systems only, therefore the dynamical
behaviour of the systems is governed by a master equa-
tion

∂tp(n, t) =
∑
m

Hnmp(m, t), (1)

where the sum is evaluated over all possible states, and
Hnm elements of a matrix that is defined by the system
interactions. This matrix can be written in terms of the
transition rates ω(n|m), that represent the probability
per unit of time of transitioning from the state m to the
state n, that is

Hnm = ω(n|m)− δn,m
∑
m′

ω(m′|n), (2)

where δnm is the Kronecker delta. This compartmental
representation is very flexible, and the evolution of the
system narrows down to keeping trace of the number of
elements that belong to each state-compartment.
Now let M be the number of compartments neces-

sary to fully characterize a system, which we denote
{Ii}i=1,...,M . In this case, n = (n1, n2, . . . , nM ) is the
(multi-dimensional) variable of interest, and ni is the
population number in the i-th compartment. For a
generic system,M can be arbitrarily large, and the inter-
action network very complex. For the sake of simplicity,
in this work we limit ourselves to the case of well-mixed
reaction networks, given by the set of transitions

M∑
i=1

Ai Ii →
M∑
i=1

Bi Ii. (3)



3

where {Ai, Bi}i=1,...,M represent the stoichiometric coef-
ficients [27]. Note that these are mass-action reactions,
meaning that the rates are proportional to the population
numbers.

Next we will provide methods to study systems fulfill-
ing these transitions. We will show that our proposed
formalism will simplify the analysis of these systems by
focusing only on the effective dynamics of a single com-
partment. Before introducing our formalism, let us first
present the path integral formulation and its relation to
classical Hamiltonian systems.

B. The Doi-Peliti formalism and the path integral
representation

A useful tool to handle CRNs is the Doi-Peliti (DP)
formalism [20, 21]. This formalism describes the dynam-
ics of a population using creation and annihilation oper-
ators, denoted by a† and a respectively. Thus, analogous
with second quantization, an element of the system can
be created or destroyed following the prescriptions of the
ME. This approach has been extensively covered in the
literature (see, e.g., Ref. [24]). While there are several
ways one can introduce the main components of the for-
malism, we adhere to the standard definition and develop
the usual path integral representation [21, 24, 27, 37].

We proceed by noting that we use Dirac’s
braket notation to describe the state of a system,
i.e. |n⟩ = |n1, n2, . . . , nM ⟩. The corresponding bra is
given by the normalization condition

⟨n |n ′⟩ =
M∏
i=1

ni!δnin′
i
. (4)

With this normalization condition, the creating and an-
nihilation operators are defined by

a†i |n⟩ = |n+ Ii⟩ , ai |n⟩ = ni |n− Ii⟩ , (5)

where Ii is the canonical vector with the i-th component
equal to 1 and all others zero. Thus, within the context

of compartmental models, a†i and ai respectively create
and annihilate an element belonging to compartment Ii
respectively, and follow the usual bosonic commutation
relation. To arrive at a path integral representation, let
us introduce the generating function

|G⟩ =
∑
n

p(n, t) |n⟩ , (6)

and, by using Eq. (4), the probability distribution of at-
taining a specific state at time t reads

p(n, t) =
⟨n|G⟩∏

i ni!
.

Thus, |G⟩ fully determines the statistical behaviour of
the system. By employing the ME (Eq. (1)), we obtain

a “Schrödinger-like” equation within the Doi-Peliti rep-
resentation, which reads

∂t |G⟩ = H |G⟩ , (7)

where

H =
∑
n,m

1∏
imi!

|n⟩Hnm ⟨m| (8)

is the Doi-Peliti Hamiltonian (DPH). For a CRN, the
DPH can be written as a polynomial function of the cre-
ation and annihilation operators (Appendix D).
As a basis for the Fock space, we work with

|n⟩ =
M∏
i=1

xni
i , (9)

where x = (x1, . . . , xM ) ∈ RM . Hence, using the nor-
malization condition, we have that

⟨n| =
∏(

∂

∂xi

)ni
∣∣∣∣
x=0

(10)

Under these bases, the path-integral representation for
the generating function is given by [24]

|G⟩ =
∫ t)

0

D[x , q ] e−S[x ,iq ]+
∑

j n0j log x0j , (11)

where i the imaginary unit, n0 is the initial state of the
stochastic process, D[x , q ] a suitable measure [24, 37],
and S is the action of the system defined as (Appendix A)

S[x, iq] = −
∫ t

0

dτ

∑
j

iqj(τ)∂τxj(τ) +H(x(τ), iq(τ))


(12)

Within the path integral representation, the operators a†j
and aj are replaced by two fields xj(τ) and iqj(τ). They
are linked to the random variable through the formal re-
lation iqjxj = nj , which comes from the definition of the

number operators N̂j = a†jaj (N̂j |n⟩ = nj |n⟩). Note

that handling Eq. (11) is generally difficult, but in the
case of chemical reactions, we will show that we can an
approximation similar to the Wentzel-Kramers-Brillouin
(WKB) in spirit, reducing the study of a stochastic pro-
cess to a Hamiltonian problem.

C. Stationary paths and Hamiltonian systems

The path integral representation is formally exact, but
to obtain explicit results one has to resort to approxima-
tions. Recently, it has been shown that the WKB ap-
proximation for the study of stochastic systems is a good
candidate [26, 38–40]. In Appendix B we prove this ap-
proximation can be applied to CRNs as those in Eq. (3),
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thus greatly simplifying the path integral representation.
Using this approximation, the generating function can be
approximated by |G⟩ ≈ exp(−S) where S here is the sta-
tionary action. Thus, the principal contributors inside
the integration of Eq. (6) are the solutions (x̃, q̃) of the
Hamilton-Jacobi equations with Hamiltonian −H;

∂x̃

∂t
= −∂H

∂q̃
,

∂q̃

∂t
=
∂H
∂x̃

. (13)

While this system of equations might seem complicated,
it represents an alternative description to the ME, and,
as we will see, valuable information about the dynamical
properties of the stochastic process can be extracted from
it.

As we work with chemical reactions where the WKB
approximation holds, we will consider only stationary
trajectories denoted with x and q. In Appendix C, we
show that the stationary trajectories can be taken as real
positive functions satisfying the relation xjqj = nj .
Note that the trajectory xj = 1 is a solution

of Eq. (13). It plays an important role from a statisti-
cal point of view. Indeed, by our definitions, the average
value of nj is given by

⟨nj⟩ =
∂ |G⟩
∂xj

∣∣∣∣
x=1

= qj , (14)

where we have used the Hamilton-Jacobi relations. Thus,
in the phase space, the deterministic behaviour (i.e. the
mean-field behavior) of the system is contained on the
mean-field manifold x = 1. As we will illustrate, this
manifold is key in the analysis of the phase transitions
on the phase portrait of the system.

III. PHASE PORTRAITS AND PHASE
TRANSITIONS

So far we have used the Doi-Peliti formalism to map
the dynamics of a CRN to a Hamiltonian system through
two vectors that encode the dynamics of the process x
and iq. To provide a clearer physical interpretation of our
variables, we use the Cole-Hopf (CH) transformation [41]

xj = eiθj , qj = ηje
−iθj , (15)

with ηj , θj ∈ R. In doing so, we replace the field (n, iq)
with (η, iθ), where now ηj represents the population
number nj . With these variables, the action S becomes

S =

∫ t

t0

dτ

∑
j

iθj∂τηj −H
(
eiθ,ηe−iθ

)
+ iθ(t0)η(t0)− iθ(t)η(t),

and the system of Eq. (13) reads

∂η

∂t
= −i

∂

∂θ
H
(
eiθ,ηe−iθ

)
i
∂θ

∂t
= − ∂

∂η
H
(
eiθ,ηe−iθ

) (16)

Note that mean-field manifold x = 1 (θ = 0) is always a
solution of both Eqs. (13) and (16). Thus, it is a universal
feature of CRNs, as discussed in [42]. A more formal
proof of this property is provided in Appendix D.
As it has been done for (x, iq), in the stationary limit

we replace (η, iθ) with the (real) solutions of (16). With
this change of coordinates, the mean-field dynamics is
recovered on θ = 0. Thus, the physical interpretation of
θ relates to how much the dynamical behaviour of the
system is close to the deterministic one. In other words,
θ expresses the role of the stochastic fluctuations beyond
the mean-field approximation. Therefore, by studying
the phase portrait of (16), we can investigate the time
evolution through its attractors. Moreover, we are able
to probe the role of fluctuations, which shall be discussed
in Section III B.
Note that while presented transformation offers a

clearer interpretation of the fields representing the cre-
ation and the annihilation operators, it implies technical
difficulties as well, as shall be ilustrated below. In the fol-
lowing sections, we will alternate between the (x, q) rep-
resentation and the Cole-Hopf (η,θ) one, showing that
the former tends to be more suitable for analytic compu-
tations, while the latter is more convenient for graphical
visualizations of the phase portraits.

A. The Doi-Peliti formalism and the
characterization of phase transitions

Following ideas put forward in [25], we build on the
formalism presented so far to develop a mathematical
framework for the analysis of phase transitions. In par-
ticular, our approach overcomes the limitations present
when considering one-compartment models only, thus of-
fering a tool for the analysis of the critical and stochas-
tic behavior of general multidimensional compartmental
model. We consider systems that converge to a steady
state for t → ∞. These systems are typically out of
equilibrium, hence they cannot be treated with the tools
of equilibrium statistical mechanics, such as the Landau
theory [43]. The non-equilibrium properties, however,
can be easily addressed by leveraging the Doi-Peliti map-
ping to the Hamiltonian representation.
We will describe our system by means of a non-

equilibrium order parameter ρ, which denotes the asymp-
totic density of a specific compartment. We focus on
cases in which the initial size of a compartment of a cer-
tain state I1 is large. That is, n1 ≈ N , and hence

ρ = 1− lim
t→∞

⟨n1⟩
N

. (17)

Within the context of epidemiology, this means that the
number of susceptible individuals dominates, and the
study of the dynamics consists in observing how the sys-
tem responds by inserting a small amount of infected
individuals.
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As we are interested in the large time behaviour,
Eq. (7) hints towards focusing our attention on the zero-
energy sets H = 0. Within the WKB approximation,
we are able to study the topology of these sets to ob-
tain information about the system at large times. Here,
by topology we mean the structure of the trajectories
on the phase portrait related to H. The fixed points
of the Hamiltonian system on the manifold H = 0 play
an important role since they are related to the stable
and the unstable manifold that determine the system’s
evolution [44]. In particular, the dynamics converges at
the hyperbolic fixed point on the stable manifold, and
diverges from it on the unstable one. Therefore, when
modifying the control parameters, such as the coefficients
of transition rates of the web of interactions among com-
partments, the configuration of the fixed points changes.
As a result, the dynamics of the system will vary with
its attractors, suggesting the presence of phase transi-
tions. Moreover, as stated above, x = 1 is the stationary
trajectory for which H = 0, and it represents the mean-
field dynamics. By studying the fixed points on x = 1,
we can recover the mean-field phase transitions, and, by
analysing the topology of the stable and unstable man-
ifold, we are able to characterize these transitions [25].
If new fixed points appear when the control parameters
are modified, then the dynamics of the system radically
change, leading to first-order phase transition. Instead,
if we observe that the number of fixed points does not
vary but their positions change, then the asymptotic con-
figuration continuously varies with respect to the control
parameters and thus a second-order transition is present.

After these considerations, we define the following
strategy for studying possible phase transitions for a
multi-compartment system:

1. find the Doi-Peliti Hamiltonian of the system;
2. look for the fixed points on the zero-energy sets;
3. look for conditions at which the determinant of the

system Jacobian is null;
4. find parameter relations that characterize the phase

transition;

When looking for the zero-energy sets, one must take all
possible constraints into account, such as conservation of
the total number of elements. In doing so, the system
will be reduced to a size 2M − 2m, where m is the num-
ber of constraints (see below). The determinant of the
Jacobian is null when the Jacobian has at least two null
eigenvalues. And finally, by varying the (control) param-
eters near the critical point(s), we can determine whether
there is a first- or second-order phase transition, as we
described above.

Regarding the constraints, we represent these by an
equation of the form C = C(x, q), where C is now an m-
dimensional vector. Assuming that the implicit function
theorem holds, we carry out a function Q such that, for
m components of q, we have:

(q1, . . . , qm) = Q(qm+1, . . . , qM , x1, . . . , xM ,C). (18)

Furthermore, constraints represent first integrals of the
Hamiltonian system. By substituting Eq. (18) into the
DPH, we obtain a Hamiltonian that is independent of
these variables, therefore the time derivatives of the cor-
responding conjugate coordinates (x1, . . . , xm) are all
zero, and thus we can let xi = 1 for all i = 1, . . . ,m.
Each constraint reduces the dimension of the system by
2, projecting the DPH onto a new, reduced Hamiltonian
H⋆ that depends on 2M − 2m variables. Under these
premises, the system reads

∂xj
H⋆ = 0, ∂qjH⋆ = 0 (19)

with the constraints

xj = 1, det(J) = 0, (20)

where J is the Jacobian of H⋆ in terms of x and q. By
treating the coefficients of the transition rates as vari-
ables, the system of Eq. (19) gives us the critical points
for possible phase transitions. In the same way, we can
build this system by using the Cole-Hopf coordinates.
In the following section we shall use the Cole-Hopf

variables and show how to derive the Langevin dynam-
ics starting from a generic DPH, and the accompanying
Fokker-Planck equation for the corresponding probability
distribution.

B. Fokker-Planck and Langevin representations

The Cole-Hopf variables allow us to represent the fluc-
tuations around the mean-field dynamics by means of θ.
We have seen that, from the first derivative of H⋆ with
respect to θ evaluated at zero, we get the dynamics of
the reduced system. Now, we show that, from its second
derivative, we can infer the behavior of the system due
to fluctuations, as done in [24, 27].
Let us consider, for now, a single-compartment system

and take the reduced Hamiltonian H⋆ in the Cole-Hopf
representation. When the population number n is suf-
ficiently large, it can be approximated by a continuous
variable. In doing so, we can re-write the ME of Eq. (1)
using a Kramers-Moyal expansion [24],

∂tp(n, t) =
∑
m≥1

(−1)m

m!

∂m

∂n

[
Wm(n)p(n, t)

]
= HKM (n, ∂n)p(n, t), (21)

with

Wm(n) =

∫
R
dy ymω(n+ y, n), (22)

and where HKM the Kramers-Moyal operator. In this
limit, a link between the Doi-Peliti Hamiltonian and
HKM exists. Using the definition of H, and considering
Eq. (8), one can prove that for one-dimensional systems
the following holds;

H†
KM (η, ∂η) = H(η, θ) (23)
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where H†
KM is the adjoint operator of HKM . Under this

mapping, we have η = n and θ = ∂n.
The same reasoning can be applied to systems with

more degrees of freedom by using the dimension reduc-
tion presented above. If we consider the average of n1 = η
as the order parameter, by expanding H⋆ up to the
second-order of θ around θ = 0, we then obtain a Fokker-
Planck equation [45]

∂tp(η, t) = −∂η
[
∂θH⋆

0p(η, t)
]
+ ∂2η

[
1
2∂

2
θH⋆

0p(η, t)
]
, (24)

where, with some slight abuse of notation, we have
∂kθH⋆

0 = (∂kθH⋆)|θ=0 and p(η, t) the conditional probabil-
ity distribution constrained by the stationary conditions.
Hence, by expanding the reduced Hamiltonian, we can
write an effective one-dimensional Fokker-Planck equa-
tion for the multi-compartment stochastic process, that
makes further calculations considerably easier. From
the Fokker-Planck equation, we can readily obtain the
Langevin equation of the problem [45]

dη

dt
= ∂θH⋆

0 +
√
∂2θH⋆

0ξ(t) (25)

with ξ(t) Gaussian white noise. Formal steady-state so-
lutions of Eq. (23) are known to be [46]

lim
t→∞

p(η, t) = Z e−V (η), (26)

with the potential

V (η) =

∫
dη

∂η(∂
2
θH⋆

0)− 2∂θH⋆
0

∂2θH⋆
0

, (27)

and Z the normalization factor. Here it is clear that that
∂2θH⋆ is related to the system’s fluctuations and that, by
employing the Doi-Peliti formalism, we can gather to-
gether both the deterministic and the stochastic dynam-
ics.

Eqs. (19) and (25) constitute the grounds on which
we will develop a framework adapted for the systematic
study of multi-dimensional systems. Yet, we shall first
show how to combine the results reported so far to han-
dle models with two compartments. In Section III C, we
treat a modified SIS model in which we inserted higher
order interactions. We observe how the Doi-Peliti rep-
resentation allows us to gain information on the critical
behavior by unveiling tricritical points. In Sec. IIID, we
analyse phase transitions depending on the system ini-
tial configuration. Afterwards, we will then extend this
approach to multi-dimensional problems by presenting a
novel dimensional reduction method (Sec. IVA), which
offer insights even in cases where other methods fail, as
the well-known next-generation matrix [15]. Similarly,
for illustrative purposes, we will showcase the implemen-
tation of this in models with interesting critical behavior:
a modified SIRS model (Sec. IVB), two Lotka-Volterra
models (Secs. IVC and IVC2) and an exploiter-resource
model IVD proposed by us. In addition, in Appendix F

we report further examples applied to several other con-
texts, such as tax evasion models. In Table I we sum-
marise all the models treated in this paper with the main
results.

C. Application to epidemiology: A modified SIS
model

Let us now analyse a modified Susceptible-Infected-
Susceptible (SIS) model to illustrate our method. The
SIS model is an epidemiological model that describes the
interactions between elements of a population that are in
either of two compartments; the susceptible S and the
infected I compartments. Upon contact with an infected
individual, a susceptible can can become infected with
rate β. Infected individuals recover from the disease with
rate γ. The elementary reactions thus read

S + I
β/N−−−→ 2I,

I
γ−→ S

(28)

This system has been studied extensively and it is
known that there is a continuous phase transition at
β = γ [13]. For β > γ, in the limit t → ∞ the dis-
ease prevails in the population, impacting a macroscopic
fraction of individuals, and so ρ = 1 − ⟨nI⟩/N > 0. For
β < γ, the disease will eventually disappear, and the
system converges to the inactive (absorbing) phase. In
general, for such epidemiological models, the initial con-
dition is taken nS ≈ N , but obviously nS ≤ N .

To showcase the potential of this framework with re-
spect to more traditional approaches, we include an ad-
ditional reaction that underlies richer critical scenarios.
More specifically, we consider an additive elementary re-
action,

S + 2I
α/N2

−−−→ 3I, (29)

that corresponds to an additional transition rate,

ω(n− IS + II ,n) = α
nSnI(nI − 1)

N2
. (30)

This is a three-body-like interaction that may interpreted
as a process that helps the diffusion of the disease, me-
diated by the parameter α.

Taken all the rules together, the Doi-Peliti Hamilto-
nian reads

H =
α

N2
(a†I)

2
(
a†I − a†S

)
aSa

2
I

+
β

N
(a†I − a†S)a

†
IaIaS

+ γ
(
a†S − a†I

)
aI ,

(31)
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Model # Compartments # Constraints Order Parameter Critical Behavior

Modified SIS - 1 2 1 1− ⟨nS⟩/N tricritical point

Modified SIS - 2 2 2 1− ⟨nS⟩/N first order

Modified SIRS 3 1 1− ⟨nA⟩/N tricritical point

Lotka-Volterra 2 0 ⟨nN ⟩ second order

Resource-Exploiters 3 0 1− ⟨nR⟩/kR second order

SEIRS 4 1 1− ⟨nS⟩/N second order

SEIR with E1,2 5 1 1− ⟨nS⟩/N second order

Tax evasion 3 1 1− ⟨nH⟩/N tricritical point

Levin 3 1 1− ⟨nA⟩/N multiple phases

Table I: Models studied with the Doi-Peliti representation, in order of appearance in the article. For each model,
we report the number of compartment and constraints, the compartment related to the order parameter, with its
average taken at the stationary limit t → ∞, and the type of phase transaction identified with our approach. The
Modified SIS models are treated in Sec. III C, the Modified SIRS model in Sec. IVB, the Lotka-Volterra model in
Sec. IVC and the Resource-Exploiters model in Sec. IVD. In the Appendix, we address the SEIRS model in Sec. F 1,
the SEIR model with latent categories E1, 2 in Sec. F 2, the Tax evasion model in Sec. F 3 and the Levin model in
Sec. F 4.

and the corresponding mean-field trajectories read

∂⟨nS⟩
∂t

= γ⟨nI⟩ −
β

N
⟨nS⟩⟨nI⟩ −

α

N2
⟨nS⟩⟨nI⟩2, (32)

∂⟨nI⟩
∂t

= −γ⟨nI⟩+
β

N
⟨nS⟩⟨nI⟩+

α

N2
⟨nS⟩⟨nI⟩2. (33)

Here, we the total population is conserved,
i.e. N = nS + nI . Therefore, by focusing on the
number of susceptible individuals, we define the
constraints C = N and

qI = Q(qS , xS , xI , N) = N − xIqI . (34)

After applying the Cole-Hopf transformation the reduced
DPH reads

H∗ = (1−eθ)(N −η)
(
α

N2
ηe−θ(N − η) +

β

N
ηe−θ + γ

)
,

(35)
where η = ⟨nS⟩. The zero-energy lines are given by

θ = 0, η = N,

Θ(η, β, γ, α) = log

(
−η(ηα−N(α+ β))

N2γ

)
.

(36)

Within the mean-field approximation, we consider only
the fixed points F = (η, θ) with θ = 0, that is,

F1 = (N, 0),

F± =

(
N
α+ β ±

√
α2 + 2αβ − 4αγ + β2

2α
, 0

)
.

By solving the system of Eq. (19) and imposing
α, β, γ ≥ 0, we find two different critical conditions,

β = γ, β = −α+ 2
√
αγ, (37)

and we thus expect to find two distinct phase transi-
tions. We can distinguish these two critical behaviors, as
shown in Fig. 1, where one transition occurs for α < γ
and another for α > γ. First, we note that the condition
β = γ is a critical point for any α. Indeed, as can be seen
in Figs. 1a and 1d, for γ > β, F1 is the only attractor of
the systems (provided that ⟨nS⟩ ≤ N). When β = γ, the
attractor changes. This can also be observed when con-
sidering a deterministic approach by means of linearizing
the mean-field equations about the fixed point. When
doing so, the dynamics around F1 when θ = 0 reads,

∂tη = (η −N)
(
∂2η,θH⋆

) ∣∣
F1

= (β − γ)(η −N). (38)

Hence, the asymptotic state varies at β = γ. To fully
characterize the critical behavior, the remaining critical
condition (Eq. (37)) needs to be studied as well. We note
that, at β ≥ −α+2

√
αγ, two new fixed points F± appear,

suggesting the presence of an abrupt transition. When
β = −α+2

√
αγ, a non-trivial zero-energy line intersects

tangentially the mean-field manifold θ = 0 at F+ = F−.
For γ > α the tangent point is above the absorbing state
F1, otherwise it stays below it. Fixing α and γ, with
γ > α, and varying β, we observe that F− = F1 at β = γ
(Fig. 1b). By further increasing β, the intersection F−
smoothly moves below the absorbing state becoming the
new asymptotic state (Fig. 1c), resulting in a second-
order phase transition. On the other hand, for γ < α we
have F+ = F1 at the critical condition (Fig. 1e), and, for
β > γ, F+ is above the absorbing state (Fig. 1f). In this
case, F− becomes attractive, so the dynamics jumps to
F− and the transition is of first-order.

To summarize, our system is characterized by the fol-
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lowing critical behavior:

β = γ critical condition,

β = α = γ tricritcal point,

α > γ first-order phase transition,

α < γ second-order phase transition.

This analysis exemplifies how one should approach the
study of critical behavior of CRNs within the context of
the Doi-Peliti formalism.

D. The role of the initial conditions

In general, CRNs can exhibit highly non-trivial phase
diagrams with many different attractors — especially
when the number of compartments grows. Under certain
conditions, this may impact the procedure introduced in
this work. Indeed, this methodology does not provide the
critical point certainly, but indicates conditions in which
variations of the topology of the phase space lead to pos-
sible changes in the asymptotic dynamical behaviour of
the system. Since we are analysing systems that are out
of equilibrium, the steady states can depend on the ini-
tial conditions, and the dynamical evolution of the sys-
tem may be independent of the topological configuration
variations identified by the formalism. In these cases, the
possible phase transitions depend on the initial state and,
in general, it is impossible to identify an analytical con-
dition which provides the critical point and characterizes
the phase transition.

To illustrate this point, let us consider again the modi-
fied SIS model, but now with β = 0. This leaves only the
three-body interaction as the sole infection mechanism.
By repeating the analysis, we find for this configuration
three fixed points along the mean-field line, which are

F1 = (N, 0) , F± =

(
N

(
1

2
±
√
α− 4γ

4α

)
, 0

)
.

After rescaling, i.e. N = 1, and solving Eq. (19), the
critical condition reads

F− = F+ =
(
1
2 , 0
)
, α = 4γ (39)

At this condition, new fixed points appear (Fig. 2). Ac-
cording to our expectations, there is a possible first-
order transition. However, when assuming nS ≈ 1, a
phase transition is not observed when numerically inte-
grating the dynamical system. When varying the rates,
we can determine the attractive or repulsive character of
the fixed points. For α < 4γ, F1 is the only attractor
(Fig. 2a). For α > 4γ, if nS(0) is greater than the fixed
value 1

2 , the attractor does not vary, and we can con-
clude there is no phase transition. In fact, this occurs
only when there is an overlap between a hyperbolic fixed
point and the initial configuration of the system as shown

in Figs. 2c and 2d. This condition is given by a rate α̃
that can found by solving F+ = (nS(0), 0),

α̃(nS(0)) =
γ

(1− nS(0))nS(0)
. (40)

In the case nS(0) ≈ 1, we have α̃ → ∞, so the sys-
tem does not display an effective phase transition. On
the other hand, if nS(0) <

1
2 , then the variation of the

eigenspace does affect the system and we have an effective
phase transition described by the condition of Eq. (39).
The existence of this phase transition can be verified
by numerical integration for different initial conditions
(Fig. 2e).
The very same arguments can be extended to the case

with several compartments. However, the solution be-
comes more complicated because the inherent difficulty
to systematically identify which eigenspace a generic ini-
tial configuration belongs to. In this case, an alternative
solution might be to employ numerical investigations to
verify whether the phase transition takes place or not.
We, however, provide yet another alternative approach
that is related to reducing the dimensions of the system,
which we shall now expand on.

IV. DIMENSION REDUCTION

A. Theoretical results

Dynamical models with many components are com-
mon and their characterization as Hamiltonian systems
can be complicated. Moreover, only in the case of single-
compartment systems we are able to find a graphical vi-
sualization of the level sets with the tools presented so
far. To find a strategy to extend the Doi-Peliti represen-
tation to multi-compartment models, we start by noting
that the presence of first integrals helps simplify the sys-
tem. We employ this property to build our own dimen-
sion reduction method, which is based on using the deter-
ministic equations as first integrals to freeze the degrees
of freedom that are not inherent in the order parameter.
From this, we are able to obtain an effective Hamiltonian
H⋆ that captures the fundamental features of the system.
Let us consider a general DPH for a chemical reaction

process. Take the deterministic trajectories

∂t⟨n1⟩ = f1(⟨n1⟩, ⟨n2⟩, . . .),
∂t⟨n2⟩ = f2(⟨n1⟩, ⟨n2⟩, . . .),

...

∂t⟨nd⟩ = fM (⟨n1⟩, ⟨n2⟩, . . .),

(41)

where fi are functions of occupation numbers obtained by
the solutions of the Hamiltonian problem setting xj = 1
and qj = ⟨nj⟩. Since we are assuming that an asymp-
totically steady state is reached when t → ∞, this set
of equations admits a solution for ∂t⟨nj⟩ = 0 for all j.
As before, we take I1 as the starting compartment with



9

0.5 1 1.5
η

-0.3

0

0.3

θ

F1

(a) β < γ, α < γ

0.5 1 1.5
η

-0.3

0

0.3

θ

F1=F- F+

(b) β = γ, α < γ

0.5 1 1.5
η

-0.3

0

0.3

θ

F1F-

F+

(c) β > γ, α < γ

0.5 1 1.5
η

-0.3

0

0.3

θ

F1

(d) β < γ, α > γ

0.5 1 1.5
η

-0.3

0

0.3

θ

F1=F+F-

(e) β = γ, α > γ

0.5 1 1.5
η

-0.3

0

0.3

θ

F1

F+F-

(f) β < γ, α > γ

Fig. 1: Phase portrait for the modified SIS model by using the Cole-Hopf variables. The orange lines represent the
mean-field manifold, while the blue ones are the other non zero-energy lines. The fixed points are F1 and F±, Red
dots are the attractors of the deterministic dynamics. In Panels 1a,1c and 1b we show a second-order phase transition:
at the critical condition β = γ, F− overlaps with F1 becoming the new attractor. In the lower Panels 1d,1e and 1f,
the first-order transition is reported: at β = γ, F1 = F+ and the attractor changes abruptly.

⟨n1⟩ ≈ N at t = 0. For large t, we rewrite the previous
system as

∂t⟨n1⟩ = f1(⟨n1⟩, ⟨n2⟩, . . .),
∂t⟨nj⟩ = 0,

(42)

meaning that fi(⟨n1⟩, ⟨n2⟩, . . .) = 0 for all j > 1 — i.e. for
all compartments but the first. In doing so, we are impos-
ing constraints on the average values of the occupation
numbers, from which we derive the set of first integrals.
Fixing these constraints is equivalent to seeing how all
degrees of freedom converge at equilibrium points as a
function of a single compartment. We emphasise that
the constraints of Eq. (42) regards only the average val-
ues of the mean-field approximation. Making an analogy
with statistical mechanics, we are setting a constraint
on the expectation value of a quantity, similarly to the
canonical ensemble constraining the average value of the
system energy. Therefore, the physical interpretation of
this dimension reduction is as follows: In the large time
limit, the averages of occupation numbers converge to a
hyperbolic fixed point in anM -dimensional space follow-
ing the constraints imposed by Eqs. (42).

Further physical insights can be gained by studying
what occurs near this limit. Let x1 and q1 be the only
variables related to the order parameter, while all the
other degrees of freedom are frozen. From an analytic
point of view, by using Eqs. (42) we can rewrite qj for all
j > 1 as functions of q1 and x1. While this is not always
possible, we show that we can add a suitable transition

rate to have the Eqs. (42) be solvable without altering the
critical environment (see Appendix E). In other words,
we can define a parametrization Λ such that

Λ(x1, q1) =
{
x1, x\1 = 1, q1, q\1 = Q\1(x1, q1)

}
, (43)

where x\1 = 1 denotes that for all j > 1 we have xj = 1,
and similar for q\1 we have qj = Qj(x1, q1) with Qj as
defined in Eq. (18). Applying this parametrization to the
DPH, we obtain an effective Hamiltonian H⋆ = H ◦ Λ
that only depends on x1 and q1. However, note that the
solutions of Eq. (42) can yield different parametrizations.
These may represent different states of the system, where
the corresponding reduced Hamiltonians have different
hyperbolic fixed points. To take the correct H⋆, we can
investigate the stability of the fixed points of the full
problem, and choose the parametrization such that H⋆

has the same attractor as the complete system.
To be more specific, we define a domain of Λ in the

parameter space. The points at which two different
parametrizations provide the same reduced dynamics are
generally critical points (see also Appendix F 4). More-
over, for many systems the conservation of the total pop-
ulation number hold, hence reducing the dimension of
the problem by one. So, by applying the reduction proce-
dure, we substitute one mean-field equation by Eq. (34).
As before, we have an extra degree of freedom since we
can derive different Λ depending on the first integrals
that we are choosing. However, that does not change the
deterministic description. In fact, despite the multiplic-
ity of Hamiltonians H⋆, if the corresponding Λ satisfies
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Fig. 2: Characterization of the critical behavior of the
two-compartment system with a three-body interaction
(modified SIS model of Sec. III C). From panels (a) to
(d), the orange lines represent the mean-filed manifold,
while the blue one are the other zero-energy lines. Red
dots are the attractors of the deterministic dynamics. F0

represent the initial condition. In (e), we display the or-
der parameter as a function of the parameter controlling
the strength three-body interaction, obtained from sim-
ulations. For the numerical experiments, we have con-
sidered γ = 0.2 and we have normalized the population
setting N = 1. We observe that for nS(0) > 1/2 the
phase transition occurs for α > 4γ. Here α̃1 = 0.953
and α̃2 = 1.25 as predicted by Eq. (40). Moreover, for
all initial conditions, the active phase is described by the
same curve: this curve is given by the value of F− as a
function of α.

the condition discussed above, the fixed points and the
asymptotic behaviour of the system do not vary. Other-
wise, from a stochastic point of view, we have different
Langevin equations (see Eq. (25)).

Our approach binds the system by imposing certain de-
grees of freedom fixed in their steady state. This means
that the stochastic information that we get is related to
the conditional probability p(n1|n2, .., nN−M ), which we

are taking as an approximation for p(n1) in the station-
ary limit. Different parametrizations lead to different
constraints, and thus to different conditional probabili-
ties. In this case we can write several Langevin equations
that will be only qualitative estimates of the stochastic
properties of the system, such as the stationary probabil-
ity distribution. In Appendix F 2 we discuss an example
in more detail.

As a final remark on the parametrization Λ, we note
that it is associated to the (x, q)-coordinates. Indeed,
it is defined from the mean-field trajectories that are
functions of the variables q only. If we were to use the
Cole-Hopf variables of Eq. (D3) instead, we would get
a transformation in terms of η, which is linked to the
previous coordinates by ηj = xjqj . Considering that we
are imposing xj = 1 for j > 1, the two representations
are equivalent only if we substitute ⟨n1⟩ in Eq. (13) with
x1q1 instead of q1. This would, however, be incorrect, as
we would go beyond the mean-field approximation and
additionally constrain fluctuations. Therefore, we must
define Λ by using the (x, q)-coordinates, and only after
doing this we can apply the Cole-Hopf transformation
and obtain a physical interpretation of the fields. We
want to emphasize that, while the reduction holds only
at the large time limit, it remains useful for the study
of the system near the critical condition. Similar to the
work in Ref. [25], our goal is to create an analogy with
Landau theory, which, in equilibrium statistical mechan-
ics, offers a way to analyse the critical behaviour of a
system [47]. Defining the effective Landau free energy L,
one can study the phase transitions by finding the min-
ima of L. By employing the Doi-Peliti formalism, we can
extend this approach for non-equilibrium systems, by in-
troducing L by H⋆ and, instead of observing the minima
of the former, focusing on the fixed points of the latter
instead.

We would like to note that our formalism does not
pretend to give an exact characterization of the system’s
stochastic behavior. Instead, our approach qualitatively
describes this with an effective Langevin equation that
we obtain within a single framework. Within this frame-
work, we derive both the deterministic limit and inves-
tigate critical points. In the absence of this ambiguity,
our dimension reduction scheme proves to be a useful
way to describe the stochastic behavior of a variety of
models, which will now be applied to study CRNs in the
remainder of this paper.

Before this, we would like to mention that deter-
ministic studies of the critical behaviour, such as the
one we propose in Eq. (19), can additionally be done
with other approaches. For example, by obtaining a
one-dimensional effective mean-field equation using our
method, we can define an effective potential, as is done in
Ref. [48], and investigate the phase transition by studying
its minima. However, our approach offers an alternative
to geometrically attack a broad class of problems. It does
not only allow us to go beyond the mean-field description,
but also allows for using path-integral representations to
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complex physics problems.

B. Application to cascading failures: A modified
SIRS model

Let us begin displaying the strength of our proposed
framework by considering a modified version of the
SIRS model, which now, in contrast with the previ-
ously analysed SIS model, contains an additional com-
partment [49]. We assume that the three compartments
correspond to active, A, damaged (failed), F , or inactive,
I, states. The elementary reactions read

I
σ−→ A, A+ F

β/N−−−→ 2F,

F
γ−→ I, A+ 2F

α/N2

−−−→ 3F,

(44)

where σ is the recovery rate of failed units, γ the tran-
sition rate of failed units to inactive ones, and α and
β denote the “infection” reaction rates corresponding to
three-body long-range failures related to cascading fail-
ures, and the standard failure belonging to local spread of
failures. Hence, the model differs from a standard SIRS-
model as we include a three-body interaction1 with rate
α/N2. This reaction can be interpreted as the effect of a
field mediating the higher-order effect and is the all-to-all
(fully-connected) limit of a model that, when studied in
infrastructural or social interconnected systems, is used
to describe the non-local unfolding of cascading failures.
These cascading effects are observed, for instance, in elec-
trical power grids [50] or in communication networks [51].

We apply on this model the methodological pipeline
defined above. The Doi-Peliti Hamiltonian reads

H =
β

N
a†F (a

†
F − a†A)aFaA

+
α

N2
(a†F )

2(a†F − a†A)a
2
FaA

+ γ(a†I − a†F )aF + σ(a†A − a†I)aI ,

(45)

and the mean-field equations are given by

∂t⟨nA⟩ = − β

N
⟨nA⟩⟨nF ⟩ −

α

N2
⟨nA⟩⟨nF ⟩2 + σ⟨nI⟩, (46)

∂t⟨nF ⟩ =
β

N
⟨nA⟩⟨nF ⟩+

α

N2
⟨nA⟩⟨nF ⟩2 − γ⟨nF ⟩, (47)

∂t⟨nR⟩ = γ⟨nF ⟩ − σ⟨nI⟩. (48)

As done before, we set ∂t⟨nR⟩ = 0, and by including also
the conservation of total population N , which we re-scale
to N = 1, we obtain the transformations

qF =
1− xAqA
γ + σ

σ , qR =
1− xAqA
γ + σ

γ.

The Cole-Hopf Hamiltonian related to the reduced prob-
lem is

H⋆ = −(γ + σ)−2

{
(η − 1)e−θ

(
eθ − 1

)
σ [α(η − 1)ησ

−βη(γ + σ) + γeθ(γ + σ)
]}
, (49)

and the zero-energy lines are

η = 1, θ = 0,

and

θ = Θ(η, β, γ, α, σ)

= log

(
−η(αησ − ασ − βγ − βσ)

γ(γ + σ)

)
.

These curves show the same structure as the ones of the
modified SIS model (see Section IVB), thus we recover
the same topology reported in Fig. 1, and the same phase
portraits shown in Fig. A3. Therefore, we have three
fixed points on θ = 0: F1 = (1, 0) and F±. We expect
to γ = β to be a critical point, whose nature is con-
ditioned by the three-body interaction mediated by α.
For α larger than a certain threshold α̃, the system will
display a first-order, abrupt transition, while otherwise
a second-order appears. By studying Θ, we note that
the sign of the eigenvalues along the mean-field manifold
changes at β = γ since Θ(η, β, β, α, σ) = 0. In the range
β > γ, the fixed points F± become the new attractors.
Let us focus now on the attractor with η ≤ 1. If at β = γ
we have F+ = F1, then the new attractor in the active
phase is F−, and so there is an abrupt transition. Again,
this happens when α > α̃. When α < α̃, at the critical
point we have F− = F1, and the new attractor at β > γ is
still F−. In this case, the position of the attractor varies
smoothly, and so there is a second-order phase transition.
Further insights on the critical behavior can be ob-

tained by investigation of Θ. Indeed, the tricritical con-
dition, i.e., γ = β and α = α̃ such that F1 = F±, corre-
sponds to the solution of the following system

Θ(η, β, γ, α, σ) =
∂

∂η
Θ(η, β, γ, α, σ) = 0,

η = 1,

β = γ

We find that the tricritical point in the parameter space
is given by

β = γ,

α̃ = γ(γ + σ)/σ.
(50)

These results are consistent with the deterministic de-
scription of the system. Furthermore, following the strat-
egy discussed in Section III B, we can investigate the be-
havior beyond the mean-field limit. For this purpose,
we analyse the statistical fluctuations of the state of the
system. Using the expression of Eq. (49) for the re-
duced Hamiltonian H⋆, the reduced Langevin equation
of Eq. (25) reads
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dη

dt
=

(
σ(N − η)

(
γN2(γ + σ)−Nη(ασ + β(γ + σ)) + αση2

)
N2(γ + σ)2

)

+

(
σ(N − η)

(
γN2(γ + σ) +Nη(ασ + β(γ + σ))− αση2

)
N2(γ + σ)2

) 1
2

· ξ. (51)

We compare between the order parameter for the re-
duced dynamics and for the full dynamics carried out by
the Kramers-Moyal expansion, and illustrate this com-
parison in Fig. 3. We observe that, for t large, the
reduced mean-field dynamics converges to the complete
one, and the fluctuations display similar statistical prop-
erties in both cases. Indeed, in Fig. 3 we give a compari-
son between the stationary probability distribution func-
tion (PDF) of the full system and the one derived from
the reduced dynamics. In the case of reduced dynam-
ics, its PDF is given by Eq. (26). These figures indicate
a good agreement between our approximations and the
real distribution, displaying the efficacy of our approach.

This example highlights that we can analyse the crit-
ical environment of a system by studying a simple func-
tion Θ. This demonstrates one of the advantages of our
approach. Given a multidimensional system of which we
want to characterize some of its critical features, we can
systematically follow the steps of our formalism to reduce
all the complexity to an analysis of some parametric func-
tions. That said, our approach is not limited to providing
insights into the critical properties, but also offers quan-
titative assessments on the properties of the steady state,
such as the value of the order parameter and its distri-
bution. In the next sections, we shall provide a more
detailed explanation of this.

C. Application to ecology: the generalized
Lotka-Volterra model

Let us now turn our attention to ecological systems.
Within this context, one most often considers the gen-
eralized Lotka-Volterra model, which describes the dy-
namics of many interacting species. Recently, this model
has been used to investigate biodiversity, with the aim of
providing an answer to the so-called ‘diversity-stability’-
paradox, as theoretical approaches indicate that diver-
sity should hamper stability [52–54], yet observational
studies find the exact opposite must be true [55]. More
recently, dynamical mean-field theory has been applied
to the generalized Lotka-Volterra model with great suc-
cess [56, 57], and there have been successful attempts at

1 Note that this is similar to the three-body interaction we in-
troduced in the modified SIS-model that was discussed in Sec-
tion IVB.

describing the Lotka-Volterra model as a chemical reac-
tion network [27]. Yet, to the best of our knowledge, re-
duced dynamics (stochastic) Lotka-Volterra models have
not been put forward, but yet may provide valuable in-
sights in (critical) behavior of complex ecological models.
To this end, let us study the stochastic Lotka-Volterra

model. This model can be described by the following
elementary reactions for each of the species Ii,

Ii
ri−→ 2Ii, Ii

µi−→ ∅,

∅ λi−→ Ii, Ii + Ij
bij−−→ Ij ,

(52)

where ri, µi and λi are, respectively, the growth, death
and migration rate of species i, and bij is the interaction
coefficient that captures the effect of species j on species
i (see, e.g., Ref. [27], for more details). The DPH of the
Lotka-Volterra model reads

H =
∑
i

ria
†
i (a

†
i − 1)ai +

∑
i

λi(a
†
i − 1)

+
∑
i

µi(1− a†i )ai +
∑
i,j

bija
†
i (1− a†j)aiaj . (53)

1. A simple two-species Lotka-Volterra system

As an example, we consider a simple two-species sys-
tem consisting of native and invasive species, denoted
with N and I, that compete. The elementary reactions
for this example read

N
r−→ 2N, N

µ−→ ∅, 2N
bN−−→ N, N + I

b−→ I,

I
r−→ 2I, I

µ−→ ∅, 2I
bI−→ I, ∅ λ−→ I,

(54)

where bI and bN are the self-regulation term correspond-
ing to an effective carrying capacity, b is the effect of the
invasive species on the native one, and λ is the migration
rate (invasion rate) of the invasive species. In this case,
the DPH reads

H = r
(
a†I(a

†
I − 1)aI + a†I(a

†
I − 1)aI

)
+ λ(a†I − 1)

+ µ
(
(1− a†I)aI + (1− a†N )aN

)
+ ba†I(1− a†N )aNaI

+ bIa
†
I(1− a†I)a

2
I + bNa

†
N (1− a†N )a2N

(55)
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Reduced dynamics

Full dynamics
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Fig. 3: Top: Numerical simulation for the modified
SIRS model. We have considered N = 103, β = 0.8,
γ = 0.4, α = 0.15 and σ = 1. The dashed lines represent
the deterministic dynamics for both the reduced and the
full system. The solid lines are the stochastic trajectories
generated by Eq. (25) applied to H and to H⋆. Bottom:
Probability distribution function at the stationary limit
of the modified SIRS model. The blue histogram rep-
resents the PDF obtained by the long time behaviour of
numerical simulations realized considering the reduced
dynamics. The orange one is the distribution related to
the full system. The solid blue line depicts the analytic
reduced PDF given by Eq. (26). Relevant parameters are
N = 103, β = 0.8, γ = 0.4, α = 0.15 and σ = 1.

In order to proceed, we consider bN , bI , b ≪ 1 to work
in the range of validity of our theory, i.e., the chemical
reaction follow the scaling rule of Sec. II C. Moreover,
we assume that bI > b, that is, the carrying capacity of
the invasive species is not so large to dominate the na-
tive species for any migration rate λ > 0. We choose the
asymptotic population of the native species N as the or-
der parameter and derive the reduced Hamiltonian using
Eq. (42). We solve the system using the invasion rate λ
as a free parameter, and we obtain a critical value

λ̃ :=
(r − µ)2(bI − b)

b2
. (56)
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Fig. 4: Reduced dynamics of the Lotka-Volterra model.
For λ < λ̃ the attractor is F2 with nN > 0. At the critical
condition we have the superposition of the fixed points
F1 = F2, and the native species goes to the extinction for
larger λ. As confirmed by the numerical integration in
Fig. (4d), this is a second order phase transition. We have
considered b = 0.75, b = 0.7, r = 1/2500, rA = 1/2000

and rB = 1/3000. With these values we have λ̃ = 1.563.

The critical points for the reduced model are

F1 = (0, 0),

F2 =

r − µ

bN
−
b
(√

(r − µ)2 + 4bIλ− µ+ r
)

2bIbN
, 0

 .

For λ > λ̃ the native species is driven to extinction by the
invasive one (Panel 4c), and nB → 0 for t → ∞. When

λ < λ̃ we find that the two species can coexist (that
is nN > 0) as shown in Panel 4a. For lower effective
growth rates r− µ, asymptotic abundances of the native
species reduce, indicating that slow growing species are
more sensitive to invasion. By careful investigation of
the phase portrait (Fig. 4), it becomes clear that at the

critical point λ = λ̃ the two fixed points overlap and the
native species is driven to extinction (see Fig. 4b). As the
equilibrium state changes smoothly, the extinction phase
transition is of second order. We report a numerical sim-
ulation in Fig. 4d.

2. The Lotka-Volterra system with 8 species

Consider now a stochastic Lotka-Volterra model with
a larger number of species to illustrate how the dimen-
sion reduction can provide a very good approximation
for the asymptotic distributions. We take an 8-species
Ii model governed by the reactions of Eq. (52). We let
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ri = λi = 1/2 and µi = 0, and specify the interaction
matrix B, with elements bij , as

B =
1

1000



1 1 1
2 0 3

10 0 0 0
1
15

11
10 0 0 1

17 0 0 0
0 0 4

5 0 0 1 0 0
0 0 0 1 0 0 0 1

9
0 0 0 0 11

10 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 9

10 0
1
6 0 0 0 0 0 1

5 1


. (57)

While we do not explore possible phase transitions here
(for that, see [54, 56], among others), we will focus here
on an analysis of the reduced Langevin dynamics instead.
The DPH for this system is given by Eq. (53). Without
loss of generality, we will use the first species as the or-
der parameter. A Langevin equation as in Eq. (25) can
then be obtained, for which the stationary distribution of
the focal species can be derived by numerical integration
(Fig. 5). The results of our reduction procedure are in
excellent agreement with numerical integration of the full
system, highlighting again the strength of our proposed
method.

Reduced dynamics

Full dynamics

350 400 450 500
nI10.000

0.005

0.010

0.015

PDF

Fig. 5: Numerical asymptotic abundance distribution of
the species I1 of a system described by the generalized
Lotka-Volterra model with 8 species. Orange bars repre-
sent the normalized probability distribution obtained by
numerical integration of the one-dimensional reduced sys-
tem, while blue bars are results from numerical integra-
tion of the full system. We have considered r = λ = 1/2
and B given by Eq. (57).

D. Resource-exploiter model

In this last section we treat an ecological model which
describes the interactions between resources R, exploiters
E and pollutants X. The rationale behind this model is
that there are resources that can be used and transformed
into something else (e.g., goods, infrastructure, etc.) be-
cause of interactions with a population of exploiters. The
process of transformation of resources comes at some

cost: it produces pollutants that in part can be re-used
to produce other resources. A typical example of the last
process is the production of CO2 due to human activi-
ties and the partial re-absorption of this gas by plants to
produce new resources (e.g., oxygen, plant-matter that
feeds herbivores, agricultural uses, etc.).

By denoting with nR, nE and nX the corresponding
occupation numbers, we can model such a system by as-
suming the following transition rates:

ω(n+ IR|n) = αnR ,

ω(n+ IE ,n) = µnE ,

ω(n− IR|n) = nXξ +
α

kR
nR(nR − 1) ,

ω(n− IE |n) = nEδ +
µ

kE
nE(nE − 1) ,

ω(n− IE + IX |n) = βnEnR ,

ω(n+ IR − IX |n) = βσnRnE + ψnXnR ,

ω(n+ IE − IX |n) = βγnEnR .

To reflect the constraints of empirical systems, we are
considering a case with resources limited by the capac-
ity kR. Exploiters consume resources to their advantage
while producing pollutants and this interaction is here
represented by a contact process: accordingly, the rate is
proportional to nEnR. By exploiting the resources R, E
increases, yet their abundance is also limited a carrying
capacity kE . The carrying capacities prevent unbounded
population growth. Exploiters are further subjected to
natural birth and death processes with rates µ and δ
respectively. Resources grow with rate α (e.g., this gen-
eration can be due to the injection of energy into the
system, such as the one reaching the Earth which is due
to the sun) and can be recovered from X by means of two
contact interactions: βσnEnR, thanks to the exploiters,
and ψnXnR. Finally, the pollutants reduce the number
of resources by means of the rate ξ.

We note that this system is hard to analyse using avail-
able tools, such as the next-generation matrix. The rea-
son is that the pollutants X, which one might interpret
as the “infected” counterpart as in standard epidemiolog-
ical models, can be generated by processes that are in-
dependent of their abundance (see the system definition,
and Eq. (61)). In epidemiological terms, the “disease-
free” equilibrium is not stable, as the infected compart-
ment can grow even when its abundance has reached zero.
This contradicts the main assumptions underlying the
next-generation matrix [15, 58]. By contrast, while our
formalism does not provide an interpretation of epidemic-
related measures, such as the basic reproduction number,
it can be applied to systems where the main assumptions
underlying the next-generation matrix do not hold.

We proceed by deriving DPH for this system, which
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Fig. 6: Phase transition for the resource-exploiter
model. Figs. 6a, 6b and 6b show the phase portraits of
the reduced system, where the orange line is the mean-
field manifold, the blue ones are the zero-energy lines of
H⋆(A) while the red curves are related toH⋆(B). Red dots
represent the fixed points on the mean-field manifold. We
observe the superposition of the attractos of H⋆(A) and
H⋆(B) at δ = δ̃. The solid lines represent the effective
phase portrait, while the dashed ones are related to the
alternative parameterization that does not represent the
system. In Panel. 6d we report a numerical simulation
of the model with β = 9 · 10−6, γ = 8 · 10−2, σ = 0.1,
ϵ = 0.9, ψ = 10−5, µ = 0.1, α = 0.3, kR = 7 · 105 and
kE = 8.5 · 105. The critical point is given by δ̃ = 0.604.

reads

H = αa†R

(
a†R − 1

)
aR + µa†E

(
a†E − 1

)
aE

+ξa†XaX

(
(a†R)

−1 − 1
)
+

α

kR
a†R

(
1− a†R

)
a2R

+
µ

kE
a†E

(
1− a†E

)
a2E + δ(1− a†E)aE

+βa†E

(
a†X − a†R

)
aRaE

+βσa†R

(
a†R(a

†
X)−1 − 1

)
aRa

†
EaE

+ψa†R

(
a†R − a†X

)
aRaX

+γβa†R

(
a†E(a

†
X)−1 − 1

)
aEa

†
RaR (58)

Using this expression, we obtain the following mean-field
equations:

∂t⟨nR⟩ = α⟨nR⟩
(
1− ⟨nR⟩

kR

)
− β⟨nE⟩⟨nR⟩

− ξ⟨nX⟩+ βσ⟨nR⟩⟨nE⟩+ ψ⟨nR⟩⟨nX⟩
(59)

∂t⟨nE⟩ = µ⟨nE⟩
(
1− ⟨nE⟩

kE

)
+ βγ⟨nR⟩⟨nE⟩ − δ⟨nE⟩

(60)

∂t⟨nX⟩ = (1− σ − γ)β⟨nR⟩⟨nE⟩ − ψ⟨nR⟩⟨nX⟩ (61)

The WKB approximation is valid when the following
conditions are satisfied: (1) kR, kE ≫ 1, meaning
that we consider relatively large populations and that
we are able to apply a system size expansion, and
(2) β, ψ ≪ 1, in order to rescale the contact processes
with respect to the size of the system. We consider
ρ = 1 − limt→∞⟨nR(t)⟩/kR as the order parameter. By
letting ∂t⟨nE⟩ = ∂t⟨nX⟩ = 0 we obtain two different
parametrizations, A and B, that read

ΛA = (xR, xE = 1, xX = 1, qR, qE = 0, qX = 0) ,

ΛB =
(
xR, 1, 1, qR,

kE
µ

(qRβγ − δ + µ),
kEβ

µψ
(qRβγ − δ + µ)(1− γ − σ)

)
.

By solving Eq. (19), we identify δ̃ = µ+γβkR as a crit-
ical point. By using ΛA, the Cole-Hopf reduced Hamil-
tonian reads

H⋆
A =

αηe−θ
(
eθ − 1

) (
eθkR − η

)
kR

, (62)

or, by employing ΛB instead, we find
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H⋆
B =

e−2θ
(
eθ − 1

)
kRµϕ

(
ηe2θkRϕ(αµ+ β(γ − 1)kE(δ − µ)) + β2γηkRkE(ϵ(γ + σ − 1)− ηϕ)

− eθ
(
αη2µϕ+ βkRkE(ηϕ(β(γ − 1)γη − δ + µ) + ϵ(γ + σ − 1)(δ − µ))

)) (63)

By studying the eigenvalues of the deterministic system,

we find that ⟨nR⟩ = kR is the attractor for δ > δ̃
(Fig. 6a), otherwise the attractor is one of the mean-
field fixed point of H⋆

B as reported in Fig. 6c. Follow-
ing the discussion of Section IV, H⋆

A is well defined for

δ > δ̃, while H⋆
B represents the system for δ < δ̃. The

energy levels of both reduced Hamiltonians are shown
in Fig. 6. From Figs. 6a to 6c, we note that the attractors
exchange their position in a continuous manner at the
critical point, which denotes a second-order transition.
This is confirmed by numerical simulations (Fig. 6d).

Since the DPH contains many parameters, it is diffi-
cult to explore all possible ranges. Indeed, the system
exhibits (numerical) instabilities, for example when δ is
very small. When Eqs. (59) to (61) converge to an equi-
librium point (as is the case in Fig. 6), and thus satisfies
the stability condition necessary for our approach, we see
instead that we are able to fully characterize the critical
behaviour using our method.

V. CONCLUSIONS

In this work we have presented a unifying framework
that shows how to systematically apply the Doi-Peliti for-
malism to a broad class of compartmental models. Sev-
eral studies have proven how path integral approaches
can offer advantages when describing stochastic systems,
characterizing phase transitions and giving information
beyond the deterministic limit. Yet, dealing with sys-
tems with many compartments is generally complicated,
especially regarding the visualization of the geometry of
phase portraits to identify the nature of the phase tran-
sitions. Here we have derived a novel strategy that al-
lows us to unify these descriptions thanks to the intro-
duction of a dimension reduction scheme. In practice,
through our method we gain information about the na-
ture of the phase transitions, and analyze both qualita-
tively and quantitatively the stochastic dynamics. We do
so through a transparent physical interpretation: since
the observable of interest, the order parameter, corre-
sponds to a single compartment, one can freeze all other
degrees of freedom and study only the compartment cor-
responding to the observable.

We have illustrated the usefulness of this methodology
by applying it to several multi-compartmental stochastic
processes of increasing complexity and of different na-
ture, including epidemiological, ecological and sociotech-
nical ones. Starting from the simplest case of two-

compartment systems, we have explored the role that
three-body interactions, recently reported to significantly
impact the behavior of many empirical systems [59], play
on the critical aspects of epidemiological-inspired models.
This opens the door to systematically analyze systems
whose interactions are beyond pairwise. For systems with
more than two components, our dimension reduction pro-
posal offers very good approximations for the stationary
probability density function of the order parameter, and
successfully captures their critical properties.

To derive our dimension reduction scheme, we have
used some approximations that do not impact the pre-
dictions of the critical behavior, yet they do have an ef-
fect on the transient dynamics. Indeed, many methods
of dimensionality reduction aim to describe not only the
stationary limit, but also to provide information about
the whole dynamics, which is however often at the ex-
pense of needing more assumptions. Hence, there is a
compromise between the amount of information one can
analytically retrieve and the generality of the model one
can actually study. Our method positions itself in a place
in which it can be generally applied to a range of sys-
tems that is wider than what traditional methods, such
as those based on time scale separation [60, 61], offer, but
it misses the possibility of an accurate prediction of the
transient phase.

Offering insights on the transient dynamics from the
point of view developed here remains as a future re-
search perspective. Additionally, our method is most
useful in scenarios in which only one degree of freedom
is effectively operating in the long-time behaviour, so
it not yet clear how to reduce the dimensionality in a
case with coupled degrees of freedom. Another aspect
that we believe is worth further consideration is related
to the parametrization Λ and the reduced Hamiltonian,
H⋆ = Λ ◦ H. More specifically, the difficulties are asso-
ciated with the definition of the validity domain and the
potential degeneration of Λ. A remaining open question,
which we foresee having a great impact due to the wealth
of potential applications, is the generalization of this di-
mension reduction scheme to structured, networked pop-
ulations [62].

All in all, we have exploited the combination of the
path-integral representation of stochastic processes with
a dimension reduction scheme to better understand the
critical properties and the stationary behavior of cou-
pled compartmental stochastic processes. We hope that
our formalism will provide new perspectives and physical
insights into, and beyond, the characterization of phase
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transitions and fluctuation dynamics multi-compartment
complex systems.
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Appendix A: Derivation of the path integral
representation

Here we show the derivation of the path integral rep-
resentation for the generating function |G⟩ by using the
Doi-Peliti formalism as done in [24]. Let us take the sim-
plest one-compartment case |n⟩ = |n⟩ with the basis (9).
We take also H in its normal ordered form. By writ-
ing the time dependency explicitly |G⟩ = |G(t)⟩x and by
splitting t in infinitesimal intervals t = Mϵ with ϵ → 0
and M → 0, we have

|G(t)⟩x = eϵH(a†,a) |G(t− ϵ)⟩x +O(ϵ)

=

∫
R
dxM−1e

ϵH(x,∂x)δ(x− xM−1) |G(t− ϵ)⟩x + (ϵ2)

=

∫
R2

dxN−1 dqN−1

2π
eϵH(xN ,iqN−1)

× e−iqN−1(xN−1−xN ) |G(tN−1)⟩xN−1
+O(ϵ2)

=

∫
R2N

N−1∏
j=0

dxj dqj
2π

e
ϵ
∑M−1

j=0

(
H(xj+1,iqj)−iqj

xj−xj+1
ϵ

)
× |G(t0)⟩x0

+O(ϵ2)

=

∫ t)

[t0

D[x, q] e−S[x,iq] |G(t0)⟩x0

where in the last equation we have taken the continuous
limit by introducing the measure∫ t)

[t0

D[x, q] = lim
N→∞

∫
R2N

N−1∏
i=0

dxi dqi
2π

,

and S is the action defined by Eq. (12). For the multidi-
mensional case the derivation is trivially the same.

Appendix B: WKB approximation for CRNs

Here, we follow the reasoning of [26] and demonstrate
that similar arguments can be applied for extend the
WKB to the case of chemical reaction networks (3) as
well. Let us denote by ωk the transition rate related
to the reaction between k reagents, and by N the total
population in the system. For illustrative purposes, let
us consider a simple contact process

Ij + Ij
β−→ Ij .

The transition rate is proportional to the number of
elements, nj , times the probability of finding another
element in the heterogeneous network, (ni − 1)/N .
Thus, assuming nj , N ≫ 0 and nj ≪ N , we have
ω2(n− Ij |n) = βnj(nj −1)/N ∝ n2j/N . Generalizing the
same reasoning for a contact process between k elements,
the transition rate is ωk ∝ nkj /N

k−1. Since the Doi-Peliti
Hamiltonian is a polynomial function of xj and iqj , we

conclude that the term related to the highest power of iqj
inside H is proportional to (iqh)

kN−k+1 (= N−k+1∂kxj
).

Furthermore, with these rates we can write the DPH and
the action (12) as extensive quantities with respect to N
as done in [26]. If we define the concentration variables
ηj = nj/N , then the transition rate reads

ωk ≈ βηkjN.

By means of Eq. (2) and Eq. (8), we see that

Hn,m = Nhm,m(η) , S = Ns(η),

with {hn,m}n,m and s being functions of the concentra-
tions only. Using the ansatz |G⟩ = exp(−Ns), we obtain

∂kxj
exp(−Ns)
Nk−1

= N(−∂xj
s)k +O(1) ≈ N(−∂xj

s)k.

Inserting the same ansatz in Eq. (7), the relation
iqj = −∂xj

S holds for any j and we find the Hamilton-
Jacobi equation

∂tS = −H (x,−∂xS) , (B1)

with ∂xS = (∂x1S, ∂x2S, . . .). Therefore, for CRNs we
can always take the stationary action defined by the so-
lutions of Eq.(13) and |G⟩ = exp(−S).

Appendix C: A basis for the stationary paths

Now we report the basis for the WKB approxima-
tion presented in [24]. Considering the one-dimensional
case and denoting with x̃(t) and q̃(t) the solutions of the
Hamilton’s equations (13), we take the following basis

|ñ⟩ =
(
∆x+ x̃(t)

)n
e−q̃(t)(∆x+x̃(t))

⟨ñ| =
(
∂∆x + q̃(t)

)n
,

where ∆x and i∆q are fluctuations of x(t) and iq(t)
around the stationary trajectories. The creation and an-
nihilation operators act according to

a |ñ⟩ = n |ñ− 1⟩ = (∂x + q̃(t)) |ñ⟩ (C1)

a† |ñ⟩ = |ñ+ 1⟩ = (x+ x̃(t)) |ñ⟩ . (C2)

With this basis, in the derivation of the path integral
representation we still have to include the contribution
resulting from the time dependency of |ñ⟩. For the sake
of simplicity, we write x̃(t) = x̃ and q̃(t) = q̃, and by
taking the time derivative of |ñ⟩ we have

∂t |ñ⟩ =
[
n∂tx̃(∆x+ x̃n−1)

− (∆x+ x̃)n(∂tq̃(∆x+ x̃) + q̃∂tx̃)
]
e−q̃(∆x−x̃)

= n∂tx̃ |ñ− 1⟩ − (∂tq̃(∆x+ x̃) + q̃∂tx̃) |ñ⟩
=
(
∂tx̃ a− ∂tq̃ a

† − q̃∂tx̃
)
|ñ⟩

=: B |ñ⟩ (C3)
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where B is the time evolution operator of the basis.
Within this representation, the ME (1) becomes

∂t |G⟩ = (H+ B) |G⟩ .

Now, by replacing (x, iq) by (∆x, i∆q), and by substitut-
ing H with H+B in the steps presented of Appendix A,
we obtain the path integral representation with this new
basis. In detail, the action reads

−S[x̃+∆x, q̃ + i∆q]

=

∫ t

t0

dτ i∆q∂τ∆x+H(x̃+∆x, q̃ + i∆q) (C4)

+ B(x̃+∆x, q̃ + i∆q)

=

∫ t

t0

dτ
[
i∆q∂τ∆x+H(x̃, q̃) + ∆x∂∆xH(x̃, q̃)

+ i∆q∂i∆qH(x̃, q̃) + ∆H+ q̃∂τ x̃+ i∆q∂τ x̃

−∆x∂τ q̃ − x̃∂τ q̃ − q̃∂τ x̃
]

=

∫ t

t0

dτ
[
i∆q∂τ∆x+H(x̃, q̃) + ∆x∂τ q̃ − i∆q∂τ x̃

+∆H+ i∆q∂τ x̃−∆x∂τ q̃ − x̃∂τ q̃
]

=

∫ t

t0

dτ
[
H(x̃, q̃) + q̃∂τ x̃

]
− x̃(t)q̃(t) + x̃0q̃0

+

∫ t

t0

dτ
[
i∆q∂τ∆x+∆H

]
= −S̃ − x̃(t)q̃(t) + x̃0q̃0

+

∫ t

t0

dτ
[
i∆q∂τ∆x+∆H

]
(C5)

where in the second equality we have expanded
H(x̃ + ∆x, q̃ + i∆q) around the stationary trajecto-
ries, and ∆H includes all the contributions of order
O(∆x2,∆q2,∆x∆q). Here S̃ satisfies the Hamilton-
Jacobi equation (B1).
Let us now rewrite the generating function in terms of

the basis |ñ⟩,

|G(t)⟩x = ex̃(t)q̃(t)
∑
n

p(n, t) |ñ⟩
∣∣∣
∆x=0

.

Thus, the path integral expression is

|G(t)⟩x =

e−S̃
∫ t)

[t0

D[∆x,∆q] e
∫ t
t0

dτ
(
i∆q∂τ∆x+∆H

)
|n0⟩

∣∣∣
∆x(t)=0
x̃(t)=x

If we assume fixed initial condition, then
|n⟩0 = |ñ0⟩ ex̃0q̃0 = en0 log x̃0 . Within the WKB ap-
proximation, the fluctuating part does not contribute
and we have |G⟩ = exp

(
−S̃
)
where x and iq are replaced

by the real trajectories x̃ and q̃.

Appendix D: Doi-Peliti Hamiltonian for Complex
Reaction Networks

In this section, we present the generic structure of a
DPH in the case of chemical reaction networks, providing
a proof of the relation (23). For the systems treated in
this work, we can distinguish five fundamental processes
and, for each of them, we associate a term of the DPH
by using definitions (5) and (8). These read

∅ → A a†A − 1

A→ 2A a†A(a
†
A − 1)aA

A→ ∅ (1− a†A)aA

A→ B (a†B − a†A)aA

A+B → A+ C a†A(a
†
C − a†B)aAaB .

These derivations can easily be generalized by more
complicated interactions such as the ones introduced in
Sec. IVB. For a CRN, generally we can build the DPH
as a summation of the elements presented above.

Knowing the structure of the DPH, we can now prove
Eq. (23). For a two-compartment model, the Kramers-
Moyal expansion of the ME reads

∂tp(n, t) =
∑

m1,m2
m1+m2>0

1

m1!m2!
∂m1
y1
∂m2
y2
Wm1,m2(n)p(n, t),

where

Wm1,m2(n) =

∫
dy1 dy2 ω(n+ y1 + y2|n)ym1

1 ym2
2 .

Taking a two-body interaction

pA+ qB
γ−→ (p+ k)A+ (q − l)B,

the transition rate can be written as

ω(n+ y1 + y2|n) = γnpAn
q
Bδ(y1 + k)δ(y2 + l). (D1)

Hence

Wm1,m2(n) = γnpAn
q
Bk

m1(−l)m2 ,

and we find an expression for H†
KM

H†
KM (η, iθ) =

∑
m1,m2

m1+m2>0

(iθ1k)
m1(−iθ2l)

m2

m1!m2!
γnpAn

q
B

= γnpAn
q
B

(
eiθ1k−iθ2l − 1

)
(D2)

On the other hand, the DPH for this reaction is

H = γ(a†A)
p(a†B)

q−l
(
(a†A)

k − (a†B)
l
)
apAa

q
B

= γ
(
(a†A)

k(a†B)
−l − 1

)
(a†A)

papA(a
†)qBa

q
B (D3)
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By applying the Cole-Hopf transformation, we substitute

a†A,B = eiθA,B and aA,B = e−iθA,BηA,B into Eq. (D3) ob-
taining the same expression of the Kramers-Moyal expan-
sion (D2). These arguments can be extended to a more
complex and general interactions

M∑
i=1

pi Ii
γ−→

M∑
i=1

(pi + ki) Ii,

with M representing the number of
reagents/compartments {Ii} and ki can be any integer.
In this case we define the vector k = (k1, k2, . . . , kM )
and the transition rate is given by

ω(n+ y|n) = f(n)

M∏
j=1

δ(yj − kj),

where f a suitable function of the occupation numbers.
Thus

Wm1,m2,...,mM (n) =

∫
dy

 M∏
j=1

y
mj

j

ω(n+ y|n)f(n)

= f(n)

M∏
j=1

k
mj

j ,

and the adjoint of the Kramers-Moyal operator is

H†
KM (η, iθ) =

∑
m1,m2,...,mM∑

j mj>0

M∏
j=1

(iθjkj)
mj

mj !
f(η)

=

 M∏
j=1

eiθjkj − 1

 f(η). (D4)

In terms of the Doi-Peliti representation, the correspond-
ing DPH is

H = γ

M∑
i=1

(
(a†i )

ki − 1
)
f(a†a), (D5)

which can also be written as a function of the Cole-Hopf
variables,

H(η, iθ) = γ

 M∏
j=1

eiθjkj − 1

 f(η).

This is equal to the KM operator (D4). Eq. (D5) shows
that the mean-field manifold q = 0 (θ = 0) is always a
zero of H.

By means of the relation (23), we can show the link
with the Langevin equation (25). The procedure for de-
riving Langevin dynamics from HKM has been discusses
in several works (e.g. [24] and [27]) and, for completeness,
we sketch the derivation in the following.

In the simple one-dimensional case, we can develop a
path-integral representation of the probability distribu-
tion starting from the Kramers-Moyal expansion (21).
Following the same steps reported in Appendix A, we
write

p(n, t) =

∫ t)

[0

D[η, θ] e−S†
KM [η,iθ]δ(n− η(t)),

where the action is defined by

S†
KM =

∫ t

0

dτ iθ(τ)∂τη(τ)−H†
KM (η(τ), iθ(τ)).

As discussed in the main text, we know that the deter-
ministic limit is recovered for θ → 0. To obtain the
Langevin expression, we expand S† around θ = 0 up
to the second order and integrate with respect θ(τ),

p(n, t) =

∫ t)

[0

D[η] e
−

∫ t
0

(∂τη−∂θH†
KM

|θ=0)2

2∂2
θ
H†

KM
|θ=0 δ(n− η(t)),

where D[η] is the re-normalized measure. The latter ex-
pression is nothing but the Feynman-Kac formula [24]

p(n, t) = ⟨δ(n− η(t))⟩η,

where ⟨·⟩η is the average over the trajectories defined by

dη(t)

dt
= ∂θH†

KM

∣∣
θ=0

+
√
∂2θH

†
KM

∣∣
θ=0

· ξ(t)

where ξ(t) is the standard white noise. Including the
relation (23), we recover Eq. (25). The generalization to
the multidimensional case is straightforward.

Appendix E: Closure transition rates

Here we discuss some limits of our formalism. In the
main text, we have considered models such as the SIS
or SIRS that have a closed diagrammatic structure, and
systems where each compartment is subject to at least
two interactions. Indeed, as we will show, these features
provide the necessary conditions to apply the Doi-Peliti
mapping.
Let us take a chemical reaction model with M com-

partments {I1, I2, . . . , IM} and where only spontaneous
transitions and contact interactions occur. We assume
IM is connected to other compartments by a single spon-

taneous transition Ij
γ−→ IM . Thus, IM is a termination

of the model diagram. Moreover, we consider to work
with fixed N and, as for the SIS model, we take I1 ≈ N .
We choose the order parameter ρ as in Eq. (17). Now, we
focus on I1 and IM to understand if and when a phase
transition occurs. We rewrite the diagram of the sys-
tem as where we have replaced the M − 2 compartments
I2, . . . , IM−1 by an effective one Ieff. The effective tran-
sition rates ωI1 and ωIeff are functions of all populations
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I1 Ieff IM
ω1 ωIeff

(a)

I1 Ieff IM

(b)

Fig. A1: SIR-like diagram for the effective open pro-
cess (a) and SIRS-like diagram for the effective closed
process (b).

except nM . Thus, the system is active when Ieff becomes
asymptotically populated and we can write

∂t⟨nIeff⟩(t) = f({β}, I1, Ieff), (E1)

with {β} representing the transition coefficients of the
model, and f is a suitable function depending on the sys-
tem we are considering. The problem is that the mean-
field equations include

∂t⟨nM ⟩ = γ⟨nj⟩, (E2)

from which, at the stationary limit, ⟨nj⟩ = 0. The pres-
ence of null terms like this leads to a degeneration of the
system (19). Thus det(J) = 0 for any fixed point and
we cannot use the strategy presented in the main text to
analyse the critical behaviour. To overcome this problem,
we introduce an effective transition rate that closes the
model diagram connecting IM directly to I1 by means of
a spontaneous transition ω(n− IM + II1 |n). In doing so
we obtain a SIRS-like model, as depicted in A1b.

From now on we will call open a system described by
diagrams like Fig. A1a, and closed a system represented
by diagrams like Fig. A1b. By following a classical treat-
ment [13], one can prove that both the SIR and SIRS
models, have the same critical condition. Indeed, both
of them are active when the number of elements in state
I grows during the early stage of the process. For t ≈ 0
we have nS ≈ N , and from the mean-field equations it is
easy to find the critical condition

∂t⟨nI⟩ =
β

N
⟨nI⟩⟨nS⟩ − γ⟨nI⟩ ≈ (β − γ)⟨nI⟩ (E3)

Therefore, the epidemic spreads when initially the pop-
ulation of infected individuals manages to grow fast
enough, that is, when β > γ. Since Eq. (E3) holds for
both SIR and SIRS, we have that the critical condition
does not change.

Focusing back on a general process, we can repeat the
same steps to find that

∂t⟨nIeff⟩(t) = f({β}, I1, Ieff),

where {β} are the transition coefficients of the SIR-like
process, and f is a suitable function depending on the
system we are considering. As for the SIR and SIRS
models, by assuming I1 ≈ N for t ≈ 0, the critical be-
havior is defined by the system{

∂t⟨nIeff⟩ = f({β}, Ieff)
∂t⟨nM ⟩ = ϵ⟨nj⟩

, (E4)

where we are assuming that Ij ∈ Ieff is the only com-
partment linked to the termination IM by a spontaneous
transition with per capita rate ϵ > 0. As we will show be-
low, these arguments can be generalized for system with
several terminations. As for the SIRS model, by adding
a re-filling reaction ω(n − IM + II1 ,n) = σIM , the sys-
tem (E4) becomes{

∂t⟨nIeff⟩ = f({β}, Ieff)
∂t⟨IM ⟩ = ϵ⟨Ij⟩ − σ⟨IM ⟩ .

Since the phase transition occurs when the Ieff becomes
active, the critical condition is independent of IM and it
is determined by the first equation. Thus, we conclude
that the critical condition for such system is the same
of the corresponding closed diagram. We can generalize
these arguments to more complex systems by imposing
only two conditions

1. each extremity of the open diagram is linked to the
main process by a spontaneous transition;

2. the closed diagram is given by adding spontaneous
transitions from the extremity to the initial empty
state.

The first condition ensures the inner part of the process
is independent of the population numbers of the extremi-
ties 2. The second condition guarantees to have the same
diagrammatic structure of the SIRS model.

Appendix F: Further examples of models studied
through the dimension reduction

With the aim of showing the depth and breadth of
our formalism, we discuss in this Appendix section its
application to a variety of models not treated in the main
text.

1. The standard SEIRS model

We start with the usual SEIRS model, where the
spread of a disease is assumed to occur by mean by of 4

2 For example, with pair interactions, f({β}) would depend on the
population of the ends.
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compartments. Individuals can be in one of the suscep-
tible S, incubation E, infected I and recovered R states.
The model is defined by the following transition rates:

S + I
β/N−−−→ I + E,

E
λ−→ I,

I
γ−→ R,

R
σ−→ S.

In this case we are considering a system with a fixed total
population N , and we consider nS(0) ≈ N . Therefore,
according to the notation introduced above, S = I1. The
Doi-Peliti Hamiltonian for this model is

H =
β

N
(a†E − a†S)aSa

†
IaI + λ(a†I − a†E)aE+

+ γ(a†R − a†I)aI + σ(a†S − a†R)aR,

and the mean-field trajectories are

∂t⟨nS⟩ = − β

N
⟨nS⟩⟨nI⟩+ σ⟨nR⟩,

∂t⟨nE⟩ =
β

N
⟨nS⟩⟨nI⟩ − λ⟨nE⟩, (F1)

∂t⟨nI⟩ = λ⟨nE⟩ − γ⟨nI⟩,
∂t⟨nR⟩ = γ⟨nI⟩ − σ⟨nR⟩.

By setting the last two equations equal to zero, and by
taking into account the conservation of total (normalized)
population 1 = xSqS+qE+qI +qR, we find the following
parameterization

xE = xI = xR = 1 , qE = − βσ(xSqS − 1)qS
γλ+ λσ + βσqS

,

qI =
λσ(xSqS − 1)

γλ+ λσ + βσqS
, qR =

λγ(xSqS − 1)

γλ+ λσ + βσqS
.

By putting these expressions into the DPH, we obtain
the reduced Hamiltonian in the CH representation

H⋆ =
(1− η)e−θ

(
eθ − 1

)
λσ
(
γeθ − βη

)
γ(λ+ σ) + λσ

.

Three zero-energy lines are found, namely,

η = 1 , θ = 0 , θ = Θ(η) = log (ηβ/γ).

The absorbing phase, where the disease gets extincted,
corresponds to (1, 0) on the plane (η, θ). By plotting
these lines, we observe in Fig. (A2) the well-known phase
transition for the SEIRS model at β = γ. Since no
new fixed points appear, we identify it as a second-order

transition, as expected. We can choose different ways
to define the parametriazation, that is we have several
possible Λ with different reduced DPHs. In this particu-
lar case, the zero energy phase portraits of the different
Hamiltoninas are identical. In the next section we will
show an example in which the degeneration of Λ leads to
to have different phase portraits.
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(a) β < γ
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Fig. A2: Identifying phase transitions in the SEIRS
model. Panels A2a, A2b and A2c show the phase por-
trait of the reduced system by varying β/γ. The orange
curves represent the deterministic trajectories, while the
blue ones are the non-trivial energy lines. Black and red
dots represent the fixed points on the mean-field mani-
fold. In particular the red ones are the attractors of the
dynamics. At the critical point, β = γ, the attractor
changes smootly and we observe a second-order phase
transition.

2. SEIR model with two latent categories

Now we study the epidemiological model discussed
in [15] by means of the next-generation matrix
method [14]. This model is an extension of the SEIR,
where two latent categories E1 and E2 are considered.
The transition rates are

S, E1,2, I, R
b−→ ∅,

∅ bN−−→ S,

S + I
β/N−−−→ E1,2 + I,

E1,2
ν1,2−−→ I,

I
γ−→ R,

where p1 = p and p2 = 1− p. Its DPH reads
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H = bN(a†S − 1) + b
[
(1− a†S)aS + (1− a†E1

)aE1
+ (1− a†E2

)aE2
+ (1− a†I)aI + (1− a†R)aR

]
+ pβ

(a†E1
− a†S)a

†
IaIaS

N
+ β(1− p)

(a†E2
− a†S)a

†
IaIaS

N
+ ν1(a

†
I − a†E1

)aE1
+ ν2(a

†
I − a†E2

)aE2
+ γ(a†R − a†I)aI (F2)

By means of the Hamilton’s equations related to (F2),
the differential equations for the deterministic trajecto-
ries are

∂t⟨nS⟩ = −β ⟨nS⟩⟨nI⟩
N

+Nb− ⟨nS⟩b

∂t⟨nE1,2
⟩ = p1,2β

⟨nS⟩⟨nI⟩
N

− (b+ ν1,2)⟨nE1,2
⟩

∂t⟨nI⟩ = −(γ + b)⟨nI⟩+ ν1⟨nE1
⟩+ ν2⟨nE2

⟩
∂t⟨nR⟩ = γ⟨nI⟩ − b⟨nR⟩

By setting the last three equations equal to 0, and tak-
ing into account conservation of number of particles N ,
we find the following transformations (renormalized with
respect to N):

qE1 = − b(xSqS − 1) [(γ + b)(b+ ν2) + βν2(p− 1)qS ]

(γ + b)(b+ ν1)(b+ ν2)− βb(p− 1)qS(ν1 − ν2)

qE2
=

βbν1(p− 1)qS(xSqS − 1)

(γ + b)(b+ ν1)(b+ ν2)− βb(p− 1)qS(ν1 − ν2)

qI = − bν1(b+ ν2)(xSqS − 1)

(γ + b)(b+ ν1)(b+ ν2)− βb(p− 1)qS(ν1 − ν2)

qR = − γν1(b+ ν2)(xSqS − 1)

(γ + b)(b+ ν1)(b+ ν2)− βb(p− 1)qS(ν1 − ν2)

These equations define the map Λ from which we derive
the reduced Hamiltonian

H⋆ = b

[
η
(
e−θ − 1

)
+ eθ − 1+

−
βη
(
eθ − 1

)
ν1(η − 1)(b+ ν2)

βb(p− 1)η(ν1 − ν2)− eθ(γ + b)(b+ ν1)(b+ ν2)

]

By solving Eqs. (19), we see that two different hyper-
bolic points overlap for

β̃ =
(γ + b)(b+ ν1)(b+ ν2)

bν2 + ν1ν2 + bν1p− bν2p
, (F3)

which is the same result obtained by the next-generation
matrix [15]. The phase portraits are reported in
Fig. (A3). From Figs. A3a, A3b and A3c, we see that
at the critical condition no new hyperbolic fixed points
appear, therefore the phase transition is of the second-
order as verified by the numerical simulations (Fig. A3d).

As discussed in the main text, since we have the pop-
ulation conservation as first integral, there is an arbi-
trariness in the derivation of Λ. In this case, in addi-
tion to the parametrization presented before, we have
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0.5 β


1
β

0.1

0.2

0.3

ρ

(d)

Fig. A3: Phase transition for the SEIR with two latent
categories. Panels A3a, A3b and A3c show the phase
portrait of the reduced system, where the blue line is the
mean-field manifold and the orange ones are the non-
trivial zero-energy levels. The dashed lines represent the
different parameterizations. Black and red dots repre-
sent the fixed points on the mean-field manifold. In par-
ticular, the red ones are the attractors of the dynamics.
Panel A3d shows the dependence of the order parame-
ter as a function of β, from numerical simulation. We
have considered: b = 0.2, γ = 0.3, p = 0.9, ν1 = 0.4
and ν2 = 0.1. Therefore, the phase transition occurs at
β̃ = 0.7895.

studied two others Λ2 and Λ3. Choosing as fist integrals
the conservation of N , the second, the fourth and the
fifth deterministic equations we obtain Λ2, while by tak-
ing the N conservation with the second, the third and
the fifth equations we have Λ3. The phase portrait of
the corresponding reduced Hamiltonians is represented
in Fig. (A3). We have analyzed the long-time behav-
ior of the different Langevin dynamics (25). For each
equation, we have performed a simulation in the active
phase and compared the stationary distribution for nS .
The results are shown in Fig. (A4). Distributions show
differences as expected, however they have the identi-
cal average and provide a qualitative description of the
stochastic environment of the system. Further studies
are needed to research a criterion for selecting only one
parameterization over the others.
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Fig. A4: Numerical asymptotic distribution of the sus-
ceptible individuals for the SEIR model with two latent
categories. The different colors represent the three differ-
ent parametrizations: Λ, Λ2 and Λ3, We have considered
N = 104, β = 1.11, b = 0.2, ν1 = 0.4, ν2 = 0.1, p = 0.9
and γ = 0.3. In this case, the critical point is β̃ = 0.7895.

3. Tax evasion model

We analyse with our formalism a simple model for tax
evasion that undergoes first-order phase transitions [63].
The models includes 3 compartments: honest individuals
H, susceptible ones S and evaders E. The dynamics are
described by the following elementary reactions,

E +H
λ/N−−−→ E + S,

S
α−→ E,

S +H
ϵ/N−−→ 2H,

H + E
δ/N−−→ 2H,

E
β−→ H.

The DPH is given by

H =
ϵ

N
a†H(a†H − a†S)aHaS +

δ

N
a†H(a†H − a†E)aHaE+

λ

N
a†E(a

†
S − a†H)aHaE + α(a†E − a†S)aS + β(a†H − a†E)aE ,

and the mean-field equations read

∂t⟨nH⟩ = ϵ

N
⟨nH⟩⟨nS⟩+ β⟨nE⟩+

δ

N
⟨nH⟩⟨nE⟩

− λ

N
⟨nH⟩⟨nE⟩

∂t⟨nS⟩ = −α⟨nS⟩ −
ϵ

N
⟨nH⟩⟨nS⟩+

λ

N
⟨nH⟩⟨nE⟩

∂t⟨nE⟩ = α⟨nS⟩ − β⟨nE⟩ −
δ

N
⟨nE⟩⟨nH⟩.

In this model, N is fixed and we consider
ρ = 1 − limt→∞⟨nH⟩/N as the order parameter.
After re-scaling the system size to N = 1, we take
as first integrals the last mean-field equation and the
population conservation, obtaining the parametrization

qS = −λqH(xHqH − 1)

α+ qH(λ+ ϵ)
, qE =

(α+ qSϵ)(1− xHqH)

α+ qH(ϵ+ λ)
.

The corresponding reduced Hamiltonian is:

H⋆ = −
(η − 1)e−θ

(
eθ − 1

)
αeθ + η(λ+ ϵ)

(
αe2θ(β + δη)+

ηeθ(−αλ+ βϵ+ δηϵ+ ηλϵ)− η2λϵ
)
.

The zero-energy curves intersecting the mean-field line
are

η ≡ 1 , θ = Θ(η) = log

(
η

√
(−αλ+ βϵ+ δηϵ+ ηλϵ)2 + 4αλϵ(β + δη) + αλ− βϵ− δηϵ− ηλϵ

2α(β + δη)

)
.

We denote by F− and F+ the intersection of Θ with the
mean-field line, where ηF− ≤ ηF+

, and F1 = (1, 0) is the
usual absorbing state (see Fig. A5). By considering λ as
control parameter, we find that Θ(1) = 0 for λ equal to

λ̃ :=
(α+ ϵ)(β + δ)

α
. (F4)

For λ < λ̃, as reported in Figs. A5a and A5d, the sys-
tem converges to F1 and there are no phase transition.
Moreover, at the critical point, for ϵ equal to

ϵ̃ :=
αβ

δ
,

Θ is tangent to the mean-field line and F+ = F− = (1, 0),

so we find a tricritical point. In particular, for ϵ < ϵ̃, at
the critical point we find F− = (1, 0) (Panel A5b). By
studying the eigenvalues, we observe that F− becomes
the attractor (Panel A5c) and a second-order phase tran-

sition occurs. Otherwise, if ϵ > ϵ̃, at λ = λ̃ we have
F+ = (1, 0) as shown in Fig. A5e and for λ > λ̃ the dy-
namics jumps to the new attractor F− (Fig. A5f). There-
fore, there is an abrupt changing of the asymptotic be-
havior, that is a first-order transition. A picture of this
behaviour is reported in Fig. A5 and in Fig. A6 we show
a numerical simulation for both the first- and second- or-
der phase transition. We point out that, while the criti-
cal value (F4) corresponds to the result predicted in [63],
with our method we find a continuous critical behaviour
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from low ϵ that had not been investigated before.

4. Levin’s model

Let us now study another model of ecological interest
widely treated in the literature: the Levin’s model. This
model is characterized by two types of processes, namely,
one of population proliferation in an empty patch, and
one of extinction. We focus on systems containing two

species A and B whose dynamics are defined by the rates

ω(n+ IA − I∅,n) =
c

N
nA(n∅ −D)

ω(n+ IB − I∅,n) =
β

N2
nAnB(n∅ −D)

ω(n− IA,B + I∅,n) = nA,Bϵ

(F5)

where n∅ represents the number of non-occupied patches.
Moreover, we are including D patches that have been
damaged and can no longer be occupied. The population
A has an independent growth, while the dynamics of B
depends on A. From these rates, we see thatN ≥ n∅ ≥ D
to have a well defined dynamics.
The Doi-Peliti Hamiltonian reads

H =
cD

N
a†A

(
a†A − a†∅

)
aAa∅ −

cD

N
a†A
[
(a∅)

−1 − 1
]
aA +

β

N

(
a†B − a†∅

)
a†Aa

†
BaAaBa∅

− βD

N

[
a†B(a

†
∅)

−1 − 1
]
a†Aa

†
BaAaB + ϵ

(
a†∅ − a†A

)
aA + ϵ

(
a†∅ − a†B

)
aB ,

and the mean-field equations are

∂t⟨nA⟩ =
c

N
⟨nA⟩ (⟨n∅⟩ −D)− ϵ⟨nA⟩

∂⟨nB⟩ =
β

N2
⟨nA⟩⟨nB⟩ (⟨n∅⟩ −D)− ϵ⟨nB⟩

∂⟨n∅⟩ = −∂t⟨nA⟩ − ∂t⟨nB⟩

We choose ⟨nA⟩/N as the order parameter and D as the
control variable. The solution of (19) yields two critical
points

A)
⟨nA⟩
N

= 0,
⟨nB⟩
N

= 0,
⟨n∅⟩
N

= 1, D̃1 = N
(
1− ϵ

c

)
,

B)
⟨nA⟩
N

=
c

β
,

⟨nB⟩
N

= 0,
⟨n∅⟩
N

=

(
1− c

β

)
,

D̃2 = N

(
1− c

β
− ϵ

c

)
.

Thus D̃1 > D̃2, and we expect to observe two
phase transitions. By solving Eq. (18) with the
second mean-field equation and the population con-
servation as constraints, we obtain two parametriza-
tions Λ(xA, qA) = (xA, xB , x∅, qA, qB , q∅), as in Ap-
pendix IVD. They are

Λ(A) =(
xA, 1, 1, qA, N −D − qAxA − ϵN2

qAβ
,D +

ϵ

qAβ

)
,

Λ(B) = (xA, 1, 1, qA, 0, N − xAqA) .

We denote by H⋆(A) and H⋆(B) respectively the reduced
Hamiltonians for Λ(A) and Λ(B), that read

H⋆(A) =
e−θ

(
eθ − 1

)
ϵ
(
ce2θ − βη

)
β

H⋆(B) = −e−θ
(
eθ − 1

)
η
(
ceθ(d+ η − 1) + ϵ

)
,

where we have re-normalized the population with respect
to N and we have introduced d = D/N . By analysing
their zero-energy lines with the attractors of the dynam-
ics, we note that the system is described by H⋆(B) for
D < D̃1, and by H⋆(A) otherwise. A sketch of the phase
portraits is shown in panels A7a, A7b and A7c.

A numerical simulation for the system is reported in
panel A7d. There, we can observe 3 regimes, separated
by the two phase transitions found above. The first
regime, for D < D̃2, is characterize by the coexistence of
both populations. In the second one, for D̃2 < D < D̃1,
only population A survives. For D > D̃1, the fragmen-
tation is too strong and there is complete extinction of
all species. In both cases we have a second-order phase
transition.
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Fig. A5: Phase portrait for the taxes evasion model. The orange lines represent the mean-field manifold, while the
blue ones are the other non zero-energy lines. F1 and F± are the system fixed points. Red dots are the attractors
of the deterministic dynamics. In the upper Panels A5a, A5b and A5c, we report the second-order phase transition
behavior: with ϵ < ϵ̃, we see that the intersection F1 overlaps with F1 and becomes the new attractor. The asymptotic
state changes smoothly and we have a continuous phase transitions. Otherwise, in the lower Panels A5d, A5e and
A5f, when λ = λ̃, we have F1 = F+ and the dynamics varies in a discontinuous way converging in F−. So we assist
to a first-order phase transitions.
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L. Brown, C. F. Dormann, F. Edwards, D. Figueroa,
U. Jacob, J. I. Jones, et al., Ecological networks–beyond
food webs, Journal of Animal Ecology 78, 253 (2009).

[7] J. Bascompte, Structure and dynamics of ecological net-
works, Science 329, 765 (2010).

[8] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi,
The anatomy of a scientific rumor, Scientific reports 3,
2980 (2013).

[9] R. Gallotti, F. Valle, N. Castaldo, P. Sacco, and
M. De Domenico, Assessing the risks of ‘infodemics’ in re-
sponse to covid-19 epidemics, Nature Human Behaviour
4, 1285 (2020).

[10] V. Belik, T. Geisel, and D. Brockmann, Natural human
mobility patterns and spatial spread of infectious dis-

eases, Physical Review X 1, 011001 (2011).
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V. Latora, Y. Moreno, et al., The physics of higher-order
interactions in complex systems, Nature Physics 17, 1093
(2021).

[60] M. Shimada, P. Behrad, and E. D. Giuli, Universal
slow dynamics of chemical reaction networks (2024),
arXiv:2304.10072 [q-bio.MN].

[61] G. W. A. Constable, A. J. McKane, and T. Rogers,
Stochastic dynamics on slow manifolds, Journal of
Physics A: Mathematical and Theoretical 46, 295002
(2013).

[62] A. Barrat, M. Barthelemy, and A. Vespignani, Dynami-
cal processes on complex networks (Cambridge University
Press, 2008).

[63] N. Crokidakis, A simple mechanism leading to first-
order phase transitions in a model of tax eva-
sion, International Journal of Modern Physics C 33,
10.1142/s0129183122500759 (2021).

https://doi.org/10.1007/s00285-020-01512-y
https://doi.org/10.1007/s00285-020-01512-y
https://doi.org/10.1088/1742-5468/2007/07/P07024
https://doi.org/10.1088/1742-5468/2007/07/P07024
https://doi.org/10.1088/1742-5468/2007/07/P07024
https://doi.org/10.1103/PhysRevE.70.041106
https://doi.org/10.1103/PhysRevE.70.041106
https://doi.org/https://doi.org/10.1090/cln/012
https://doi.org/https://doi.org/10.1016/j.crhy.2019.05.003
https://doi.org/https://doi.org/10.1016/j.crhy.2019.05.003
https://doi.org/10.20944/preprints202310.1646.v1
https://doi.org/10.1017/CBO9780511791383
https://doi.org/10.1017/CBO9780511791383
https://arxiv.org/abs/2304.10072
https://doi.org/10.1088/1751-8113/46/29/295002
https://doi.org/10.1088/1751-8113/46/29/295002
https://doi.org/10.1088/1751-8113/46/29/295002
https://doi.org/10.1142/s0129183122500759

	Effective one-dimension reduction of multi-compartment complex systems dynamics
	Abstract
	Introduction
	Theoretical background
	Stochastic compartmental models
	The Doi-Peliti formalism and the path integral representation
	 Stationary paths and Hamiltonian systems

	Phase portraits and phase transitions
	The Doi-Peliti formalism and the characterization of phase transitions
	Fokker-Planck and Langevin representations
	Application to epidemiology: A modified SIS model
	The role of the initial conditions

	Dimension reduction
	Theoretical results
	Application to cascading failures: A modified SIRS model
	Application to ecology: the generalized Lotka-Volterra model
	A simple two-species Lotka-Volterra system
	The Lotka-Volterra system with 8 species

	Resource-exploiter model

	Conclusions
	Acknowledgments
	Derivation of the path integral representation
	WKB approximation for CRNs
	A basis for the stationary paths
	Doi-Peliti Hamiltonian for Complex Reaction Networks 
	Closure transition rates
	Further examples of models studied through the dimension reduction
	The standard SEIRS model
	SEIR model with two latent categories
	Tax evasion model
	Levin's model

	References


