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ABSTRACT
Human motion understanding is a fundamental task with diverse

practical applications, facilitated by the availability of large-scale

motion capture datasets. Recent studies focus on text-motion tasks,

such as text-based motion generation, editing and question answer-

ing. In this study, we introduce the novel task of text-based human

motion grounding (THMG), aimed at precisely localizing tempo-

ral segments corresponding to given textual descriptions within

untrimmed motion sequences. Capturing global temporal infor-

mation is crucial for the THMG task. However, transformer-based

models that rely on global temporal self-attention face challenges

when handling long untrimmed sequences due to the quadratic

computational cost. We address these challenges by proposing Text-

controlled Motion Mamba (TM-Mamba), a unified model that inte-

grates temporal global context, language query control, and spatial

graph topology with only linear memory cost. The core of the

model is a text-controlled selection mechanism which dynamically

incorporates global temporal information based on text query. The

model is further enhanced to be topology-aware through the in-

tegration of relational embeddings. For evaluation, we introduce

BABEL-Grounding, the first text-motion dataset that provides de-

tailed textual descriptions of human actions along with their corre-

sponding temporal segments. Extensive evaluations demonstrate

the effectiveness of TM-Mamba on BABEL-Grounding.

CCS CONCEPTS
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1 INTRODUCTION
Human motion understanding is a crucial task with a wide range

of applications. Recent years have witnessed the flourishing of

large-scale motion capture databases [31, 51, 52, 65], which greatly

facilitate the end-to-end training of various motion-related tasks.

Based on these databases, recent studies [21, 26, 41, 43, 58, 68]

have augmented motion datasets with textual annotations. These

annotated motion-text pairs enable a range of text-motion tasks

that require a joint understanding of human motion and language,

such as text-based motion generation [56, 69, 83, 85], motion cap-

tioning [22, 33], text-based motion editing [15, 37, 86], and motion

question answering [12]. However, in real-world scenarios, seman-

tic actions often occur sparsely within lengthy motion sequences.
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Text query: He uses his right foot to kick something.

Text query: He stretches his upper body by twisting it from side 

to side and reaching down to touch his toes with both arms.

Grounded Temporal Segments

Grounded Temporal Segments

Figure 1: Illustration of the Text-based Human Motion
Grounding (TMHG) task and samples of the proposed BABEL-
Grounding dataset. Best viewed in color.

Thus, a textual description of particular human actions often corre-

sponds to specific temporal segments of the sequence rather than

the entire sequence. Precisely localizing the temporal segments

corresponding to the text query presents a substantial challenge.

In this study, we introduce the task of text-based human motion

grounding (THMG) for the first time, which aims to identify the start

and end timestamps of all segments corresponding to a given textual

description from an untrimmed motion sequence. Unlike existing

motion temporal action localization tasks [80], the queries in THMG

consist of arbitrary natural languages rather than a predefined set

of action labels. As shown in Figure 1, the THMG task is highly

challenging as it requires simultaneous consideration of several

critical factors: (1) Achieving precise grounding of the time interval

corresponding to the query within a long sequence demands the

model’s ability to grasp global temporal context effectively. (2)

The model should jointly tackle the information from motion and

language, ensuring a thorough fusion and interaction between

the two modalities. (3) As human pose representation inherently

possesses a graph structure, the model needs to capture the latent

spatial topological information.

Effectively capturing global temporal information is crucial for

THMG task. Existing frameworks for text-motion analysis mostly

adopt recurrent neural networks [23, 72] or temporal convolu-

tions [21, 22, 33, 83, 90, 91] as the main workhorse. However, their

ability to capture long-term dependency is quite limited. Recently,

there has been a surge of interest in transformer-based models [56,

69, 82] for modeling temporal dependencies. In these approaches,
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a global temporal self-attention mechanism is employed across

all frames in the sequence. Nonetheless, these methods encounter

challenges when dealing with untrimmed sequences that are very

long, as computing a global temporal self-attention is exceedingly

computationally expensive in such scenarios.

In this work, we aim to attack all the aforementioned challenges

through a unified model that seamlessly incorporates temporal

global context, language query control, and spatial graph topology.

Our primary source of inspiration stems from the recently pro-

posed state space model called Mamba [16], an efficient model for

handling long-term dependencies within lengthy sequences, while

maintaining linear computational cost. Mamba has demonstrated

its power across diverse domains, including language modeling and

visual understanding. However, its potential application in human

motion tasks remains largely unexplored.

The core of Mamba is an input-dependent selection mechanism,

enabling the model to selectively propagate or forget information

over time depending on the current input. This innovative design

greatly enhances traditional State Space Model (SSM) methods, as

Mamba is capable of grasping the global context of long sequences

while filtering out irrelevant information. However, in the THMG

task, the model must select information based textual queries as

well. To address this challenge, a text-controlled selection mecha-

nism is introduced, wherein the key idea is to condition the state

transition matrix on both motion and text queries. Unlike existing

multimodal Mamba methods [61, 89] that merely concatenate the

textual and visual features and feed it into Mamba blocks, our ap-

proach is the first work in enabling texts to dictate the selective

propagation of input information. This ensures that the model dy-

namically adjusts its focus based on the interplay between motion

and text inputs. Furthermore, as human motion sequences inher-

ently possess a graph topology, the original Mamba model is not

suitable as it is designed to operate on univariate time series. To

address this, we enhance Mamba by integrating relational infor-

mation via graph neural networks into its state representation to

facilitate topology awareness. The resulting framework, termed

Text-Controlled Motion Mamba (TM-Mamba), can selectively ex-

tract relevant global context information based on textual queries

in the motion sequence.

For evaluation, existing datasets [45, 59] with frame-level tem-

poral annotations are not directly applicable to the THMG task.

While BABEL [59] provides temporal boundaries for all actions that

occur in the sequence, it lacks complete detailed textual descrip-

tions, offering only simple categorical phrases. Motion-X [45] offers

detailed pose descriptions for each frame, but its texts focus on the

movement of human body parts at each timestep, making it inca-

pable of establishing a mapping from semantic action descriptions

to temporal segments. To address this gap, based on BABEL, a new

dataset called BABEL-Grounding is introduced to serve as a bench-

mark for evaluating THMG task. BABEL-Grounding is the first

text-motion dataset that provides detailed textual descriptions of

human actions along with their corresponding temporal segments

in untrimmed motion sequences. Like real-world scenarios, each

query may correspond to multiple temporal segments. Extensive

evaluations of TM-Mamba are conducted on the newly introduced

dataset, demonstrating its effectiveness in THMG task. Our primary

contributions can be summarized as follows:

• We introduce a new text-motion task, text-based humanmo-

tion grounding (THMG), along with a text-motion dataset

called BABEL-Grounding tailored specifically for THMG,

which is the first of its kind.

• We proposed TM-Mamba, a unified model with only linear

memory cost specially crafted for THMG task, which is

the first work that incorporates a text-controlled selection

mechanism into the Mamba framework.

• Extensive evaluations on the BABEL-Grounding dataset

demonstrates the efficacy of the proposed TM-Mamba.

2 RELATEDWORK
2.1 Datasets for Text-Motion Learning
This section presents an overview of existing humanmotion datasets

annotated with texts. These text-motion datasets are primarily de-

veloped for text-drivenmotion generation task, hence they typically

include textual descriptions at the sequence level for each motion

sequence. For example, the KIT Motion Language dataset [58]

is the first that provides human motion alongside correspond-

ing sequence-level textual descriptions. Following this direction,

several subsequent works have endeavored to construct larger-

scale datasets of similar kind, such as HumanML3D [21], InterHu-

man [43], HumanLong3D [26], FLAG3D [68], STDM [41]. Some

datasets go beyond mere textual annotations and incorporate ad-

ditional contextual information. For instance, HUMANISE [72]

integrates 3D scene information to facilitate motion generation

within 3D environments, while HOI-Diff [55] incorporates object

geometry information to support human-object interaction dur-

ing generation. Furthermore, there are datasets tailored for diverse

text-motion tasks beyond generation alone. Examples include Pos-

eScript [10], which focuses on static pose generation and pose

captioning, and PoseFix [11], which targets motion editing tasks.

However, all of the aforementioned datasets only contain sequence-

level annotations, rendering them unsuitable for temporal tasks. To

address this limitation, various efforts have been made to develop

motion datasets with specific temporal information. For instance,

BABEL [59] introduces a motion dataset with frame-wise annota-

tions, providing temporal spans for each action label, thereby en-

abling tasks such as action localization. Constructed upon BABEL,

BABEL-QA [12] extends the dataset by incorporating question-

answer pairs, aiming to facilitate motion-based question answering.

Another example is HuMMan-MoGen [86], which is built upon the

HuMMan [6] dataset, where each sequence is divided into prede-

fined action phases, along with phase-level detailed annotations

describing themovement of each body part. Recently,Motion-X [45]

offers part-level textual annotations for human pose at each frame.

However, the annotations of Motion-X are based on individual

poses and lack a mapping from textual descriptions of semantic

actions to temporal boundaries.

2.2 Text-Motion Multi-modal Learning
Recently, there has been a growing interest in text-motion multi-

modal learning. Current research mainly focuses on text-to-motion

task (also known as text-driven motion generation), where human
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motion sequences are generated based on natural language [1–

3, 7, 14, 21, 26, 27, 30, 34, 36, 38, 41, 44, 49, 56, 60, 64, 69, 71, 72, 74–

76, 79, 81, 82, 84, 86, 87, 90, 92]. The key challenge is to learn

a joint embedding space for motion and text. For instance, Mo-

tionCLIP [69] aligns human motion embeddings with CLIP space

through cosine similarity loss to inherit the semantic structure of

CLIP latent space. A traditional transformer-based auto-encoder

is employed to generate motion sequences. TEMOS [56] addresses

stochastic motion generation using a VAE structure, aligning the

embedding space of motion and text via KL-divergence between

their latent distributions. Other works focus on employing various

modern generation methods for improved conditional generation.

For instance, T2M-GPT [83] utilizes Vector Quantised Variational

AutoEncoder (VQ-VAE) to encode motion sequences into discrete

tokens, enabling GPT-like autoregressive generation and training

through next-token prediction, with text embedding serving as

prior. MotionDiffuse [85] incorporates Denoising Diffusion Prob-

abilistic Models (DDPM) into the task of text-motion generation,

greatly enhancing the diversity and fidelity of generated sequences.

In recent years, some works [9, 22, 33, 37, 91] aim for more gen-

eral text-motion models capable of seamlessly handling various

text-motion tasks simultaneously. For example, TM2T [22] estab-

lishes a bi-modal mutual mapping between texts and tokenized

human motion using autoregressive neural machine translators

(NMT), effectively handling both text-to-motion and motion-to-

text tasks. MotionGPT [33] utilizes VQ-VAE to create a motion

tokenizer and vocabulary, and then perform pretraining on both

motion and text in a unified manner, by treating human motion

as a foreign language. Additionally, some works explore various

text-motion tasks beyond generation, including motion question

answering [12], text-based motion editing [15, 37, 86], text-motion

retrieval [54, 57], etc.

2.3 State Space Model
State spacemodels (SSMs) are a series of sequential models renowned

for their computation and memory efficiency and the ability to

model long-term dependencies. The pioneering work, S4 [19], first

proposed applying HiPPO [17] initialization to enable SSMs to

maintain long-range memory. Subsequent studies [13, 18, 20, 25, 28,

53, 67] have followed this direction, further improving the space

structure and network architecture of S4.

Recently, Mamba [16] introduces an input-dependent selection

mechanism into SSMs, demonstrating linear time efficiency in long-

sequence modeling and achieving outstanding performance across

various sequential tasks. The model has been adapted to diverse

tasks, including image restoration [24], image segmentation [46,

50, 63, 73, 77], point cloud [42], video understanding [40, 78], pan-

sharpening [29], graph analysis [4, 70], multimodal learning [61, 89].

There’re also some efforts [47, 93] aiming to establish a universal

visual backbone based on Mamba by sequentializing images using

patch-based methods akin to ViT. In a more recent study, [88] in-

troduces a motion generation model that incorporates the Mamba

block within a denoising U-Net architecture to effectively enhance

motion consistency across frames. The textual information is in-

tegrated during the diffusion process via a conditional denoiser,
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Figure 2: Dataset statistics of BABEL-Grounding. ‘Frame Number’
refers to the length of motion sequences. ‘Text Query Length’ de-
notes the length of textual annotations in the data. ‘Grounded Length
Ratio’ indicates the ratio of the length of temporal segments cor-
responding to each text query to the total length of the sequence.
‘Segment Counts per Query’ refers to the number of temporal seg-
ments corresponding to each text query.

while theMamba block is solely utilized for spatial-temporal feature

extraction, without a multimodal design.

3 BABEL-GROUNDING DATASET
The task of THMG involves determining the start and end times-

tamps of all the segments in the motion sequence that align with

the given textual description. Our objective is to construct a dataset

where each text query depicting specific human actions can be

mapped to one or more temporal segments within the motion se-

quence. To this end, we construct the BABEL-Grounding dataset

based on BABEL [59]. BABEL-Grounding provides detailed tex-

tual descriptions of human actions alongside their corresponding

temporal segments in untrimmed motion sequences, with a total

of 5,339 sequences with 21,307 text-segments annotations. Each

sequence averages 743 frames, with the ground-truth temporal

segments having an average frame count of 112, indicating their

sparse distribution within the lengthy motion sequences. Figure 2

illustrates the dataset statistics of BABEL-Grounding. As depicted,

the BABEL-Grounding dataset contains comprehensive textual de-

scriptions for motion sequences of diverse lengths. Each text query

may correspond to multiple temporal segments, and these segments

are sparsely distributed throughout the entire motion sequence,

inherently posing a challenge for motion grounding task.

Below, we provide a concise overview of the construction process

for BABEL-Grounding annotations. The original BABEL dataset

provides dense temporal annotations by labeling each temporal

segment with corresponding actions. However, its textual anno-

tations consist of simple categorical phrases rather than detailed

and comprehensive sentences, and its data structure is not directly

applicable to the THMG task. Therefore, a set of manually-crafted
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Algorithm 1 Selection Mechanism (Mamba)

Input: Input sequence X ∈ RV×L×D
Output: Output sequence Y ∈ RV×L×D
1: B : (V, L, N) ← LinearB (X)
2: C : (V, L, N) ← LinearC (X)
3: ∆ : (V, L, D) ← log(1 + exp(Linear∆ (X) + Parameter∆))
4: A,B : (V, L, D, N) ← discretize(∆, ParameterA,B)
5: Y← SSM(A,B,C) (X)
6: return Y

Algorithm 2 Text-Controlled Selection Mechanism

Input: Input sequence X ∈ RV×L×D; Text query embedding 𝑞 ∈ R𝐷
Output: Output sequence Y ∈ RV×L×D
1: B : (V, L, N) ← LinearB (X, 𝑞)
2: C : (V, L, N) ← LinearC (X, 𝑞)
3: ∆ : (V, L, D) ← log(1 + exp(Linear∆ (X, 𝑞) + Parameter∆))
4: A,B : (V, L, D, N) ← discretize(∆, ParameterA,B)
5: Y← SSM(A,B,C) (X)
6: return Y

rules has been employed to augment the dataset, which will be

elaborated below.

3.1 Textual augmentation
The quality of textual annotations in BABEL is greatly limited by

items that consist of only simple words or phrases, such as ‘place’,

‘turn’, and ‘step’. These ambiguous and meaningless items make up

a considerable proportion of the data and fail to provide detailed

descriptions of human body movement involved in the motion. To

address this issue, two approaches have been applied:

Utilizing external annotations. BABEL is built upon the AMASS

motion capture database [51], while HumanML3D [21] offers de-

tailed textual annotations at the sequence level for the AMASS

database. For each entry in the BABEL dataset with overly simplis-

tic annotations, its corresponding entry in HumanML3D is located

by the sequence ID. When the sequence-level HumanML3D anno-

tations contain the phrase from the BABEL annotations, human

annotators will manually verify their correspondence and supple-

ment the BABEL annotations with detailed textual descriptions

from HumanML3D.

Template-based augmentation. As HumanML3D’s sequence-level

annotations only partially cover the items in BABEL, many low-

quality annotations remain unaddressed, particularly those with

only one-word labels. To address this gap, we’ve manually crafted

templates to enhance them. For example, ‘take’ is expanded to ‘take

something with his hands’, ‘stir’ becomes ‘stir something with his

hands in a circular motion’, and ‘place’ becomes ‘place the object

at a specific location’. This substitution process enriches the overly

simplistic annotations, rendering them more comprehensible for

the model. The final textual annotations are further refined by

ChatGPT(gpt-3.5-turbo) to make them more fluent, complete and

diverse.

3.2 Temporal Augmentation
Time windows merging. In the original BABEL dataset, temporal

segments of multiple annotated items may overlap with each other.

To further improve the quality of the textual annotations, we design

a time windows merging rule, which merges annotated segments

that have a significant overlap. To be specific, if the overlapped

portion of two segments counts for more than a certain ratio (which

is empirically set to 0.8) of one of them, the textual annotations of

them are then merged to describe the motion within the overlapped

part. This leads tomore detailed textswhich comprehensively depict

the human motion.

one-to-many mapping. BABEL dataset provides annotations for

each motion that occur in a sequence. However, in the THMG task,

one query may correspond to multiple temporal segments in the

sequence. To implement this feature, a one-to-many mapping from

text to segments is established by merging the items with the same

textual annotations.

4 METHOD
4.1 Preliminaries on Mamba
In this section, we present a brief review of State Space Models

(SSM) and Mamba [16]. SSM is a series of sequential models that

maps the input sequence 𝑥 (𝑡) ∈ R to the output sequence 𝑦 (𝑡) ∈ R
through a hidden state ℎ(𝑡) ∈ R𝑁 , which can be depicted as a linear

ODE:

ℎ′ (𝑡) = Aℎ(𝑡) + B𝑥 (𝑡),
𝑦 (𝑡) = Cℎ(𝑡) . (1)

where A ∈ R𝑁×𝑁 ,B ∈ R𝑁×1,C ∈ R1×𝑁 are the evolution and

projection parameters. This continuous ODE can be discretized

using a timescale parameter ∆ following the zero-order hold (ZOH)

rule:

A = exp (∆A),

B = (∆A)−1 (exp (∆A) − I) · ∆B.
(2)

The discretized form of the aforementioned formulation can be

calculated using linear recurrence:

ℎ𝑡 = Aℎ𝑡−1 + B𝑥𝑡 ,

𝑦𝑡 = Cℎ𝑡 .
(3)

However, linear recurrence requires unfolding in time and is

unable to be parallelized. S4 [19] ensures Linear Time Invariance

(LTI) by assuming that A,B,C,∆ remain static, allowing for the

implementation using global convolution as y = x ∗ K, where

K = (CB,CAB, . . . ,CA
𝐿−1

B), (4)

and 𝐿 denotes the length of the input sequence, and K ∈ R𝐿
represents a structured convolutional kernel. On the other hand,

Mamba [16] introduces an input-dependent selection mechanism

by making A,B,C,∆ become functions of 𝑥𝑡 . Such formulation can

be efficiently computed via the proposed parallel scan algorithm.
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He stretches his upper 

body by twisting it from 

side to side.
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Figure 3: Left: overall architecture of our proposed model. Right: Illustration of TM-Mamba block. ‘Bidirectional SSM’ refers to the text-
controlled selection mechanism demonstrated in Algorithm 2 with bidirectional modeling.

4.2 Text-Controlled Selection Mechanism
Mamba emphasizes the crucial role of selectivity in constructing

sequence models. When dealing with very long sequences, it be-

comes impractical to memorize all the information within the com-

pressed state vector. Therefore, it’s essential to design a selection

mechanism that controls how information propagates or interacts

along the sequence dimension. Mamba addresses this challenge by

employing a context-aware parameterization of state transition ma-

trices. This enables the model to focus on or filter out information

based on the current input data.

However, in the context of the THMG task, the model needs to

dynamically select relevant global information from the sequence

based on the text query to achieve better grounding performance.

Existing multimodal Mamba methods [61, 89] use simple concate-

nation to merge textual and visual features as input for Mamba,

but the key selection mechanism governing the information flow

remains the same. To overcome this limitation, we propose a text-

controlled selection mechanism that allows the selection process to

depend on both the motion input and the text query. As illustrated

in Algorithm 1 and 2, Mamba parameterizes A,B,C,∆ as functions

of the input, whereas in text-controlled selection, these parameters

become functions of input sequence as well as text query.

The algorithm essentially resembles a text-based gating mech-

anism, dynamically controlling the flow of information based on

textual queries. Theorem 1 of [16] implies that Algorithm 2 exhibits

similarities to gated RNN under certain conditions:

Lemma 4.1. When 𝑁 = 1,A = −1,B = 1, the text-controlled
selection mechanism takes the form of 𝑔𝑡 = 𝜎 (𝐿𝑖𝑛𝑒𝑎𝑟Δ (𝑋,𝑞)) and
ℎ𝑡 = (1 − 𝑔𝑡 )ℎ𝑡−1 + 𝑔𝑡ℎ𝑡 , where X denotes input sequence and q
denotes query embedding.

Lemma 4.1 indicates that the text-controlled selective SSM bears

resemblance to a gated RNN, wherein the gate 𝑔𝑘 relies on both

motion input and text query, enabling the text query to control the

information flow during propagation. Given that the recurrence

process in line 5 of Algorithm 2 remains unchanged, the resultant

text-controlled SSM can still be efficiently computed using the

parallel scan algorithm outlined in [16]. The new algorithm can

be implemented by modifying the forward and gradient backward

functions of the original Mamba, which enables end-to-end joint

training of SSM and the language backbone.

4.3 Text-Controlled Motion Mamba
Text-Controlled Selective SSMs enjoy linear computational com-

plexity and memory consumption, making them suitable for ex-

tracting the global context of very long sequences. This makes it

a natural choice for temporal modeling in motion grounding task.

However, the human skeleton inherently possesses a latent graph

structure, constituting a multivariate time series. Mamba operates

on univariate sequences, thus overlooking the interaction of human

joints.

In this study, we enhance Mamba through the incorporation of

topology awareness, achieved by integrating relational embeddings

to convey information regarding neighboring nodes. Suppose an

input sequence takes the shape of X ∈ R𝑉 ×𝐿×𝐷 , where 𝑉 denotes

the number of joints in the human skeleton, 𝐿 denotes the sequence

length, and 𝐷 denotes the feature dimension. The relational embed-

ding R is computed as R = 𝑓 (X) ∈ R𝑉 ×𝐿×𝐷 , which encapsulates

the graph message at each time step. Here, 𝑓 denotes a Graph Neu-

ral Network (GNN), implemented as the AGCN proposed in [66].

Subsequently, the relational embedding R is concatenated with the

motion features and fed into the text-controlled selective SSM in
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Table 1: Ablation studies on BABEL-Grounding dataset. The best results are in bold.

Methods Text-Controlled Relational mAP@IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 Average

Unidirectional

29.8 27.2 24.9 22.8 20.5 17.8 14.4 22.5

✓ 41.5 37.9 34.4 30.7 27.7 23.7 18.7 30.7

✓ 40.5 37.1 34.0 30.6 27.7 23.9 19.6 30.5

✓ ✓ 42.5 38.5 34.9 31.5 28.3 23.9 19.2 31.3

Bidirectional

38.3 35.0 32.0 29.2 26.8 23.4 19.0 29.1

✓ 51.2 48.0 44.1 40.1 36.0 30.5 24.7 39.2

✓ 46.8 43.6 40.0 35.5 32.0 27.1 21.2 35.2

✓ ✓ 53.9 50.5 46.7 42.8 38.4 32.6 26.0 41.6

Algorithm 2, to jointly capture the global temporal information of

each joint alongside its topological context.

The overall architecture of the Text-Controlled Motion Mamba is

depicted in Figure 3. Unlike the vanilla Mamba block, which adopts

unidirectional causal modeling, the task of THMG demands the

global context of the entire sequence. To address this issue, a bidi-

rectional non-causal structure, as proposed in Vision Mamba [93],

is employed. The input goes through a stack of TM-Mamba blocks,

producing the output Y ∈ R𝑉 ×𝐿×𝐷 . After mean pooling along the

𝑉 dimension, Y is subsequently forwarded to an MLP layer. This

yields the frame activation score 𝑠𝑡 (𝑡 = 1, 2, . . . ,𝑇 ) for each frame,

indicating the likelihood of its inclusion in the retrieved temporal

segments. The entire framework can be supervised using a simple

cross-entropy loss.

L𝑐𝑒 = − 1
𝑇

𝑇∑︁
𝑡

(𝑦𝑡 log 𝑠𝑡 + (1 − 𝑦𝑡 ) log (1 − 𝑠𝑡 )) . (5)

where𝑦𝑡 denotes the ground-truth label indicating whether frame 𝑡

lies within the segments retrieved by the text query. The proposed

method achieves effective global context extraction, query-based

information selection, and topology modeling within a unified yet

simple framework. Compared to transformer-based methods, our

approach eliminates the necessity of computing self-attention over

the entire sequence along the temporal dimension. This eliminates

the need for quadratic memory, rendering it feasible for processing

very long sequences.

5 EXPERIMENTS
5.1 Implementation and Evaluation Details
The motion data pre-processing procedure adheres to the method-

ology outlined in BABEL [59]. The maximum length of the motion

sequence is constrained to 2000. The same data split for training

and evaluation as BABEL is adopted. We employ CLIP [62] (clip-

vit-base-patch32) as the text encoder, with its parameters being

jointly tuned together with the entire model during training. The

feature dimension 𝐷 in Algorithm 2 for both the input motion se-

quence and text query embedding is set to 256. The batch size and

base learning rate are configured as 4 and 5 × 10−4 respectively,
with the learning rate for CLIP set to 5 × 10−5. The optimizer is

an AdamW [48] with a weight decay of 1 × 10−4. The number of

stacked Motion-Mamba blocks is empirically specified as 3. Model

training is conducted on a single Nvidia A40 GPU.

During the inference stage, a series of thresholds are used to ob-

tain the predicted temporal segments, following [5]. Subsequently,

non-maximum suppression is performed to remove overlapping

segments. The evaluation of grounding performance is conducted

using mean Average Precisions (mAPs) under different Intersection

of Union (IoU) thresholds, namely [0.1 : 0.7 : 0.1].

5.2 Ablation Studies
We conduct extensive ablative studies on BABEL-Grounding dataset

to demonstrate the effect of each component in our proposed TM-

Mamba model.

Text-Controlled Selection Mechanism. The text-controlled se-

lection mechanism lies at the core of the TM-Mamba model. Remov-

ing this component directly from Algorithm 2 for ablation causes

the model incapable of perceiving text query information. To en-

able comparison, the ablative models follow the practice of [61, 89],

where textual embeddings are concatenated with the sequence in-

put. An MLP is then employed for feature fusion. As demonstrated

in Table 1, the text-controlled selection mechanism accounts for a

substantial performance gain. This underscores the significance of

dynamically regulating the propagation of information based on

textual queries.

Unidirectional v.s. Bidirectional. The Vanilla Mamba model

adopts a unidirectional approach, whereby the model can only ac-

cess the sequence history while processing the current step. This

unidirectional approach proves advantageous for tasks such as lan-

guage modeling. However, in the context of the THMG task, the

model requires a comprehensive understanding of the global con-

text of the entire sequence, demanding a non-causal bidirectional

structure. The results presented in Table 1 substantiate this claim,

demonstrating that the bidirectional model significantly outper-

forms its unidirectional counterpart.

Relational Embedding. The importance of topology modeling in

THMG task is also evaluated by removing the relational embedding

from TM-Mamba. As shown, the inclusion of relational embeddings

R improves the performance of the model by effectively capturing

the underlying graph structure within the skeletal data.
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Table 2: Performance comparisons to baseline methods on
BABEL-Grounding dataset. The best results are in bold.

Methods mAP@IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg

S4D-LegS [18] 29.1 26.2 23.0 19.6 15.9 12.0 8.9 19.2

S4D-Lin [18] 30.1 26.9 23.8 20.5 16.6 12.8 9.5 20.0

2s-AGCN [66] 31.2 24.7 20.5 17.1 14.0 10.5 7.8 18.0

InfoGCN [8] 49.5 42.5 36.1 30.5 26.0 20.8 15.3 31.5

MomentDETR [39] 51.1 46.0 39.1 32.9 26.8 20.5 13.6 32.9

EaTR [32] 53.4 48.5 43.6 37.3 31.0 23.5 16.2 36.2

STCAT [35] 47.1 44.2 40.7 37.1 33.3 28.9 23.6 36.4

TM-Mamba 53.9 50.5 46.7 42.8 38.4 32.6 26.0 41.6
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Figure 4: Comparison of memory consumption for TM-Mamba
and its transformer and LSTM counterparts under varying motion
sequence lengths. The transformer model runs out of GPU memory
when the sequence length reaches 1200.

5.3 Comparison with Baselines
Given that the THMG task is novel and lacks existing works for

comparison, several baseline methods are implemented for analysis.

To begin, several prominent models are chosen from the video mo-

ment retrieval task: MomentDETR [39], EaTR [32] and STCAT [35].

However, these models rely on global temporal transformers, which

require quadratic computational memory and are impractical for

handling the lengthy sequences in THMG task. As a remedy, their

global temporal transformers are substituted with efficient GRUs

which require only linearmemory.We also implement two baselines

based on powerful humanmotion backbones using spatial-temporal

graph convolutions, namely 2s-AGCN [66] and InfoGCN [8]. Text

embedding is incorporated through concatenation and MLP fusion

to integrate query information for text-based grounding. Finally,

we implemented several baselines based on recent SSM-based mod-

els [18] to demonstrate the advantages of TM-Mamba over other

SSM methods. As illustrated in Table 2, TM-Mamba outperforms

the baseline models in terms of mAP at various IoU thresholds,

thereby demonstrating its effectiveness on the BABEL-Grounding.

Table 3: Performance comparison of TM-Mamba and its tem-
poral transformer counterpart under different maximum
sequence length.

Length Model mAP@IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg

300 TM-Mamba 77.0 73.7 68.8 63.0 58.2 50.2 39.5 61.5

Transformer 72.9 67.3 60.9 54.6 48.4 39.4 30.2 53.4

500 TM-Mamba 74.0 70.2 65.4 59.7 53.7 45.7 37.1 58.0

Transformer 67.3 62.3 56.7 50.5 44.7 37.0 28.2 49.5

1000 TM-Mamba 58.0 54.5 50.5 46.5 41.4 35.9 28.4 45.0

Transformer 53.8 48.4 42.9 37.7 32.6 26.8 20.6 37.5

1500 TM-Mamba 55.6 51.9 48.1 44.2 39.5 33.8 26.6 42.8

Transformer – Out of Memory –

2000 TM-Mamba 53.9 50.5 46.7 42.8 38.4 32.6 26.0 41.6

Transformer – Out of Memory –

Text query: The person turned around.

Text query: He stands with both hands cupped in front of his chest, holding an 

object.

Figure 5: Visualizations of predicted frame activation score. The
solid red line denotes the predicted score of our full model, while the
dashed blue and gray lines denote themodel without text control and
relational embeddings, respectively. The gray bars below illustrate
the ground-truth temporal segments. Best viewed in color.

5.4 More Analysis
Memory Consumption. The memory usage of the Mamba-based

models increases linearly with the length of the sequence, which

allows them to effectively handle longer sequences. Figure 4 val-

idates this by comparing the GPU memory consumption of our

TM-Mamba model with its transformer and LSTM counterparts

when processing sequences of varying lengths. As depicted in the

figure, the memory cost of the transformer-based model increases

quadratically with sequence length, causing it to quickly run out

of memory. On the other hand, both the LSTM and TM-Mamba

models exhibit linear memory consumption, making them applica-

ble for processing long motion sequences when extracting global

context information. The slope of TM-Mamba is larger than its

LSTM counterpart due to larger hidden states.
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Text query: The man stands up and pushes off the ground using his right hand.

Text query: The man squats down to pose after a touchdown.

Text query: The person caught the ball with both of his hands.

TM-Mamba

w/o Relational

w/o Text-Controlled

GT

TM-Mamba

w/o Relational

w/o Text-Controlled

GT

TM-Mamba

w/o Relational

w/o Text-Controlled

GT

Figure 6: Visualizations of the grounding results of different models. ‘GT’ denotes ground-truth temporal segments corresponding to the
text query. Our TM-Mamba demonstrates superior performance in motion grounding, in terms of the number of retrieved segments and the
temporal boundaries of each segment. Best viewed in color.

Comparison with Transformer. Table 3 presents a comparison be-

tween TM-Mamba and its temporal transformer counterpart across

various maximum sequence lengths on the BABEL-Grounding

dataset. As shown, TM-Mamba exhibits superior performance to

temporal transformer on shorter motion sequence. Meanwhile, the

transformer model runs out of GPU memory at sequence lengths

exceeding 1000 due to its quadratic memory consumption. In con-

trast, TM-Mamba, benefiting from its linear memory cost, manages

longer sequences effectively. It can be observed that increasing se-

quence length complicates the extraction of temporal global context,

leading to a decline in motion grounding performance.

Visualizations. In order to demonstrate the effectiveness of our

proposedmodel, we provide visualizations on the BABEL-Grounding

dataset to showcase the comparisons between the TM-Mamba

model and two ablative models (w/o text control and w/o rela-

tional embedding). Figure 5 presents the frame activation scores

and the ground-truth temporal segments corresponding to the text

query. As illustrated, our full model manifests higher activation

scores within the ground-truth temporal segments in contrast to

other models, thereby resulting in enhanced accuracy in the ground-

ing performance. Figure 6 further visualizes the grounding results

predicted by the model in comparison with the ground-truth. As

depicted, the ablative models struggle to accurately predict the time

spans corresponding to the text query, while TM-Mamba achieves

significantly improved grounding precision.

6 CONCLUSION
This work introduces a novel task called text-based human motion

grounding (THMG), which aims to determine the start and end

timestamps of all segments from an untrimmed motion sequence

given a textual description. The key challenge lies in extracting

global temporal information from lengthy untrimmed sequences

based on text query, while transformer-based methods suffer from

quadratic memory cost. To this end, we draw inspiration from

recent advances in state space models, and propose a unified frame-

work called TM-Mamba with linear memory cost. TM-Mamba in-

corporates a novel text-controlled selection mechanism into the

Mamba algorithm, enabling the model to dynamically propagate

input information based on text queries and extract relevant global

context. A relational embedding is incorporated to model the un-

derlying graph topology of the human skeleton. For evaluation, a

text-motion dataset called BABEL-Grounding is constructed, which

is the first one that provides detailed textual descriptions with

their corresponding temporal segments annotation. Rigorous ex-

periments demonstrate the effectiveness of the proposed model.
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