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Symmetry sharing facilitates coherent interfaces which can transition from periodic to quasiperi-
odic structures. Motivated by the design and construction of such systems, we present hexagonal
quasiperiodic tilings with a single edge-length which can be considered as decorations of a periodic
lattice. We introduce these tilings by modifying an existing family of golden-mean trigonal and
hexagonal tilings, and discuss their properties in terms of this wider family. Then, we show how
the vertices of these new systems can be considered as decorations or sublattice sets of a periodic
triangular lattice. We conclude by simulating a simple Ising model on one of these decorations, and
compare this system to a triangular lattice with random defects.

I. INTRODUCTION

Quasiperiodic tilings have been well-studied across the
range of the physical sciences. They can be used as
simple tools to better understand or generate quasicrys-
talline phases of matter, studied as intrinsic mathemati-
cal objects, or utilised in applied research as the basis for
fabricated/manipulated structures. Historically, focus
has been applied to such tilings which exhibit rotational
symmetries which are incommensurate with periodicity
or translational symmetry: 5-, or greater than 6-fold.
However, this is not a required condition – quasiperiodic
tilings can, of course, be 2-, 3-, 4-, or 6-fold [1–9].

The sharing of symmetries opens the door to coherent
periodic-to-quasiperiodic interfaces, as it is the gateway
to reducing or minimizing structural frustration. For ex-
ample: decorating a 3-fold symmetric lattice with a 5-
fold symmetric pattern, or sandwiching together 3-fold
and 5-fold structures results in heterogeneous or incom-
mensurate interactions between the two systems. On the
other hand, periodic and quasiperiodic structures could
mix in a more systematic manner if their local environ-
ments are cohesive. The motivation for this work stems
from this idea, in which we focus on 6-fold quasiperi-
odic tilings. We choose this symmetry as hexagonal (and
trigonal) structures have the highest coordination num-
ber for a 2D periodic lattice (6), and therefore offer a
more ‘flexible’ local neighbourhood for manipulation.

Previously, we have introduced a family of hexago-
nal and trigonal tilings using a generalised version of de
Bruijn’s dual grid method [10–17]. The structure of the
tilings could be controlled by two parameters, αs and αl,
such that we labelled our tilings as Hαsαl

. Each tiling
consisted of hexagonal and/or rhombic tiles with edge
lengths built by the linear combination of two length-

scales: 1 and τ = 1+
√
5

2 . In this work we paid particular
attention to two ‘special’ cases in this family, which we
referred to as H00 and H 1

2
1
2
.
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Here, we modify the construction of the H00 and H 1
2

1
2

systems with a view to generate single edge-length hexag-
onal (SEH) quasiperiodic tilings. The single edge-length
parameter more readily leads to periodic-to-quasiperiodic
interfaces with relatively simple local environments – and
is an advantage for both physical and theoretical reali-
sations. First, we show the basic method used to con-
struct the SEH tilings and compare them to their H00

and H 1
2

1
2
counterparts. Then, we present the structural

properties of the SEH00 and SEH 1
2

1
2
tilings in their own

right in terms of their vertices, discuss their relationship
to periodic lattices, and illustrate the many variations
that can be constructed by deliberate and/or creative
choices. Next, to demonstrate some physical properties
of these systems, we present the results of a simple Ising
spin system simulated on the SEH00 tiling. We conclude
by briefly discussing potential applications across multi-
ple length-scales.

II. CONSTRUCTION OF THE SEH TILINGS

Here, we briefly discuss de Bruijn‘s dual grid method
in accessible terms, with the aim of introducing the rel-
evant parameters for the formation of the H and SEH
tilings. Then, we move on to presenting the SEH tilings,
compare them to the H tilings, and highlight the creative
possibilities afforded by changing scaling parameters.

de Bruijn’s method and the H tilings

An infinite set of regularly-spaced parallel lines defines
a grid, where the spacing and orientation of the grid lines
is determined by a perpendicular grid vector k(j). A
multigrid is then composed of a set of grids, with grid
vectors k. A particular tiling is dual to this multigrid in
the sense that the intersection points of grids directly cor-
respond to tiles in a tiling space. These tiles are formed
by the tiling vectors a, which belong to the same family
of the grids involved in the intersection. In other words,
if grids j and j + 1 intersect, the corresponding tile is
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FIG. 1: (a) Three parallel lines indicate a section of an infinite grid. The spacing and orientation of the grid lines is
defined by the perpendicular grid vector k(j). (b) A singular intersection point between two sets of grids defined by
k(1) and k(2) corresponds to a rhombic tile created by the associated tiling vectors a(0) and a(1). (c) A regular
intersection point results in a polygon with the number of edges (6) equal to twice the number of grids involved in
the intersection (3). (d) The a vectors associated with the H tilings. a(1−3) are a factor of τ shorter than a(4−6).
(e) The a vectors associated with the SEH tilings. The lengths of all a are set to 1.

formed of vectors a(j) and a(j+1). When two grids in-
tersect at a point (regular), the resultant tile is rhombic.
When more than two intersect (singular), a polygonal
tile is formed, with the number of edges equal to twice
the number of grids involved in the intersection. Figures
1(a – c) demonstrate the relationship between k and its
grid, examples of regular and singular multigrids, and the
resultant tiles formed by their intersection points.

Rather than reiterating the comprehensive approach
we took to defining our previous family of tilings [8], we
simply state their vector families and associated param-
eters. Gähler and Rhyner showed under the generalised
dual grid method that the choice of tiling and grid vec-
tors need not be identical – the only restriction being
that both families of vectors span a volume of the same
orientation [13]. So, following the notation of Rabson
[15, 16], our grid and tiling vectors were defined using
unit vectors:

n(j) =

(
cos

2π(j − 1)

3
, sin

2π(j − 1)

3

)
, j = 1, . . . 6,

(1)
such that our grid vectors were:

k(j) =
2π

Lj
n(j), j = 1, . . . 6, (2)

and our tiling vectors were:

aj =
2τ

3
√
5

1

Lj
n(j), j = 1, . . . 6, (3)

where Lj defines the scaling of our vectors:

Lj =

{
τ, j = 1, 2, 3,

1, j = 4, 5, 6.
(4)

Essentially, as one can choose the scale of the vectors
freely [13], we separated our grid and tiling vectors into
two groups. We chose a(1−3) to be a factor of τ shorter
than a(4−6), as shown in Figure 1(d), and the spacing
between grids k(1−3) to be a factor of τ longer than
k(4−6). This meant that the grids associated with the
longer tiling vectors a(4−6) were crossed more often, and,
as a consequence, ‘large’ tiles appear more frequently
– as expected in Fibonacci or golden-mean tilings [18].
Although our work focussed on τ -scaled tilings, we also
demonstrated that any irrational constant could be used
(as expected from [13]).
Finally, the two parameters mentioned earlier, αs and

αl, correspond to the sum of translational shifts applied
to the grids fj along the direction of the grid vectors k(j),
such that:

αs = f1 + f2 + f3 and αl = f4 + f5 + f6, (5)

where -1 ≤ fj ≤ 1. Figures 2(a) and (b) show examples
of tilings where αs ≡ αl ≡ 0, and αs ≡ αl ≡ 0.5, or,
the H00 and H 1

2
1
2
tilings, respectively. The H00 tiling

is comprised of 3 tiles: a small hexagon (edge length =
1), a parallelogram (edge lengths = 1, τ), and a large
hexagon (edge length = τ). The H 1

2
1
2

tiling is tech-

nically built using two mirror-symmetric parallelogram
tiles, three small, and three large rhombuses. However,
the colour scheme of Figure 2(b) is simplified as the spe-
cific properties of these tiles are not discussed here.

The SEH tilings

In the simplest terms, under the dual grid method,
the placement or arrangement of tiles is determined by
the multigrid intersection points. So, the arrangement
of tiles in the H00 and H 1

2
1
2
tilings is quasiperiodic due
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FIG. 2: (a) The H00 tiling, where a(1−3) are a factor of τ shorter than a(4−6), and the shifts applied to the grids
sum to 0. (b) The H 1

2
1
2
tiling, where the shifts applied to the grids sum to 0.5. (c) The SEH00 tiling, where the

length of all a = 1, and the shifts applied to the grids sum to 0. (d) The SEH 1
2

1
2
tiling, where the shifts applied to

the grids sum to 0.5.

to the irrational scaling factor between the two sets of
grid vectors k(1−3) and k(4−6). The tiling vectors, how-
ever, only affect the geometry of the tiles. Therefore, as
long as the scaling factor between the two groups of grid
vectors is irrational, we can simply set the scaling fac-
tor of the tiling vectors to be 1 and produce a hexagonal
quasiperiodic arrangement of single edge-length tiles.

Keeping our focus on systems where αs ≡ αl ≡ 0, and
αs ≡ αl ≡ 0.5, Figures 2(c, d) show the SEH00 and
SEH 1

2
1
2
tilings, which are generated by keeping the scal-

ing factor between k(1−3) and k(4−6) as τ , and setting the
lengths of a = 1, as in Figure 1(e). The colour scheme
of individual tiles is kept constant under this change, for
clarity. Decreasing the scale of tiling vectors a(4−6) de-
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FIG. 3: (a) A H00 tiling (thick black lines) with short and long tile edge lengths of 2 and 3 can be overlaid on
isolated hexagonal tiles of the SEH00 tiling. (b) Top: the seven vertex configurations of the H00 tiling. Bottom: the
corresponding vertices in the SEH00 tiling.

creases the longer parallelogram edges of H00 and H 1
2

1
2

to form rhombuses, while the larger hexagons in H00

and rhombuses in H 1
2

1
2
shrink to match the size of their

smaller counterparts.

Comparing the H and SEH tilings, it is trivial that
scale independent properties such as tile frequency and
edge-matching rules still hold. This is also true for the
vertex frequencies, however, we will discuss the vertices
and their properties separately in the next section. The
substitution rules we have previously discussed for the H
tilings are no longer valid [8], as we have lost the self-
similar scaling factor of τ ; whether the SEH tilings have
discrete substitution rules is an open topic. Out of in-
terest, we note a perhaps obvious mapping or decoration
property of the SEH00 tiling. Figure 3(a) shows that
isolated hexagonal tiles i.e., those not connected to other
hexagons by an edge, can be decorated with a H00 tiling
where the ratio of the long to short edge lengths of tiles
is 3/2, an approximation of τ . When we decorate the
same ‘parental’ tiles in the τ -scale H00 tiling, we find it
forms a τ2 inflated version of the original, where the tiles
have edge lengths 2+τ and 1+τ . Therefore, as we shrink
τ → 1 to create the SEH00 tiling, we create a 3:2 ratio.
A similar mapping likely holds for the SEH 1

2
1
2
tiling.

III. SEH TILING VERTICES AND PERIODIC
LATTICE DECORATIONS

In this section, we will briefly present observations on
the properties of the vertex configurations of the hexag-
onal tilings under the shrinking of a(4−6), before moving
on to discuss the considering the SEH tilings as decora-
tions of periodic triangular lattices.

Vertex configurations

The top of Figure 3(b) shows the seven vertex config-
urations of the H00 tiling [8], and the bottom shows the
corresponding vertices in the SEH00 tiling. The prop-
erties of these vertices are scale independent – changing
the tile edge lengths does not affect the number of vertex
types, nor their frequency across the tiling, as these are
determined in grid-space. The same is true for the H 1

2
1
2

tiling – for conciseness however we do not show these;
the H 1

2
1
2
tiling has 32 vertex types. This leads us to the

observation that we should expect identical magnetic be-
haviour to previous work on the magnetic states of the
H00 and H 1

2
1
2
tilings under the Hubbard model [19, 20] –

as in these cases we considered equal hopping interactions
between vertices separated by non-equal edge lengths.

Analysis of vertices in a quasiperiodic tiling is com-
monly done by considering the points as projections from
a higher-dimensional superspace. Indeed, we previously
showed how both the H00 and H 1

2
1
2
tilings can be con-

structed via the projection of a hypercubic lattice. The
basis of this lattice was defined by a matrix of six or-
thogonal 6-dimensional vectors, whose first two rows con-
tain the tiling vectors a [[8], section IV]. For the SEH
tilings, we can still view the vertices as projections onto
an internal subspace using the same matrix, such that
the internal subspace windows and their subdivisions are
identical to the H tilings. In this case, we do not obtain
any new information by considering the SEH tilings in
hyperspace. However, as we have altered a, the origi-
nal matrix no longer describes an orthogonal hypercubic
lattice.
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FIG. 4: (a, b) The vertex schematics of the SEH00 and SEH 1
2

1
2
tilings, where the edges of tiles have been bisected.

Under this scheme, the tilings can be considered as positions by ‘bonds’. Inset in (b) is an overlay of a periodic
triangular tiling (cyan), where certain edges are coloured red. These edges, when removed, form the SEH 1

2
1
2
tiling.

(c) The five n-vertex types associated with the tilings under the bond picture. Each type is labelled according to
their coordination number.

SEH vertices as periodic lattice decorations

The vertices of the SEH tilings can be directly related
to periodic triangular lattices. Figures 4(a, b) show the
vertices of the SEH00 and SEH 1

2
1
2
tilings respectively,

where the edges of the tiles have been bisected to illus-
trate the relationship to periodic lattices and the connec-
tivity between adjacent vertices.

This relationship is clearest for the SEH 1
2

1
2

tiling,

where each vertex perfectly decorates a periodic trian-
gular lattice with a lattice constant of 1. Under this
scheme, it becomes clear that the tile edges or bonds be-
tween vertices are quasiperiodic, while the vertex or point
distribution is not. Therefore, an alternative way to pro-
duce the SEH 1

2
1
2
tiling would be to remove a subset of

edges from a perfect triangular lattice tiling. An exam-
ple is overlaid and inset in Figure 4(b), where the cyan
lines indicate the triangular lattice, and the red lines are
edges which are removed. The centre point of these re-
moved edges sit at the centre of the SEH 1

2
1
2
tiles, such

that if we produce the dual tiling of the SEH 1
2

1
2
tiling,

its vertices consist of ‘removal’ points. Overlaying this
dual on top of a periodic triangular tiling then provides
a guide for which edges to remove in order to produce
the SEH 1

2
1
2
tiling. We show the dual in appendix A 1,

which contains triangular, rectangular, pentagonal, and

hexagonal tiles with edge lengths
√
3
2 and 1. The SEH00

vertices also decorate a triangular lattice, albeit with ad-
ditional quasiperiodically spaced ‘vacancies’ which arise
from the centre of the hexagonal tiles1. These vacancies
can be considered as perfectly ordered defects in a tri-
angular lattice – a property we explore in the following
section. Similar to the SEH 1

2
1
2
tiling, we can produce

a dual using the centres of the removed edges, which is
also shown in appendix A 1.
The relationship of the SEH tilings to periodic lat-

tices represents a potential route into exploring bespoke
quasiperiodic arrangements whose local environments
are commensurate with periodic structures. Similarly,

1 These vacancies can also form a decorated 3:2 ratio H00 tiling.
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FIG. 5: (a, b) n-vertex models of the SEH00 and SEH 1
2

1
2
tilings, respectively. Here, each vertex has been

colour-coded depending on their coordination number, with an additional vacancy position added at the centre of
the hexagonal tiles in the SEH00 tiling. The points occupy separate sublattices of a periodic triangular lattice. (c,
d) Bipartite systems formed by the combination of specific vertex types on the SEH00 and SEH 1

2
1
2
tilings,

respectively. The vertex types used are indicated in the legends.

one can imagine designing interfaces which more readily
broach the gap between periodic/quasiperiodic systems,
which we will discuss in further work. To demonstrate
the many structures which can be obtained for such work,
we characterize the SEH tiling vertices as quasiperiodic
decorations of a periodic lattice. To do so, we classify

each tiling vertex with respect to their coordination num-
ber, and then consider these as separate quasiperiodic
sublattices which occupy a periodic lattice.
The five resultant vertex types which comprise the two

tilings in this form are shown in Figure 4(c); we refer to
them as n-vertices, where n is their coordination num-
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ber. It is worth noting that we have collated all vertices
that are comprised of 3 vectors; technically, according to
Figure 3(b) there are three distinct 3-vertex types in the
SEH00 tiling (and many more in the SEH 1

2
1
2
). How-

ever, in this section we are more focussed on character-
ising and discussing the connectivity between geometri-
cally unique sites (in terms of ‘bonds’), so, for simplicity’s
sake, we group these together. For the two 4-vertices, we
label them 4A and 4B, as they are geometrically unique.
Out of interest, we note that the vertices in Figure 4(c)
look similar to the schematic representations of patchy
particles studied in self-assembly systems [21]. Whether
the vertices we present here could theoretically or ex-
perimentally self-assemble – similar to other patchy par-
ticle/tiling work [22–26] – is an intriguing question for
future work.

Figures 5(a, b) show the SEH00 and SEH 1
2

1
2
distri-

butions of the n-vertices respectively, colour-coded with
respect to their n-vertex type, and plotted as hexagons
for clarity. For the SEH00 tiling, we plot the centre of the
hexagonal tiles as ‘vacancies’. These figures serve to illus-
trate the wide range of decorations or designs available
for investigation; for reference, we plot the radial distri-
bution functions for each vertex type in appendix A 2.
In the simplest sense, we can construct bipartite systems
using distinct sublattices by combining certain n-vertex
types. For the SEH00 tiling, we have 6 types of vertices
that can be combined to give 31 unique two-part struc-
tures – calculated by summing the binomial coefficients
and removing the combination where all vertices are se-
lected. Correspondingly, the SEH00 tiling has 15 unique
types. We note that if we were to consider all instances
of the 3-vertices as occupying separate sublattices, the
number of available combinations increases dramatically.

Figures 5(c, d) show selected examples of such combi-
nations for the SEH00 and SEH 1

2
1
2
tilings respectively,

chosen only for their aesthetic quality; for reference, the
remaining combinations for both tilings are shown in ap-
pendix A 3. Similarly, and importantly, both the ratio
and arrangement of these n-vertices can be altered by
changing the irrational scaling constant between k(1−3)

and k(4−6). We show a few additional examples with
different constants in appendix A 4. Of course, creative
choices can be made using any irrational constant and/or
selection of n-vertices as ingredients to design quasiperi-
odic structures either spontaneously, or, with desired
structural environments/properties in mind. We note
that the combinatorial sub-lattice selection method we
have used here could also be applied to the Fibonacci
square tiling, or to the marked supertiles of the ‘Spectre’
monotile, for instance [3, 27].

IV. ISING MODEL ON THE SEH00 TILING

As previously mentioned, the SEH00 vertices can be
considered as a triangular lattice with a quasiperiodically
ordered set of vacancy defects. Now, the effect of topo-

logical defects on magnetic properties is a highly active
field – particularly with regards to hexagonal structures
[28–33]. As such, this system presents a potentially im-
portant stepping stone on the structural order spectrum
between a perfectly crystalline triangular lattice and one
with randomly ordered defects. Here, we choose to briefly
explore the magnetic states of structures across this spec-
trum under a simple Ising model2.

Simulation method

We study the J1-J2 Ising model on our systems using
the Monte Carlo method, such that our Hamiltonian is:

H = J1
∑
⟨ij⟩

S⃗i · S⃗j + J2
∑
⟨⟨ij⟩⟩

S⃗i · S⃗j (6)

where J1 and J2 are the nearest- and next-nearest neigh-
bour interactions, NN and NNN respectively, for sites i
and j with spins Si and Sj . Spins can either be up

(
0
1

)
or down

(
0
−1

)
. We investigate the system in two states:

considering J1 = −1, and J2 = 1,−1. In other words,
NN is set to be antiferromagnetic, and we modify NNN
to either be ferromagnetic or antiferromagnetic.
For each structure type, we use a square patch contain-

ing approximately 1500 spins, without periodic boundary
conditions. We run the Monte Carlo simulation over 45
descending temperatures, normalised by the lowest en-
ergy for a single site (T/J) on the triangular lattice. For
each temperature, we attempt 106 spin flips. Each struc-
ture is simultaneously simulated 10 times, and we average
the results over the ensemble. To ensure ‘sensible’ results
for the SEH00 and defect structures, we compare the fi-
nal spin states of the triangular lattice under each J1-J2
to those well known in the literature [34, 35].
Finally, the random defect models are constructed by

inspecting the properties of vacancies in Figure 5(a); no
two vacancies touch, and they constitute around 19% of
all vertices. We iteratively and randomly removed points
from a triangular lattice until these conditions are met.
An example of the vertex distribution and ‘random tiling’
model of one of these defect lattices is shown in appendix
B.

Results and analysis

Figure 6 shows a summary of our results: Figures 6(a-
c) are where J1 ≡ J2 ≡ −1, and Figures 6(d-f) where

2 The SEH 1
2

1
2

vertices form a perfect triangular lattice, as dis-

cussed, which is an Ising system that has widely been stud-
ied. However, it should be mentioned that the properties of the
SEH 1

2
1
2

tiling can still be explored (for any Hamiltonian) if we

consider interactions allowed only along tile edges (as with the
Hubbard model [19, 20])
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FIG. 6: (a-c): results where J1 = J2 = −1. (d-f): where J1 = −1, J2 = 1. (a, d) Heat capacity of the spin
systems, which have been averaged over the ensemble and normalized by the maximum value across the three
structures. (b, e) Spin correlation functions according to Eq. 8 for the final spin states across the ensemble. (c, f)
Randomly chosen spin textures of final spin states on the SEH00 tiling vertices, which are colour-coded by spin and
plotted as hexagons.

J1 = −1, J2 = 1, which we discuss separately below.
Figures 6(a, d) show the temperature dependent heat
capacity, C, which is calculated by:

C(T ) =
(⟨E2⟩ − ⟨E⟩2)

T
(7)

where the energy of each system is sampled at regular
intervals per T, and C has been normalized by the max-
imum value across the three systems.

Figures 6(b, e) show a spin-spin correlation function:

S(r) = ⟨S⃗i · S⃗r⟩ (8)

where r is the distance between two spins, which we cal-
culate for up to 10 distance units. For instance, if all
spins for a certain r are aligned parallel, S(r) = 1, while
if they are anti-parallel S(r) = -1. Finally, Figures 6(c, f)

show randomly selected final spin-states. We have plot-
ted the spins on the SEH00 vertices as hexagons, which
are colour-coded to represent their spin direction.

J1 ≡ J2 ≡ −1

Figure 6(a) shows that the triangular lattice has a clear
sharp peak according to the phase transition from a dis-
ordered to an ordered stripe-phase spin system. For the
SEH00 and defect systems this transition occurs at a
lower T, and the peaks are smaller and broader. As the
relatively small peak height means these systems require
less heat to undergo a phase transition, it may suggest
that they are also less stable than the triangular phase.
The broadness of the peaks indicates a comparatively
frustrated system to the triangular lattice: frustration
impedes long-range ordering, which causes the system to
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FIG. 7: Lowest energy states when J1 ≡ J2 ≡ −1 for
the 5-vertex considering Eq. 6 on the vertex only (a),
and across the whole vertex neighbourhood (b).

explore a wider range of spin configurations.
Figure 6(b) shows clear long-range order on the tri-

angular lattice: S(r) oscillates between 1 and - 13 as ex-
pected for the stripe phase – with some variance which
is caused by small coexisting stripe phases with different
orientations. For the SEH00 and defect spins, however,
S(r) decreases with increasing r, indicating systems with
less long-range order. This can be seen in Figure 6(c):
while the spin structure consists of the striped-phase of
the triangular lattice, the orientation of the stripes is
not continuous across the system (the same occurs for
the defect system). This can be explained by consid-
ering the 5-vertex spin neighbourhoods which occur in
both the SEH00 and defect structures, and appear to
influence the orientation of the stripes. The 5-vertex po-
sitions have six NNN, meaning that they feel the largest
spin pressure compared to the other vertices (in other
words, they are surrounded by 11 interacting spins), and
are therefore perhaps the most important positions to
satisfy energetically.

Figure 7 shows the two lowest-energy states on the 5-
vertex: Figure 7(a) considers Eq. 6 on the vertex only,
while Figure 7(b) considers it across the whole neigh-
bourhood. The striped phase on these vertices is clear
to see, however, the direction is rotated by 120◦ be-
tween the two. Similarly, the orientation of the 5-vertex
is 6-fold across the system, determined by the position
of the vacant spin. The multiple orientations of striped
phases seen in Figure 6(c) are therefore likely caused by
a mixture of the competition between the two low-energy
states and the many 5-vertex orientations across the sys-
tem. Whether the stripe phase domain sizes or orienta-
tions can be tuned by changing the arrangement of the
5-vertices is an open question.

J1 = −1, J2 = 1

Figure 6(d) shows that the phase transition for all three
systems occurs at the same T, and that the heat capacity
of the triangular and SEH00 structures have nearly the

same peak height. In fact, the sharp shape and smaller
full-width half-maximum of the SEH00 peak indicates
a system which potentially holds less frustration than
the other spin-structures. Similarly, Figure 6(e) shows
that the SEH00 spins have perfect long-range order in
contrast to the defect system; the larger magnitude S(r)
value for anti-parallel spins (∼ −0.45) compared to the
triangular lattice (− 1

3 ) arises simply from the reduction
in the average number of NN and NNN spins.

The long-range structure of the system is driven by the
fact that there are positions in the SEH00 tiling which
can perfectly decorate the points of a periodic triangular
lattice with a lattice constant of 2. These sites are oc-
cupied by up spins in Figure 6(f), and are fully satisfied
energetically: their NN are anti-parallel, and their NNN
are parallel. As for frustration, the vacant positions in
Figure 6(f) would be down spins on the triangular lattice
– as such they would have three unfavourable parallel
and three favourable anti-parallel NN spins. Likewise,
they would represent an unfavourable parallel spin in a
neighbouring down spin site. The ‘removal’ of these sites
therefore reduces the overall frustration of the system.

V. CONCLUSIONS AND OUTLOOK

We have introduced two single edge-length quasiperi-
odic tilings, produced by the dual-grid method. As a
consequence we have presented a quasiperiodic system of
vertices or sublattices which can be considered as deco-
rations on a periodic lattice. Lastly, we have shown some
rudimentary magnetic properties of these systems.

As a general comment on our theoretical magnetic in-
vestigation with a view to future work, we note we have
only explored two extremes of a simple toy system. How-
ever, the behaviour of the SEH00 tiling at these two ex-
tremes (similar to a random defect model at J2 = −1,
less frustrated than a triangular lattice at J2 = 1) indi-
cates a potentially rich magnetic phase diagram to ex-
plore, particularly with ordered/disordered vacancy de-
fects in mind. Likewise, investigating xy- or xyz -spins,
considering our system as a dimer model [36–39] , or
physical manifestations [29, 40] suggests a range of pos-
sible further work.

The quasiperiodic decorations we have presented sug-
gest wide and flexible experimental opportunities, and
allows for the investigation of interfacial quasiperi-
odic/periodic arrangements which have minimized spa-
tial frustration. The decorations we have shown could
be realised and explored at multiple length scales, with
examples not limited to: manipulated adsorbate/defect
systems on a hexagonal close packed surface [41–44], pho-
tonic materials with different dielectric constants [45–48],
scatters in waveguides [49–56], or as mechanical metama-
terials [57–60].
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Appendix A: Vertices

1. SEH tiling duals

Figure A1 shows the dual of the SEH tilings, or, the edge removal guide to be overlaid onto a periodic triangular
lattice - as discussed in the main text. The constituent tiles are coloured for the SEH00 and SEH 1

2
1
2
duals ((a, b)

respectively), and enlarged at the bottom of the figure. Out of interest, we note the similarity in structure of dual
Figure A1(b) to various hexagonal and dodecagonal tilings [7, 61].

FIG. A1: Top: duals of the SEH00 and SEH 1
2

1
2
tilings ((a, b) respectively), where the vertices of the duals

correspond to the centre of the SEH tiles. Selected tiles are coloured to emphasise the tiling constituents. Bottom:
enlarged versions of the dual tiles.

2. Radial distribution functions of n-vertices

Figures A2 and A3 show the radial distribution functions on each n-vertex of the SEH00 and SEH 1
2

1
2
tiling,

calculated for up to 5 distance units.

3. Vertex combinations

Figures A4 and A5 show the remaining bipartite vertex combinations of the SEH00 tilings. We do not show the
combination which combines the 3-vertex and vacancy positions as one set, and the 4A-, 4B-, 5-, and 6-vertices as
the other: this creates a periodic kagome-like lattice.
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FIG. A2: Radial distribution functions on each n-vertex of the SEH00 tiling.

FIG. A3: Radial distribution functions on each n-vertex of the SEH 1
2

1
2
tiling.
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FIG. A4: First fifteen vertex combinations of the SEH00 tiling.
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FIG. A5: Second fifteen vertex combinations of the SEH00 tiling.
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FIG. A6: Vertex combinations of the SEH 1
2

1
2
tiling.



17

4. Arbitrary scaling ratios between k1−3 and k4−6

Figure A7 shows the n-vertex distributions for the SEH00 (a-c) and SEH 1
2

1
2
(d-f) tilings where the scaling ratio

between k1−3 and k4−6 has been arbitrarily chosen as 1√
2
(a,d),

√
7− 2 (b,e), and

√
π (c,f) respectively.

FIG. A7: Vertex distributions for the SEH00 tiling (a-c) and SEH 1
2

1
2
tilings (d-f) with different scaling ratios

between the grid vectors k1−3 and k4−6 which define tile placement. (a,d) are scaled by 1√
2
, (b,d) by

√
7− 2, and

(c,f) by
√
π.
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Appendix B: Random defect model

Figure A8(a) shows the spin texture of a randomly selected defect lattice for when J1 ≡ J2 ≡ −1. Green hexagons
have spin up, purple have spin down. Figure A8(b) shows the corresponding random tiling from this defect structure.
Hexagons are centred on the vacancies; and the rhombic and triangle tiles fill the remaining spaces randomly.

FIG. A8: (a) Spin structure of a defect lattice where J1 ≡ J2 ≡ −1. Green hexagons are spin up, purple are spin
down. (b) shows the tiling structure of the defect lattice.
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